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ABSTRACT Anomaly detection (AD) for times series data using the generative adversarial network (GAN)
has been proposed in recent years. According to the previous study, the GAN-based AD outperformed the
cumulative sum (CUSUM) chart. However, no framework for comparison is provided in their works. So,
we conduct new studies crucial for the GAN-based AD methods (the MAD-GAN and the TAnoGAN).
First, we propose a new framework for fair and systematic comparisons for the prediction performance
of the GAN-based AD methods as well as the cumulative sum (CUSUM) chart. So, we evaluate the three
methods with four simulation data and secure water treatment system data. Under the proposed comparison
framework, the CUSUM chart generally shows prediction performances better than the GAN-based AD
methods. Our results imply that more follow-up studies are required before deploying the GAN-based
AD methods. Second, we find that adjusting the number of backpropagation steps of the inverse mapping
technique can improve the prediction performance of the GAN-based AD methods. Furthermore, we find
that monitoring the residuals of the fitted model significantly improves the prediction performance of the
GAN-based AD methods as well as the CUSUM chart.

INDEX TERMS Anomaly detection, time series data, comparison framework, generative adversarial
network, cumulative sum chart, backpropagation.

I. INTRODUCTION
An anomaly can be defined as an unusual pattern that does not
conform to the expected behavior. Anomaly detection (AD)
refers to the automatic identification of unforeseen or abnor-
mal phenomena embedded in a large amount of normal
data [1]–[3]. The goal of AD is to determine which instances
stand out as different from others. Since anomalies have
values that deviate far from the average of other values, AD is
also known as deviation detection. A lot of AD algorithms
have been proposed for various data domains including high-
dimensional, uncertain streaming, network, and time series
data [4], [5]. In particular, with the advent of the Internet of
Things (IoT), a significant amount of time series data is gen-
erated, and the demand for time series ADmethods is increas-
ing. In addition to IoT, AD algorithms have been employed
in medical image, sensor networks, video surveillance, and
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industrial damage detection [6]–[9]. Traditional AD meth-
ods employ statistical approaches such as the cumulative
sum (CUSUM) charts to detect changes in the underlying
distribution [10], [11].

Recently, researchers have also proposed a lot of machine
learning-based techniques for AD such as an autoencoder
framework based on long short-term memory networks [12]
and long short-term memory-based variational autoencoder
(LSTM-VAE) for multimodal multivariate signal data [13].
Besides, a predictive approach to detect anomalies through
the deep LSTM networks has been suggested [14]. It used the
predicted error distribution of the deep LSTM model learned
to determine whether electrocardiogram (ECG) signal data
were normal or abnormal.

Moreover, the growing popularity of the generative
adversarial networks (GAN) has been contributed to the
advent of many GAN-based AD methods. An unsupervised
GAN-based AD method called AnoGAN has been proposed
to detect anomalies in medical image data [6]. However,
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FIGURE 1. An overview of studies on the GAN-based anomaly detection methods for the time series data.

the AnoGAN is more suitable for image data than time
series data. So, GAN-based AD methods for time series data
have been proposed. Li et al. [15] proposed the multivari-
ate AD method with GAN called MAD-GAN. Bashar and
Nayak [16] also proposed a GAN-based AD method called
TAnoGAN that can be applied when only a small number
of instances are available. The GAN-based AD methods
first calculate an instance’s anomaly score and compare it
with a threshold to detect anomalies. According to the pre-
vious work [17], the autoregressive integrated moving aver-
age (ARIMA) model performed better than the MAD-GAN.
On the other hand, the GAN-based ADmethod yielded better
prediction performance compared to the CUSUM chart [18].
Inspired by the two studies [17], [18], we perform new
studies for the GAN-based AD methods (the MAD-GAN
and the TAnoGAN). An overview of this paper is visualized
in Fig. 1.

The contributions of this paper are as follows. First, our
studies present a novel comparison framework and compare
the prediction performance of the GAN-based AD methods
with a CUSUM chart [18], not with the ARIMA model [19].
The CUSUM chart is one of the most popular methods of
detecting anomalies in the statistical process control (SPC).
It is effective for detecting small process shifts. According
to the previous studies [18], [20], we employ the CUSUM
chart as the baseline method. In order to differentiate our
study from the previous works [15], [17], [21], we present
a novel framework focusing on fair and systematic compar-
isons. The key idea of the framework is described as follows.
The prediction performances of the three methods (theMAD-
GAN, the TAnoGAN, and the CUSUM chart) are equalized
using the training data, and then each of the prediction per-
formances is compared using test data. Fig. 2 summarizes our
framework.

Unlike the previous studies [15], [17] that use only real
data, we evaluate three methods using simulation data as well

as real data. To compare the GAN-based AD methods with
the CUSUM chart, the secure water treatment (SWaT) system
data and simulated time series data are considered. The sim-
ulated time series data include autoregressive (AR), moving
average (MA), autoregressive moving average (ARMA), and
the beta-distributed multistage process. The AR considers
a linear combination of past variables. Unlike the AR, the
MA focuses on a linear combination of past noises. The
ARMA is a combination of the AR and the MA. In this paper,
we consider both univariate and multivariate time series
data.

