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ABSTRACT We analyzed muscle excitation estimation systematically by Non-negative matrix factoriza-
tion (NMF) from surface electromyograms (EMG) during dynamic contractions of biceps brachii (BB)
muscles. We used motor unit action potentials (MUAPs) estimated experimentally from surface EMGs
during slow dynamic contractions of BB muscles in healthy young males, and convolved them by simulated
motor unit firing patterns. Different uncorrelated muscle excitation and muscle shortening profiles were
combined when generating the EMG signals from left and right BBs (64 channels per muscle). EMG signals
were rectified, low-passed filtered and decomposed by NMF into 2, 3, 4 or 6 components. The identified
NMF components demonstrated good separation of left and right BB activity, but relatively large sensitivity
of NMF components to muscle shortening, especially at high levels of muscle excitation. When averaged
across different numbers of identified NMF components at excitation levels ranging from 40 to 80%,
the average correlation coefficient between the NMF components and muscle shortening profiles was
0.45± 0.15. At excitation levels between 0 and 40 % these correlations decreased to 0.15± 0.09. Therefore,
NMF components reflect both muscle excitation and muscle shortening profiles.

INDEX TERMS Changes ofmotor unit action potentials, muscle excitation, muscle shortening, non-negative
matrix factorization, surface electromyograms, dynamic contractions.

I. INTRODUCTION
In the last two decades, estimation of electrical activity
of skeletal muscles from noninvasively acquired surface
electromyograms (EMGs) has received considerable atten-
tion [1]–[6]. Among other things, it has been used to study
muscle synergies [3]–[9], improve the rehabilitation proce-
dures [10], [11], control bionic limbs [12], prosthetic and
robotic devices [13], [14] and drive the advanced biomechan-
ical models of human movement [15]. In these applications,
the muscle activity is frequently estimated by decomposing
the EMG signals into movement primitives or components
that are contributed by different skeletal muscles and/or their
compartments.

Indeed, a surface EMG is a compound signal, comprising
filtered contributions of individual muscle fibers. From a
functional viewpoint, the fibers are organized intomotor units
that vary greatly in their sizes [16]. Eachmotor unit comprises
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from a few tens to a few hundreds of muscle fibers and an
alpha motor neuron innervating those fibers. In a healthy
motor unit, each electrical pulse in a neuron triggers electrical
responses, so-called action potentials, in innervated muscle
fibers. The action potential propagates via muscle fiber, caus-
ing the fiber to contract [16]. All the fibers belonging to the
same motor unit contract synchronously, and their simultane-
ous action potentials can be summed up conceptually into a
so-called motor unit action potential (MUAP). The latter is
strong enough to support its detection on the surface of the
skin above the investigated muscle [1].

There are from several tens to several hundreds of motor
units in each skeletal muscle, and the central nervous sys-
tem (CNS) modulates the muscle force by controlling the
number of activated motor units and the number of triggered
MUAPs per second, so-called motor unit firing rates [16].
Both factors are referred to jointly as muscle excitation,
whereat excitation of 0% implies no active motor unit, and
excitation of 100% implies all the motor units firing at their
maximum rates. Muscle excitation changes with exercise,
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rehabilitation, fatigue, aging and various pathologies, provid-
ing a valuable insight in the functioning of a human motor
system [16].

However, a surface EMG may detect the contributions of
several skeletal muscles, so-called muscle crosstalk, impos-
ing the need to separate these contributions [17]. Moreover,
MUAP shapes depend on the anatomy of a skeletal muscle,
on the distance of the motor unit fibers from the uptake elec-
trodes, and on the EMG acquisition parameters. Therefore,
MUAPs weight the contributions of different motor units
with different pounders, hindering the accurate estimation of
muscle excitation from a raw surface EMG.

Different decomposition techniques have been proposed to
address this problem [2], [18]–[22], [6], [23], [24]. Some of
them aim to identify the contributions of individual motor
units [2], [6], [23], [24], but exhibit relatively high computa-
tional complexity and motor unit selectivity, identifying the
contributions of a limited number of activated motor units.
Other decomposition techniques, such as non-negativematrix
factorization (NMF) [25], [26], separate the contributions of
different muscles, but do not aim to identify the activity of
individual motor units.

