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ABSTRACT Photoplethysmogram (PPG) is one of the most widely measured biosignals alongside elec-
trocardiogram (ECG). Due to the simplicity of measurement and the advent of wearable devices, there
have been growing interest in using PPG for a variety of healthcare applications such as cardiac function
estimation. However, unlike ECG, there are not many large databases available for clinically significant
analyses of PPG. To overcome this issue, a Generative Adversarial Network-based model to generate
PPG using ECG as input is proposed. The network was trained using a large open database of biosignals
measured from surgical patients and was externally validated using an alternative database sourced from
another hospital. The generated PPG was compared with the reference PPG using percent root mean square
difference (PRD) and Pearson correlation coefficient to evaluate the morphological similarity. Additionally,
heart rate measured from the reference ECG, reference PPG, and generated PPG, and compared through
repeated measure analysis of variance to test for any significant differences. The mean PRD was 32±10%
and the mean correlation coefficient was 0.95±0.05 in the test dataset. The HR from the three biosignals
showed no significant difference with a p-value of 0.473. When the optimized GAN model was tested on
atrial fibrillation ECG from a third dataset, the mean correlation coefficient between the generated PPG
heart rate and the ECG heart rate was 0.94±0.15, with paired t-test resulting in p-value of 0.64. The results
indicate that the proposed method may provide a valuable alternative to augmenting biosignal databases that
are abundant in one signal while lacking in another.

INDEX TERMS Data augmentation, deep learning, electrocardiogram, generative adversarial networks,
photoplethysmogram.

I. INTRODUCTION
Photoplethysmogram (PPG) is a blood pulse signal mea-
sured using light reflection or transmission, which amplitude
and morphology are dependent on the blood volume and
vascularity of the measured tissue. PPG is used in various
systems ranging from smartphones to pulse oximeters, and
has recently become more ubiquitous due to the expansion
of the wearable devices industry [1]–[4] and growing num-
ber of healthcare applications in cardiovascular monitoring
[5]–[7]. In conjunction with the explosion in deep neural net-
work based biosignal processing techniques, recent studies
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have shown promising results on cardiac function analyses
using PPG [8]–[10].

Since 2016, studies on blood pressure estimation [9],
[11], [12], biometric identification [13], [14], and atrial fib-
rillation detection [15]–[18] from PPG signals using deep
learning has become popular. Some of these studies were
able to use readily available public databases for training
the deep learning models [19]–[21], but others required con-
ducting large-scale experiments to produce the necessary
data [15], [22], [23]. Because deep learningmodels need large
datasets for proper optimization, the availability of data in
large quantities becomes a limiting factor in developing such
methods, as generating properly annotated databases require
vast resources which can be afforded by a few. Even when the
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necessary data is present, accessing it for research purposes
can be difficult since the institutions which own the database
may refuse opening health data citing privacy concerns [24].

The development of electrocardiogram (ECG)-based deep
learning methods for cardiovascular health monitoring have
been much more widespread due to the number of easily
accessible public ECG databases with cardiologist annota-
tions for various conditions [25]. Adapting these annotations
into synchronized PPG could be beneficial in increasing
such research using PPG instead of ECG, but unfortunately,
most annotated ECG databases do not have simultaneously
measured PPG. There have been attempts to generate PPG,
which could potentially turn these annotated ECG databases
into useful sources for generating annotated PPG data.
In [26], A. Solosenko et al. generated synthetic PPG signals
using linear combinations of a log-normal and Gaussian
waveforms. With the advance of deep learning techniques,
especially of generative adversarial network (GAN), gener-
ation of time series biosignal data using GAN have been
recently investigated [27]–[32]. In a recent study of ECG
generation among these studies [31], ECG simulator infor-
mation was used to enhance the performance of the GAN
model by augmenting Euler loss to the general cross-entropy
loss. In [32], a bidirectional grid long short term memory
based generator with convolutional neural network (CNN)
based discriminator were used to generate four kinds of
biosignals including ECG and PPG. Regarding PPG gener-
ation, [29] used GAN to synthesize PPG data from random
seeds, but the authors acknowledged that the generated signal
included high frequency components which required signifi-
cant post-processing before the signal resembled high-quality
PPG. However, none of these studies have used ECG as a
source to generate PPG, and the resulting synthetic PPG data
have been bound to the design of the generation model.