Second, we find out that the number of backprop-
agation steps affects the prediction performance of the
MAD-GAN and the TAnoGAN. The number of backprop-
agation steps means the number of iterations of the inverse
mapping, which is the process of obtaining an anomaly
score [6], [15], [16], [18]. Although an appropriate number
of backpropagation steps must be predefined to calculate
anomaly scores, detailed discussions have been overlooked
in previous studies [6], [15], [16], [18]. So, we examine the
relationship between the number of backpropagation steps
and the prediction performance of the GAN-based methods.
As a result, in the autoregressive (AR) and the moving aver-
age (MA) data sets, we achieve the performance improve-
ment of the GAN-based AD methods through early stopping.
Moreover, the prediction performance of the three methods
is improved by monitoring the residuals of the fitted model
from the autoregressive moving average (ARMA) data.

The remainder of the paper is structured as follows. The
existing AD methods are described in Section II. Section III
details the GAN-based AD methods to be compared in
this study. Section IV contains the comparison framework,
simulation research, and improvement strategies for time
series AD methods. Section V covers comparison results
using the SWaT system data. Finally, concluding remarks are
comprised in Section VI.
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FIGURE 2. A framework for comparisons.

II. RELATED WORK
Control charts, which are based on statistical theory, are
the most widely used AD methods in the SPC. Monitoring
statistics and control limits are the two major components
in the construction of a control chart. A monitoring statistic
plotted on a control chart can be computed and analyzed as a
function of the variables. Control limits are usually decided
based on the probability distribution of the monitoring statis-
tic with user-defined Type I error (false positive rate). If a
monitoring statistic calculated on an instance exceeds the
control limits, we assume that an anomaly is detected. Several
AD methods based on statistics have been proposed, includ-
ing the CUSUM chart [22]–[24]. Statistical approaches need
to estimate the underlying probability distributions of the
monitoring statistics. However, it is difficult to know what
distribution monitoring statistics follow.

There are also many studies based on machine learning
techniques. Machine learning-based methods can be classi-
fied into three categories: supervised, semi-supervised, and
unsupervised learning [24]. The supervised learning method
is to build a discriminative model to distinguish between

normal and abnormal instances. When a new instance occurs,
the trained discriminative model determines whether it is nor-
mal or abnormal. As the discriminative models, well-known
supervised learning approaches such as decision trees, neural
networks, and support vector machines are employed. Super-
vised learning models require a sufficient number of normal
and abnormal instances. However, these approaches are not as
general as the semi-supervised or the unsupervised methods,
owing to the insufficiency of abnormal instances in training
data [25], [26].

In practice, normal instances can be obtained more easily
than abnormal instances. Thus, the semi-supervised methods
are more widely employed than supervised methods. These
methods leverage existing normal instances to separate abnor-
mal instances. One popular way to use autoencoders (AE) is
to train them in a semi-supervised process on data without
anomalies. A sufficiently trained AE would yield low recon-
struction errors for normal instances compared to abnormal
instances [27]–[29].

The unsupervised methods are also applied to tackle
the AD. The cases of local outlier factor (LOF) [30],
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connectivity-based outlier factor (COF) [31] which is a devel-
oped version of the LOF, and cluster-based local outlier factor
(CBLOF) [32] are good examples. The difference between
the LOF and the COF is that the LOF utilizes distance while
the COF uses density to detect anomalies. To determine
density areas in normal data, the CBLOF uses clustering
and then performs a density estimation for each cluster. The
density areas are utilized for detecting anomalies.

With the recent success of deep learning, deep learning-
based ADmethods have been proposed [12]–[14]. Up-to-date
approaches to deep learning-based models are based on
the GAN framework. The AnoGAN [6] proposed to detect
anomalies in medical image data. It maps test images from
image space to latent space and reconstructs the image to
calculate an anomaly score. The loss between the test image
and the reconstructed image is used to compute the anomaly
score. The AnoGAN used a convolutional neural network
(CNN) specialized in image processing for the architecture
of a generator and a discriminator. However, the CNN does
not include mechanisms to handle time series characteristics,
so it is not generally used in time series data [16]. Therefore,
two variants of the AnoGAN have been proposed for time
series data [15], [16]. Both GAN-based AD methods (the
MAD-GAN and the TAnoGAN) use the LSTM in genera-
tors and discriminators instead of the CNN, but there are
differences in calculating anomaly scores. The differences are
explained in Section III.

III. ANOMALY DETECTION WITH GAN FOR
TIME SERIES DATA
A description of the previous studies that we are considering
is discussed in this Section. The GAN-based AD methods
consist of two steps. The first step is to train the GAN using
only normal time series data to learn the distribution of nor-
mal states. And then, the anomaly score is calculated using
the trained generator and discriminator. This Section deals
with three topics: (1) the GAN using the LSTM for time
series data (LSTM-GAN), (2) the inverse mapping proce-
dure for AD [6], and (3) the calculation of two anomaly
scores [15], [16].

A. TRAINING LSTM-GAN
The basic concept of the GAN is to train two neural network
models to improve each other using the minimax objective
function. A generator (G) tries to produce fake samples
that look real, while a discriminator (D) does to distinguish
between generated samples and real data [31]. The GAN
is defined as a minimax game with the following objective
function.

min
G

max
D

V (D,G)=Ex∼pdata(x)
[
logD (x)

]
+Ex∼px(z)

[
log (1− D (G (z)))

]
. (1)

During adversarial training, the generator’s ability to gen-
erate fake data is improved and the discriminator’s ability
to distinguish between real and fake data is also enhanced.