Up to now, NMF has been used in many peer reviewed
studies of the human motor system [3], [4], [7]–[9], [25],
providing very important neurophysiological insights. To the
best of our knowledge, its sensitivity to MUAP shapes
and their changes during dynamic or significantly fatiguing
muscle contractions has never been studied systematically.
Indeed, in dynamic contractions, the geometry of the mus-
cle changes, causing the changes of MUAPs as detected on
the surface of the skin. As shown in [27] and herein, these
changes can be substantial. In this study, we analyzed the
sensitivity of NMF toMUAP changes of a muscle in different
muscle shortening and muscle excitation scenarios.

II. DYNAMIC SURFACE EMG SIMULATION
The EMG signals in this study were synthesized using a
collection of MUAPs extracted at different stages of biceps
brachii (BB) muscle shortening, a model of MU firing
rates [28], and carefully selected excitation and muscle short-
ening profiles.

A. MUAPs
We used the collection of MUAPs from [27], where the
experimental setup and signal processing are described in
detail. In short, the MUAPs were extracted from monopolar
high-density EMG signals of the right (dominant) BB in five
young males (ages of 34.4± 5.4 years, height of 177± 5.1 m
and weight of 77.2 ± 5.5 kg). The subjects performed 80 s
long slow isokinetic contractions from a fully extended to a
fully flexed elbow. The EMG signals were measured using an
array of 13× 5 electrodes at a sampling rate of 2048 Hz and
12-bit resolution (EMG-USB2 amplifier, OT Bioelettronica,
Torino, Italy).

By using the Convolution Kernel Compensation (CKC)
decomposition technique [1], [2] we identified 250MUfiring

patterns. These were used to extract 40 ms long MUAPs at
36 different stages of muscle shortening, from fully extended
(0% shortening) to a fully flexed elbow (100% shorten-
ing). The examples of estimated MUAP shapes are depicted
in Fig. 1.

FIGURE 1. Experimentally determined MUAPs, estimated at 36 different
levels of Biceps Brachii shortening (upper panel) and the root mean
square (RMS) value of MUAPs at different levels of muscle shortening
normalized by the RMS value of MUAPs at the fully extended muscle
(lower panel). The different colors in the upper panel depict MUAP
shapes at different levels of muscle shortening. For clarity reasons,
MUAPs of only two MUs in only two neighboring EMG channels are
depicted. In the lower panel, the reported values at each shortening level
are averaged across 250 MUs identified from five healthy subjects. The
solid line depicts the mean value, whereas the dotted lines depict the
standard deviations. Note the high diversity of changes with muscle
shortening. For some MUs RMS value of MUAPs increased with muscle
shortening, whereas for the others it decreased.

B. SIMULATED MUSCLE EXCITATIONS AND MU FIRING
PATTERNS IN THE ABSENCE OF MUSCLE CROSSTALK
To test the sensitivity of the NMF components to geometric
changes in the investigated muscle, we simulated two BB
muscles independently, controlling the activity of the left
and right elbow joints. This experimental setup guaranteed
the absence of muscle crosstalk in the simulated EMG sig-
nals. The simulated BB contractions were 60 s long and fol-
lowed cosine functions whereat frequencies of the excitation
(8/60 Hz for the left and 9/60 Hz for the right BB) and
shortening (3/60 Hz for the left and 4/60 Hz for the right BB)
were selected carefully, to minimize their correlation and,
thus, facilitate the analysis of the NMF components.

Different excitation levels were simulated, defining
the minimum and maximum (and, thus, the range) of
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excitation profiles. The following ten ranges of excita-
tion were simulated (minimum-maximum): 0-20%, 0-40%,
0-60%, 20-40%, 20-60%, 20-80%, 40-60%, 40-80%,
40-100%. The generated excitation profiles for the left
and the right BB muscle are depicted in the top panel
of Fig. 2.

FIGURE 2. Examples of simulated muscle excitation and shortening
profiles. The top panel depicts two examples of excitation profiles, one
for the left and one for the right BB. The bottom panel depicts the two
shortening profiles, spanning from 10% to 90% of muscle shortening.
Due to the carefully selected profiles’ frequencies, these profiles were not
correlated (all pairwise correlation coefficients are equal to zero).

