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ABSTRACT The objective of this research work is to analyze wind characteristics and to assess wind power
potential by selecting the best fit probability distribution function of Jhimpir Sindh Pakistan. This type of
detailed investigation helps wind power generation companies in selecting suitable wind turbine and provides
information of wind characteristics of potential site. Eight probability distribution functions are tested on
the wind speed data from January 2015 to July 2018. Frequency bins of Weibull and Rayleigh distribution
with maximum probabilities of 0.1210 and 0.1143 are most closest representation of our data. In order to,
quantitatively analysis which distribution function is best fitting the local wind regime, we have applied
the coefficient-of-determination, Kolmogorov-Smirnov, Chi square, Cramer-von Mises, Anderson-Darling
tests along with Akaike information and Bayesian information criterion. These statistical test are used to
rank the empirical distribution functions in order to identify two distribution function better fitting the actual
wind speed data. After selecting two best fitted distribution functions, we analyze wind power potential
and compare the error of wind power density based on these distribution functions (Weibull and Rayleigh).
The power densities reported varied from 73.67 to 648.73W/m2. Results indicate that power densities of
Weibull and Rayleigh for the candidate site are 84.67–698.65W/m2 and 83.67–1021.4W/m2, respectively.
The highest error for Weibull and Rayleigh are 0.1850 and 0.5745, respectively. Whereas lowest error are
0.0178 and 0.0180, respectively. Complete analysis suggested that Weibull distribution function is the most
suitable for Jhimpir Sindh Pakistan and the studied site is suitable for wind power production. In addition,
comprehensive analysis of wind direction at the candidate site suggested that Eastern and Southeastern wind
directions are predominant with 38.52% and 33.24% of the total time.

INDEX TERMS Jhimpir Pakistan, parametric distribution, statistical analysis, Weibull distribution, wind
power potential, wind speed and direction.

I. INTRODUCTION
Due to an increase in the pollution, rising environmental
issues and continuous decrease in the reservoirs of conven-
tional energy sources worldwide, power generation compa-
nies are moving towards renewable energy resources. A lot of
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work is already being done for the reduction of environmental
effects and produce low priced electricity. Among renewable
energy resources, wind and solar power generation are con-
sidered as the most valuable and reliable sources. During the
last decade, the total installed capacity of wind energy in
countries like China, United States, Germany and India have
shown a radical improvement and the share of wind energy
has increased a lot. Beside countries leading the world in
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term of installed capacity, a lot of other countries, like South
Africa, Pakistan, Uruguay and Iran, have also shown a huge
improvement in installed capacity of wind energy. Because
of the environment-friendly, available abundantly in nature
and most importantly affordability for weak economies of
developing world, the total installed capacity of wind power
all over the world has shown an increasing trend during the
last decade [1]. In 2017, it has increased with an annual
growth rate of 10.1% and reached 514798MW, as shown
in Fig. 1 [1].

Pakistan is facing different problems in increasing the
share of renewable energy resources from beginning. In the
year 2003, energy sector has observed a major change when
Federal Government decided to have a special division as
Alternative Energy Development Board (AEDB). Since then,
a lot of renewable energy projects have started working under
this umbrella and the total installed capacity of wind power
generation in Pakistan was 789MW by the end of 2017.
In 2019, AEDB has published Alternative and Renewable
Energy (ARE) Policy 2019 and decided to increase the share
of renewable energy to at least 30% by the year 2030. In this
regard, twelve new wind power projects with installed capac-
ity of 610MW are in pipeline and are envisaged to come
online by year 2021. Thus, wind power potential is very huge
in Pakistan and its development would meet more and more
electricity demand in Pakistan.

For any selected site, wind power potential can be calcu-
lated by analyzing wind speed characteristics (speed, direc-
tion, availability, and continuity) of that area. Researchers
have analyzed these characteristics by using parametric
and non-parametric methods. Parametric method requires
estimation of distribution parameters and these parame-
ters are then analyzed on different bases for the assess-
ment of wind energy potential. Up to now, more than
100 distributions have been proposed to fit wind speed
data. Among them, the most recommended distributions are
Weibull [2], Rayleigh [3], [8], [9], Gamma [8]–[10] and
Log-normal [10]–[13], depending on geographical locations.
Ayodele et al. [2] have studiedWeibull, Rayleigh and lognor-
mal distributions function at the local site to estimate capacity
factor of 20 commercially available wind turbines.

Keyhani et al. [14] have statistically analyzed eleven years
of wind speed data with a resolution of three hours and wind
power potential of Tehran, Iran, has been studied based on
Weibull model. Dabbaghiyan et al. have employed Weibull
probability distribution function to calculate the wind power
density and energy for four locations in Bushehr province of
Iran [15].Multi-criteria decisionmaking, using GIS software,
is applied to study wind energy potential for Northwestern
Iran by Bina et al. [16]. In their study, technical and envi-
ronmental criteria have been applied discretely and results
showed that sixty-four percent of the area is appropriate for
wind farm installation. Saeed et al. [17] have assessed the
wind power potential for Sanghar, Pakistan. Wind speed data
of two years is analyzed by using three variations of Weibull
parameters.

The proposed framework for estimating power output gen-
eration of wind turbines by Wacker et al. [18] depend upon
wind speed distributions selection, wind speed data set and
general power curve modeling. Which shows the importance
of selection of wind speed distribution. Baser et al. [19] have
assessed the wind energy resources and analyzed annual wind
energy production from a wind turbine of 3 MW and esti-
mated it to be 6285 MWh with plant capacity factor of 25%,
for Jubail Saudi Arabia. Ramli et al. [20] have investigated
the hybrid system configuration and concluded that bothwind
and solar have sufficient potential in the western part of Saudi
Arabia. From the references, mention above it can be con-
cluded that analysis of wind speed characteristics, selection
of distribution function as assessment of wind power potential
are the three most important attributes in analysis process at
any particular site. These attributes are helpful for selection of
suitable wind turbines, economical evaluation, auditing cost
effectiveness and estimating future income of wind energy
projects.

In Pakistan, although researchers have estimated the
wind energy potential before the inauguration of AEDB,
researchers have shown more interest in this area under the
aegis of AEDB and have published some papers about the
wind energy potential and wind characteristics for different
locations of Pakistan. Ashfaq et al. have done wind power
atlas modeling in their study and used the quasi exact method
to calculate the power generation potential at a spatial res-
olution of 14 × 14 km2 [21]. Khahro et al. have used the
Weibull probability density function (PDF) and Rayleigh
distribution function in their work [22]. They have also com-
pared five different parameter selection methods to determine
the shape and scale parameters of Weibull distribution for
Babaurband, Sindh Pakistan. To meet the power shortage of
Karachi city, the wind energy potential of Karachi city has
been studied by Aman et al. [23]. For Jhimpir and Gharo,
wind speed benchmark was developed by Mirza et al. [24].
Hulio et al. have assessed the wind characteristic and wind
power potential for Hawksbay, Karachi and different param-
eter estimation methods are analyzed in their study at the
candidate site [25]. An investigation of wind power potential
from September 2003 to August 2005 for Jamshoro, Pakistan
is performed in [26].

If we have a look at the data of installed capacity of
wind energy published by [27]. Pakistan falls at 33th position
out of 113 countries with a total increase of 783 MW in
installed capacity from 2010 to 2017. However, the rate of
increase in Pakistan was considerably high during this period.
Pakistan falls at 2nd position in term of the rate of increase,
among all those countries which were having installed capac-
ity greater than or equal to that of Pakistan in 2010. Detail
comparison of the rate of increase among different countries
is discussed in Section 2.2 of this paper. Due to the increase
in installed capacity and high rate of increase during the
last decade, there is a need to study wind energy potential
of different locations of the country. So far, no one has
analyzed the wind power potential of Jhimpir, Pakistan that
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FIGURE 1. The total installed capacity of wind power generation all over the world.

lies in the wind energy corridor in the southern part of the
country.