Goodfellow et al. [33] used deep multi-layer perceptron to
train the GAN. However, in the time series data, the LSTM
is more appropriate than the multi-layer perceptron. It is a
family of neural networks for processing sequential data [34].
The LSTM has special units known as memory blocks in the
recurrent hidden layer. A memory block contains a memory
cell, input gate, forget gate, and output gate [35], [36]. Each
component interacts to control inputs that are not related to
the final outputs. The LSTM used in conjunction with mem-
ory blocks can learn complex time series data. The LSTM
is adopted in the MAD-GAN and the TAnoGAN due to its
suitability for time series data for GAN training [15], [16].

B. INVERSE MAPPING PROCEDURES
To identify anomalies, the model is trained to recognize
normal data variations based on the GAN. In other words,
the generator learns the mapping from latent space z to real
data x, i.e., G (z) : z 7→ x. However, the generator does not
learn the inverse mapping from x to z, i.e., G (x)−1 : x 7→ z.
So, Schlegl et al. [6] presented the inverse mapping (G (x)−1)
function that maps real data to latent space using gradient
descent. The concept of the inverse mapping function is to
find the optimal vector z that can generate a fake sample that
is most similar to the real data x. To find the optimal vector z,
first, randomly selected vector z1 from latent space is fed into
a trained generator to get a generated sample G (z1). Then,
z1 will be updated using the gradient of a loss function to
get z2. The G (z2) is more similar to x compared to G (z1).
The elements of vector z are iteratively updated through
backpropagation steps to find the most similar fake sample
G (z0). The 0 is a predetermined number as the maximum
number of iterations. Hereafter the 0 is called as the number
of backpropagation steps.

C. ANOMALY SCORES
1) MAD-GAN ANOMALY SCORES
Li et al. [15] proposed an anomaly score to detect time series
data known as discrimination and reconstruction anomaly
score (DR-score). The DR-score is composed of two compo-
nents. One is the discrimination-based score (discriminator
loss) and the other is the reconstruction-based score (residual
loss). The discrimination-based score uses the trained dis-
criminator D(x) within the GAN to distinguish whether the
test data are normal or abnormal. The reconstruction-based
score is a sum of residuals based on the inverse mapping from
test data to latent space. The loss function of the MAD-GAN
to get a gradient is defined as:

LMAD (zi) = 1− similarity (x,G (zi)) , (2)

where similarity(·, ·) is defined as covariance for simplic-
ity [15], [18], zi is the ith inverse mapped vector, G (zi) is the
generated time series sample from zi, and i ∈ {1, 2, . . . , 0}.

After zi is sufficiently updated, the residual score is defined
as:

R (x) =
∑w

j=1

∣∣∣xj − G (zj0)∣∣∣ , (3)
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whereG (z0) is the generated time series sample from the last
updated vector z0 and w is window size.
The trained discriminator D can classify whether the

test data come from the underlying distribution of the
training data, so it can be defined as the discrimination
score [15], [18]. An anomaly score of the MAD-GAN is
defined as below:

AMAD (x) = (1− λ) · R (x)+ λ · D (x) , (4)

where R (x) is the residual score, D (x) is the discrimination
score and the weighting factor λ is a positive value between
0 and 1. When the anomaly score is less than or equal to the
threshold (τ ), we assume that an anomaly is not detected.
On the other hand, an anomaly is detected when the anomaly
score is greater than the threshold (τ ).

D. TAnoGAN ANOMALY SCORES
The TAnoGAN is the variant of the AnoGAN [6] for time
series data. It is virtually the same procedure as the AnoGAN
except to train GAN with the LSTM, not with the CNN. Its
loss function is composed of two parts, a residual lossLR and
a discriminator lossLD. The residual lossLR is calculated by
the point-wise distance (e.g., values in timestamps) between
real data x and generated sample G (zi). It is defined as:

LR (zi) =
∑w

j=1

∣∣∣xj − G (zji)∣∣∣ , (5)

where zi is the ith inverse mapped vector, G (zi) is the gener-
ated time series sample from zi, i ∈ {1, 2, . . . , 0}, and w is
window size.

The feature mapping technique [37] uses an output of an
intermediate layer of the discriminator instead of a sigmoid
output of the discriminator to calculate the discriminator loss.
Therefore, the discriminator loss is defined as:

LD (zi) =
∑w

j=1

∣∣∣f (xj)− f (G (zji))∣∣∣ , (6)

where f (·) is the output of the intermediate layer of the
discriminator and w is window size. Thus, the loss function
of the TAnoGAN is defined as a weighted average of both
components:

LTAno (zi) = (1− λ) · LR (zi)+ λ · LD (zi) . (7)

Only the elements of vector z are updated through back-
propagation. After zi is sufficiently updated, an anomaly
score of the TAnoGAN is defined as below:

ATAno (x) = (1− λ) · LR (z0)+ λ · LD (z0) , (8)

where LR (z0) and LD (z0) are residual loss and the dis-
crimination loss. With the formulation for the anomaly score
above, an anomaly is detected when an ATAno (x) is greater
than a user-defined threshold (θ).

For both the MAD-GAN and the TAnoGAN, the λ value
to calculate the anomaly score, and the thresholds τ and
θ are needed to determine to detect the anomaly. In the
following, these values are called user-defined values. There
is no procedure for determining the user-defined values λ

and τ in [15]. Similarly, Bashar and Nayak [16] implicitly
described how to determine λ and θ , but did not explicitly
demonstrate systematic procedures. According to Bashar and
Nayak [16], λ is determined empirically and θ is determined
by the TAnoGAN’s prediction performance. The limitation
of the two studies [15], [16] is that they did not provide a
clear selection procedure of the user-defined. Therefore, a
systematic selection of the user-defined values is necessary
for a fair comparison of prediction performances.

