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ABSTRACT The remote sensing (RS) images are widely used in various industries, among which semantic
segmentation of RS images is a common research direction. At the same time, because of the complexity
of target information and the high similarity of features between the classes, this task is very challenging.
In recent years, semantic segmentation algorithms of RS images have emerged in an endless stream, but
most of them are improved around the scale features of the target, and the accuracy has great room for
improvement. In this case, we propose a semantic segmentation framework for RS images with dynamic
perceptual loss. The framework is improved based on the InceptionV-4 network to form a network that
includes contextual semantic fusion and dual-channel atrous spatial pyramid pooling (ASPP). The semantic
segmentation network is an encoder-decoder structure. In addition, we design a dynamic perceptual loss
module and a dynamic loss fusion strategy by further observing the loss changes of the network, so as
to better improve the classified details. Finally, experiment on the ISPRS 2D Semantic Labeling Contest
Vaihingen Dataset and Massachusetts Building Dataset. Compared with some segmentation networks, our
model has excellent performance.

INDEX TERMS Remote sensing, semantic segmentation, perceptual loss, loss fusion.

I. INTRODUCTION
In recent years, the development of aerospace technology and
sensors has provided sufficient conditions for the utilization
of RS images. Therefore, the application of RS images in
all walks of life has become more and more extensive, and
various processing methods have become mature. It is the
rapid development of artificial intelligence(AI) which makes
AI RS become a hot research direction. In the past, the RS
images were mostly 3-channel RGB images. Nowadays, the
types of RS images are diversified, such as multispectral
images, hyperspectral images, high resolution, and super-
high-resolution images, etc. There are more types of data to
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choose from and meet different needs so that the RS task is
simplified and targeted. The research in this paper is based on
deep learning [1] to segment RS images.

The semantic segmentation of the RS images has many
challenges. On the one hand, the imbalance of the sample
size leads to insufficient training of certain object categories.
On the other hand, because the RS image is an orthophoto,
the target may be obscured by clouds or trees, which makes
it difficult to classify targets. Thirdly, the features of the
same sample are diverse, such as different materials or colors
at the top of the house, which increases the difficulty of
segmentation.

The semantic segmentation model based on deep learning
solves the above problems to some extent, but there are still
many deficiencies. Firstly, for the RS image, some objects to
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be classified are of large size, and the convolution kernel of
network is small, which cannot extract the global information
of the target well. Secondly, the boundary segmentation of
the RS image is not fine enough, and there will be mis-
classification at the edge of objects. Compared with other
segmentation networks, the contribution of this paper is as
follows. This work studies these two issues and builds a
RS image segmentation framework. Compared with other
segmentation networks, the contributions made by this paper
are as follows:

(1) Take the InceptionV-4 network [2] as the back-
bone and construct a dual Atrous Spatial Pyramid Pooling
(ASPP) [3] module to form a feature extraction network. The
InceptionV-4 network is a newer classification network and
we transform it into a fully convolutional neural network for
semantic segmentation tasks. In addition, the framework we
propose introduces the context feature fusion and the dual
ASPP module to solve the first problem mentioned above to
the greatest extent.

(2) We analyze the loss function of the network and
designed a dynamic loss fusion module based on the percep-
tual loss [4]. This module uses a pre-trained perceptual loss
network to reduce the difference between training features
and ground truth, making the edge features of the target
closer to the ground truth, thereby improving the segmen-
tation details of the image, and solving the second problem
mentioned above.

II. RELATED WORK
A. SEMANTIC SEGMENTATION
The semantic segmentation is a pixel-level image
classification task. That is to say, there is a corresponding
category for each pixel, and the pixel-level image classifica-
tion can be obtained by extracting features through training.
Semantic segmentation is also a common RS image pro-
cessing method. Through semantic segmentation, the goal of
identifying ground objects is achieved. Traditional seman-
tic segmentation methods include pixel-level threshold seg-
mentation [5], cluster segmentation [6], and decision tree
segmentation [7]. In recent years, deep learning has devel-
oped rapidly and has made great contributions to semantic
segmentation. In particular, Long et al. invented the Full
Convolutional Neural Network (FCN) [8], which has led to
the rapid development of semantic segmentation technology.
FCN has demonstrated strong learning ability in the image
classification. Later, many researchers began to improve the
network based on FCN and obtained more high-precision
semantic segmentationmethods. The latest semantic segmen-
tation networks are mostly based on codec structures, such as
SegNet [9], U-Net [10], Deeplab [11], etc. The segmentation
precision of these networks is very high, and it is used in the
segmentation task of various scenes.