Unlike the conventional sources of electrical energy,
power produced by renewable energy resources has a strong
correlation with geographical location and regional climatic
condition of the particular site. Understanding the impact of
climatic parameters at particular site provides valuable input
for wind energy projects at planning and financing stages.
Better understanding of wind characteristics from historical
data of wind makes business models more robust and bud-
get tables more accurate. All-around-the-globe, researchers
have been running similar studies in different countries and
climates. The presence of such studies not only allows under-
standing wind characteristic in certain locations and climate
conditions, but also helps compare wind power potential
of studied site with existing studies at some other location
having similar wind speed characteristics and distributional
properties.

Up to now, there is lack of detailed study for the assess-
ment of wind characteristics and wind power potential of
Jhimpir, Pakistan. Consequently, in this study, we have ana-
lyzed the wind characteristics in Jhimpir, Pakistan and the
competence of seven probability distribution functions (i.e.,
Gamma, Weibull, Rayleigh, Cauchy, Log-normal, Gumbel
and Logistic) is assessed to find the best fit distribution
function on the bases of seven tests applied (i.e., Coefficient
of Determination, Kolmogorov-Smirnov test, Chi square test,
Cramer-von Mises test, Anderson-Darling test, Akaike infor-
mation criterion and Bayesian information criterion). After
shortlisting the two best fitted distribution functions, we ana-
lyze the wind power potential and the comparison of wind

power density error is performed for selecting the final best fit
probability distribution function. In addition, comprehensive
analysis of wind direction is also part of this research. The
contribution of this paper is summarized as follows.

• To the best of our knowledge, this is the first effort to
analyze wind data at Jhimpir, Pakistan. Seven probabil-
ity density functions are employed to assess which one
is the most suitable for the estimation of wind power
density at Jhimpir, Pakistan.

• To test how good a probability function fits the observed
wind data, seven statistical tests are applied to select
the best fit distribution function. Wind power density
error based on Weibull and Rayleigh distributions are
compared. Final results show that Weibull is the most
effective distribution for Jhimpir, Pakistan.

• Wind power potential at Jhimpir, Pakistan is also
assessed, showing that wind power potential is very
huge and Jhimpir is very suitable for the development
of large-scale wind power projects.

Research findings of this study will help project developers
understand the wind characteristics, distributional properties
of wind, wind power potential and what to expect from
the developed sites in the future. In addition to this, it will
also help policy makers and financial supporter, in making
decision about installation of wind farm at jhimpir, Sindh,
Pakistan.

The remaining paper is organized as follows. Wind energy
development around the globe and Pakistan is summarized
in Section 2. Parameter estimation of wind data is explained
in Section 3. Parametric distributions for distributional
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FIGURE 2. Top five countries with the largest increase in the installed capacity of wind power generation from 2010 to 2017.

assessment of wind speed along with the estimation method
used and goodness to fit test applied for assessment of these
distributions are presented in Section 4. Wind power density
calculations are performed in Section 5. In Section 6, results
of all the above mentioned sections are analyzed and dis-
cussed. Finally, conclusions are presented in Section 7.

II. WIND ENERGY DEVELOPMENT
A. GLOBAL WIND ENERGY DEVELOPMENT
Due to global warming and rapid weather changes across the
globe, all international organizations have emphasized on the
importance of renewable energy resources. During the last
decade, many countries have shown great improvements in
the usage of renewable energy resources like the wind on
different scale to help the world be a healthier and safer place
to live. In 2010, the installed capacity of China and United
States were 44,733 MW and 40,180 MW, respectively. But
over the years, China has shown a huge increase and in 2017,
the installed capacity of wind energy in China was more than
double of the total installed capacity of United States. If we
have a look at the total increase in the installed capacity of
wind energy from 2010 to 2017, with the significant addition
of 150,977 MW, China is now leading the world in wind
power development, followed by United States, Germany,
India and United Kingdom. United States has shown the total
increase of 48,595 MW across the years and its installed
capacity was 88,775 MW in 2017. Likewise, Germany, India
and United Kingdom have increased their installed capac-
ity by 28,975 MW, 19,813 MW and 12,648 MW, respec-
tively and the total installed capacity in these countries
were 27,215 MW, 13,066 MW and 5,204 MW in 2017,

respectively [27]. Bar graph of the installed capacity over the
years for these five countries is shown in Fig. 2.

B. WIND ENERGY DEVELOPMENT IN PAKISTAN
The installed capacity of Pakistan in 2010 was 6 MW and in
2017, it reached a value of 786MW[27], showing a very rapid
increase in recent years. Here, we use the rate of increase
(ROI) to describe the growing rate of the installed capacity
in different countries in recent years. ROI over a period of
time (n years) can be calculated by (1).

ROI =
(

ICt
ICt−n

) 1
n

− 1 (1)

where IC t is the installed capacity at year t , IC t−n is the
installed capacity at year t − n and n is the total number of
years across the period.

Top five countries with the biggest ROI of the installed
wind capacity are shown in Table 1. South Africa is having
the highest ROI of 114.42% with the total installed capacity
of 2,085MW in 2017. Pakistan stands at the second place
in Table 1 after South Africa, having the second highest ROI
of 100.77%. Uruguay is at the third position with ROI of
74.13%. Brazil and Philippines have the ROI less than 50%
and are at the fourth and fifth positions with the total installed
capacity of 12,763MW and 427MW, respectively.

From Table 1, we can see that although the total installed
capacity of Pakistan in 2017 is not very large, Pakistan now
has the second highest ROI (100.77%) all over the world,
showing that wind power development in Pakistan is growing
very rapidly in recent years. Here, it is important to note that
a zero value in the starting year will result in an infinite ROI.
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TABLE 1. Top five countries with the largest ROI of the installed capacity of wind energy generation from 2010 to 2017.

Thus, to carry out a fair comparison with Pakistan, we have
omitted the countries with the installed capacity less than the
installed capacity of Pakistan in 2010 (i.e., 6MW).

III. WIND DATA PARAMETER ESTIMATION
Wind energy potential of a particular site can be evaluated if
we know wind features of that location. Analysis of different
wind attributes like wind speed, the availability of wind at a
particular speed, wind direction and the continuity of wind
blowing is important for making initial estimates of wind
energy potential. Distributional analysis of wind speed is
considered to be the most important for wind energy potential
of a site. By doing the distributional analysis, we can have
information about the minimum andmaximum speed of wind
as well as wind speed frequency distribution that is the num-
ber of times a particular wind speed was available over the
period of time. Beside wind features, other factors that can
affect the wind production at a particular site are tower height
and design of the wind turbine.

Average wind speed and standard deviation are considered
to be two most important parameters for analysis of wind
characteristics. The average wind speed and standard devi-
ation can be calculated by using (2) and (3):

Vavg =
1
N

(
N∑
i=1

Vi

)
(2)

σ =

[
1

N − 1

N∑
i=1

(
Vi − Vavg

)2]1/2 (3)

where Vi represents the wind speed (m/s) at time i and N is
the total number of entries available.

Besides these two parameters, two more parameters are
used to approximate the wind power potential. They are the
most probable wind speed Vmp and the wind speed having
maximum energy VmaxE . Wind speed carrying maximum
energy VmaxE helps in estimating the design of wind turbine
whereas the most probable wind speed Vmp represents the
peak of the PDF. They can be calculated by using (4) and (5).