IV. SIMULATION STUDY
In this Section, we present a novel framework by leverag-
ing previous works [38], [39]. The comparison framework
originates from the hypothesis testing and the SPC. Next,
the experimental results for the univariate simulation data and
the multivariate simulation data are provided.

A. COMPARISON FRAMEWORK
As already mentioned in Section I, the CUSUM chart
becomes a baseline method. The CUSUM chart is one of the
most popular methods of detecting anomalies in the SPC.
The most frequent application of the CUSUM chart is to
detect small changes in the mean of normally distributed data.
Page [40] is the first to propose the CUSUM chart and a
lot of variations have been proposed due to its usefulness.
According to the previous studies [15], [18], we compare
the GAN-based AD methods with the CUSUM chart under
univariate time series data (AR,MA, ARMA, andmultistage)
in this Section.

First, in order to calculate the anomaly score, it is necessary
to select a generator and a discriminator. Unfortunately, it is
not clear to compare among generators except by visualizing
fake samples. However, a quantitative evaluation metric is
needed to select well-trained generators and discriminators.
The maximum mean discrepancy (MMD) is employed to
evaluate whether the generator successfully learned the dis-
tribution of the training data sets [15], [18], [41]. So, in this
paper, the GAN models during the training are evaluated
using the MMD.

Next, for fair comparisons, we control the predic-
tion performance of the three methods (The MAD-GAN,
the TAnoGAN, and the CUSUM chart) in the training data.
Since there are no abnormal instances in the training data,
we use a false positive rate (FPR) as an evaluation metric.
Our proposed framework borrowed theoretical basis from
the hypothesis testing and the SPC [39]. A control chart is
used to detect changes from normal operating conditions.
Usually, normal operating conditions are called in-control.
The control chart uses control limits for making a decision.
When a monitoring statistic falls outside of the control limits,
we assume that the process is out-of-control. It can give out-
of-control signals when the process is in-control. This is the
so-called Type I error (or FPR). On the contrary, the control
chart can fail to give out-of-control signals when the process
is out-of-control. This is known as Type II error. These two
types of error rates are traded off against each other. To handle
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this issue, we usually fix the Type I error at a given level
(e.g., 0.005) and try to make the Type II error as small as
possible. Therefore, in our comparison framework, we fix the
FPR at a target level for the training data and the prediction
performances are compared using the test data. After deter-
mining the user-defined values, the prediction performances
of the existing methods are compared through the test data.
Wemeasure the prediction performances of the threemethods
using five classification evaluation metrics: accuracy (Acc.),
F1 score (F1), recall (Rec.), precision (Pre.), and FPR.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(9)

F1 score = 2×
Pre.× Rec.
Pre.+ Rec.

(10)

Recall =
TP

TP+ FN
(11)

Precision =
TP

TP+ FP
(12)

FPR =
FP

TN + FP
, (13)

where TP (True positive) is the number of anomalies which
are correctly detected, FP (False positive) is the number of
anomalies erroneously assigned, TN (True negative) indicates
the number of normal values correctly predicted, and FN
(False negative) is the number of normal values erroneously
assigned. Excluding FPR, the higher values of the evaluation
metrics, the better. Fig. 2 summarizes our framework.

B. UNIVARIATE SIMULATION EXPERIMENTS
A description of the univariate simulation data sets, settings,
and results is presented in this Section.

1) UNIVARIATE SIMULATION DATA SETS
To compare the prediction performance of the GAN-based
ADmethods and the baseline method in univariate time series
data, we generate simulation data from three time series mod-
els: AR (p), MA (q), and ARMA (p, q) model. The ARMA
(p, q) model is a combination of the AR (p) model and the
MA (q) model and is defined as:

xt = c+ φ1xt−1 + · · · + φpxt−p + εt
+ψ1εt−1 + · · · + ψqεt−q, (14)

where c is a constant, and {εt } represents awhite noise process
with a zero mean. In this univariate simulation, we only
consider cases where p = q = 1 and φ1 = ψ1 = 0.5.
To generate abnormal data sets, the constant term is changed
from 0 to 0.5 (small shifted), 1 (medium shifted), and 2 (large
shifted). So, we produce three training data sets consisting of
the only process and nine test data sets consisting of normal
and abnormal processes. Each of the three training data sets
has 50,000 instances generated from normal states. In each of
the nine test data sets, there are 808 instances generated from
the normal time series and 808 instances generated from the
abnormal time series.