In this paper, a novel method to generate PPG from ECG
recording using GAN is introduced. First, the GAN architec-
ture is described in detail along with the training dataset in
the Methods section. In the Results section, synthetic PPG
generated using ECG is compared against simultaneously
measured PPG using validation data and testing data from an
alternative dataset. Then, synthetic PPG is analyzed in terms
of morphological and physiological metrics, and the value of
the proposedmethod is discussed in relation to synthetic atrial
fibrillation PPG dataset generation in the Discussions section.

By validating the GAN-generated PPG in terms of error,
correlation, and atrial fibrillation, this study demonstrates that
GAN can be a potential tool to generate synthetic biosignals
for data augmentation purposes in low resource settings.

II. MATERIALS AND METHODS
A. RELATED WORKS IN GAN-BASED
BIOSIGNAL GENERATION
Since its proposal in 2014 [33], GAN has been developed
for diverse applications ranging from language processing to
image generation. GAN is composed of a generator network

which produces a desired output, and a discriminator network
which determines if its input is real or artificial. As the
generator outputs some synthetic data, these are fed into the
discriminator along with real data, and the discriminator is
trained to distinguish between the real and fake data, while the
generator is trained to produce synthetic data that are closer in
form to the real data. It is probably the best-known for image
style transfer methods [34], which transcribes the artistic
style of one image to another image, popularized by many
smartphone camera applications, however, it has been applied
to biosignals in a few cases, especially for data augmentation
purposes. In one study, recurrent neural network (RNN)-
based generator was used along with a CNN-based discrim-
inator to generate artificial ECG that are indistinguishable
frommeasured ECG [27]. In another study, GANwas used to
generate a synthetic PPG dataset in order to augment a pre-
existing database without unwanted byproducts of traditional
data augmentation methods such as time-warping and addi-
tional noise [35]. Other studies have generated non-periodic
medical data such as heart rate, oxygen saturation, and res-
piratory rate using GAN [36]. On examination, all of these
methods have in common that during synthetic data gener-
ation after GAN optimization, inputs to the generator were
chosen at random followingGaussian distribution, suggesting
that there isn’t an explicit relationship between generator
input and output. In this work unlike in previous studies, GAN
was used to generate PPG using ECG as the input to the gen-
erator. The discriminator was trained to distinguish between
generated PPG and real PPG measured simultaneously with
the input ECG.

B. TRAINING DATABASE
Public biosignal data from 6388 patients undergoing various
surgeries at Seoul National University Hospital (VitalDB)
were used for this study [37]. Lead II ECG and simultane-
ously measured PPG were recorded at 500Hz on a commer-
cial patient monitor (Tram-Rac4A). For the purposes of this
study, the signals were downsampled to 100Hz. On aver-
age, each recording was 93 minutes long, but only regions
with valid signal range were selected for further processing.
As seen on Fig. 1, recordings without both ECG and PPG
were excluded. Then, largest continuous durations without
saturation or missing values was selected for each record-
ing, and 60-second segments of ECG and PPG from these
regions were extracted with 57-second overlap. To compen-
sate for the varying delays between ECG and PPG, for each
ECG segment, corresponding 60-second PPG segment was
found by considering 60-second PPG segments from the same
period plus 3 seconds with PPG HR and ECG HR correlation
above 0.96. For example, if a particular segment of ECG was
extracted between 1000 to 1060 seconds of a given record-
ing, the corresponding 60-second PPG segment was found
between 1000 to 1063 seconds of the recording based on the
correlation between the HR of the extracted ECG segment
and the HR of the PPG segment candidates which lie between
1000 to 1060 seconds, 1000.01 to 1060.01 seconds, and etc.
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FIGURE 1. Block diagram of the data selection process from the VitalDB
database. Out of 6388 patient recordings, a total of 5253 recordings were
used to optimize GAN model. [Note: ECG, electrocardiogram; PPG,
photoplethysmogram; GAN, generative adversarial network].