Vmp = C
(
k − 1
k

)1/k
(4)

VmaxE = C
(
k + 2
k

)1/k
(5)

where C and k are the Weibull shape and scale parameters.

IV. WIND SPEED DISTRIBUTION ASSESSMENT
It is important to note that wind power production has a
strong correlation with the wind speed besides geographical
statistics and meteorological data. So, some statistical anal-
ysis should be carried out to determine wind speed distri-
bution. Literature review illustrates that several parametric
distribution models have been proposed to guesstimate wind
speed probability distributions and they have been used for
wind farm planning, reliability evaluation of wind resources
and long-term strategy of wind generators. Weibull is the
most commonly used distribution and is recommended in
many studies. In [2]–[7], researchers have performed the
comparison of Weibull distribution with different distribu-
tions and recommended the two-parameter Weibull distribu-
tion. In [3], [8], [9], [28], researchers have used Rayleigh
distribution and Drobinski et al. [28] recommended Rayleigh
distribution after assessing four distributions for a location in
France. Likewise, [3], [8]–[10], [25] compared Gamma dis-
tribution with other distributions. Lognormal has been used
by [3], [10]–[13] and recommended for Iran and Algeria by
Alavi et al. [3] and Aries et al. [11], respectively. Similarly,
Gumbel [10], [11], Logistic [10], [13], Cauchy and general-
ized Lindley distributions are also used in different studies for
the analysis of wind power potential.

Most studies in Pakistan region have used just Weibull and
Rayleigh distributions and no one have tested other distribu-
tions so far. In our study, we have used Weibull, Rayleigh,
Gumbel, Log-normal, Logistic, Gamma, generalized Lindley
and Cauchy distributions for finding out the best fit distri-
bution for the mentioned location in Pakistan. In this section,
we first review eight probability distributions and then present
how to estimate unknown parameters of these distributions.
Finally, several goodness-to-fit measures are given to evalu-
ate the quality of different distributions.

A. PARAMETRIC DISTRIBUTIONS
1) WEIBULL DISTRIBUTION
Weibull is the most widely used distribution for estimation
of wind power potential [22], [25], [29], [30]. Weibull distri-
bution depends upon three characteristic parameters known
as shape, scale and location parameters. For a two-parameter
Weibull distribution, we just have shape and scale parameters.
In our study, we calculated Weibull parameters by using the
maximum goodness-of-fit estimation approach explained in
Section 4.2. After determining shape and scale parameters,
the PDF and cumulative distribution function (CDF) for

70122 VOLUME 9, 2021



M. A. Khan et al.: Determination of Optimal Parametric Distribution and Technical Evaluation

a two-parameter Weibull distribution can be calculated by
using (6) and (7).

f (V ) =
(
k
C

)(
V
C

)k−1
e

[
−(V/C )

k]
(6)

F (V ) = 1− e

[
−(V/C )

k]
(7)

where V is the wind speed, k is the dimensionless Weibull
shape parameter, andC is theWeibull scale parameter having
the same unit as V .

The PDF gives us the probability of availability of wind at
a given speed V , and the corresponding CDF tells us about
the probability of wind speed that is equal to or lower than a
given speed V or within a given interval of wind speed.

2) RAYLEIGH DISTRIBUTION
Rayleigh distribution can be considered as a special case of
Weibull distribution in which the shape parameter has a fixed
value of two. Rayleigh distribution is commonly applied to
determine the wind power potential [29], [30]. In order to
analyze the wind velocity in two dimensions (i.e., time and
speed) with an assumption that each component is uncor-
related, normally distributed with equal variance and zero
mean, Rayleigh distribution is an important tool and provides
better results. The PDF andCDF for Rayleigh distribution can
be calculated by using (8) and (9), respectively.

f (V ) =
π

2

(
V
V 2
avg

)
e

[
−( π4 )

(
V

Vavg

)2]
(8)

F (V ) = 1− e

[
−( π4 )

(
V

Vavg

)2]
(9)

3) LOGISTIC DISTRIBUTION
From the family of continuous distribution, Logistic distri-
bution can be represented by location and scale parameters.
As compared to normal distribution, logistic distribution has
heavier tails but its shape resembles the normal distribution.
After the parameter estimation, the PDF and CFD of Logistic
distribution are given by (10) and (11).

f (V ) =
e
−

(
V−a
b

)

b
(
1+ e

−

(
V−a
b

))2 (10)

F (V ) =
1

1+ e
−

(
V−a
b

) (11)

where a is the location parameter and b is the scale parameter.

4) GAMMA DISTRIBUTION
Gamma distribution also belongs to the family of continuous
probability distributions consisting of shape and rate param-
eters. The PDF and CDF can be expressed by using (12)
and (13).

f (V ) =
ba

0(a)
V a−1e−bV (12)

F (V ) =
1

0 (a)
γ (a, bV ) (13)

where a is the shape parameter and b is the rate parameter.

5) LOG-NORMAL DISTRIBUTION
Log-normal distribution best fits the theoretical distribution
if the sample data is log-normally distributed, meaning that
the logarithm of the sample data follows a normal distribu-
tion. Like a normal distribution, Log-normal distribution is
also represented by two parameters, i.e., mean and standard
deviation. However, we have to calculate these parameters
after taking the logarithm of the sample data and then express
them as mean-log and standard-deviation-log of the distri-
bution. After the estimation of these two parameters, the
PDF and CFD of Log-normal distribution can be expressed
by (14) and (15).

f (V ) =
1

Vσ
√
2π

e

(
−
(ln(V )−µ)2

2σ2

)
(14)

F (V ) =
1
2
+

1
2
erf
[
ln (V )− µ

σ
√
2

]
(15)

where erf(·) is the error function that is represented by (16).

erf (v) =
2
√
π

∫ v

0
e−t

2
dt (16)

6) CAUCHY DISTRIBUTION
The PDF and CDF of Cauchy distribution are determined by
using the functions expressed by location and scale parame-
ters in (17) and (18).

f (V ) =
1
πb

[
b2

(V − a)2 + b2

]
(17)

F (V ) =
1
2
+

1
π
arctan

(
V − a
b

)
(18)

where a is the location parameter and b is the scale parameter.

7) GUMBEL DISTRIBUTION
The Gumbel distribution is an extreme value distribution.
After the estimation of location and scale parameters, the PDF
and CFD of Gumbel distribution can be expressed by
using (19) and (20).

f (V ) =
1
β
e−(z+e

−z) (19)

F (V ) = e−(e
z) (20)

where z = V−a
b , a is the location parameter and b is the scale

parameter.

8) GENERALIZED LINDLEY DISTRIBUTION
Zakerzadeh and Dolati (2009) introduced generalized Lind-
ley distribution having three parameters α, β and θ . The
corresponding PDF and CFD of the generalized Lindley dis-
tribution can be expressed as 21 and 22, respectively.

f (V ) =
θα+1xα−1 (α + βx)−θx

(β + θ )0(α + 1)
(21)
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F (V ) = 1−
α (β + θ) 0 (α, θx)+ β (θx)α e−θx

(β + θ )0(α + 1)
(22)

where 0(α, z) is the gamma function.