2) SIMULATION SETUP FOR UNIVARIATE DATA SETS
In this Section, we describe the preliminary work for AD. The
three key steps remain before GAN training with the simula-
tion data sets: data preprocessing, building the architecture of
GAN and setting predetermined values.

a: DATA PREPROCESSING
Let [x1, x2, . . . , xT ] be a d-dimensional time sequence with
length T , where xi ∈ Rd×i is d vector at time i. For exam-
ple, in the case of the ARMA (1,1) training data sets, T is
50,000 and d becomes 1. For each data set, normalization is
applied to a range between −1 and 1. To obtain training and
test samples, we employ a sliding window with window size
w and step size s to divide the original time sequence T into
N sub-sequence X =

{[
x11 , . . . , x

w
1

]
, . . . ,

[
x1N , . . . , x

w
N

]}
,

where N = (T − w)
/
s. Following the previous study [18],

we set the window size and step size differently for training
and test samples. In this univariate simulation, the window
size and the step size are set to 8 and 4 respectively. So,
we obtain 12,498 training samples for training the GAN.
Next, we set the window size to 8 and the step size to 8 to
detect anomalies. So, the number of training and test samples
is 6,249 and 100 respectively.

b: GAN ARCHITECTURE
Because the univariate simulation data sets are too simple,
we apply a simple model rather than a complex model to
avoid overfitting. So, we use 5 hidden units, 1 hidden layer,
and 1 latent space dimension for training the GAN in the
univariate simulation data. Both a generator and a discrim-
inator have applied mini-batch optimization based on the
Adam optimizer with a batch size of 20 and a learning rate
of 0.001. If the learning rate is too large, the loss function
may exceed the minimum value. Otherwise, it gets stuck at an
undesirable local minimum. The learning rate is empirically
determined because it depends on the complexity of the data.
So, we heuristically adjust the learning rate. As a result,
the small learning rate is more suitable for the simulation
data. The gradient update steps are alternated between the
generator and the discriminator. However, in practice, it is
not performed alternately with the same number of iterations.
Hence, the discriminator is updated 3 times per the generator
update.

c: SET PREDETERMINED VALUES
Fig. 3 plots the MMD values calculated during the GAN
training. As shown in Fig. 3, since the MMD value converges
to 0 after 80 epoch, in this Section, the generator and the
discriminator at 80 epoch are used to calculate the anomaly
scores. For fair comparisons, we use the same generator and
discriminator in the MAD-GAN and the TAnoGAN. After
selecting the generator and the discriminator at 80 epoch,
the number of backpropagation steps (0) has to be determined
to calculate the anomaly score. In this univariate simulation,
the number of backpropagation steps is variously changed to
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FIGURE 3. The MMD values during GAN training for univariate simulation
data sets.

find the best prediction performance. A relationship between
0 and the prediction performance of the GAN-based AD
methods will be described later.

3) UNIVARIATE SIMULATION RESULTS
The simulation results of prediction performance for the
univariate data sets are summarized in this Section. The
following results of each data set are obtained under the same
procedure.

a: AUTOREGRESSIVE DATA SETS
To objectively compare the prediction performance of the
GAN-based AD methods with the CUSUM chart in the test
data, λ and τ must be determined in advance using the train-
ing data. So, we set three target FPRs: 10%, 5%, and 1%,
and select a combination of λ and τ that produces similar
prediction performance to the target FPR. Table 1 shows the
FPR results of training data with varying λ and τ . When the

TABLE 1. The MAD-GAN’s false positive rates corresponding to λ and τ
for the AR (1).

target FPR is equal to 10%, the values of λ and τ are 0.50 and
0.45 respectively. The most similar values to the target FPRs
in Table 1 are bolded.

The same weighting factor λ is used for the MAD-GAN
and the TAnoGAN. Next, the threshold θ of the TAnoGAN
is determined by the FPR of the MAD-GAN. The quantile
function value is employed to find an appropriate threshold
θ corresponding to the FPR of the MAD-GAN. An appro-
priate threshold θ is found by the following procedure.
First, the anomaly scores for all training samples are calcu-
lated using Equation (8). Second, they are sorted in ascend-
ing order. Third, θ is obtained from 100(1 - MAD-GAN’s
FPR)th percentile of a set of the TAnoGANs anomaly scores.
For example, when the FPR of the MAD-GAN is 9.69%,
the threshold θ is obtained from 90.31th percentile.
Table 2 presents selected user-defined values corresponding
to each target FPR.

TABLE 2. The user-defined values for the AR (1) data.

Table 3 shows the prediction performance of the three
methods in the AR (1) data sets. The best prediction perfor-
mances for each simulation data sets are indicated in bold.
Interestingly, the baseline model CUSUM chart performs the
best in the AR (1) data sets. When comparing only to the
GAN-based AD methods, the MAD-GAN performs better
than the TAnoGAN. The higher the degree of constant shift,
the better the prediction performance of all three methods.

b: MOVING AVERAGE DATA SETS
Following our presented framework, the prediction perfor-
mance comparisons between the three methods are conducted
in the MA (1) data sets. The FPR of the training data is
calculated by changing λ and τ , and the results are summa-
rized in Table 4. Boldface is the most similar value to the
target FPR. The selected user-defined values are represented
in Table 5. Table 6 contains the prediction performance using
the MA (1) data sets. The best performances are shown in
bold. In the MA (1) data sets, similar to the AR (1) data sets,
the CUSUM chart outperforms other methods. When com-
paring only to the GAN-based AD methods, the TAnoGAN
outperforms the MAD-GAN. As with the AR (1) data sets,
all three methods improve the prediction performance as the
shift size increases.

c: AUTOREGRESSIVE MOVING AVERAGE DATA SETS
In this Section, we carry out a prediction performance
comparison using the ARMA (1,1) data sets. The con-
tents of the user-defined value selection are summarized
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TABLE 3. The prediction performances for AR (1) data.

in Tables 7 and 8. The prediction performances are summa-
rized and visualized in Table 9. In the ARMA (1,1) data
sets, unlike the results of the AR (1) and the MA (1) data
sets, the CUSUM chart does not always perform better than
other methods. For example, if the target FPR is 1% and the

TABLE 4. The MAD-GAN’s false positive rates corresponding to λ and τ
for the MA (1).

