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ABSTRACT For antenna modeling and optimization design, high-fidelity full-wave electromagnetic sim-
ulation software can generally be used to obtain training samples. However, this process takes a long
time. To solve this problem, a two-stage Gaussian process (GP) considering electromagnetic sensitivity
information is proposed. Based on the coarse grid and fine grid of electromagnetic simulation software,
the first stage learns the mapping relationships of antenna performance and sensitivity of each parameter,
simultaneously. In the second stage, the accurate surrogates are established based on the mapping relation-
ships above obtained. Because themethod in this study takes sensitivity information into consideration during
the modeling process, it can better reflect the mapping relationship between antenna input and output, which
can develop a more accurate surrogate model. The proposed two-stage GP surrogate model considering
sensitivity information can significantly reduce the demand of high-fidelity training samples for modeling,
and greatly save the simulation time of calling electromagnetic simulation software. Therefore, this method
is more suitable for the problems of insufficient electromagnetic simulation samples. The proposed approach
is evaluated by modeling and optimization of an inverted F antenna and an ultra-wideband planar monopole
antenna. The results show that the method has high modeling accuracy with limited training samples given
by high-fidelity electromagnetic simulation, which further verify its effectiveness and efficiency.

INDEX TERMS Gaussian process, sensitivity information, electromagnetic optimization, antenna.

I. INTRODUCTION
With the rapid development of computer field, computer
aided design (CAD) technology has been greatly improved,
and it is also used for simulation design of electro-
magnetic problems [1], generally using full-wave elec-
tromagnetic simulation software including high frequency
structural simulator (HFSS), Computer Simulation Technol-
ogy (CST), etc. When optimizing the electromagnetic prob-
lems, global optimization algorithms, such as particle swarm
optimization (PSO) [2]–[5], genetic algorithm (GA) [6]–[8]
ant colony optimization (ACO) [9]–[11] etc., are usually
used in combination with electromagnetic simulation soft-
ware. However, this process repeatedly calls electromagnetic
simulation software for electromagnetic performance eval-
uation, which is very time-consuming. Therefore, how to
reduce the calculation time and quickly optimize complex
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problem is crucial. Two kinds of optimization methods to
solve this problem include performance driven optimization
and EM-based stochastic optimization. Performance-driven
optimization may need to deal with a considerable range
of antenna parameters [12], [13]. Reference [14] employs
the overall performance-driven modeling to construct a fast
surrogate in the region corresponding to maximum changes
of the antenna response in the vicinity of the nominal design
to solve the problem of multi-band antenna yield optimiza-
tion. The EM-based stochastic optimization method involves
surrogatemodels in actual problems, and the process of estab-
lishing thesemodels is relatively simple and stable, which can
replace the electromagnetic simulation software to perform a
limited number of real function evaluation. For the modeling
and optimization of the antenna in this paper, the latter is
more applicable. Among them, surrogate models are usually
used, including artificial neural network (ANN) [15]–[17],
support vector machine (SVM) [18]–[20] and Gaussian pro-
cess (GP) [21]–[23] and so on.
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TABLE 1. Electromagnetic application.

The artificial intelligence-based algorithms commonly
applied in the antenna design in recent years, are shown
in Table 1. The popular ANN not only needs a large number
of labeled samples, but also has no standard structure frame-
work. The kernel function parameters of SVM are difficult
to determine, which is easy to produce over fitting problems.
In contrast, GP has a strict statistical theoretical basis, which
is suitable for dealing with small samples, high dimensions,
nonlinear and other complex problems [24]. The strong mod-
eling capabilities of GP make it possible to adaptively obtain
hyper-parameters and realize probabilistic prediction that is
different from other regression models, so it is more and
more widely used in the analysis of antenna modeling prob-
lems [25]–[29].