For each simulated muscle excitation profile, MU firings
were generated using themodel proposed in [28].MU recruit-
ment followed an exponential distribution, with many
low-threshold MUs and fewer high-threshold MUs [29].
In each generated muscle 105 MUs were active in the detec-
tion volume of surface electrodes at 100% muscle excitation.
MUs started firing at 8 Hz, increasing their firing rates lin-
early for 0.3 Hz per % of muscle excitation, up to a 35 Hz.
The MU interspike interval variability followed a Gaussian
distribution with the coefficient of variation set to 20 %.

For each of the excitation profiles, MUAPs of the exper-
imentally identified MUs were assigned randomly to the
generated firing patterns. This was done independently for
the left and right muscle. The generated MU firing patterns
were then convolved with MUAPs, whereat for each firing
one of the 36 discrete dynamic MUAP shapes (Fig. 1) was
selected, based on the current muscle shortening level. Two
uncorrelated muscle shortening profiles were used, one for
the left and the other for the right BB. The left and right
profiles followed a 3/60 Hz and 4/60 Hz cosine. The ranges of
both muscle shortening profiles were fixed to the interval of
(minimum-maximum) 10-90% of muscle shortening (Fig. 2,
bottom panel).

Two EMG simulation runs were conducted for each possi-
ble pair of left and right BB excitation profiles. Thus, within
these 162 simulated contractions, each individual excitation
profile for one muscle was repeated 18 times, 2 times for each
of the 9 excitation profiles of the other muscle.

C. SIMULATED MUSCLE EXCITATIONS IN THE PRESENCE
OF MUSCLE CROSSTALK
To analyze the effect of muscle crosstalk on our analysis
we simulated a single BB muscle, but divided its MUAPs
into short (medial) and long (lateral) heads. The division was
based on the position of the channels with maximum peak
to peak MUAP amplitude at different shortenings. If most of
these channels were positioned in the lateral three electrode
columns they were added to the lateral group. Otherwise
they were added to the medial group. This division resulted
in 40% of MUAPs in the medial, and 60% in the lateral
group. Each group was combined with separate excitation
and shortening profiles, leading to two distinct groups of
muscle activations and shortenings for the lateral and medial
head of the muscle. Although not physiologically justified,
this division supported a clear discrimination of excitation
profiles, and, therefore, quantification of the crosstalk. The
profiles of excitation and shortening were the same as above
(8/60 Hz for the medial and 9/60 Hz for the lateral head exci-
tation, and 3/60 Hz for the medial and 4/60 Hz for the lateral
head shortening profile). However, only the following ranges
of excitation were simulated (minimum-maximum): 0-40 %,
20-60 %, 40-80 %. Compared to previously generated signals
these had significant levels of muscle crosstalk between the
medial and lateral MUAP groups.

III. EMG DECOMPOSITION
A. NMF
The NMF decomposition followed the method proposed
in [25]. First, the EMG signals were rectified, and filtered to
estimate their amplitude envelopes:

zm (n) = 1/(21n+ 1)
n+1n∑

ni=n−1n

y2m (ni) , (1)

where ym(n) stands for the n-th sample of the m-th EMG
channel, zm(n) is its energy envelope and 21n is the filter
length in samples. The filter length of 200 ms was used.

The resulting envelopes were packed in a matrix
Z (n) = [z1 (n) , z2 (n) . . . zM (n)] , and decomposed by the
NMF algorithm [26] into a mixing matrixW and component
matrix F:

Z(M×N )
= W (M×J )F(J×N ), (2)

where J is the chosen number of NMF components, M is the
number of EMG channels and N is the number of samples.

In this study, we were interested in estimating up to four
different dynamics of EMG signals, two due to muscle short-
ening and two due to muscle excitation of the left and right
BBs. Additional degrees of freedom were allowed, to com-
pensate for potential inaccuracies in the NMF data model,
caused primarily by MUAP changes due to muscle short-
ening. For this reason, we tested several numbers of NMF
components, namely, J = 2, 3, 4 and 6.
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B. EVALUATION OF DECOMPOSITION RESULTS
To invert the squaring of EMG signals in (1), the components
F were square rooted and filtered using a 1 s long Hann
window. Each filtered component F was compared to the
muscle excitation and shortening profiles by calculating their
Pearson correlation coefficients.

For each EMG simulation run, two NMF components were
selected, with the largest energy accounted for in the left
and right BB. The correlations of these components with
simulated excitation and shortening profiles were examined
further.