In addition to these common segmentation networks, some
optimized feature extraction modules are also proposed.
The atrous convolution [12] greatly improved the effect of
semantic segmentation. The atrous convolution has a larger

receptive field than ordinary convolution, so that the output of
each convolution operation has a larger range of characteristic
information. The ASPP [3] module is composed of several
convolutions with different sampling rates and pooling layers
in parallel. Finally, the feature map of the convolution and
pooling output is merged by a 1 × 1 convolution. Differ-
ent sampling rates can get more different receptive fields,
which can extract more scale information and improve the
segmentation accuracy. In this work, we apply the ASPP to
the semantic segmentation of RS images, and construct a dual
ASPPmodule for our backbone network, which optimizes the
segmentation effect.

B. VERY HIGH RESOLUTION IMAGE SEMANTIC
SEGMENTATION
With the development of photogrammetry technology in
recent years, the resolution of RS images is getting higher and
higher, and image processing methods are also more mature.
Cao textitet al. [13] added digital terrestrial model (DSM)
as supplementary information to the segmentation task,
explored different fusion strategies, and designed an end-
to-end segmentation network. Wei et al [14] designed a
semantic segmentation network with a codec structure, con-
nected to the CRF module to improve segmentation perfor-
mance. Mi and Chen [15] proposed a Superpixel-enhanced
Deep Neural Forest method based on the DCNN network,
and combined with the decision tree to improve the accuracy
of segmentation. Jiang et al. [16] designed a random walk
network based on SegNet (Random-Walk-SegNet), which
reduces the effect of blurring on the edge, and the method
has lower complexity. Audebert et al. [17] studied segmen-
tation of multi-modal RS data, and proposed a method about
multi-scale feature extraction, which fused the radar data and
multi-spectral data to obtain a powerful segmented method.
Most of these methods are based on the deep neural network,
and the segmentation accuracy of RS image is high, but there
is still a lot of room for improvement, especially the edge
segmentation accuracy of the target needs to be improved.

C. PERCEPTUAL LOSS
Perceptual loss [4] was proposed by Johnson, J in 2016. It is
used in image style transfer and super-resolution, and the per-
ceptual loss function is used to train feedforward networks for
image transformation tasks. In recent years, many researchers
have applied perceptual loss to other fields.

In the direction of image reconstruction, Wen et al. [18]
introduced detailed perceptual loss on the basis of cascaded
residual blocks. By reducing detail perceptual loss, the tex-
ture details of the reconstructed image and ground truth
become more and more similar, and a good single image
super-resolution reconstruction effect is obtained on multiple
datasets. Later, researchers applied the perceptual loss to the
field of medical imaging. Yang, Q et al. [19] used a generative
adversarial network with Wasserstein Distance [20] and per-
ceptual loss to denoise the Low-Dose CT images, and good
results were obtained in clinical CT image tests.

VOLUME 9, 2021 70407



W. Liu et al.: Semantic Segmentation Network of RS Images With Dynamic Loss Fusion Strategy

It can be seen that the perceptual loss has not been widely
used in the semantic segmentation of RS images. We studied
the principle of perceptual loss, which is to calculate the
loss function using the pre-trained network, then fuse it with
the loss of the feature network, and update the parameters
through back propagation to achieve better learning results.
Therefore, the performance of perceptual loss applied to
semantic segmentation of remote sensing images is explored
in this work. At the same time, a dynamic perceptual loss
fusion strategy is obtained for training.

III. PROPOSED MODEL
In this work, a deep learning framework for semantic seg-
mentation of RS images is built, which can well solve some
problems encountered in the semantic segmentation of the RS
images. This framework is roughly divided into four parts:
The inceptionV-4 network as the backbone, dual ASPP mod-
ule, decoder module, and perceptual loss network. Among
them, the InceptionV-4 network and dual ASPP modules are
used as the encoder, which will be described in detail next.

A. THE INCEPTIONV-4 NETWORK
The InceptionV-4 network [2] is a novel deep learning clas-
sification network proposed by Szegedy in 2017. Convo-
lution and pooling are used in parallel in the network to
prevent bottleneck problems [21]. At the same time, a 1 × 1
convolution kernel is also used to prevent such problems.
In this paper, the InceptionV-4 network is modified as the
backbone. The modified InceptionV-4 network structure is
shown in Figure 1. All parts after the Inception-C module
are removed and the backbone is connected to the first group
of the decoders. In addition, from previous work experience,
it can be inferred that the combination of shallow features
and deep features will improve the classification accuracy.
This is because that as the network deepens, more abstract
features can be extracted, but the spatial features of the object
are lost a lot. Therefore, this paper merges the output features
of the stemmodule with the output features of the Inception-C
module, which reduces the loss of the object spatial features
to a certain extent. There are other ways to reduce the loss
of the object spatial features, such as atrous convolution, and
Atrous Spatial Pyramid Pooling (ASPP) takes advantage of
this, which will be described below.