B. PARAMETER ESTIMATION FOR STATISTICAL
DISTRIBUTION
Many approaches have been proposed to accurately estimate
unknown parameters of statistical distributions introduced
before, such as shape and scale parameters of Weibull dis-
tribution. The study conducted by [31] has just considered
the empirical method for parameter estimation ofWeibull and
Rayleigh distributions, while [25] has compared the empir-
ical method, maximum likelihood method, modified maxi-
mum likelihood method, energy factor method and graphi-
cal method for parameter assessment of Weibull distribution
for Hawky’s Bay, Pakistan. [7] has compared the results of
Empirical Method of Justus (EMJ), Energy Pattern Factor
Method (EPFM), Maximum Likelihood Estimation Method
(MLM)with the results of optimization techniques for param-
eter selection. This study concluded that the optimization
method performs considerably well.

In our study, we applied the Nelder–Mead method for
parameter estimation of probability distributions shown in
Section 4.1. TheNelder–Meadmethod tries to find the param-
eter which can minimize the goodness-to-fit distance. The
Nelder–Mead method is a numerical optimization technique
used extensively for statistical estimation problems [32].
It uses the concept of a simplex in the factor space and repet-
itively forms new simplexes by replicating one point in the
hyper plane of the remaining points. By doing so, it becomes
accustomed to local landscape and converges to the final
minimum. The stopping criteria to end up the optimization
involves the maximization of log-likelihood function. For
better understanding of the readers the complete procedure
in form of a flow chart is given is Fig. 3. After that, stan-
dard errors of the estimates are calculated to minimize the
Kolmogorov-Smirnov distance.

C. GOODNESS TO FIT STATISTICS
A lot of statistical tests have been used by different
researchers. Among them, Coefficient of Determination (R2),
Kolmogorov-Smirnov (K-S) and Chi square test (χ2) are
the most widely used tests. Jung et al. [33] have presented
a methodology that extends the scope of wind energy yield
on high resolutions grid measured at 58 stations of german
weather servive, goodness of fit of 67 therratical CDF was
evaluated based on Coefficient of Determination (R2). Refer-
ence [34] have evaluated the PDFs of wind speed data of five
sites of north Dakota based on (R2), Kolmogorov-Smirnov
(K-S) and Chi square test (χ2) to find the best fit distri-
bution function. In addition, Cramer-von Mises test (CvM)
and Anderson-Darling (A-D) test have also been used. A-D
test [35] gives more weight to the deviations at the tail of
distribution, whereas, K-S test is more sensitive near the cen-
ter of the distribution. Application of these two tests together

will help us to find better fit distribution based on both center
and tail regions of the distribution [36]. The goodness-to-fit
assessment may also be done by using Akaike information
criterion (AIC) and Bayesian information criterion (BIC).
These methods are based on log-likelihood function of the
distribution and a lower value of AIC and BIC indicates better
fitting.

The measure of flexibility of AIC depends on the number
of parameters, with more parameters resulting in harsh penal-
ties. Whereas measure of flexibility of BIC not only depends
on number of parameters but also on the number of obser-
vations (i:e sample length), with more parameters resulting
in harsher penalties, and the relative penalty increases as the
number of observations increase. It is important to mention
here that unlike other statistical tests used for goodness-of-
fit only AIC and BIC have used number of parameters and
sample length.

For evaluation of how well the aforementioned seven dis-
tributions fit the original data, we have applied R2, K-S, χ2,
CvM and A-D tests along with AIC and BIC. Statistical
results of these tests will tell us about the best fit and the
worst fit distribution for our data. A brief description of all
test methods is given below.

1) COEFFICIENT OF DETERMINATION
Masseran et al. [37] and Shinet al. [38] have used R2 along
with two varients R2pp and R2QQ associated with P-P and
Q-Q probability polt approaches. R2 is the most commonly
used test for measuring the goodness of fit for different
distributions and tells us about the variance of the observed
probabilities when fitted on some predicted probabilities. R2

is given by

R2 = 1−
SSE
SST

(23)

where SSE is the summed square of residuals and SST is the
total sum of squares.

2) KOLMOGOROV-SMIRNOV TEST
K-S test gives absolute deviations between the sample distri-
bution function and the specified theoretical CDF [39]. The
empirical CDF for wind speed samples x1, x2, x3, . . . , xn can
be calculated by

F (x) =
1
N

[n (i)] (24)

where N is the sample size and for xi arranged from lowest to
highest value, n (i) are the number of points smaller than xi.
The K-S statistics can be calculated by using

D = max
1≤i≤N

(
F (xi)−

i− 1
N

,
i
N
− F (xi)

)
(25)

Smaller value of K-S statistic represents better fitting of the
theoretical distribution.
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FIGURE 3. Flow chart for parameter selection of Nelder–Mead method.

3) CHI SQUARE TEST
χ2 test is used to statistically analyze how well the theo-
retical distribution is fitting the observed data and is used
in other literatures [40]. The sample data is first divided
into k groups and then the difference between the observed
frequency and the expected frequency of group i is squared.
Finally, the squared difference is divided by the expected
frequency to give the error of that bin. These errors are then
summed up for the overall error of probability distribution
and can be represented mathematically by (26).

χ2
=

k∑
i=1

(Oi − Ei)2

Ei
(26)

where Oi and Ei are the observed and expected frequencies
for group i. The expected frequency of each group Ei can be
calculated by using (27).

Ei = F (x2)− F (x1) (27)

where x1 and x2 are the lower and upper limit of the group i,
respectively. F(·) is the CDF of the theoretical distribution.

4) CRAMER-VON MISES TEST
CvM test is recommended for minimum distance estima-
tion in statistic. For one sample application of empirical
data arranged in the increasing order, CvM statistics can be
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calculated by (28).

CvM = nω2 (28)

where ω2 is defined by

ω2
=

∫
+

−

[F (v)− F∗ (v)]2dF∗ (v) (29)

where F (.) and F∗ (.) are CDFs of observed and theoretical
distributions, respectively.

5) ANDERSON-DARLING TEST
A-D test is the modified version of K-S test and is also used to
verify whether the sample data fits the specified distribution
or not. The critical value of A-D test depends on the specified
distribution and it gives more weight to the deviations at
the tails of distributions. A smaller value of A-D statistic
represents better fit of the theoretical curve and A-D statistic
can be calculated by using (30).

AD = −N −
1
N

N∑
i=1

(2i− 1)

×
{
lnF (vi)+ ln

[
1− F

(
vn−(i+1)

)]}
(30)

where N is the total number of bins, F (.) is the empirical
CFD, and vi is the mean of wind speed in i-th bin.

6) AKAIKE INFORMATION CRITERION
AIC statistic is calculated by using model parameters based
on maximum likelihood method and is used to determine
the model accuracy. AIC is preferred due to its relation with
maximum likelihood method for parameter estimation and is
expressed by (31).

AIC = −2 ln (L)+ 2k (31)

where k represents the number of parameters and L is the
maximum value of likelihood function.

7) BAYESIAN INFORMATION CRITERION
AIC and BIC are closely related to each other and the only
difference is in the penalty term (the second term) of the
BIC. Penalty term of BIC is larger than AIC, as the number
of parameters is multiplied with the logarithm of the sample
length rather than a fix number ‘‘2’’. BIC statistic depends
on the length of the empirical data and can be calculated by
using (32).

BIC = −2 ln (L)+ k ln (n) (32)

V. WIND POWER DENSITY CALCULATION
Wind speed can be converted into wind power. Given
wind speed, Ideal wind power Pideal can be calculated by
using (33).

PIdeal =
1
2
ρATV 3 (33)

where ρ is the air density in kg/m3, AT is the rotor swept area
in m2 and V is wind speed in m/sec.