TABLE 5. The user-defined values for the MA (1) data.

shift size is small, the F1 score of the CUSUM chart is 0.
In addition, the F1 score of the CUSUMchart is 0, when target
FPR is 1% and the shift size is medium. This means that the
CUSUM chart does not detect anomalies correctly. However,
the CUSUM chart is superior to the others when the shift size
is large. Except when the shift size is large, all three meth-
ods show prediction performance with about 50% accuracy.
In particular, the GAN-based methods produce 50% or less
than 50% accuracy even with a large shift size. This result
means that the three methods do not work properly because
the normal and abnormal proportions are the same. Thus,
we carry out a study to improve the prediction performance
of the GAN-based AD methods. Two aspects are considered
for improvement: parameter tuning and data preprocessing.
There are many parameters related to the GAN architecture,
but here we only focus on the parameter 0 related to the
detection of anomalies.

4) IMPROVING STRATEGY FOR TIME SERIES
ANOMALY DETECTION
We improve the detection performance with the following
two approaches: tuning the number of backpropagation steps
and monitoring the residuals of the fitted model. A detailed
explanation of how the number of backpropagation steps and
using residuals affect the detection performance is elaborated
in this Section.

a: THE NUMBER OF BACKPROPAGATION STEPS
Both the MAD-GAN and the TAnoGAN adopt the
inverse mapping function (G (x)−1) using backpropagation.
As backpropagation proceeds using the gradient obtained
in Equation (2) or (7), the difference between the generated
sample and the test sample continuously decreases. That is,
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TABLE 6. The prediction performances for the MA (1) data.

as the number of backpropagation steps0 increases, the value
of the loss function becomes smaller. A sufficiently large
value of 0 can make the anomaly score of an abnormal
instance close to the anomaly score of a normal instance. This
is because the loss functions of both the MAD-GAN and the

TABLE 7. The MAD-GAN’s false positive rates corresponding to λ and τ
for the ARMA (1,1).

TABLE 8. The user-defined values for the ARMA (1,1).

TAnoGAN have no way to avoid overfitting like regulariza-
tion terms. So, we examine the relationship between 0 and
the prediction performance of the GAN-based AD methods.
To test the effect of 0 on performance, we use λ, τ , and θ cor-
responding to the target FPR of 5%. For example, in AR (1)
data sets, λ, τ , and θ are 0.50, 0.50, and 0.28 respectively. The
F1 score corresponding to the change in the 0 is summarized
in Table 10. As can be represented in Table 10, the prediction
performances decrease with increasing 0 except in one case.

b: RESIDUALS FOR ANOMALY DETECTION
Using residuals by removing time series effects from the
original data is a widely applied approach to time series
data [19], [20]. The residual can be defined as:

ei = xi − x̂i, (15)

where x̂i is the fitted value of xi. The three methods show the
poor prediction performance in the ARMA (1,1) data sets,
so we apply the residuals only to the ARMA (1,1) data sets.
The LSTM is used to obtain the residuals. The contents of
the user-defined value selection are summarized in Tables 11
and 12. Table 13 shows the prediction performances using
the residual data. Compared with Table 9, the prediction
performances of the threemethods in Table 13 are remarkably
improved. Unlike the previous simulation results, the pre-
diction performances are not always improved even if the
shift size increases. In addition, in Table 9, the F1 scores of
the three methods decrease as the target FPR decrease, but
in Table 13, the F1 scores of the three methods do not differ
significantly corresponding to the decrease of the target FPR.

C. MULTIVARIATE SIMULATION EXPERIMENTS
Similar to the previous section, the process and results of mul-
tivariate simulation experiments are discussed in this section.
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TABLE 9. The prediction performances for the ARMA (1,1) data.

1) MULTIVARIATE SIMULATION DATA SETS
When it comes to multivariate time series data for a compar-
ison of prediction performances among the three methods,
multistage data sets are used for AD. In this paper, we lever-
age the previous work [42] to generate the multistage data.

TABLE 10. The F1 score of the GAN-based methods corresponding to the
change for the 0 when the target false positive rate is 5 %.

TABLE 11. The MAD-GAN’s false positive rates corresponding to λ and τ
for the residual data.

Hwang et al. [42] considered a three-stage process for moni-
toring, which is adapted with the new autoregressive factor in
this study. The generated multistage data sets is converted to
the deviance residuals according to the previous works [43].

Two input variables, denoted by xi1, xi2, and five output
variables, denoted by yi1, yi2, yi3, yi4, yi5, are generated at the
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TABLE 12. The user-defined values for the residual data.

ith stage (i = 1, 2, 3). Each of the two input variables follows
the standard normal distribution. The five output variables
each follow the beta distribution with logit link. The mean
of the beta distribution for the first stage is described as:

µy1j(t)(x11(t),x12(t),y1j(t−1))

=
exp

(
1+ 0.5x11(t) + 0.25x12(t) + 3y1j(t−1)

)
1+ exp

(
1+ 0.5x11(t) + 0.25x12(t) + 3y1j(t−1)

) . (16)

The mean of the beta distribution for the second stage as

µy2j(t)(x21(t),x22(t),y2j(t−1))

=
exp

(
1+0.5x21(t)+0.25x22(t)+y11(t−1)+2y2j(t−1)

)
1+exp

(
1+0.5x21(t)+0.25x22(t)+y11(t−1)+2y2j(t−1)

) ,
(17)

and the mean of the beta distribution for the third stage as

µy3j(t)(x31(t),x32(t),y3j(t−1))

=
exp

(
1+0.5x31(t)+0.25x32(t)+y21(t−1)+2y3j(t−1)

)
1+exp

(
1+0.5x31(t)+0.25x32(t)+y21(t−1)+2y3j(t−1)

) ,
(18)

where j is from 1 to 5, t is the time sequence, and the
shape parameter of the beta distribution is 100. Equation (16)
represents the first stage with no the preceding stage.
On the other hand, the preceding stage outputs, y11(t−1)
and y21(t−1) are respectively considered as an input variable
in Equations (17)-(18).