B. THE DUAL ATROUS SPATIAL PYRAMID POOLING
The ASPP [3] was first proposed on DeeplabV-2 and later
improved in DeeplabV-3, adding the Batch Normaliza-
tion (BN) layer compared to the previous. The ASPP uses
four atrous convolutions with different sampling rates (or the
receptive field), which can effectively extract multi-scale fea-
tures, but the sampling rate of the convolution kernel cannot
be too large. When the receptive field of 3 × 3 convolution
kernels close to the size of the feature maps, the size of actual
working filter becomes 1× 1.

In this paper, the ASPP is modified to obtain the
ASPP-1 and ASPP-2 according to the situation of backbone.

FIGURE 1. The structure diagram of the feature network.

The distinctions between ASPP-1-2 and ASPP are as follow:
(1) Before inputting the feature maps into the ASPP, a maxi-
mum pooling layer is added to resize the feature maps to the
size that can be input into the ASPP; (2) Generally, the ASPP
is placed at the end of backbone. In this paper, ASPP-1 and
ASPP-2 are embedded in different stages of backbone in
order to better extract target location information, as shown
in the Figure 1; (3) This work uses dual ASPP to sample on
feature maps of different sizes, so the sampling rate of ASPP
are also modified.

In Figure 1, the size of the feature map input in the
ASPP-1 is 35× 35. The sampling rate of atrous convolution
in the ASPP-1 is set to 1, 6, 12 and 18, and the size of the
output feature maps is 35 × 35 × 256. In addition, there is
a pooling layer, and then 35× 35 feature maps are obtained.
In this way, the ASPP modules with 5 parallel convolution
and pooling layers are formed, and finally, the feature maps
are obtained by combining the above convolution and pooling
through a 1× 1 convolution. In order to match the size of the
decoder feature maps, a maximum pooling is used to change
the feature map size to be 32 × 32 × 256. For the ASPP-
2, the size of the input feature maps is 17 × 17, so it is not
advisable to set the sampling rate too large. We remove the
atrous convolution with a sampling rate of 18, and the final
ASPP-2 contains a pooling layer and atrous convolutions with
sampling rates of 1, 6, and 12, respectively. The subsequent
operations are the same as the ASPP-1. The structure diagram
of the ASPP-1 module used in this paper is shown in Figure 2.

C. THE DECODER
In the previous work, the decoder we designed was too com-
plicated. In this work, we design a relatively simple decoder.
As shown in Figure 1, the decoder is mainly divided into
four groups, which are composed of upsampling layers and
convolutions. Each group of the decoder contains a bilinear
upsampling layer. In addition, the first group of the decoder
contains three convolutions, the second, third, and fourth
groups of the decoder contain two convolutions. The size of
the feature maps output by the ASPP-2 is 17 × 17. Because
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FIGURE 2. Structure diagram of the ASPP-1.

the feature maps need to be connected, the feature size needs
to be consistent. Therefore, the size is changed to 16 × 16
by pooling, and then combined with the first group of the
decoder to get 1536-dimensional features. Similarly, the size
of the feature maps output by the ASPP-1 is 35 × 35. After
pooling, the size becomes 32×32. Combining it with the sec-
ond group of decoders to obtain a 768-dimensional feature.
In some convolutions, we also use atrous convolution instead
of ordinary convolution operations.

The specific parameters of the decoder are shown
in Table 1. The stride of each convolution is 1, if not men-
tioned separately. We study from the decoder design of the
SegNet, and simplify it to obtain the decoder. Each decoder
group contains an upsampling operation to gradually restore
the size of the feature maps. The first group of decoder
contains a three convolutions, while the rest of the decoder
have two convolutions. Finally, restore the feature maps to
the size when the images is input into the network through
bilinear upsampling.

By designing the decoder, we construct a U-shaped
encoder-decoder structure network, which is called the Fea-
ture Network. This segmentation network with a codec
structure is a highly recognized segmentation structure. The
encoder extracts target features through multiple convolu-
tions while reducing the size of the feature maps. The decoder
uses upsampling and convolutions to gradually restore the
size of the featuremaps, and finally, use the Softmax classifier
to obtain the classification result.