Wind power cannot be entirely extracted by wind turbines
because the air particles would stop in the intercepting area
of the rotor, thereby blocking the cross-sectional area for the
subsequent air particles. According to Betz, if the turbine
swirl and transmission losses were ignored, 59% of the wind
power available can theoretically be extracted from the wind.
Therefore, for any wind turbine, the wind turbine efficiency
should not exceed 0.59 percent of the ideal power that can be
extracted from the wind. Theoretical maximum power that
can be extracted from a given wind speed is Cp time the ideal
power known as PTh can be calculated by (34).

PTh =
1
2
ρCPATV 3 (34)

where Cp is the coefficient of performance of the turbine, it is
a function of tip speed ratio and the pitch angle. Theoretically,
Cp has a maximum value of 0.59 known as Betz limit. The
variable wind speed turbine can track the maximum Cp by
adjusting the turbine speed according to the wind speed. Prac-
tically, we have to consider the turbine swirl and transmission
losses, which results in further reduction of power extracted
from wind. For practical purposes, we have to consider the
thrust of wind and power coefficient Cp is replaced by the
Thrust coefficient CT . The developed thrust T on the turbine
blades is given by equation (35), see [R1.] for more details,
as follows:

T =
1
2
ρCTATV 2 (35)

By combining equation (34) and (35), we can produce
equation (36).

Pactual = TV (36)

In our study, we have considered the PTh for assessment
of wind power as it is the theoretical maximum that can
be achieved and fulfill the aim of this study that’s is the
assessment of wind power potential for Jhimpir, Pakistan.
After selection of wind turbine and getting the value of thrust
coefficient, Actual power extracted from the wind can be
calculated by using (36).

Wind power density can be calculated by dividing the wind
power PTh with the area of the turbine AT . Inserting the value
of PTh from (34) into (37), the wind power density can be
calculated by using (38).

PD =
P
AT

(37)

PD =
1
2
ρCPV 3 (38)

Similarly, wind power density using Weibull distribution
function can be calculated by using (39).

PDW =
1
2
ρC30

(
1+

3
k

)
(39)

And, wind power density using Rayleigh distribution func-
tion can be calculated by using (40).

PDR =
3
π
ρV 3 (40)
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TABLE 2. Yearly average values of wind characteristics and Weibull parameters from 2015 to 2018.

The difference between the wind power density calculated
using the wind data recorded at site and the wind power
density calculated through Weibull or Rayleigh distribution
is considered as an error and this error can be calculated by
using (41).

Error (%) =
PDW ,R − PDM

PDM
(41)

where PDW ,R is the wind power density calculated using
Weibull or Rayleigh distribution and PDM is the wind power
density calculated using wind data.

For better understanding of complete methodology id pre-
sented in form of a flow chart in Fig. 4.

VI. RESULT AND DISCUSSION
Pakistan Meteorological Department (PMD) has identified
the wind corridor in the southern region of Pakistan. Jhimpir
is located in the wind corridor area in the southern part of
Sindh province of Pakistan. In this study, we have analyzed
wind characteristics and wind power potential of Jhimpir.
Real-time wind data of 43 months from January 2015 to
July 2018 of the investigated site is considered in this paper.
For assessment of wind power potential of Jhimpir, detail
analysis of wind characteristics is first carried out. For wind
characteristics, we have analyzed the average wind speed
on monthly and yearly bases, the availability of duration
of wind at a particular speed and wind direction. Analysis
of wind power density and wind energy density are also
part of this study. Monthly, yearly and seasonally variations
of wind characteristics are also analyzed for observation of
seasonality pattern of the site.

Wind speed data was collected from two wind masts
located at Jhimpir, Sindh Pakistan. The land surface is bar-
ren with very less population and no agricultural activi-
ties, making it suitable for installation of wind farms. Data
set used for this study was given in tabular form and is
stretched from January 01, 2015 to July 31, 2018 with total
31392 entries of wind speed and wind direction entries cor-
responding to 1308 hours. Range of average wind speed
varies from 0 m/sec to 18.02 m/sec and wind direction
ranges from zero degree to 356 degree. The wind speed data
was recorded in meter per seconds and wind direction was
recorded in degrees, at a height of 80 meters above ground
level. The data was available from two wind masts. Thus,
missing values from mast A are either imported from the
wind mast B or forecasted by linear regression for further
analysis.

A. GOODNESS TO FIT STATISTICS
Time series plot of hourly wind speed is shown in Fig. 5.
Mean wind speed for the complete data set is calculated to be
6.5 m/s and is represented by a black line on the graph. It is
important to note that most of the time the average wind speed
is high than 3 m/s (represented by a dotted line on the graph).
Wind speed of 3 m/s is usually the cut-in speed for most of
the commercially available wind turbines. Table 2 shows the
average wind speed of each year. The average wind speed of
each year is above 6 m/s, ranging from 6.40 m/s to 6.62 m/s.

Bar graph of monthly average wind speed of each year
is shown in Fig. 6(a) and the overall average wind speed
of each month is shown in Fig. 6(b). It is important to
mention that in the month of May, June and July each year,
the temperature goes high and these months are considered
to be hot weather months. There is a rise in the demand of
electricity in hot months, which can be supplied by wind
power generation. However, for the months of November,
December and January, the electricity demand is usually
low because of the cold weather in this region. It can be
seen from Fig. 6(a) that the average wind speed from the
months of May, June, July and August are relatively high
and the maximum mean monthly wind speeds for 2015,
2016, 2017 and 2018 are calculated to be 9.46m/s, 9.26m/s,
8.52m/s and 9.22m/s, respectively. Whereas, the minimum is
in December 2015, November and December 2016, October
2017 and January 2018 (they are 4.56m/s, 4.07m/s, 4.46m/s
and 4.28m/s, respectively). Fig. 6(b) shows that the overall
monthly wind speed is high for hot weather months and is low
for cold weather months. The average wind speed for each
month along with the standard deviation are given in Table 3.

Monthly mean values of the most probable wind speed Vmp
and wind speed carrying maximum energy VmaxE calculated
by using equation 4 and 5 are given in Table 4. The highest
values ofVmp for each year are 10.1m/s, 9.68m/s, 8.75m/s and
9.41m/s in July 2015, May 2016, June 2017 and July 2018,
respectively. Likewise, VmaxE has high values of 11.8m/s for
July 2015 and June 2016, 11.5m/s for July 2017 and 12.1m/s
for June 2018. Yearly values of these two speeds are also
shown in Table 2. The range of Vmp varies from 5.38m/s to
5.88m/s and VmaxE varies from 9.76m/s to 10.47m/s over the
years.

B. WIND SPEED DISTRIBUTION
1) RESULTS OF PARAMETER ESTIMATION
Parameters of statistical distributions explained in Section 4.2
are estimated by using the numerical optimization technique
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FIGURE 4. Flowchart of proposed methodology.

to minimize the goodness to fit distance (known as the
Nelder-Mead optimization method). For any numerical

optimization method we have to provide initial values before
starting the process, initial values for the optimization process
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FIGURE 5. Hourly wind speed for Jhimpir, Pakistan.

TABLE 3. Monthly average values of wind speed, standard deviation and Weibull parameters from 2015 to 2018.

TABLE 4. Most probable wind speed and wind speed carrying maximum energy of each month from 2015 to 2018.
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FIGURE 6. Monthly average wind speed for Jhimpir, Pakistan.

can be fixed up with a constant vector of all ‘‘1’s’’ or
it can be a vector of random variables. In this paper,
we have programmed the algorithm by adding the stochas-
tic variable that randomly choose the value and start
the iterations that leads to the convergence of program.
Moreover, It is worth mentioning here that the complete
data set is required for parameter estimation of statistical
distributions. Table 5 shows the estimated parameters of

each distribution calculated by using the data of every year
separately and the estimated parameters calculated by using
the complete data are also given in the last two columns of
Table 5.