FIGURE 2. Figure of the downsampling process used to achieve high
variation in heart rate in the training data.

Recordings without highly-correlated (i.e. correlation above
0.96) ECG-PPG pairs were excluded, and the remaining
recordings were separated in 4-to-1 ratio for GAN training
and validation. Afterwards, 60-second segments were ran-
domly downsampled by a factor between 1 to 2 in order to
adjust for low variations in heart rate in surgery patient data as
shown in Fig. 2. ECG-PPG pairs were further segmented into
0.5, 1, 1.25, 1.5, and 2 second fragments for training the GAN
at various signal lengths. However, only 1-second fragments
were used for external validation due to the lowest loss values
following optimization (Fig. 3). 200 segments were selected
at random from each record, normalized in magnitude, and
saved for GAN optimization.

C. PROPOSED GAN ARCHITECTURE
The architecture of the proposed GAN is shown in Fig. 4.
1-second length (100 samples) ECG fragments was fed into
a RNN-based generator composed of one bidirectional Long
Short-Term Memory (LSTM) [38] layer with 30 cells acti-
vated with Tanh and forget bias value of 1. At each time step,
samples of the ECG segment were sequentially inputted into
the LSTM layer, and at the last time step, the states of the
LSTM cells were fully-connected to an output layer with size
equal to the original sample length of the ECG fragment. For

FIGURE 3. The loss values of the GAN following optimization at various
input signal lengths.

FIGURE 4. Flow diagram for the proposed GAN architecture. The
RNN-based generator takes ECG as an input, and outputs generated PPG.
The output from the generator is fed into the CNN-based discriminator
which is trained to distinguish between synthetic PPG and real PPG.
[Note: BiLSTM, bidirectional long short-term memory; ECG,
electrocardiogram; PPG, photoplethysmogram; CNN, convolutional neural
network; RNN, recurrent neural network; Conv., convolutional; Pool.,
pooling; F.C., fully-connected].

the kernel initializer of the fully-connected layer, truncated
normal initializer with standard deviation of 0.01 was used
and all biases were initialized with 1.

The output from the generator was then fed into a CNN-
based discriminator network as shown in Fig. 4. The discrim-
inator architecture consists of 3-layer CNN, with 8, 16, 32
filters respectively. Kernel size of 5 was applied to all the
convolution filters with stride 1. The kernel weights were
initialized using truncated normal initializer with standard
deviation of 0.01 and the biases were initialized with 1.
Following convolution, the hidden states were activated using
ReLu and max-pooled by a factor of 5x. After 3 convolution
layers, the output was fully-connected to a dense layer with
32 nodes. This fully-connected layer was initialized in the
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same manner as the fully-connected layer in the generator.
The output was activated using sigmoid then connected to a
single output for the calculation of binary cross entropy loss.
Mean-squared error (MSE) loss was calculated between the
output of the generator and the reference PPG to improve the
quality of signal generation. The pseudocode for the GAN
optimization process is shown below:

Algorithm 1 Minibatch Stochastic Gradient Descent Train-
ing of Proposed Method
for number of training iteration do
• Sample minibatch of m reference ECG
{ECG(1), . . . ,ECG(m)}

• Sample minibatch of m reference PPG
{PPG(1), . . . ,PPG(m)}

• Generate m synthetic PPG samples from ECG{
PPG

(1)
, . . . ,PPG

(m)
}

PPG
(i)
[1,...n] = G

(
ECG(i)[1,...n]