D. THE PERCEPTUAL LOSS NETWORK
The perceptual loss was first proposed by Johnson et al. to
be used in the image style transfer. Later, the method was
extended to super-resolution reconstruction and denoising of
medical CT images, and achieved good results. Perceptual
loss has not been effectively applied in the semantic segmen-
tation of the RS image, so this work will build a semantic
segmentation network of RS images with dynamic percep-
tual loss. The image style transfer network with perceptual
loss is mainly divided into two parts, the first is the style
transfer network, and the other is the loss network. The style

TABLE 1. Parameters of the decoder network.

transfer network is responsible for the feature training of the
image transfer. The parameters change with the training of
the network, and the parameters of the loss network remain
unchanged. The loss network generally uses a pre-trained
VGG network, and because the dynamic perceptual loss mod-
ule is added, two loss functions are defined in the overall
framework. The feature maps obtained by the style transfer
network is compared with the feature maps obtained by the
loss network, while the loss is calculated. Finally, update
parameters through back propagation [22].

Perceptual loss network is trained by adding a neural
network on the basis of feature extraction network, which
is different from the ordinary convolutional neural network.
This additional network is a pretrained neural network, which
can be used for transfer learning, and the remote sensing
image dataset in this paper can also be used for training
features by transfer learning. A pretrained neural networkwill
also compute a loss function, since the pretrained network
has learned features that are easy to generalize, and therefore,
the loss will be lower. Combining the two networks, on the
one hand, the training features are initialized, and on the
other hand, the features that have been generalized are used
to obtain better results.

In the proposedmethod, when feature extraction network is
executed to the last layer, it will output feature maps of fixed
dimensions. At this time, we input these feature maps into
the pre-trained VGG19 network for training. Like the ordi-
nary training network, the loss will be calculated. As shown
in Figure 3, the feature network outputs the feature maps Y

′

,
which is then input into the perceptual loss VGG19 network
along with the ground truth Y . The perceptual loss L(P) is
calculated and then fused with the loss L(F) calculated by

VOLUME 9, 2021 70409



W. Liu et al.: Semantic Segmentation Network of RS Images With Dynamic Loss Fusion Strategy

FIGURE 3. Schematic diagram of perceptual loss.

FIGURE 4. The frame structure of semantic segmentation of RS image
with dynamic perceptual loss.

the feature extraction network to obtain the loss Loss of the
whole network. Finally, parameters are updated through back
propagation.

Since the pre-trained convolutional neural network has
encoded the perceptual and semantic information calculated
in the loss function, it has good fitting parameters, so the
high-level features are more similar, whichmakes the training
details of the network better and the performance is also
improved. In this work, we use the pre-trained VGG19 net-
work as the loss network to build a complete semantic seg-
mentation framework for RS images with perceptual loss.
The overall framework is shown in Figure 4. Firstly, input
the training set to the feature network to train and extract the
features, then calculate the perceptual loss by inputting the
data with ground truth and the feature maps obtained by the
feature network to the loss network. Finally, the parameters
of the feature network are updated through backpropagation.

The main responsibility of the loss network is to calculate
the difference between the predicted maps and the ground
truth. Here, the mean square error function is used. Supposed
that the feature network is f , the loss network is p, and the
loss function is loss, the loss function of the loss network
is:

loss(p) = |y− y′|2 (1)

where y is the ground truth and y′ is the predicted maps after
network p training, that is, y′ = p(x). x in the loss network
represents the feature graph inputted into it, while in the
feature network, represents the original image inputted into
the feature network. The loss of feature network adopts the
Negative Logarithmic Likelihood Loss Function (NLLLoss),
which is often used in multi-classification tasks and is set as
loss(f ), then the loss function of the whole network is:

loss = loss (f )+ ωloss (p) (2)

where ω is the weight. If the loss function is extended to all
data, the formula can be derived as follows:

loss =
1
N

∑N

i=1

∑C

j=1
loss (f )+ ωloss (p) (3)

where N is the number of input samples, and C is the classes
of the samples. At this point, the loss function of the overall
framework is obtained. A loss is obtained for each training,
which is propagated back to the network, and the next training
is continued after updating parameters.

Here, we have studied some articles [19], [32], [33] on
the application of the perceptual loss. But in these articles,
the fusion of loss function is mostly simple sum of two loss
functions, and the loss function formula like formula (2) is
obtained. In this case, the change of loss in different training
stages is not taken into account. In this paper, we take into
account the change of loss function in different training stages
and improve its formula as follows:

loss =



1
N

N∑
i=1

C∑
j=1

loss (f )+ α × loss (p),

(loss (f ) > θ1)

1
N

N∑
i=1

C∑
j=1
β × loss (f )+ γ × loss (p),

(θ2 > loss (f ) > θ3)

1
N

N∑
i=1

C∑
j=1
δ × loss (f )+ ε × loss (p),

(loss (f ) < θ4)

(4)

where α, β, γ, δ and ε are the weighting parameters, θ is
the threshold of the loss. Then, we can perform loss fusion
dynamically at different training stages.