In Gamma distributions, P1 and P2 represent the rate and
scale parameters, respectively. P1 value for each year varies
from 3.5 to 4.19 and it has a value of 3.86 for the complete
data. Likewise, P2 has a minimum value of 0.51 in 2018 and
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TABLE 5. Parameters of each distribution estimated by the Nelder-Mead optimization method.

a maximum value of 0.63 in 2017. For the complete data set,
it has the value of 0.57.

Weibull and Rayleigh distributions are represented by the
shape parameter (P1) and the scale parameter (P2). The
only difference between them is that the shape parameter
(P2) of Rayleigh distribution has a fix value of 2. It can
be observed that there is not too much difference between
P1 and P2 of these two distributions. P1 of Weibull ranges
from 2.06 to 2.24 for yearly analysis and has a value of
2.18 for the complete data set, whereas for Rayleigh, its
P1 has a fix value of 2. Similarly, P2 of Weibull ranges
from 7.35 to 7.66 and for Rayleigh, its P2 lies between
7.34 and 7.65 for yearly analysis. On the other hand, P1 (i.e.,
the parameter k) and P2 (i.e., the parameter C) estimated
on monthly bases for Weibull distribution are also given
in Table 3.

P1 and P2 of Log-normal distributions represent the mean
and standard deviation of the data. For yearly analysis,
the value of mean and standard deviation lies in the intervals
[1.77, 1.82] and [0.51, 0.56], respectively. For the complete
data, P1 and P2 are 1.79 and 0.53, respectively.

For Cauchy, Logistics and Gumbel, distributions P1 and
P2 represent the location and scale parameters, respectively.
For yearly analysis, the location parameter (P1) for Cauchy,
Logistics and Gumbel ranges from [6.34, 6.65], [6.34, 6.36]
and [5.02, 5.34]. The scale parameter (P2) ranges from [6.34,
6.65], [1.70, 1.86] and [5.02, 5.34], respectively. Likewise,
for the complete data, P1 values are 6.46, 6.42 and 5.17 and
P2 values are 1.51, 1.77 and 2.72 for these three distributions,
respectively.

P1, P2 and P3 represents three parameters of generalized
Lindley distribution. P1 value for each year varies from
2.83 to 3.43 and it has a value of 3.10 for the complete data.
P2 ranges from 0.55 to 0.64 and for complete data it has a
value of 0.59. Similarly for yearly analysis P3 ranges from
1.33 to 1.66. For the complete data set, it has the value of 1.52.

2) COMPARISON OF FREQUENCY DISTRIBUTION
It is better to arrange the data in frequency distribution for
statistical analysis and compare theoretical distributions with
empirical distributions. For this reason, we have organized
the complete time series data of wind speed ranging from

January 2015 to July 2018 in the frequency distribution for-
mat and results are shown in Table 6. Depending on the wind
speed characteristic and for better comparisons of the original
data with parametric distributions applied, our data is divided
into 20 bins with each bin having a range of 1m/s mentioned
in Column 1. Column 2 shows the number of times that the
particular wind speed of time series data lies between the
mentioned range in the corresponding row. From Column 2,
it can be observed that the maximum number of times is
3788 and wind speed lies between 6-7m/s. The second, third,
fourth and fifth most occurring speed lies between 7-8m/s,
5-6m/s, 8-9m/s and 4-5m/s and they have occurred 3561,
3491, 3128 and 3018 times, respectively.

Probability density distribution of the actual wind speed
data is shown in Column 3. Probability density tells us about
how the wind speed of a particular range is distributed. Wind
speed bins of 6-7m/s, 7-8m/s, 5-6m/s, 8-9m/s and 4-5m/s are
top five probabilities of actual distribution in the ascending
order. The sum of probabilities of wind speed from 4m/s to
9m/s is 0.5442 showing that wind speed was within this range
for about 54.42% of the total time. For the actual wind speed
data, the highest probability has a value of 0.1214 for the bin
of 6-7m/s, followed by 0.1141 and 0.1118 for bins of 7-8m/s
and 5-6m/s, respectively.

Likewise, results extracted from PDFs of different theoret-
ical distributions are given in Column 4-11. From Table 6,
it can be seen that top five probabilities of Gamma, Weibull,
Log-normal, Gumbel, Rayleigh and generalized Lindley dis-
tributions have occurred at bins of 3-4m/s, 4-5m/s, 5-6m/s,
6-7m/s and 7-8m/s, which are different from top five bins
of the actual wind speed distribution. Among these six dis-
tributions, Gamma, Weibull, Gumbel and Rayleigh have
their maximum value of probabilities as 0.1289, 0.1210,
0.1332 and 0.1143 for wind speed bin of 5-6m/s. whereas,
Log-normal and generalized Lindley distributions have their
maximum value of probability as 0.1429 and 0.1295 for wind
speed bin of 4-5m/s, which is also different from the peak
probability of the actual data.

For Cauchy and Logistic distributions, top five probabili-
ties occurred at the same wind speed bins with those of the
actual wind distribution, i.e., five bins between 4m/s to 9m/s.
Moreover, the highest probabilities of these two distributions
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TABLE 6. Frequency distributions of actual wind speed data and tested distributions using the complete data.

are calculated to be 0.2034 and 0.1399 falling in the wind
speed bin of 6-7m/s.

Besides doing the analysis of the complete data set,
we have also done these calculations on the yearly base.
Fig. 7 is the graphical representation of PDFs of actual and
theoretical distributions for the year 2015. The X-axis repre-
sents the wind speed and the Y-axis represents the probability
density. PDFs of all applied distributions are shown by dif-
ferent line types over the observed distribution represented
in form of histogram. Although peak densities of Gamma,
Weibull, Log-normal, Gumbel, Rayleigh and generalized
Lindley distributions are not in line with the peak density of
the actual distribution, it can be observed from naked eyes that
these distributions can fit the actual distribution very well.
For Cauchy and Logistic distributions, they have better fitting
across the tail region.Whereas in the central region, their peak
densities are far away from the actual distribution.

3) GOODNESS TO FIT STATISTICS
In this study, the comparison of goodness-to-fit statistics
among eight statistical distributions for wind speed at Jhim-
pir, Pakistan is performed using R2 test, K-S test, χ2 test,
CvM test, A-D test, AIC and BIC given in Section 4.3. The
statistical value of each distribution for the complete data is
given in Table 7. Each distribution is then ranked according to
these statistics in the ascending order mentioned by a number
given in small brackets. It is important to mention that R2 is
a positively oriented test, which means that the value of R2

close to 1 represents better fitting of the distribution. Other
tests are negatively oriented and smaller values represent
better goodness-to-fit.

Based on all tests performed, Weibull is always ranked as
number one, meaning that Weibull is best fitting the actual
distribution. For R2 statistics in Table 7, Weibull has the
highest value of 0.974, followed by Rayleigh that is having

the second highest value of 0.965. This shows that based
on R2 test, Weibull and Rayleigh are two best distributions
for our data. Based on K-S tests, Weibull and Logistic are
found to be two best fit distributions with statistical values
of 0.0203 and 0.0322, respectively. Whereas, Cauchy and
generalized Lindley distributions are having statistical values
of 0.0763 and 0.06260, respectively, showing that these dis-
tributions are not suitable for our data.