)
where n indicates the length of each sample, andG (x)
is the differentiable function representing the genera-
tor

• Update the discriminator by descending its stochastic
gradient:

∇θd
1
m

m∑
i=1

[−log
(
D
(
PPG(i)

))
−log (1−D

(
PPG

(i)
)
)]

where D (x) is the output of the discriminator repre-
senting the probability that x is from the reference data
rather the generator’s distribution

• Update the generator by descending its stochastic gra-
dient:
∇θg

1
m

m∑
i=1

[0.001 · − log
(
D
(
PPG

(i)
))

+
1
n

n∑
l=1

(PPG(i)l − PPG
(i)
l )]

end for
Adam optimizer was used.

D. EVALUATION OF THE OPTIMIZED GAN
As shown on Fig. 5, the generator of the optimized GAN
was tested using an external dataset from the University
of Queensland Vital Signs Database (UQVSD) which also
contained simultaneously measured ECG and PPG from
32 patients with median duration 105 minutes [39]. The test
dataset was extracted and pre-processed in the same manner
as the training dataset, and a total of 1893 30-second segments
of data from 27 patients in the database were used for external
validation.

To check the morphology of the synthetic PPG, errors
between the synthetic PPG and the simultaneously mea-
sured PPG were calculated. Percent root mean square dif-
ference (PRD), as defined below, was calculated to measure

FIGURE 5. GAN training, validation, and testing outline. HR1 is the heart
rate calculated from the generated PPG, HR2 is the heart rate calculated
from the reference ECG, and HR3 is the heart rate calculated from the
reference PPG. [Note: ECG, electrocardiogram; PPG, photoplethysmogram;
GAN, generative adversarial network; UQVSD, University of Queensland
Vital Signs Database; RMANOVA, repeated measure analysis of variance].

distortion.

PRD =

√√√√∑N
n=1 (Xn − X̂n)

2∑N
n=1 (Xn)

2
× 100 (1)

where X̂n is nth generated PPG sample, Xn, nth real PPG
sample, and N is the total number of samples.
Second, Pearson correlation coefficient was calculated to

verify that the synthetic PPGmoved in a similar manner to the
real PPG, and to quantify the degree of association between
the two signals.

ρ (A,B) =
cov(A,B)
σAσB

(2)

where cov(A,B) is the covariance of A and B, σA is the
standard deviation of A, and σB is the standard deviation of B.
Lastly, in order to verify the synthetic PPG in terms

of physiological measures, 30-second PPG segments were
generated using the optimized GAN with sliding win-
dow averaging (Fig. 6). HR extracted from the synthetic
30-second segments was compared to HR from the counter-
part 30-second ECG segments as well as 30-second segments
of PPG measured simultaneously with the ECG segments.
The HR from these triplets were compared using repeated
measure analysis of variance (RMANOVA) test.

III. RESULTS
The discriminator and generator loss of the GAN optimiza-
tion process for input ECG length of 1 second could be seen
on Fig. 7, and an example of a simultaneously measured
ECG-PPG pair and the corresponding GAN-generated PPG
can be seen on Fig. 8.

The difference between the synthetic PPG produced with
the optimized generator and the real PPG from the test dataset
resulted in mean PRD of 32.0% and mean Pearson’s correla-
tion coefficient of 0.95 as shown in Table1.
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FIGURE 6. a) Diagram representing the generation of 1-second segments of PPG and the subsequent sliding window average for the
generation of 30-second PPG segments. 100 samples (1 second) of input ECG data are fed into the optimized BiLSTM network at 25 sample
intervals to generate overlapping 100-sample segments of PPG. Then, the overlapping PPG segments are averaged to generate 30-second
segments of PPG. The average was multiplied by a factor of four to accentuate the morphology of the generated signal. b) Plot showing the
process of averaging 100-sample (1-second) BiLSTM outputs to produce 30-seconds of generated PPG. The shaded regions indicate
overlapping four 25-sample BiLSTM outputs averaged to produce the final PPG signal. [Note: ECG, electrocardiogram; PPG,
photoplethysmogram; BiLSTM, bidirectional long short-term memory; F.C., fully connected].