At present, there is no clear theoretical explanation for the
weight parameters of the fusion of loss function, because dif-
ferent datasets and different networks have great differences
in the calculated loss function, most of which are based on the
existing papers and the experience of parameter adjustment.
Based on the recently published papers, we expanded the sim-
ple loss fusion to carry out loss fusion with different fusion
weights at different stages according to the experimental loss
changes on the dataset.

IV. EXPERIMENTS
A. DATASET
The ISPRS2D Semantic Labeling Contest Vaihingen
dataset [23] is a high-resolution RS dataset with complete
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FIGURE 5. Overview of the vaihingen dataset and massachusetts
buildings dataset.

semantic labeling. There are six classes of Impervious
Surfaces, Building, Low Vegetation, Tree, Car, and back-
ground in the dataset. The data types include the True
Orthophoto (TOP) and the Digital Surface Models (DSMs).
The Vaihingen dataset contains 33 patches of different sizes.
Each patch contains a true orthophoto and corresponding
semantic annotations. The Orthophoto contains three differ-
ent bands, which are Near-Infrared, Red and Green (IR-R-G).
In this work, we use orthophotos composed of IR-R-G for
training.

The Massachusetts Building Dataset [34], labeled build-
ings and backgrounds, consists of 151 aerial images collected
in the Boston area, each 1500 × 1500 pixels in size. Among
them, 137 images are training sets, 10 images are test sets,
and 4 images are validation sets. The buildings in the dataset
are all detached houses and garages. These images are in
color and have three RGB bands. Figure 5 shows the overall
preview of the two datasets.

B. THE EXPERIMENTAL SETUP
1) DATA EXPANSION
Since the Vaihingen Dataset is small, data expansion is nec-
essary for better training in a deep neural network. At the
same time, in order to meet the requirements of the network
input for the image size, we cut the original patches into
1891 images with size of 300 × 300. Before the data expan-
sion, about 25% of the images are randomly selected as the
test set, about 5% as the validation set, and the rest as the
training set.Mirror and rotate the training images randomly to
obtain the expanded training set with a total of 11200 images
after data partition. Because the image size of these patches
is different, the image is resized to the size which can be
divisible by 300 before clipping, and then resized to the size
of 299× 299 when inputted into the feature network.
For the Massachusetts Building Dataset, use the same data

expansion method as for the Vaihingen Dataset to obtain a
total of 13700 training images.

2) EXPERIMENTAL SETTING
After data expansion, the batch size of training data is set
to 32 and inputted to the feature network. The network is

TABLE 2. Network training settings.

FIGURE 6. Comparison curve of perceptual loss.

implemented using the Pytorch framework and deployed
on the NVIDIA Tesla V100 (32GB RAM) server with
CUDA10.0. The Adam is used to train the model and realize
the decay of learning rate. The initial learning rate is set
to 0.0001, and L2 regularization is used to prevent overfit-
ting. After the training, the model with the best performance
was used for validation. The specific parameters are shown
in Table 2.

As shown in Figure 6, we conduct two groups of
pre-experiments on the Vaihingen dataset and Massachusetts
Buildings dataset under the same conditions to obtain the
perceptual loss curves of 200 epochs. Except for the large
error in the first epoch, which can be ignored, the perceptual
loss basically fluctuates slightly around 0.10. As the fusion
of loss functions is needed, the loss calculated by the feature
network needs to be observed. Figure 7 is the loss changing
curve of the feature network and the loss network. It can be
seen that the feature loss and the perceptual loss are getting
closer and closer with the training. With the approach of
feature loss and perceptual loss, simply adding the two loss
functions will lead to excessive loss and fail to achieve the
fitting effect. Therefore, we refer to the weight setting in
literature [19], [32], [33], as well as the relative changes of
two kinds of losses and the experience of parameter tuning,
to determine the weighting parameters of different data sets
to control the tradeoff between the feature loss and perceptual
loss.

For the Vaihingen dataset, when the loss of the feature
network loss (f ) > 0.15, α is set as 0.1 in the formula (4);
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FIGURE 7. Loss comparison between the loss network and the feature
network.

when 0.15 >loss (f ) > 0.12, γ is set as 0.05 and β is set
as 0.95; when loss (f ) < 0.12, ε is set as 0.01 and δ is set
as 0.98. For the Massachusetts Buildings dataset, because the
losses are different from the Vaihingen dataset, the weighting
parameters are also different. When the loss of the feature
network loss (f )> 0.15, α is set as 0.15 in the formula (4);
when 0.15 >loss (f )> 0.10, γ is set as 0.10 and β is set as
0.90; when loss (f )< 0.10, ε is set as 0.05 and δ is set as
0.95. In addition, in the later stage of the training, the loss
reduction become more and more subtle. Even if the weight
of the perceptual loss becomes smaller, the fusion of the two
losses will make the overall loss larger. Therefore, we add
a weight to the feature loss to dilute the impact of the loss
fusion.