To confirm the statistically significant differences in the
observed correlation coefficients across different excitation
profiles, the correlations were first tested for normality by
transforming them using the Fisher transformation and per-
forming the Shapiro-Wilk test. The test indicated that some
of the correlations were decisively not normal (p < 0.01).
Further analysis was therefore done by the Kruskal-Wallis
rank sum test, and the Wilcoxon rank sum test for pairwise
comparison with Bonferroni correction for multiple com-
parisons. To confirm the differences between the different
number of NMF components J in the decomposition, the cor-
relations were compared using the Friedman rank sum test,
and Nemenyi test for pairwise comparison. The results were
considered statistically significant when p < 0.05.

IV. RESULTS
A. SIMULATED MUSCLE EXCITATIONS IN THE ABSENCE
OF MUSCLE CROSSTALK
The square rooted and filtered components are depicted
in Fig. 3, along with the corresponding mixing vector w,
denoting the row of theWmatrix in (2). The elements of mix-
ing vectorsw are organized in topological order of the surface
EMG electrodes, and reflect the energy that the component
contributes to each EMG channel. NMF clearly separated the
contributions of the left and right BB muscles.

Figs. 4 and 5 depict the correlation coefficients between the
identified NMF components for J= 2 and J= 6, respectively.
Each axis shows values from the [−1, 1] interval. In the first
row we compare the correlations of the identified NMF com-
ponents with the excitation of the left (x-axis) and the right
muscles (y-axis). These results demonstrate relatively small
crosstalk from different muscles in different NMF compo-
nents, confirming that excitations of both muscles were well
separated by NMF. In the second and third row of Figs. 4 and
5 we depict the correlation of the identified NMF components
with the excitation profile (x-axis) and shortening profile in
the same muscle. We see two clearly separated groups of
NMF components. The group in the center of the plots has
low correlation with both excitation and shortening profiles,
demonstrating again relatively small muscular crosstalk in
the NMF components. This was expected, as two spatially
well separated muscles were studied. Conversely, the second
group of NMF components demonstrates significant cor-
relation with both excitation and shortening profile of the

FIGURE 3. Results of NMF decomposition of the EMG signals, generated
using the excitation and shortening profiles from Fig. 2. The J = 4 NMF
components F1, F2, F3 and F4 are depicted on the left side. The
corresponding mixing coefficients, organized in topological order of the
two surface EMG electrode arrays, one for the left and one for the right
BB, are depicted on the right side. In the depicted case, the NMF
identified one component from the left and three components from the
right BB muscle.

FIGURE 4. Correlation coefficients of the NMF components (J = 2) with
shortening and excitation profiles for excitation ranges 0-40%, 20-60%
and 40-80% in different columns. Each circle represents a single NMF
component, its size representing the energy accounted for in the
preprocessed EMG signal. The components that contributed mostly to the
right and the left muscle are depicted by blue and red circles, respectively.

same muscle, indicating the impact of the muscle shortening
on the muscle excitation estimation by NMF. If the NMF
components were independent from the MUAP shapes, their
correlation with the shortening profile would be equal to zero.
This is clearly not the case, especially at higher excitation
levels (the right columns of Figs. 4 and 5).
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FIGURE 5. Correlation coefficients of NMF components (J = 6) with
shortening and excitation profiles for the excitation ranges 0-40%,
20-60% and 40-80% in different columns. Each circle represents a single
NMF component, its relative size reflecting the energy accounted for in
the preprocessed EMG signal. The components that contributed mostly to
the right and the left muscle are depicted by blue and red circles,
respectively.

In the sequel, we focus on the results of the right BBmuscle
(without simulated muscle crosstalk). Similar results were
also observed for the left BB muscle (results not shown).
The statistical analyses depicted in Figs. 6 and 7 illuminate
the relation between the excitation level and the sensitiv-
ity of NMF to the BB shortening. In both studied factors,
the minimum of the excitation level and its range (that is,
the difference between the maximum and the minimum), had
a significant impact. In most cases, an increase in excitation
level led to an increase in sensitivity of NMF to muscle
shortening (this is best observed within each range group
of Figs. 6 and 7). An exception to this was an increase in
excitation level from 20% to 40% for the 60% range in the
case of J = 2 NMF components.