FIGURE 7. Discriminator loss and generator loss of the GAN optimization
process. [Note: GAN, generative adversarial network].

The comparison between HR extracted from reference
ECG, reference PPG, and synthetic PPG using RMANOVA
resulted in a p-value of 0.473, indicating no significant dif-
ferences.

IV. DISCUSSION
It is challenging to collect sufficient data for developing
effective machine learning or deep learning algorithms in
the healthcare domain due to privacy concerns as well as
costs associated with data acquisition and labeling [40], [41].
These constraints frequently lead to an imbalance in training
data distribution [42], resulting in biased algorithms that are

FIGURE 8. a) Reference ECG from University of Queensland Vital Signs
Database. b) Reference PPG from University of Queensland Vital Signs
Database and PPG generated using ECG on as the input to the optimized
GAN (dashed line). [Note: ECG, electrocardiogram; PPG,
photoplethysmogram; GAN, generative adversarial network].

impractical for real-world applications. To circumvent these
issues, this study proposed a novel GAN-based PPG data
augmentation method which can generate low availability
data from highly accessible signals, such as ECG.

A. MORPHOLOGY OF THE SYNTHETIC PPG AND
POTENTIAL SOURCES OF ERROR
To evaluate the performance of the proposed GAN, PRD and
Pearson correlation coefficient were used, as the former is
a popular distance measure for quantifying similarity and
the latter is a robust measure in quantifying morphological
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TABLE 1. PRD & pearson correlation coefficient calculated between
reference and synthetic ppg using the test dataset.

FIGURE 9. Boxplot of PRD (%) and Pearson correlation coefficient of
generated PPG from the test dataset. On each box, the middle line
indicates the median value, top and bottom edge of the box indicate the
75th and 25th percentiles, respectively. The whiskers of the plot extend to
the boundary of the outlier data. The outliers are marked as ‘o’. a) Boxplot
of PRD (%). b) Boxplot of Pearson correlation coefficient. [Note: PRD,
percent root mean square difference].

differences between the synthetic PPG signal and the refer-
ence PPG signal. PRD and Pearson correlation coefficient
calculated between reference PPG and synthetic PPG using
the UQVSD as the test dataset are summarized in Table 1.
Corresponding boxplots for these metrics are also shown
in Fig. 9. The outliers for each metric (96 segments for PRD
and 137 segments for correlation coefficient out of 1893 total,
some of which are outliers in both metrics) indicate that
some synthesized PPGs are not well-correlated with refer-
ence PPGs. Fig. 10 shows pairs of generated PPG segment
and the reference PPG from the test dataset with their PRD
and Pearson correlation coefficient values. Fig. 10a shows a
typical result, which demonstrates that the proposedGANcan
generate visually acceptable PPG signals with high correla-
tion and low PRD values.

Fig. 10b and 10c show the resulting PPG pairs for two
outliers, which have larger errors. By analyzing these outliers
amongst others, it was found that the outliers could be classi-
fied into two categories: category I with large PRD and high
correlation (as shown in Fig. 10b) and category II with large
PRD and low correlation (as shown in Fig. 10c).

In category I, it is likely that the large PRD values are due to
dissimilarity in the dicrotic notch between the reference PPG
and its synthetic counterpart. As seen in Fig. 10b, dicrotic
notch is not visually noticeable in the generated PPG pulse
unlike in the reference PPG pulse. The reason behind the
dissimilarity may be that the proposed GAN was trained
using training dataset collected from patients under anes-
thesia with mean age of 58±15 years. The dicrotic notch
decreases in prominence with aging or vasodilation under
anesthesia, which may result in the loss of dicrotic notch in

such conditions [43], [44]. Therefore, the PPG pulses belong-
ing to the training dataset may not show a noticeable dicrotic
notch as shown in Fig. 11a. However, dicrotic notches are
evident in some of the PPG from the testing dataset as shown
in Fig. 11b, resulting in high PRD values for the testing data
with visible dicrotic notches. Unfortunately, a direct compari-
son of dicrotic notch prominence between the training and the
testing dataset based on age could not be made as the ages of
the subjects were not recorded for the UQVSD database, and
a further study to validate this incongruity is warranted.