C. EVALUATION CRITERIA
In order to comprehensively evaluate the performance of the
model, this work uses three benchmark indicators, namely
Intersection Over Union (IOU), Overall Accuracy (OA) and
F1 score (F1). The indicators are calculated as follows:

IOU =
TP

TP+ FP+ FN
(5)

OA =
TP+ TN

TP+ TN + FP+ FN
(6)

1 = 2×
P× R
P+ R

, P =
TP

TP+ FP
, R =

TP
TP+ FN

(7)

where TP,FP,FN ,TN represent the number of true pos-
itives, false positives, false negatives and true negatives,
respectively. P represents Precision, R represents Recall.

D. EXPERIMENT ANALYSIS
In this section, the performance of ourmethod, some common
semantic segmentation networks and the latest researches
are compared on the Vaihingen test set and Massachusetts
Buildings test set with three different indicators. The results
are shown in the below tables. The compared networks are the
U-Net [10], ERFNet [24], DABNet [25], SegNet [9] and so

FIGURE 8. Comparison of the results on the vaihingen validation set.

on. These types of networks are relatively mainstream seman-
tic segmentation networks. In addition, some other compar-
ative experiments are conducted for two datasets, which are
described later.

1) EXPERIMENTS ON THE VAIHINGEN DATASET
In common segmentation network, the performance of
DeeplabV3 is relatively excellent, with the IOU, OA and
F1 scores achieving 88.31%, 93.33% and 91.92%, respec-
tively, which meets the requirements of practical application.
It can generally make segmentation for all kinds of ground
targets, but the segmentation of edges is still not accurate
enough, and the segmentation accuracy still has great room
for improvement. Themethod proposed in this paper achieves
extremely excellent performance on the Vaihingen dataset,
with the highest IOU value of 90.30%, and the best results are
also achieved on the two indicators of OA and F1, which are
92.63% and 93.48% respectively. The method in this paper
greatly improves the accuracy of segmentation.
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FIGURE 9. Comparison of test-loss changing curves on the vaihingen test
set.

FIGURE 10. Changing curves of test IOU on the vaihingen test set.

The performance is rendered on the validation set and
compared with the performance of other networks. As shown
in Figure 8, we randomly selected five semantic images in the
validation set for comparison. The other networks have obvi-
ous incorrect regions, while the method in this paper basically
has no incorrect regions, and the image segmentation of other
networks is relatively rough. Our method is more precise and
accurate than other networks, and is closer to ground truth.
In addition, we compare the time when loading the model
and render the validation image. Because the model in this
work takes up more memory than other models, the time
required to call the model and render is not the shortest,
but the absolute speed is not too long. It takes an average
of 0.124s to render a picture, which can also meet basic needs
in practical applications.

We compare the loss changes in this method during train-
ing. Figure 9 shows the test loss curve obtained by training
200 epochs in the same situation. It can be seen that the loss
convergence of this method on the test set is faster than that
of other networks, and the loss is also lower, which means
that the resulting classification results are more similar to
the ground truth. In addition, Figure 10 shows the changing
curve of the IOU of each method on the test set. Similarly,

FIGURE 11. Comparison of the loss changing curves on the vaihingen test
set. The original+ASPP+perceptual is the test loss when all modules are
included. The Original+ASPP is the test loss when only the dual ASPP
module is included. The original+perceptual is the test loss when only
dynamic perceptual loss module is included. The Original is the test loss
when the two modules are not included.

the method in this work achieves the highest accuracy and
achieves higher values faster.

In addition, in order to prove the effectiveness of the
proposed method, experiments were carried out without the
dual ASPP and dynamic perceptual loss. As shown in Fig-
ure 11, after adding the dynamic perceptual loss module,
the distance between the predicted maps and the ground truth
becomes smaller, and the test loss also converges faster than
the network without the perceptual loss module. This fully
proves that our dynamic perceptual loss module is beneficial
to feature extraction. In the early stage of training, since the
perceptual loss module has encoded information, the distance
between the predicted maps and the ground truth is smaller.
Through backpropagation, the feature network can extract
features more accurately, so the convergence of loss is faster.
With the deepening of training, the learning of the target
feature by the feature network has approached the ability of
the perceptual loss network, and the rate of loss reduction has
also changed. Therefore, we change the weight of each part
of the loss function to achieve better training results, and the
overall accuracy is also improved.