When electromagnetic performance is evaluated and cal-
culated by electromagnetic simulation software, if HFSS or
CST software is used, the simulation results not only include
conventional electromagnetic performance, but also provide
sensitivity information [30]–[33]. Sensitivity information is
defined as the ratio of electromagnetic response or changes
of solution results to design geometric parameters. In [34],
the sensitivity derivative information is successfully com-
bined with multi-layer perception neural network to suc-
cessfully model and design the radar cross section (RCS)
of the nonlinear loaded antenna; similarly, the sensitivity
information combined with space mapping technology can
effectively model microwave and RF components [35]. Then,
a new adjoint neural network technology based on sensitivity
analysis was proposed in [30], and the parametric model of
microwave passive components was successfully established.
This technology can not only learn the mapping relationship

between the input and output of the modeling problem, but
also learn the electromagnetic sensitivity information, and
develop the parameter model with high robustness. In recent
years, most of the alternative models combined with sensitiv-
ity information are neural networks. In this paper, we expand
the modeling method that considers sensitivity information,
and propose a GP modeling method that considers sensitiv-
ity information. Because a certain number of high-precision
training samples are needed in the modeling process of GP,
the calculation burden of sample acquisition is large. To a
certain extent, it can be solved by two-stage Gaussian pro-
cess [36]. Based on this, the sensitivity information will be
introduced into the modeling process, and the change trend
of electromagnetic response can be obtained at the same time.
The advantage is that it can develop amore accurate surrogate
model. Moreover, in HFSS or CST, the simulation time of
sensitivity information is relatively short and can be obtained
simultaneously with the electromagnetic response perfor-
mance, without too much additional simulation time. In this
study, the two-stage antenna performance GP and sensitivity
GP are established simultaneously. Their input parameters are
the same, and their outputs are electromagnetic response and
sensitivity information respectively. Therefore, the proposed
model can obtain the electromagnetic performance response
of input parameters and sensitivity information of each
parameter at the same time. The modeling method has two
stages. The first stage usesHFSSwith coarse grids to generate
n low-fidelity performance training samples and correspond-
ing n low-fidelity sensitivity training samples, from which
nfine (nfine < n) samples are selected to generate high-fidelity
performance samples and high-fidelity sensitivity samples
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based on HFSS with fine grids. Two GPs are used to simul-
taneously learn the mapping relationship between the coarse
and the fine model of antenna performance and sensitivity
information, predicting (n− nfine) high-fidelity performance
outputs and sensitivity outputs corresponding to low-fidelity.
The second stage combines nfine high-fidelity outputs simu-
lated by HFSS and (n−nfine) predicted outputs by the trained
GPs in the first stage to establish antenna performance GP
and sensitivity GP. The training errors sum of the two GPs is
minimized, and then a surrogate model with higher accuracy
is established to obtain accurate antenna performance output.
Two different antennas, including an inverted F antenna and
an ultra-wideband planar monopole antenna, are used to eval-
uate the effectiveness of the proposed method.

II. THE PROPOSED SURROGATE MODEL CONSIDERING
SENSITIVITY INFORMATION
A. BASIC PRINCIPLES OF SENSITIVITY
Sensitivity is defined as the ratio of electromagnetic response
or solution results to the changes of design geometric parame-
ters or material parameters. Take S11 as an example, assuming
xi (i = 1, 2, . . . ,m) is a set geometric parameter, the sen-
sitivity of the transmission coefficient Sjk (i = 1, 2, . . . , n)
between k and j ports to the design parameter is defined as

C
Sjk
xi =

∂Sjk
∂xi

(1)

Sensitivity equation (1) can quantify the influence of vari-
ous parameters on electromagnetic characteristic, and consid-
ering the sensitivity information when modeling can improve
the accuracy of the surrogate.

B. GAUSSIAN PROCESS
Gaussian process (GP) is a Bayesian nonparametric regres-
sion technique, and its properties are determined by the mean
function and the covariance function [37], which are defined
by {

m (x) = E [f (x)]
k
(
x, x′

)
= E{[(x)− m (x)]

[
f
(
x′
)
− f

(
x′
)]
}

(2)

where x, x′ ∈ Rd,m(x) and k(x, x′) are the mean function and
covariance function.

Assuming the model y = f (x) + ε, the observed target
value y contaminated by additive noise ε, which is a random
variable that obeys the normal distribution

ε ∼ N (0,σ 2
n ) (3)

then the prior distribution of y is given by

y ∼ N (0,K + σ 2
n I) (4)

where K = K (X ,X ) is a symmetric positive definite covari-
ance matrix of order n × n, kij measures the correlation
between xi and xj. The jointly Gaussian prior distribution of

n training sample outputs y and n∗ test sample outputs f ∗ is
calculated by[

y
f ∗

]
∼ N

(
0,
(
K (X ,X )+ σ 2

n I K (X ,X∗)
K (X∗,X ) K (X∗,X∗)

))
(5)

GP can choose different covariance functions [38], which
usually use the square exponential function

k(x, x′) = σ 2
f exp[−0.5(x− x

′)TM (x− x′)] (6)