On the other hand, most outliers in category II (as shown
in Fig. 10c) seem to arise with rhythmic irregularities within
PPG due to arrhythmias such as PVCs (Premature Ventricular
Contractions), which results in a large PRD as well as a low
correlation value. PVC is not evident in the reference PPG
shown in Fig. 10c, but it is evident in the corresponding
reference ECG. Fig. 12 shows a more explicit PVC recording
in a longer duration of reference ECG and PPG as well as
in GAN-generated PPG. In such cases, the proposed GAN
does not adequately capture the morphological changes of
the PPG signal resulting from PVCs. These findings indicate
that the poor performance of the proposed GAN under some
specific conditions may be ascribed to the difference in the
distributions of physiological conditions between the training
dataset and the test dataset. Due to the fact that only 3%
of ECG-PPG pairs in the test dataset had PVC recorded,
it was not possible to retrain the GAN with sufficient PVC
data for better generation of synthetic PPG with PVC. This
yields an opportunity for future research in which more data
from disease-afflicted individuals could be incorporated into
the training process for improving the applicability of the
proposed model to a wider range of input data.

B. HEART RATE PRESERVATION IN GENERATED PPG AND
POTENTIAL APPLICATIONS TO DATA AUGMENTATION
Analyses of heart rate and heart rate variability (HRV) have
broad biomedical applications ranging from diagnosis of
cardiovascular diseases based on arrhythmias [45]–[47] to
noninvasive assessment of autonomic nervous system (ANS)
activities [48]–[52]. Experimental evidences for the associ-
ation between lethal arrhythmias and sympathovagal imbal-
ance have been reported [53]–[57] and changes in HRV have
been associated with derangements in the neural activity of
cardiac origin following myocardial infarction [58], [59] as
well as with the onset of diabetic neuropathy [60], [61].
Furthermore, a previous work [62] demonstrated that PPG
variability (PPGV) could be used as an alternative to HRV by
comparing the similarity between PPGV andHRV.With these
applications in mind, it is critical to accurately replicate HR
and HRV during synthetic PPG generation. In terms of HR,
the GAN-generated PPG in the test dataset was statistically
indistinguishable to HR measured from the reference ECG
and the reference PPG (p = 0.473), indicating that the
optimized GAN can generate synthetic PPG with HR and
HRV similar to the source signal. Therefore, PPG generated
using the proposed method may be useful for assessing the
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FIGURE 10. a) Generated PPG and reference PPG pair from the test dataset with low PRD and high correlation coefficient. b)
Generated PPG and reference PPG pair from the test dataset with high PRD and high correlation coefficient. c) Generated PPG
and reference PPG pair from the test dataset with high PRD and low correlation coefficient. PRD value greater than 100%
indicates that the difference between the amplitudes of the generated signal and the reference signal is greater than the
amplitude of reference signal. Solid lines indicate the reference PPG and dashed lines represent the generated PPG. [Note: ECG,
electrocardiogram; PPG, photoplethysmogram; PRD, percent root mean square difference].

FIGURE 11. a) Training PPG dataset example. As with most of training
data, dicrotic notch is not observed. b) Testing PPG dataset example.
Dicrotic notches are visible in some of the testing data. [Note: PPG,
photoplethysmogram].

ANS activities in cardiovascular control under various phys-
iological and pathological conditions.