The experiment was carried out without dual ASPP mod-
ule. It can be seen from Figure 11 and 12 that, if the frame-
work does not contain dual ASPP module, the test loss is
higher than that contains the module, while the accuracy is
lower. It can be seen that the overall training effect will be
reduced, which proves that the dual ASPP module will also
have a good effect on training.

In conclusion, it can be concluded that both the dual ASPP
module and Dynamic Perceptual Loss module have a pos-
itive impact on the semantic segmentation of RS images.
The experimental results are shown in Table 4. The IOU,
OA, and F1 scores of the network with the Dynamic Per-
ceptual Loss module and dual ASPP module are 3.23%,
2.68%, and 1.72% higher than that of the original network,
respectively.
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FIGURE 12. Comparison of the accuracy curves on the vaihingen test set.
The original+ASPP+perceptual is the accuracy when all modules are
included. The Original+ASPP is the accuracy when only the dual ASPP
module is included. The original+perceptual is the accuracy when only
dynamic perceptual loss module is included. The original is the accuracy
when the two modules are not included.

TABLE 3. Comparison of experimental results of different networks on
the vaihingen dataset.

TABLE 4. Comparison of network results with or without dynamic
perceptual loss on the vaihingen test set.

Finally, we compare our network with the latest research
results. Most of these methods are based on mainstream seg-
mentation frameworks, and improvements have been made
on them, and they have achieved good segmentation results.

Table 5 lists the F1, overall F1 and OA scores of the five
classes in the Vaihingen dataset except for the background.
In this work, the F1 scores of Imp, Low and Tree classes
reach the maximum value, which are 94.86%, 89.15% and
91.17% respectively. The classes of Low and Tree have sim-
ilar features in the image, so it is not easy to distinguish.
However, the F1 score of our method is higher than that of

other methods for these two classes, which shows that the
sensitivity of our method to the target boundary is higher, and
the score of the class Car is also higher, so the segmentation
of small targets is also very effective. The overall F1 and
OA scores are also higher than other methods. Table 5 also
lists the IOU scores of some methods. It can be seen that
our method is better than other methods in the IOU score.
By comparing the results, it is obvious that the proposed
method is superior to these recently proposed algorithms,
and has better performance for RS image segmentation
tasks.

2) EXPERIMENTS ON THE MASSACHUSETTS BUILDINGS
DATASET
After finishing the experiment on the Vaihigen dataset,
in order to further verify the effectiveness of the proposed
method, we conducted experiments on the Massachusetts
Buildings dataset, and compared the results with some mod-
els on the dataset, as well as with the latest research results.

Table 6 records the evaluation scores obtained by each
mainstream model on the Massachusetts Buildings dataset.
Among them, the Deeplab-V3 has relatively high IOU,
OA and F1 scores, which are 72.50%, 91.06% and 89.64%
respectively, but it takes a long time to process each image.
The method proposed in this paper has achieved the best
performance among many methods, with the highest scores
of IOU, OA and F1 (75.61%, 94.57% and 92.08%, respec-
tively). Meanwhile, the processing time of each image is also
faster than that of the Deeplab-V3, and the processing time
of each image is 0.128s. Among all the methods, the time
is relatively fast. Considering the accuracy and processing
efficiency, the proposed method is undoubtedly the best.

In Figure 13, we randomly selected the predicted images
on part of the validation set, so that the predicted effect
of each method can be seen more intuitively. It can be
seen that the predicted effect of the method in this paper is
closest to the ground truth. Compared with other models,
the result is more accurate for both small buildings and large
buildings.

We compare the loss changes during training.
Figure 14 shows the test loss curve obtained by training
200 epochs in the same situation on the Massachusetts Build-
ings test set. It can be seen that the loss convergence of
our method on the test set is faster and the loss is lower.
Figure 15 shows the changing curve of the IOU of each
method on the test set. Similarly, the method in this work
achieves the highest value and achieves the value faster. It can
be seen that, compared with Vaihingen dataset, the oscillation
of IOU curve on the Massachusetts Buildings dataset is more
obvious, which is caused by the differences of the dataset. The
number of samples in the Massachusetts Buildings dataset is
small, and the training is not as sufficient as the Vaihingen
dataset. However, in Figure 15, the oscillation of our method
is more slight than other methods, which also reflects that the
segmentation of buildings in this method is more stable than
other methods.
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TABLE 5. Comparison of the latest methods on the vaihingen test set (%).

TABLE 6. Comparison of experimental results of different networks on
the massachusetts buildings dataset.