The properties of the mean function and covariance func-
tion of GP are determined by a set of hyper parameters, and
the maximum likelihood function can be used to find the
optimal hyper parameters. By establishing the log likelihood
function of the conditional probability of the training sam-
ples, the partial derivative of the hyper parameter is obtained,
and then the conjugate gradient optimization method is used
to find the optimal solution of the hyper parameter. The form
of the negative log likelihood function is given by

I = logp(y|X ) = −
1
2
yTK−1y−

1
2
log|K | −

n
2
log2π (7)

Given new input
∗
x, the input value x of the training set, and

the observed target value y, the maximum possible prediction

posterior distribution of
∗
y is inferred as

p(y∗|x∗,X, y) = N (m,6) (8)

where the predicted mean m and covariance 6 are given by

m = K(X∗,X)K(X,X)−1y (9)

6 = K(X∗,X∗)− K(X∗,X)K(X,X)−1K(X,X∗) (10)

The prediction mean and variance of GP model describe
a Gaussian distribution that the prediction output may obey.
If the prediction mean is regarded as the prediction out-
put value of general nonlinear fitting tools, the prediction
variance can actually be regarded as the evaluation of the
uncertainty of the prediction mean, and its value reflects the
accuracy of GP model at this point.

C. MODELING PROCESS CONSIDERING SENSITIVITY
INFORMATION
In order to solve the problem that GP requires a large number
of high-fidelity training data samples and high computational
cost, a two-stage GP antenna modeling method considering
sensitivity information is adopted.

1) FIRST STAGE
Performance simulation and sensitivity simulation of n
groups of size parameters are carried out with h frequency
points uniformly selected for each group of size based on
HFSS with coarse grid, obtaining n groups of low-fidelity
electromagnetic performance training set Dcoar,perf and sen-
sitivity information training set Dcoar,sens:

Dcoar,perf =
{(
ui, ycoar,perf,i

)
|i = 1, · · · , n

}
(11)

Dcoar,sens =
{(
ui, ycoar,sens,i

)
|i = 1, · · · , n

}
(12)
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ui = [X i, fih] = [x1i, x2i, · · · , xPi, fih] (13)

where ui is the ith training input vector, which includes the P-
dimensional antenna geometric parameter [x1i, x2i, · · · , xPi]
and h antenna frequencies fih; ycoar,perf, i and ycoar,sens, i respec-
tively represent ith low-fidelity electromagnetic performance
response and sensitivity information of the HFSS with coarse
grid. Randomly select nfine(nfine < n) groups from n groups
of low-fidelity electromagnetic performance data sets and
sensitivity information data sets, and simulate the corre-
sponding high-fidelity electromagnetic performanceDfine,perf
and high-fidelity sensitivity information Dfine,sens based on
the HFSS fine grid as follows:

Dfine,perf =
{(
uperf,j, yfine,perf, j

)
|j = 1, · · · , nfine

}
(14)

Dfine,sens =
{(
usens,j, yfine,sens, j

)
|j = 1, · · · , nfine

}
(15)

uperf, j =
[
x1j, x2j, · · · , xPj, fjh, ycoar,perf, j

]T (16)

usens, j =
[
x1j, x2j, · · · , xPj, fjh, ycoar,sens, j

]T (17)

where uperf,j and usens,j respectively represent jth training
input vector composed of antenna geometric size, antenna
frequency with low-fidelity electromagnetic performance
response and sensitivity information. Then using input data
uperf,j and output data yfine,perf,j establish a GP, which reflects
the mapping relationship between the coarse and fine grids.
The trained GP is used to predict the remaining (n −
nfine) groups of electromagnetic performance response val-
ues ypred,perf,j|j = 1, 2, · · · , n − nfine. By the same way,
the (n− nfine) groups of sensitivity information ypred,sens,j are
predicted. Finally, the training setDfine,perf,appr composing by
the nfine high-fidelity electromagnetic performance response
and the (n−nfine) prediction values is given by (18). Similarly,
the joint sensitivity information training set Dfine,sens,appr is
given by (19).