Likewise, statistical values of χ2, CvM, A-D, AIC and BIC
tests for Weibull are calculated to be 733.5796, 5.128, 48.4,
157333.1 and 157349.8, respectively. Weibull is ranked in
the first position representing the best fit distribution over
the actual data. Rayleigh is ranked as the second best dis-
tribution with statistical values of 1181.229, 13.82, 108.92,
158019.3 and 158027.6 for the above mentioned tests. Based
on χ2 test, Log-normal is ranked eighth and Cauchy is at
number seven on the list. For CvM, A-D, AIC and BIC
tests, Cauchy and Log-normal are at number eight and seven,
respectively.

The comparison of statistical values of seven goodness-to-
fit tests applied on yearly bases is shown in Fig. 8. As R2 is a
positive orientated test, it can be observed that for all years,
Weibull distribution has the maximum R2 value followed by
Rayleigh distribution. In 2016 and 2018, values of Weibull
distribution are calculated to be 0.971 and 0.941.Whereas for
Rayleigh distribution function these values are observed to be
0.970 and 0.940. The difference of statistical value between
these distribution is calculated to be very small i:e 0.001, but
it cannot be ignored. These statistical values showing that
Weibull is best fit distribution for our data. Cauchy is least
suitable for our data as it has the lowest R2 value for all years.

For K-S test, Weibull is found to be the best fit distribu-
tion in each year. However, there is strong competition for
the second, third and fourth best fit distributions among all
years. Gamma, Gumbel and Rayleigh are having very close
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FIGURE 7. PDF comparison of all distributions for year 2015.

TABLE 7. Goodness-to-fit statistical indicators of different distribution functions for the whole data.

statistical values of 0.0417, 0.0428 and 0.0432 in 2015.
Whereas in 2016, Rayleigh is found to be the second
best fit distribution with the statistical value of 0.0268,
followed by Gamma and Gumbel (both having statisti-
cal values of 0.0374). Logistic is found to be the second
best fit distribution in 2017 (having the statistical value
of 0.0306), followed by Gamma, Gumbel and Rayleigh
(having statistical values of 0.0358, 0.0377 and 0.0404).
In 2018, once again Rayleigh came back to the second posi-
tion with the statistical value of 0.0318, followed by Logistic,
Gumbel and Gamma distributions. Overall, Rayleigh is found
to be the second best fit distribution in 2016 and 2018.
However, in 2015 and 2017, Logistic is in the second place.

Based on statistical values of χ2 test, Weibull distri-
bution is the best fit distribution with statistical values
of 260.476, 223.453, 157.726 and 201.736 in each year.
Rayleigh has the second position on the list with statisti-
cal values of 467.829, 265.449, 395.117 and 221.976 from
2015 to 2018, respectively. Lognormal is the worst fit distri-
bution for 2015, 2016 and 2017. But for the year 2018, the
worst fit distribution is Cauchy distribution.

For CvM test, Weibull is ranked first with statistical values
of 2.017, 1.462, 0.776 and 1.390 from 2015 to 2018, while
Rayleigh is ranked second in 2016 and 2018 with statistical
values of 2.116 and 1.636, respectively. Whereas, Logistic
is ranked second in 2015 and 2017 with statistical values
of 3.159 and 3.213, respectively. Cauchy and Log-normal fall
at number six and seven in term of goodness-to-fit for each
year. Statistical values of A-D test are analogous to results
of CvM test. Weibull is ranked first for each year. Rayleigh
is ranked second for 2016 and 2017. Logistic distribution is
ranked second in 2015 and 2017. Bar graphs of AIC and BIC
are shown in Fig. 8, respectively. It can be seen thatWeibull is
the best fit distribution based on statistical values of AIC and
BIC for each year, followed by Rayleigh distribution which
is the second best fit distribution for both cases every year.

Based ofAIC,Weibull is the best fit distributionwith statis-
tical value of 43781.68, 44292.74, 43326.60 and 25864.04 in
each year. Rayleigh stands at second position with statistical
values of 44084.55, 44361.78, 43686.68 and 25895.38 from
2015 to 2018, respectively. Likewise, Minimum value of
BIC is observed to be 43795.82, 44306.89, 43340.74 and
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FIGURE 8. Yearly comparison of empirical distributions on goodness-to-fit indices using the actual wind data.
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FIGURE 9. PDF, CFD, PP plot and QQ plot for the comparison between Weibull and Rayleigh distributions.
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FIGURE 10. Wind power density error of Weibull and Rayleigh distributions in 2015.

TABLE 8. Monthly wind power densities calculated from wind speed data and two parametric distributions.

25877.11 for Weibull distribution followed by Rayleigh
distribution with statistical values of 44489.67, 44870.02,
43901.64 and 25901.91 for each year.

After implementing seven goodness-to-fit tests on yearly
bases, we have a total of twenty eight scenarios to rank these
distributions based on their statistical values. One impor-
tant observation is that for all cases, Weibull distribution is
ranked first and no other distributions has a better statistical
value than Weibull distribution. Rayleigh is ranked second
twenty two times, followed by Logistic distribution which is
ranked second six times.

After evaluating the results of yearly analysis extracted
from the complete data, it can be concluded that Weibull
and Rayleigh are best suitable distributions for our data.
For more in depth analysis and verification of our results,
we have plotted PDF, CFD, Q-Q and P-P diagrams of these
distributions for 2015, as shown in Fig. 9.

Fig. 9(a) and (b) show the detailed graphical comparison
of the actual data with Weibull and Rayleigh distributions
for 2015. PDFs of these theoretical distributions are repre-
sented by the solid line on bar graphs of the actual data

distribution. It can be noted that the peak and tail of Weibull
has better fitting with the actual data, while the peak and
tail of Rayleigh are a little misaligned compared to Weibull
distribution. Likewise, CFD, Q-Q and P-P plots also indicate
that Weibull distribution has better fitting compared with
Rayleigh distribution.

C. WIND POWER AND ENERGY DENSITY
Wind power density discussed in Section 5 plays the pivot
role for assessment of wind power potential for a candi-
date site. After quantitative and qualitative analysis of para-
metric distributions, we have concluded that Weibull and
Rayleigh are two most suitable distributions for assessment
of wind power potential at Jhimpir, Pakistan. A comparison
of monthly wind power densities calculated from the actual
wind data with wind power densities ofWeibull and Rayleigh
distributions is given in Table 8.

Wind power density calculated in the months of May, June,
July and August is relatively higher than other months of
the year. During these months, the temperature is usually
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FIGURE 11. Yearly wind rose graph of wind data collected at Jhimpir, Pakistan.

high and these months are considered to be the summer in
Pakistan. The demand of electricity is usually high in sum-
mer. The low value of wind power density is observed for
the months ranging from October to January. These months
are usually cold and the demand of electricity is usually
low during this period. Actual wind power density has its

maximum value of 648.73W/m2, 620.40W/m2, 500.50W/m2,
and 627.69W/m2 for the months of July 2015, May 2016,
July 2017 and June 2018. Whereas, wind power density
has its lowest value of 112.41W/m2 for December 2015,
73.672W/m2 and 82.35W/m2 for November 2016 and 2017,
90.12W/m2 for January 2018, respectively.
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FIGURE 12. Monthly wind rose graph of wind data collected at Jhimpir, Pakistan.

The maximum value of wind power density determined
by Weibull distribution is 698.65W/m2 in July 2015,
622.80W/m2 in May 2016, 567.33W/m2 in July 2017. For
2018, the maximum value of wind power density is calcu-
lated to be 653.50W/m2 in June. The minimum value of
130.3W/m2 is calculated in December 2015, 84.677W/m2 in
November 2016, 87.165W/m2 in October 2017, and the min-
imum of 92.588W/m2 is observed in January 2018. Likewise,
maximum and minimum values of wind power density based
on Rayleigh distribution are 1021.40W/m2 and 117.15W/m2

in July and December 2015, 905.08W/m2 and 83.681W/m2

in May and November 2016, 768.02W/m2 and 102.37W/m2

in July and October 2017, 924.55W/m2 and 90.417W/m2 in
June and January 2018, respectively.