TABLE 7. Comparison of the latest methods on the massachusetts
buildings test set.

TABLE 8. Comparison of network results with or without dynamic
perceptual loss on the massachusetts buildings dataset.

We also make a comparison with the latest research.
As shown in Table 7, the F1 score of our method reaches the

FIGURE 13. Comparison of the results on the massachusetts buildings
validation set.

highest 92.08%, the OA is the highest 94.57%, and the IOU
also has a good result, with the value of 75.61%, which is only
a little lower than [35]. In general, the method in this paper
also has excellent performance.
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FIGURE 14. Comparison of test-loss changing curves on the
massachusetts buildings test set.

FIGURE 15. Changing curves of test IOU on the massachusetts buildings
test set.

TABLE 9. Comparison of experimental results with different backbones
on the vaihingen and massachusetts buildings dataset (%).

Finally, we further verified the superiority of our method,
experiments are carried out with or without Dual ASPP
module and Perceptual Loss module. It can be seen from
Figures 16 and 17 that the presence or absence of the Dual
ASPP module and Perceptual Loss module will have an
impact on the experimental results. The loss of the proposed
method is lower than that of other cases. In other words,
the predicted images of the proposed method are closer to
the ground truth, so the OA in Figure 17 is also higher.
In short, it can be concluded that the Dual ASPP module
and Perceptual Loss module have a positive impact on the

FIGURE 16. Comparison of the loss changing curves on the Massachusetts
Buildings test set. The original+ASPP+perceptual is the test loss when all
modules are included. The Original+ASPP is the test loss when only the
dual ASPP module is included. The original+perceptual is the test loss
when only dynamic perceptual loss module is included. The Original is
the test loss when the two modules are not included.

FIGURE 17. Comparison of the accuracy curves on the massachusetts
buildings test set. The original+ASPP+perceptual is the accuracy when all
modules are included. The Original+ASPP is the accuracy when only the
dual ASPP module is included. The original+perceptual is the accuracy
when only dynamic perceptual loss module is included. The original is the
accuracy when the two modules are not included.

semantic segmentation of RS image. The results are shown
in Table 8, the IOU, OA and F1 scores of the network with
Dual ASPP module and Perceptual Loss module are 8.19%,
1.15% and 3.35% higher than those of the original network,
respectively.

Experiments on two datasets show that the proposed
method has good segmentation effect on remote sensing
images. There are three main reasons for the effectiveness
of our approach. The first is the superiority of the selected
backbone. The unique design of the InceptionV-4 not only
contributes to computational efficiency, but also improves
classification accuracy. Secondly, the introduction of the
ASPP module. Although some papers also have the ASPP,
we deform the ASPP module and design a dual ASPP to
extract multi-scale features according to different training
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stages. Thirdly, the pre-trained VGG network is used to cal-
culate the perceptual loss, and the Feature Loss is combined
with the Perceptual Loss, which helps to improve the classi-
fication accuracy.

Finally, we used different backbones for experiment com-
parison. As shown in Table 9, we respectively used Effi-
cientNet and ResNet for comparison. It can be seen that
InceptionV-4 works better on both datasets. At the same time,
the OA value of multi-classification is lower than that of two-
classification, which is caused by the different calculation
methods. The background category in the building dataset
accounts for most of the sample size, the judgment accuracy
of the background is higher, so its OA value is also higher.
In addition, EfficientNet has a much worse performance than
the others, as its network is obtained by the NAS technology.
Its disadvantage is that it has good performance only for
individual datasets, but its generalization ability is poor, so its
performance in remote sensing datasets is not as good as other
networks.

V. CONCLUSION
In this paper, we design a semantic segmentation network
for RS images, aiming at the problem that the segmentation
edges of RS images are not fine enough and are misclassified
due to the complex ground information. This network adopts
the common codec structure. We take the InceptionV-4 net-
work as the backbone, and introduce a dual-channel atrous
pyramid pooling module, using different sampling rates of
atrous convolution to fully extract the multi-scale features of
the target. Then a simple and effective decoder is designed,
which contains four groups of convolution and upsampling to
gradually restore the image size. Finally, we study the change
of network loss. Using the pre-trained VGG19 network as the
perceptual loss network, we design the dynamic perceptual
loss module, which inputs the feature maps of the feature
network to calculate the perceptual loss and then propagate
back to the feature network. Experiments on the Vaihingen
dataset and Massachusetts Buildings dataset show that our
method has good segmentation performance. However, due
to introducing the perceptual loss network, the training time
will be longer, which is a disadvantage of the method in this
paper. In the follow-up research, we can start from the training
efficiency.
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