4,999 training instances at each stage are generated from
Equations (16)-(18). Similarly, 4,999 instances at each stage
are given as a test data set but the characteristics of each
test data set are different for each stage. For stage 1,
2,500 instances among the 4,999 instances are collected
under the abnormal condition where the intercept coefficient
in Equation (16) increases from 1.0 to 1.2, whereas
2,499 instances under the normal condition. Unlike stage 1,
test data sets for stage 2 and 3 are composed of only normal
instances.

2) SIMULATION SETUP FOR MULTIVARIATE DATA SETS
Along with univariate data sets, the same procedure for sim-
ulation setup is applied to the multivariate data sets: data
preprocessing, building the architecture of GAN and setting
predetermined values.

TABLE 13. The prediction performance for the residual data.

a: DATA PREPROCESSING
We first apply normalization to the multistage data sets.
After that, the original sequence is divided into subsequences
through the sliding window. For multistage data sets, window
size w = 60, step size s = 10 for training GAN and w = 60,
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s = 60 for an AD are chosen. In other words, 493 samples
are extracted for training GAN and 82 samples are used
to calculate the anomaly score. Although 5 variables are
generated from the multistage data sets, the CUSUM chart is
only available for univariate, so, this Section only considers
univariate for fair comparisons (the multivariate GAN-based
AD methods will be considered in Section V). In order to
have the same dimensions, we perform principal component
analysis (PCA), and then, the 1st principal component (PC) is
monitored to detect anomalies.

b: GAN ARCHITECTURE
The followings are the architecture for both a generator and a
discriminator. The multistage data sets are relatively compli-
cated compared to the univariate simulation data sets. Thus,
the number of hidden nodes is increased to 100 and the num-
ber of latent space is 15. The GAN is trained with the Adam
optimizer with a learning rate of 0.10. The generator’s param-
eters are updated three times, whereas the discriminator’s
parameters one time. To achieve reasonable performance,
we tried sufficient iterations by setting 100 epoch.

c: SET PREDETERMINED VALUES
The process for comparing three methods is the same as
that of the univariate simulation. Since the MMD values
converge to 0 after 70 epoch, the generator and discrimina-
tor of 70 epoch are selected and used to calculate anomaly
scores. Fig. 4 shows the MMD values corresponding to each
epoch. Table 14 shows the FPR values in the multistage train-
ing data sets with varying λ and τ . The most similar values to
the target FPRs are also marked in bold. Table 15 presents
the selected user-defined values concerning the target
FPRs.

FIGURE 4. The MMD values during GAN training with the multistage
dataset for each stage.

TABLE 14. The MAD-GAN’s false positive rates corresponding to λ and τ
for the multistage dataset for each stage.

TABLE 15. Predetermined user-defined values with respect to target FPRs
for multistage data for each stage.

3) MULTIVARIATE SIMULATION RESULTS
As mentioned in the previous Section, the number of back-
propagation steps (0) affects the prediction performance of
the GAN-based AD methods. The F1 scores correspond-
ing to the change in the 0 are summarized in Table 16.
Table 16 shows that the smaller 0, the higher the F1 score of
the MAD-GAN. In addition, the F1 score of the MAD-GAN
is not affected when the number of backpropagation steps
is more than 500. In terms of the TAnoGAN, the proper
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TABLE 16. The F1 score of the GAN-based AD methods corresponding to
the change for the multistage data.

number of backpropagation steps depends on the target FPR.
We select the 0 that produced the best F1 score for compar-
isons in Table 16.

Since there are no abnormal instances in stage 2 and stage 3
data sets, the evaluation metrics are only computed for stage 1
data sets. Abnormal instances that occurred in stage 1 can
propagate to other stages because the input and output vari-
ables of stage 1 affect stage 2 and stage 3. However, the three
methods of stage 2 and stage 3 do not detect anomalies
because the abnormal instances occur only in the stage 1. The
results of the prediction performance of the three methods
using the multistage data are presented in Table 17.

TABLE 17. The prediction performance for the multistage data.

Similar to the results of the ARMA (1,1) data sets, all three
methods show the prediction performance with about 50%
accuracy. Also, when the target FPR is 10%, none of the three
methods overwhelms the others. In order words, with the
target FPR of 10%, similar prediction performances in the F1
score are observed in all methods. However, when the target
FPR is equal to 5% and 1%, the CUSUM chart demonstrate
prediction performances better than the GAN-basedmethods.

V. CASE STUDY
In this Section, we consider whether the prediction per-
formance of the GAN-based AD methods varies under the
proposed comparison framework. Therefore, the prediction

performance of the GAN-based AD methods and the
CUSUM chart is compared according to the proposed com-
parison framework.