Dfine,perf,appr =

{
(uk , yfine,perf,k )|k = 1, · · · , nfine

(uk , ypred,perf,k )|k = (nfine + 1), · · · , n

}
(18)

Dfine,sens,appr =

{
(uk , yfine,sens,k )|k = 1, · · · , nfine

(uk , ypred,sens,k )|k=(nfine + 1), · · · , n

}
(19)

2) SECOND STAGE
Here we use Dfine,perf,appr and Dfine,sens,appr to establish
antenna performance GP and sensitivity GP. Exploiting the
prediction results of the GPs established in the first stage,
the accuracy of final surrogate model will almost not be
affected even if the amount of high-fidelity training data is
reduced in the second stage, saving a lot of time for getting
more high-fidelity training samples. When training the GPs,
we consider not only the performance error but also the sensi-
tivity error. As a high efficient global optimization algorithm,
PSO is used to minimize the total training error ET given by

ET = Epe + Ese

=

∑
i∈Q

(ypred,perf,i − yhfss,perf,i)
2

+A
∑

p∈P,i∈Q

(ypred,sens,i,p − yhfss,sens,i,p)
2 (20)

ypred,sens,i,p =
∂ypred,sens,i

∂xp
(21)

yhfss,sens,i,p =
∂yhfss,sens,i
∂xp

(22)

where Epe and Ese respectively represent the training errors of
the antenna performance GP and the sensitivity GP; ypred,perf,i
and yhfss,perf,i respectively represent the predicted output of
the ith group of geometric parameters of the antenna per-
formance GP and the simulation response of HFSS; xp rep-
resents the pth element of the input vector x; ypred,sens,i,p
and yhfss,sens,i,p respectively represent the predicted output
derivatives and the simulation output derivatives by HFSS
of the pth input element; P and Q respectively represent the
geometric parameter dimension and the number of output
samples; A represents the weight coefficient of the sensitivity
error function. Finally, the established surrogate model is
used as the fitness function of the particle swarm optimiza-
tion (PSO) to optimize the antenna size. Specially, in this
paper, the acceleration coefficients are 2, and the inertia
weight decreases linearly from 1 to 0, and the swarm size
is 50.

The overall design steps of the proposed method are sum-
marized as follows.

1) Use partial combination orthogonal experimental
design to select n groups antenna sizes, establish
a MATLAB-HFSS simulation model, and obtain
n groups low-fidelity electromagnetic performance
response and sensitivity information with h frequency
points based on HFSS with coarse grid.

2) Select nfine(nfine < n) groups antenna from the n
groups, and compute nfine groups high-fidelity electro-
magnetic performance response and sensitivity infor-
mation based on HFSS with fine grid. Combining
the low-fidelity performance response and sensitivity
information of step 1), the performance GP1 and sen-
sitivity GP3 are established from the obtained data
with coarse and fine grids. The remaining (n − nfine)
groups of the low-fidelity performance response and
sensitivity information are taken as the input of GP1
and GP3, and the corresponding ‘precise’ electromag-
netic performance response and ‘precise’ sensitivity
information are predicted respectively.

3) Combining nfine groups high-fidelity performance data
and (n − nfine) groups predicted ‘precise’ data by GP1
establish antenna performance GP2. simultaneously,
combining nfine groups high-fidelity sensitivity infor-
mation and (n − nfine) groups predicted ‘precise’ data
by GP3 establish sensitivity GP4.

4) The two-stage GP with sensitivity information is
trained to minimize ET .

5) Initialize the population and parameters of the PSO.
6) The fitness function is constructed by the trained GP2

and GP4 in the light of (20), (21), (22).
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FIGURE 1. Flowchart of the proposed method.

VOLUME 9, 2021 70447



R. Li et al.: Antenna Modeling Based on Two-Stage GP Considering Sensitivity Information

FIGURE 2. The inverted F antenna.

7) The iteration for the optimization is carried out.
If reaching the maximum number of iterations, it will
jump out of the loop and output the global best particle
and optimal fitness value. If not, it will return and
continue the loop.

8) Simulate the global best particle by HFSS to obtain
high-fidelity electromagnetic performance response
and sensitivity information, and compare them with
the outputs of the proposed two-stage GP considering
sensitivity information. If the error is greater than the
threshold, we will update the model; if not, we will
output the result and get the antenna parameters that
meet the optimization conditions.

Figure 1 is the flowchart of the proposed method, in which
L, H , S, and W are geometric parameters of the opti-
mized antenna, and f is the frequency. There are two parts
in Figure 1, among which Figure 1(a) is modeling flowchart
of the two-stage GP based on sensitivity, which contains
antenna performance response and sensitivity information,
and Figure 1(b) is optimization flowchart of the trained sur-
rogate model in Figure 1(a) combined with PSO algorithm.