There are many open databases that consist of annotated
ECG signals (e.g., MIT-BIH arrhythmia, MIT-BIH atrial fib-
rillation, etc. . . ). Since ECG is used as the gold standard
for diagnosing arrhythmia, for the collection of arrhythmia-
annotated PPG, ECG has to be simultaneously measured
as well. However, none of the public ECG databases with
annotation contain simultaneously measured PPG signals.

In order to develop deep learning-based methods for
arrhythmia classification in PPG, a large dataset of annotated
PPG is required. Since the proposed model can preserve
the heart rate of the source ECG signal, it can be used to
generate an annotated PPG database that could be useful
for the development of PPG-based arrhythmia classification
models.

Atrial fibrillation is one of the most common car-
diac arrhythmias [63]–[65]. Atrial fibrillation has been

FIGURE 12. a) ECG with PVC in the test dataset. b) Generated and
reference PPG corresponding to the above ECG with PVC. Solid line
represents the reference PPG and dashed line represents the generated
PPG. [Note: ECG, electrocardiogram; PPG, photoplethysmogram; PVC,
premature ventricular contraction].

traditionally diagnosed by analyzing rhythmic (i.e. variability
of RR intervals) and/or morphological (i.e. absence or irreg-
ularity of P-wave) properties of the ECG signal [66]–[69].
It has been recently shown that atrial fibrillation episodes can
be detected using features derived from beat-to-beat inter-
val based on PPG signal as an alternative to existing ECG
based solutions, where various features (such as the normal-
ized root mean square of successive differences (RMSSD),
sample entropy, etc.) from PPG are equivalent to the ones
from ECG [70]. Using these insights, numerous studies have
employed PPG signals recorded with wearable devices to
detect atrial fibrillation episodes [15], [16], [71]–[74]. How-
ever, as mentioned previously, these attempts face challenges
as there are no atrial fibrillation PPG datasets available for
public access.

Thus, to test whether the proposed PPG generation model
can be used in one of the predominant arrhythmia conditions,
open atrial fibrillation data from Long Term AF Database
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FIGURE 13. a) An example of atrial fibrillation ECG. For better inspection, 10 seconds of the signal is shown out of the
30-second segment. b) GAN generated PPG segment from the input atrial fibrillation ECG shown in a). c) Plot showing ECG RR
interval (solid lines) and PPG systolic peak interval (dashed line). The shaded region corresponds to the 10-second segment
shown in a) and b). [Note: ECG, electrocardiogram; PPG, photoplethysmogram].

v1.0.0 [75], [76] was used to generate synthetic counterpart
PPG. From 84 long-term ECG recordings, 69 recordings
annotated as atrial fibrillation were included for this purpose.
Afterwards, 13 recordingswith ECG too noisy for peak detec-
tion were excluded. Finally, test dataset consisting of 280 seg-
ments of 30-second atrial fibrillation ECG from 56 patients
(5 segments per patient) were used to generated synthetic
atrial fibrillation PPG segments after GAN optimization (i.e.
none of these 280 segments were used in training). To deter-
mine the presence of atrial fibrillation in the generated PPG
segments, beat-by-beat heart rates found in the source ECG
and the generated PPG were compared, under the assumption
that heart rate could be a reliable predictor of atrial fibrillation
with sensitivity around 95% [67], [69], [77]. Correlation coef-
ficient between the beat-by-beat heart rate measured across
the atrial fibrillation ECG segments and in the corresponding
generated PPG segments was 0.94±0.15, and comparison
using paired t-test yielded a p-value of 0.64, indicating the
highest association with no significant difference between
the two as depicted on Fig. 13. These preliminary results
indicate that the proposed GAN model could be potentially
used for generating atrial fibrillation PPG data using open
atrial fibrillation ECG datasets. In this respect, it is likely that
the proposedGANmay improve the accuracy of various atrial
fibrillation detection algorithms based on PPG data as it can
augment dataset used for training these algorithms by gen-
erating PPG reflecting inter-beat interval variability of atrial
fibrillation ECG. Considering that only beat-by-beat interval
was compared to verify the presence of atrial fibrillation, a
full study validating alternative properties of atrial fibrillation
in the synthetic PPG is warranted.