A. TRAINING GAN
In this Section, we consider the multivariate GAN-based AD
methods using real data. The SWaT data were collected for
a total of 11-days under the non-stop 24 hours operating
system. During this period, any attacks had not been detected
for the first seven days, while certain cyber and physical
attacks were launched for the remaining four days [44].
It contains 51 variables with 496,800 instances in the training
data sets and 449,919 instances in the test data sets. Accord-
ing to the previous studies [15], [18], we eliminate the first
21,600 instances from the training data sets and the number
of instances in the training data sets becomes 475,200. Test
data sets contain 395,298 normal instances (about 88%) and
54,621 abnormal instances (about 12%). Same as the previous
work [18], we set up window size w = 120 and step size
s = 10 for training GAN and w = 120, s = 120 to detect
anomalies. Consequently, we obtain 47,508 training samples
and 3,293 test samples.

The PCA is applied to the SWaT system data to reduce
dimensions and computational costs. We plot the explained
variance in Fig. 5. As shown in Fig. 5, the 1st PC explains
more than 50 % of the variance in the SWaT system data.
The PCs after the 5th PC rarely contribute to explaining the
overall variance (close to zero). Thus, we only consider up
to the 5th PCs for the GAN-based AD methods. In this case
study, we follow the GAN architecture from the previous
work [18]. So, we use 100 hidden units, 1 hidden layer, and
15 latent space dimensions for training GAN. The mini-batch
optimization based on the Adam optimizer is applied to both
generator and discriminator with a batch size of 500 and a
learning rate of 0.1.

FIGURE 5. The explained variance ratio for the SWaT system data.

B. ANOMALY DETECTION SETUP
Li et al. [18] indicated that theMMDvalues converge to small
values after 30 epoch. So, the generator and discriminator at
30 epoch are used to calculate the anomaly scores. When
the target FPR is 5%, the user-defined values λ, τ , and θ
are 0.30, 1.60, and 1.52, respectively. And the number of
backpropagations steps 0 is 100.
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Since the baseline model is the univariate CUSUM chart,
modifications are required to handle multivariate data. In the
previous study [18], the MAD-GAN was compared with
the SPE-based (squared predicted error) CUSUM chart. The
SPE chart is suggested to detect when anomalies appear on
excluded PCs [45]. For example, assuming that we use up
to the 5th PC for dimensionality reduction, the SPE chart
attempts to detect anomalies occurring in the remaining
46 PCs. However, as can be seen in Fig. 4, the PCs after the 5th

one hardly contribute to account for the total variance (close
to zero). In contrast, 1st PC accounts for more than 50% of the
total variance. Therefore, instead of utilizing the SPE-based
CUSUMchart, we only apply the 1st PC to the CUSUMchart.

C. ANOMALY DETECTION RESULTS
Table 18 reveals the result of prediction performance in the
SWaT system data. As shown in Table 18, in terms of F1 score
and accuracy, the baseline method performs the best for the
SWaT data. In our study, the MAD-GAN shows prediction
ability lower than previous studies [15], [18]. There are two
main reasons for this. First, the generator and the discrimi-
nator used to detect anomalies are different. In their works,
it is not clear at which epoch they used a generator and a
discriminator. On the other hand, in this paper, we use a
generator and a discriminator at 30 epoch for fair compar-
isons. Second, the target FPR was not considered in previous
work [15]. In Section IV, the simulation results indicate that
the prediction performance varies depending on the target
FPR, but no information related to the target FPR is provided
in the previous works [15], [18]. In contrast, the target FPR is
set to 5% in this Section V. The above two reasons may cause
a different prediction performance.

TABLE 18. Prediction performance for the SWaT system data.

VI. CONCLUSION
In this paper, the following studies are conducted on the
GAN-based AD methods. First, the framework for compar-
isons is presented and comparative studies are conducted
under the proposed comparison framework. Not to mention
the real data set, a total of 11 simulation data sets are also
considered for testing. In the simulation study, the traditional
time series models (AR, MA, and ARMA) and the residuals
are monitored. A lot of comparisons have been conducted
under the proposed comparison framework. We believe that
the framework is still valid for other real data sets because it
is theoretically based on the hypothesis testing and the SPC.

In our experiments, the CUSUM chart shows the prediction
performance better than the others except for the ARMA
(1,1) data and the multistage data. In the ARMA (1,1) and
the multistage data sets, none of the three methods perform
better than the others. Also, as shown in Table 9 and 17,
the three methods show prediction performances with
approximately 50% accuracy. Besides, in the SWaT system
data, the CUSUM chart using only the 1st PC produces the
highest F1 score and accuracy. Although the GAN-based
methods do not always perform well, they can detect anoma-
lies for the big shift size (c = 2), as shown in Tables 3 and 6.
Our experimental results demonstrate that the prediction per-
formances of the GAN-based AD methods depend on the
comparison framework. Therefore, more follow-up studies
on the GAN-based AD methods are required.

Second, compared with previous studies [15], [16], [18],
the parameter 0 that affects the prediction performance is
dealt with in detail. As a result, we find that a small 0 is more
appropriate for simple data such as theAR (1) and theMA (1).
Finally, as shown in Table 13, monitoring the residuals to
detect anomalies can improve the prediction performance.

There can be interesting directions for future research. One
such direction is an additional term such as L1 regularization
to the loss function to obtain the anomaly scores. Our paper
has demonstrated that overfitting can occur during the inverse
mapping process. It will be a very interesting study to improve
the prediction performance by adding a regularization term to
the loss function to avoid overfitting.
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