Based on the results given in Table 8, wind power den-
sity errors of Weibull and Rayleigh are calculated by using
equation 40 for each year. Fig. 10 shows the percentage error

measured for the year 2015. Bar graph in the negative direc-
tion shows that the estimated wind power density is less than
the actual value extracted from the original data. Whereas,
bars graphs with positive values shows the overestimation
of wind power density estimated by Weibull and Rayleigh
distributions. In March 2015, both Weibull and Rayleigh
distributions have slightly negative errors which shows the
underestimation of wind power density in this month. From
Fig. 10, it can be seen that the error of Weibull distribution
is less than that of Rayleigh distribution for nine months.
For only three months of January, March and April, wind
power density based on Rayleigh distribution have smaller
errors. The highest error forWeibull is 0.1850 observed in the
month of February, whereas for Rayleigh, the highest error is
0.5745 in July. Weibull and Rayleigh have the lowest error of
0.0178 in August and 0.0180 in March, respectively. Overall,
the error of wind power density calculated using Weibull is

70138 VOLUME 9, 2021



M. A. Khan et al.: Determination of Optimal Parametric Distribution and Technical Evaluation

TABLE 9. Percentage of wind direction in different wind speed bins.

much less than that of Rayleigh, showing that Weibull is best
for the investigated site.

In the purpose to select, the best performing empirical
distribution comparison of PDF of actual wind speed data
with eight empirical distributions is performed. For assess-
ment of goodness-to-fit seven statistical test are performed
for complete duration and yearly bases showing Weibull is
the best fit distribution for the candidate site. In addition
to statistical tests performed, error calculated between wind
power density of theoretical and empirical distributions also
supports our claim. Which shows that simulation results of
Weibull distribution have good match to the actual theoretical
distribution of real world data.

D. WIND DIRECTION
Wind direction plays an important role for deciding the opti-
mal position of wind turbines for wind power production.
Table 9 illustrates the percentage of time that wind speed has
blown in a particular direction for the complete wind data
collected at Jhimpir, Pakistan. Wind speed is divided into
six bins with each having a width of 3m/s. Wind direction
is investigated in eight directions, i.e., North (N), Northeast
(NE), East (E), Southeast (SE), South (S), Southwest (SW),
West (W), and Northwest (NW). Overall, the highest per-
centage of wind direction is observed toward East (38.52%),
followed by Southeast (33.24%) and North (10.61%), respec-
tively. For wind direction of East, the bin of 6-9m/s
has the highest percentage of 14.63%, followed by bins
of 3-6m/s and 9-12m/s with 9.98% and 8.43%. Likewise,
bins of 6-9m/s, 3-6m/s and 9-12m/s have 10.54%, 9.72% and
6.11% in the southeastern direction, respectively. It can be
seen that for 71.76% of the total time, wind direction is East-
ern and Southeastern. This result is good for the investigated
site, because this uniformity in wind directions helps in the
improvement of losses in wind power production due to small
changes in wind direction.

Yearly analysis of wind direction is also part of this study
and wind rose graph for each year is shown in Fig. 11. Fre-
quency of occurrence of particular wind directions for differ-
ent wind speed bins from 2015 to 2018 is shown in the figure.
It can be seen that the frequency of wind direction toward East
and Southeast are significantly greater than other directions
for each year. In 2015, 2016 and 2018, the most occurring
wind direction is towards East, having frequencies of about
35%, 45% and 37%, respectively. The second most occurring
direction for these years is towards Southeast. In 2017, wind

direction of Southeast has the frequency of about 40%, fol-
lowed by wind direction of East with the frequency slightly
higher than 30%. From Fig. 11, it is obvious that the yearly
pattern of wind direction remains almost the same with two
most occurring directions of East and Southeast. This obser-
vation is very similar to the pattern observed from the whole
data shown in Table 9.

Monthly analysis of wind direction for the whole data
is also performed and shown in Fig. 12. From March to
November, Eastern and Southeastern wind directions have
the highest frequency of occurrence. For January, Febru-
ary and December, the frequency of Northern and Northeast-
ern wind directions is higher than other directions.

VII. CONCLUSION
To meet the day to day demand of electricity and
reduce the gap between demand and supply, Pakistan has
increased its power generation through both conventional and
non-conventional resources of energy. Adding more power
through convention resources will put an extra burden on
the trembling economy of the country. Pakistan has a good
potential of wind energy generation in the Southern part
of the country. Using these wind energy resources will not
only solve the energy crisis of the country but will also
support the economic development in Pakistan. To support
wind power development in Pakistan, the assessment of wind
power potential of Jhimpir, Sindh, Pakistan is carried out
in this study. Detail analysis is also done to find out the
best fit parametric distribution using the monthly, yearly or
whole data. Results extracted from the original data can be
concluded as follows:

1. Monthly mean wind speed is more than 4m/s for all
months from January 2015 to July 2018. The maximum
monthly mean wind speed is 9.46m/s in July 2015,
however the minimum speed is 4.07m/s for Novem-
ber and December 2016. The yearly average wind speed
is recorded to be more than 6m/s each year, show-
ing the potential of wind power development in Jhim-
pir. The highest yearly average wind speed is 6.62m/s
in 2015 and the lowest speed is 6.4m/s in 2016.

2. Maximum value of the most probably wind speed
(i.e., 13.8m/s) is observed in May 2016 and a mini-
mum of 3.83m/s is observed in December 2016. Like-
wise, wind speed carrying maximum energy shows a
maximum of 17.1m/s in July 2015 and a minimum
of 8.93m/s is observed in November of 2016 and 2017.
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3. Based on R2, K-S, χ2, CvM, A-D, AIC and BIC tests,
Weibull distribution is found to be the best one among
eight parametric distributions, followed by Rayleigh
distribution.

4. Wind power density is high during the month of May,
June, July and August. The highest value of wind
power density, i.e., 648.73W/m2, is observed in Jan-
uary 2015 and the minimum value is observed in Octo-
ber, November, December and January with the least
value of 73.672W/m2 in November 2016.

5. Maximum wind power density for Weibull and
Rayleigh distributions are 698.65W/m2 and 1021.4W/m2

in July 2015. Minimum wind power density for
Weibull and Rayleigh distributions are 84.677W/m2

and 83.681W/m2 in November 2016, respectively.
6. In terms of wind power density errors, smaller errors

for Weibull distribution shows that Weibull is the most
suitable function for the investigated site.

7. Analysis of wind direction data shows that dur-
ing the month of January, February and December,
the predominate wind direction is Northern. While for
the remaining part of the year, Eastern and South-
eastern wind directions have the highest occurrence.
Likewise, for the complete data and yearly anal-
ysis, Eastern and Southeastern wind directions are
predominant.

Owing to the difference in the wind characteristics for
each studied site, it is important to select best fit parametric
distribution and assess wind power potential for that par-
ticular site, Hence, based on our analysis, Jhimpir is very
suitable for the development of wind power projects. Weibull
distribution function is the most suitable for the investigated
site. Technical and economical evaluation by using commer-
cially available wind turbines, Comparing different methods
to estimate parameters of parametric distributions and devel-
oping non-parametric methods would be further studied in
our future work.
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