III. PERFORMANCE TEST AND EVALUTION
In this section, we will use the proposed two-stage GP con-
sidering sensitivity information to model and optimize the
inverted F antenna in [39] and the ultra-wideband planar
monopole antenna in [40].

A. THE INVERTED F ANTENNA
The structure model of the inverted F antenna in [39]
is shown in Figure 2(a), and its HFSS model is shown
in Figure 2(b), which includes inverted F-shaped antenna,
substrate layer and ground plate. The frequency band of inter-
est is 1.8GHz∼3.2GHz. The electromagnetic performance
of the antenna is mainly determined by length L, height H ,
distance S between ground point and feed point, and width
W of microstrip line. The design ranges are L=[15.5,17]mm,

H=[2.8,4.3]mm, S=[3,7]mm, and W=[0.8,1.2]mm, respec-
tively. Among them, the upper and lower limit width of
the design variables are determined according to the empiri-
cal values of [39]. Other fixed geometric parameters of the
antenna are shown in Table 2. The optimization indexes
are that S11 at resonance frequency is less than -20dB, and
bandwidth at -10dB is greater than 100MHz.

Setting the iteration number of HFSS with coarse grid
is 3, fine grid is 7, precision is 0.02, and sensitivity variables
are L, H , S and W . In the first stage, number of training
samples is 50, with 50 frequency points for one sample, and
the training input is {ui = [X i, fih] = [Li,Hi, Si,Wi, fih]|i =
1, 2, · · · , n}. According to n (n = 50) groups of anten-
nas selected in the experiment, we can obtain ycoar,perf,i
and ycoar,sens,i, namely |S11|coar , and d |S11|

dL coar,
d |S11|
dH coar,

d |S11|
dS coar,

d |S11|
dW coarbyHFSSwith coarse grid to formDcoar,perf

and Dcoar,sens. 20 groups are randomly selected from the
50 samples, and we use HFSS with fine grid to sim-
ulate their yfine,perf,i and yfine,sens,i, namely |S11|fine, and
d |S11|
dL fine,

d |S11|
dH fine,

d |S11|
dS fine,

d |S11|
dW fine to form Dfine,perf and

Dfine,sens. According to the 20 groups of samples given
by HFSS with coarse and fine grid, the antenna perfor-
mance GP1 and sensitivity GP3 are established, and then
use them to predict the remaining 30 groups of ypred,perf,j
and ypred,sens,j, namely |S11|pred , and d |S11|

dL pred,
d |S11|
dH pred,

d |S11|
dS pred,

d |S11|
dW pred. Finally, we combine the 20 groups

high-fidelity simulation samples given by HFSS and the
30 groups predicted ‘precise’ samples given by the trained
GP1 and GP3 to form new training samples, namely
Dfine,perf,appr and Dfine,sens,appr, and then use them to train
antenna performance surrogate model GP2 and sensitivity
surrogate model GP4.
The definition of the training samples and test samples of

the inverted F antenna is shown in Table 3, and the test results
of the trained two-stage GP considering the sensitivity infor-
mation model are shown in Table 4. The average absolute
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TABLE 2. Fixed structure parameters of the inverted F antenna.

TABLE 3. Training and test samples for the inverted F antenna.

TABLE 4. Errors of different test samples for the inverted F antenna.

FIGURE 3. S11 of the optimized inverted F antenna.

error (MAE) and root mean squared error (RMSE) are used
to evaluate the performance of the trained model, and they are
formulated by

MAE =
1
h

h∑
i=1

|ypred,i − yi| (23)

RMSE =

√√√√1
h

h∑
i=1

(ypred,i − yi)2 (24)

where ypred,i and yi are the predicted values at the ith fre-
quency point of the trained two-stage GP model considering
sensitivity information and its high-fidelity HFSS simulation

FIGURE 4. Three-dimensional gain pattern of the optimized inverted F
antenna.

result, respectively. It can be seen from Table 4 that the MAE
is about 0.5, RMSE is about 0.6, and they are all small,
which verifies the effectiveness of the proposed modeling
method.