On the other hand, an increase in excitation range led
to a decrease of sensitivity to muscle shortening (this can
be observed across the range groups of Figs. 6 and 7).
An exception occurred at the excitation level of 0 %, again
for NMF with J = 2 components (Fig. 6). Here, an increase
of excitation range led to small, but statistically significant
increases in sensitivity to muscle shortening. Increasing the
number of NMF components to J = 6 led to similar trends in
increases of sensitivity to muscle shortening, as in the case of
J = 2 components (Fig. 7).

The average correlation coefficients between the NMF
components and excitation and shortening profiles for all the
simulated contractions and all the NMF decompositions are
provided in Tables 1 and 2. In Table 1, the Friedman rank

FIGURE 6. Statistical comparison of correlation coefficients (cc) between
the NMF components with the largest energy accounted for in the EMG of
the right BB muscle, and the muscle excitation (top row) and shortening
profiles (bottom row). The number of identified NMF components was set
to J = 2. The box plots denote the quartiles, whereas the whiskers denote
the range. The plots were grouped by the range of excitation (either 20%,
40% or 60%) and, within each group, sorted by the minimum of
excitation (either 0%, 20% or 40%). Pairwise comparisons revealed
statistically significant differences (p < 0.05) in all the depicted cases,
except for the pair marked by a red x.

TABLE 1. Correlation coefficients (mean ± SD) between the NMF
components with the largest energy accounted for in the right BB, and
different excitation profiles at different numbers of NMF components J.

sum test and Nemenyi test for pairwise comparison showed
that there were significant differences between column
J = 2 and columns J = 3, J = 4 and J = 6, and between
columns J = 3 and J = 6. In Table 2, there were signifi-
cant differences between column J = 2 and columns J = 3,
J = 4 and J = 6. In all the cases the p-values were several
magnitudes lower than 0.05.
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FIGURE 7. Correlation coefficients (cc) between the NMF component with
the largest energy accounted for in the EMG and the muscle excitation
(top row) and shortening profiles (bottom row). The number of identified
NMF components was set to J = 6. The box plots denote the quartiles,
whereas the whiskers denote the range. The plots were grouped by the
range of excitation (either 20%, 40% or 60%) and, within each group,
sorted by the minimum of excitation (either 0%, 20% or 40%). Pairwise
statistically significant differences (p < 0.05) are marked by ∗.

TABLE 2. Correlation coefficients (mean ± SD) between the NMF
componens with the largest energy accounted for in the right BB, and
muscle shortening profile for the different excitation profiles and
different numbers of NMF components J.

B. SIMULATED MUSCLE EXCITATIONS IN THE PRESENCE
OF MUSCLE CROSSTALK
Fig. 8 depicts the correlation coefficients between identified
NMF components for J = 6, using the signals of a single
simulated muscle divided into a medial and lateral MUAP
group to analyze the effects of the crosstalk. The individual
NMF components are not as clearly separated into two groups
as in the case of Fig. 5. Although some individual components

FIGURE 8. Correlation coefficients of NMF components (J = 6) and
shortening and excitation profiles in the presence of significant muscle
crosstalk. Results for excitation ranges 0-40%, 20-60% and 40-80% are
depicted in different columns. Each circle represents a single NMF
component, its relative size reflecting the energy accounted for in the
preprocessed EMG signal. The components that contributed mostly to the
lateral and the medial half of the EMG array in a single simulated muscle
are depicted by blue and red circles, respectively.

weremostly correlated with either the medial or lateral group,
many of them reflected both excitation profiles. The second
and the third rows of Fig. 8 depict the impact of muscle
shortening at different muscle excitation profiles. Unlike in
the well separated cases of Fig. 5, the correlation values do
not form tight clusters. In accordance with the well separated
cases in Fig 5, the spread of the values increased with muscle
excitation levels. This shows that, even in the presence of
muscle crosstalk, there is a visible impact of muscle short-
ening on the muscle excitation estimations by NMF.