Furthermore, the proposed GAN model can be imple-
mented beyond ECG and PPG, and can be applied to any
related biosignal pairs, implying the possibility of augment-
ing biosignal databases that is lacking in one biosignal by
generating it from another source.

TABLE 2. PRD & pearson correlation coefficient calculated between
reference and synthetic ppg based on different gan architectures.

C. PERFORMANCE COMPARISON BETWEEN VARIOUS
GAN ARCHITECTURES
In order to test the performance of the proposed method
against different GAN architecture, two alternative GAN
models including Wasserstein GAN with gradient penalty
(WGAN-GP), and least squares GAN (LSGAN) were trained
and tested. Wasserstein GAN with gradient penalty provides
more stable training of the GAN model using Wasserstein
distance as the loss metric to measure the difference between
the generated and reference distributions [78]. LSGAN uses
least square distance to measure the difference between real
and generated signal distributions, which is more stable with
respect to gradients as compared to the original GAN model
and converges more rapidly than the method using Wasser-
stein distance [79]. Additional hyperparameters were kept
as described in the original studies, and the MSE loss was
retained in the loss function across all three GAN architec-
tures. As shown in Table 2, there were no significant differ-
ences between the models in terms of PRD and correlation
coefficient.

D. LIMITATIONS
PPG may provide noninvasive modes for assessing arterial
structure and function [80]–[82]. The morphology of the PPG
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signal can be defined in two phases: (1) the rising phase
concerned with systole, and (2) the descending phase con-
cerned with diastole and wave reflections from the periphery.
A dicrotic notch is prevalent in the descending phase of young
subjects with healthy compliant arteries and stiffening of the
small arteries alters the magnitude and timing of reflected
waves [83], [84]. In this respect, this study has a limitation
in generating PPG signals with conditions related to arterial
stiffness in that there are no distinctive dicrotic notches in
some of the generated PPG. However, it is also noted that
the PPG was generated using ECG as the input. Unlike PPG,
ECG does not carry any explicit information related to vas-
cularity like the prominence of the dicrotic notch. Since the
proposed GAN generates PPG based on ECG, the lack of
information on vascularity is inevitable. To overcome such
limitations, one can incorporate patients’ age and information
about their cardiovascular conditions during training of the
GAN. By providing extra information related to vascularity
into the network, the network might be able to reproduce
these information as distinct features in the generated PPG
signal.

As mentioned above, there are validating the presence of
atrial fibrillation in synthetic PPG using heart rate has a few
limitations. First, ECG P-wave which shows the electrical
depolarization of atria is unavailable if using PPG-based
approach [85], [86]. This hinders other methods of analyz-
ing atrial fibrillation risk using P-wave duration, and mor-
phology. Second, some atrial fibrillation detection based
on deep neural networks focus on specific substructures in
PPG morphology such as locations of systolic and diastolic
peaks, as well as slopes of the curve before the systolic
peaks [16], [87]. In this study, however, it is impossible to
test the morphological properties of the synthetic atrial fibril-
lation PPG as there are no reference PPG signals available
from the test dataset. In order to assess the performance
of the optimized GAN in terms of atrial fibrillation PPG
morphology, it is necessary to test the model in a dataset
with both ECG and PPG simultaneously recorded from atrial
fibrillation patients.

V. CONCLUSION
In this study, a novel GAN-based PPG data augmentation
method using ECG is proposed. Our preliminary results indi-
cate that the optimized GAN can generate PPG signals well
correlated with reference PPG with low PRD and high cor-
relation coefficient. Furthermore, it can encode beat-by-beat
ECG heart rate, and replicate it in the synthetic PPG signal
even with the presence of atrial fibrillation. The results of this
study indicate that the proposedmethod has wide applications
in biosignal augmentation.
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