Taking the trained model as fitness function, we use PSO
to optimize the antenna, and the result is [15.9963 3.7660
4.8463 1.0148] mm, its S11 is shown in Figure 3, where
the black solid represents the simulation result by electro-
magnetic simulation software HFSS, and the red dash line
with star represents the predicted result by the proposed
algorithm. It can be seen from Figure 3 that the value of
S11 at the resonance frequency point is less than −20dB,
and the bandwidth at −10dB is significantly greater than
100MHz, which meets the design requirements. Compared
with the simulation results of electromagnetic simulation
software, the prediction error at the resonance point is also
relatively small, and the electromagnetic simulation and the
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FIGURE 5. Sensitivity simulation results of the optimized inverted F antenna.

TABLE 5. Training and test samples for the ultra-wideband planar monopole antenna.

optimized prediction results can fit well, accurately reflecting
the relationship between the input and output of the antenna
performance. Figure 4 is the three-dimensional radiation pat-
tern of the optimized Inverted-F antenna.

Since the sensitivity information of each parameter is con-
sidered in the modeling process, the information fitting effect
is also good, as shown in Figure 5. The optimized result can
also clearly hint the degree of influence of each parameter
on the result. Among them, the value of the parameter L
has the greatest impact on the antenna performance, and the
parameter S has the least impact.

B. THE ULTRA-WIDEBAND PLANAR MONOPOLE
ANTENNA
The structure of the ultra-wideband planar monopole antenna
in [40] is shown in Figure 6(a), and HFSS model is shown
in Figure 6(b), which includes substrate layer, circular ring
radiating element, rectangular microstrip feeder, and refer-
ence ground for rectangular gaps. The substrate layer is
FR4 material with length L = 42mm, width W = 30mm,
thickness h = 1mm, relative dielectric constant εr = 4.4,
and loss tangent tan δ = 0.02. The radiating unit on the top
of the substrate layer is a circular sheet of inner ring R1, outer
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FIGURE 6. The ultra-wideband planar monopole antenna.

FIGURE 7. S11 of the optimized ultra-wideband planar monopole
antenna.

ring R2, and a rectangular microstrip feeder is with length
Lf = 14.2mm and width Wf = 1.96mm. The bottom is a
rectangular structure with a width of LGND = 2.6mm, and
two rectangular slits of L1×W1 and L2×W2 are engraved on
it. The electromagnetic performance of the antenna is mainly
determined by the size of the two rectangular slots and the
radius of the inner and outer rings of the circular thin plate.
The design ranges are L1 = [5,6.2]mm, L2 = [0.4,1] mm,
W1 = [2,3.2]mm, W2 = [2.4,3.6]mm, R1 = [5.4,6.6] mm,
R2 = [9,10.2]mm. Among them, the upper and lower limit
width of the design variables are determined according to the
empirical values of [26]. The optimization indexes are that
the value of S11 in the 3GHz∼11GHz frequency band is less
than −10dB.

Similarly, the number of HFSS with coarse grid is 3,
fine grid is 7, precision is 0.02, and sensitivity vari-
ables are L1, L2, W1, W2, R1 and R2. In the first
stage, number of training samples is 50, with 101 fre-
quency points for one sample, and the training input
is {ui = [X i, fih] = [L1i,L2i,W1i,W2i,R1i,R2i, fih]|i =
1, 2, · · · , n}. According to the n (n = 50) groups of
antennas selected in the experiment, we can obtain ycoar,perf,i
and ycoar,sens,i, namely |S11|coar , and d |S11|

dL1 coar
, d |S11|

dL2 coar
,

FIGURE 8. Three-dimensional gain pattern of the optimized
ultra-wideband planar monopole antenna.

d |S11|
dW1 coar

, d |S11|dW2 coar
,
d |S11|
dR1 coar

, d |S11|dR2 coar
by HFSS with coarse

grid to form Dcoar,perf an Dcoar,sens. 20 groups are randomly
selected from the 50 groups of samples, and we use HFSS
with fine grid to simulate the yfine,perf,i and yfine,sens,i, namely
|S11|fine, and

d |S11|
dL1 fine

, d |S11|dL2 fine
, d |S11|dW1 fine

, d |S11|dW2 fine
, d |S11|dR1 fine

,
d |S11|
dR2 fine

to form Dfine,perf and Dfine,sens. According to the
20 groups of samples given by HFSS with coarse and fine
grid, the antenna performance GP1 and sensitivity GP3 are
established, and then use them to predict the remaining
30 groups of ypred,perf,j and ypred,sens,j, namely |S11|pred , and
d |S11|
dL1 pred

, d |S11|dL2 pred
, d |S11|dW1 pred

, d |S11|dW2 pred
, d |S11|dR1 pred

, d |S11|dR2 pred
.