V. DISCUSSION
The results of this study demonstrate the ability of NMF to
separate the contributions of different muscles when there is
no significant crosstalk between different muscles in EMG
recordings. Indeed, in the first experiment, we used two
spatially well separated muscles, left and right BBs. As a
result, there was no muscle crosstalk in the EMG signals,
and the NMF separated the contributions of both muscles
efficiently. Noteworthy, this is not the case in the presence
of significant muscle crosstalk. We demonstrated this in the
second experiment by simulating different excitation patterns
of the medial and lateral heads of the BB, thus generating the
EMG signals with large crosstalk. In this setup, many NMF
components reflected contributions of both muscle heads.
This agrees with our previous study on wrist flexors and
extensors [17].
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The impact of muscle shortening on muscle excitation
estimation by NMF was relatively small at low excitation
levels, but increased significantly with the excitation
(Figs. 6 and 7 and Tables 1 and 2). At 0-20 % excitation
and J = 2, the average correlation coefficient between the
NMF components and the muscle shortening profiles was
0.08±0.01 (Table 2). At the same excitation range of 20 %
but with minimum excitation value increased to 40 %, that is,
with 40-60% excitation profile, these correlations increased
to 0.41±0.026 (Table 2). Similar dependences of NMF com-
ponents on muscle shortening profiles were observed in the
presence of muscle crosstalk.

The sensitivity of NMF to muscle shortening also
depended on the range of muscle excitation. Specifically,
it decreased with the range (Figs. 6 and 7 and Tables 1 and 2),
suggesting that the NMF components reflect the dynamics
of muscle excitation, as well as the dynamics of muscle
shortening in the EMG signals. In the case of relatively
large excitation dynamics the impact of muscle shortening
on NMF components was relatively limited (Figs. 6 and 7
and Tables 1 and 2). However, when excitation dynamics
decreased, the relative impact of muscle shortening increased
(Tables 1 and 2).

Increasing the number of NMF components J signifi-
cantly increased the sensitivity of NMF to muscle shortening
(Tables 1 and 2). For example, increasing J from 2 to 6
increased the correlation from 0.08± 0.01 to 0.19± 0.10 for
0-20 % excitation, and from 0.41± 0.026 to 0.62± 0.135 for
40-60 % excitation (Table 2). At the same time, the correla-
tion between the NMF components and the excitation profiles
decreased with J, from 0.95 ± 0.004 to 0.88 ± 0.056 for
0-20 % excitation, and from 0.82± 0.018 to 0.57± 0.136 for
40-60 % excitation (Table 1). The sensitivity to muscle short-
ening differed considerably for different identified compo-
nents (Figs. 4 and 5), but without the known shortening and
excitation profile, the component with the best excitation vs.
shortening compromise is difficult to select. For this reason,
we further analyzed the components that accounted for the
largest percentage of EMG energy.

The correlation between the NMF component and muscle
shortening depends on the extent of changes in the MUAP
shapes (Fig. 1). In this study, the BB muscle was studied as
one of the muscles with the largest geometrical changes in
dynamic contractions. Furthermore, a relatively large range
of muscle shortenings was studied (10-90 %). Therefore,
the results of this study cannot be generalized easily to other
skeletal muscles. For example, the results of decomposition
of wrist flexors and extensors demonstrate relatively small
MUAP changes during wrist movements [17]. Nevertheless,
the MUAPs change with fatigue [16], [22] and in dynamic
contractions in practically all the muscles, and further studies
are required to quantify the sensitivity of NMF to MUAP
changes in different experimental conditions.

Noteworthy, in this study, we selected the excitation and
shortening profiles that were not correlated. This facilitated
the analysis of NMF sensitivity to different profiles, and

allowed for clear separation of excitation and shortening
impacts. In healthy and unconstrained movements, the mus-
cle excitation profile is likely to share several common char-
acteristics with the shortening profile, though the extent of
excitation and shortening similarities is yet to be evaluated
carefully across manymovement scenarios. Namely, in a con-
strained muscle, or in the presence of pathophysiology, such
as during spasms or pathological co-activation after stroke,
the excitation and shortening profiles of the investigated mus-
cles can exhibit significantly different dynamics [30].

Finally, the muscle shortening is not the only source
of MUAP changes. Significant and relatively fast MUAP
changes are also caused by muscle fatigue, especially at
higher excitation levels. Indeed, MUAP changes due to
fatigue are comparable in size to the MUAP changes during
dynamic contractions of the BB muscle (Fig. 1). Moreover,
different MUs exhibit different levels of fatigue demonstra-
tion. Therefore, the NMF sensitivity to MUAP changes pre-
sented herein can very likely be extended to conditions with
severe muscle fatigue.
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