Finally, we combine the 20 groups of high-fidelity simula-
tion samples given by HFSS and the 30 groups of predicted
‘precise’ samples given by the trained GP1 and GP3 to form
new training samples, namely Dfine,perf,appr and Dfine,sens,appr,
and then use them to train antenna performance GP2 and the
sensitivity GP4. The definition of the training sample and
test sample of the ultra-wideband planar monopole antenna is
shown in Table 5, and the test results of the trained two-stage
GP model considering the sensitivity information are shown
in Table 6. It can be seen that the MAE is about 0.5 and the
RMSE is about 0.7.

Comparing the errors of the above two antenna cases
with classical GP and two-stage GP without considering
the sensitivity, the result is shown in Table 7. We can con-
clude that under the same data, because the classical GP
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FIGURE 9. Sensitivity simulation results of the optimized ultra-wideband planar monopole antenna.

doesn’t have enough training sample and doesn’t consider
sensitivity information, the test error is relatively large; the
test error of the two-stage GP is smaller than that of the
classical GP because of more training samples obtained by
the two-stage process. In comparison, the proposed two-stage

GP considering sensitivity information has smallest test
errors and best predicted results.

Taking the trained two-stage GP considering sensitivity
information as fitness function, we use PSO to optimize
the antenna, and the result is [5.7399 0.7013 2.6614 3.0791
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TABLE 6. Errors of different test samples for the ultra-wideband planar monopole antenna.

TABLE 7. Comparison of the test samples average error of different model.

5.9604 9.7004] mm, and its S11 is shown in Figure 7, where
the black solid represents the simulation result by electromag-
netic simulation software HFSS, and the red dash line with
star represents the predicted result by the proposed algorithm.
It can be seen from Figure 7 that the value of |S11| in the
frequency range of 3GHz ∼ 11GHz is less than −10dB,
which can completely cover the 3.1GHz ∼ 10.6GHz band
assigned by the Federal Communications Commission for
UWB services, which meets the design requirements. And
the prediction result of the surrogate model can fit the simu-
lation of electromagnetic simulation software well. Figure 8
shows the three-dimensional radiation pattern of the opti-
mized UWB planar monopole antenna at 5GHz with 3.24dB
gain. Similarly, considering the sensitivity information rela-
tive to each parameter, as shown in Figure 9, it can be seen
that the fitting effect is relatively excellent, and the value of
parameter W1 has the greatest influence on the performance
of the antenna, and parameter W2 has the least influence.
This example again verifies the effectiveness of the proposed
method.

IV. CONCLUSION
In order to reduce the computational cost of obtaining training
samples by high-fidelity full-wave electromagnetic simula-
tion software and enhance the efficiency of antenna optimiza-
tion design, this paper develops a two-stage Gaussian process
considering sensitivity information model. The training sam-
ples of the second stage come from the high-fidelity response
data obtained by the full-wave electromagnetic simulation
software with fine grid and ‘precise’ predicted data by the
first stage GP model trained by coarse grid data. Since the
simulation time of electromagnetic simulation software with
coarse grid is much shorter than that of with fine grid, it can
greatly save time. While establishing the two-stage Gaus-
sian process, the sensitivity information is also considered.
Without the need for a large number of training samples,
the change trend of the electromagnetic response can also be
obtained, and an accurate surrogate model can be established.
Therefore, in the problem of insufficient samples or high sam-
ple acquisition costs, the consideration of sensitivity infor-
mation is particularly important for improving the trained
model’s performance. In addition, the surrogate model can
not only obtain better antenna performance response, but also
sensitivity information of different geometric parameters. It is

convenient for developers to follow-up development. Finally,
the method is evaluated through the modeling and optimiza-
tion of the inverted F antennas and the ultra-wideband planar
monopole antennas with a small amount of sample data. The
experimental results show that a more accurate surrogate
model can be obtained even in the case of few high-fidelity
training samples, which further verifies the effectiveness and
efficiency of the proposed modeling method.

However, the method proposed in this paper is of little
significance to big data problems, because if we have enough
training sample, we don’t need to perform the first stage GP.
Simultaneously, the efficiency is low for big data because
the computing burden is the cube of number of the training
samples. But, we all know most design and optimization
missions in the electromagnetic field domain belong to small
samples, which can apply the proposed approach very well.
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