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ABSTRACT As a ubiquitous method in the field of machine learning, clustering algorithm attracts a lot
attention. Because only some basic information can be utilized, clustering data points into correct categories
is a critical task especially when the cluster number is unknown. This paper presents an algorithm which
can find the cluster number automatically. It firstly constructs hyper-planes based on the marginal of sample
points. Then an adjacent relationship between data points is defined. Based on it, connective components
are derived. According to a validity index proposed in this paper, the high-qualified connective components
are selected as cluster centers. Meanwhile, the clusters’ number is also determined. Another contribution
of this paper is that all the parameters in this algorithm can be set automatically. To evaluate its robustness,
experiments on different kinds of benchmark datasets are carried out. They show that the performances are
even better than some other methods’ best results which are selected manually.

INDEX TERMS Clustering algorithm, hyper-planes, support vector machine, validity index.

I. INTRODUCTION
Cluster is a basic operation among the community of machine
learning. Based on the similarity of the data points, clustering
algorithms put them into categories so that the points in the
same category are as similar as possible and as dissimilar as
possible with points within other categories. Because they
always handle the datasets without pre-existing labels, only
some basic information like distances between points, density
of points or points’ distribution can be used to derive the final
results. Therefore they reveal the intrinsic pattern of data.

The cluster number is an important parameter for the algo-
rithms. Many of the clustering algorithms require that it must
be known such as K-means [1], K-medoids [2] and hierar-
chical clustering [3]. When it is not given in advance, to get
the right clusters is obviously more difficult. One common
way to determine the number of clusters is trying the different
ones of clusters to choose the best number, which is done by
optimizing the objective functions [4]–[7].

A few methods can determine it directly. One kind of these
methods are based on the density of points like two famous
methods density-based spatial clustering of applications with
noise (DBSCAN) [8] and clustering by fast search and find
of density peaks (CFSFDP) [9]. Recently another kind of
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methods named I-nice [10] are proposed. Instead of finding
the regions of high density directly, they derive the number
of cluster centers on the idea of simulating the process of
man’s viewing peaks of mountains. The advantage of these
two kinds of methods is that they are not sensible to the
distribution of data points [11]. Their main problem is their
sensitiveness to parameters such as the thresholds for deter-
mining the adjacent relationship or the quantity of neigh-
bor points. Some works are proposed in order to overcome
it [12]–[15].

The Affinity Propagation algorithm [16] derives the clus-
ters’ center and number by exchanging the information
between data points, which is a rather novel idea. However,
the main problem is also the selection of some parameters’
values. Whereas these values are related to the number of
clusters usually, it is difficult to be determined in advance.
Therefore the voting idea is also adopted for algorithms in
which the cluster number is known [17].

Some algorithms cluster points based on distributions [18].
The performance relies on the distributions’ capability to rep-
resent the data points. So this kind of methods cannot always
performance well because the real data always distributes on
some complex nonlinearmanifolds. Recently someworks has
turned to deal with the data on special distributions [19], [20],
which derive rather good results. However, they cannot be
applied to other kinds of manifolds flexibly.
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FIGURE 1. Results of fδ : S → L. (a) Distribution of S is two concentric circles. (b) Distribution of S is two
interleaving moons. (c) Distribution of S is swiss-roll.

To overcome these problems, a clustering algorithm
by constructing hyper-planes is presented in this paper.
There already exist some clustering algorithms which form
groups of data by finding large margin hyper-planes [21],
[22] or hyper-spheres [23]. The differences between the
proposed method and the existed methods based on hyper-
planes [21], [22] mainly lie in two points. One is that ways
to find the hyper-planes are different. The hyper-planes con-
structed in the existedmethods are based on some constraints.
And these constraints usually include that the hyper-planes
void to crossing through the high density regions. In our
algorithm, the hyper-planes depend on the marginal space
between global or local points in different clusters, it may
crossing through some high density regions. So it can be
approached for the data points which take the distribution
on more general manifolds. The other is the existed meth-
ods acquire the clusters’ number to be preset whereas our
algorithm can determine it automatically. The method based
on the hyper-sphere [23] also can find the clusters’ number.
However, it is an supervised learning method.

The main contribution of our algorithm is that we present
a robust scheme to determine the main parameter’s value,
which overcomes an inherent difficulty for the clustering
algorithm. The experimental results indicate that its perfor-
mances are even better than some other famous methods’
results which are selected manually.

The rest of this paper is organized as follows:
Section 2 presents the clustering algorithm; Section 3 carries
out some experiments; Section 4 contains some concluding
remarks and directions for future research.

II. CLUSTERING BASED ON HYPER-PLANES
This section proposes the clustering algorithm. It firstly
constructs some hyper-planes based on the marginal space
between subgroups. By combining these hyper-planes,
it derives some connective components. Then it merges some
connective components to generate the final clusters. The last
part gives the complexity analysis of this algorithm.

A. CONSTRUCTING HYPER-PLANES
Suppose a data set S which contains a group of points. The
algorithm groups S into two sets S1 and S2 by using K-means
method. Then it derives a hyper-plane l : (w, b) based on

Support Vector Machine (SVM) [24] to segment S1 and S2.
The points in two sets S1 and S2 are defined as affiliated to l.
The same operation is done both on S1 and S2 recursively until
data sets are smaller than a threshold δ. After that, a group of
hyper-planes, denoted as L, are derived. The map from S to
L is defined as fδ : S → L.

Fig. 1 is the examples of the all the hyper-planes derived
on three nonlinear manifolds. For selecting the proper hyper-
planes, L is grouped into two categories according to the
hyper-planes’ values of ‖w‖. It is done by using the K-means
method. The category with smaller ‖w‖, denoted as L ′, is the
hyper-planes which prefer to distinguishing the points well
as shown in Fig. 2a. The map from L to L ′ is defined as
ϕ : L → L ′.

However, ϕ doesn’t work well for more complexmanifolds
as shown in Fig. 2b and Fig. 2c. For dealing with this prob-
lem, S is divided into some subgroups SL ′,1, SL ′,2..., SL ′,m
such that points in SL ′,i, 1 ≤ i ≤ m lie on same side
of each hyper-plane in L ′, denoted as γL ′ : S → {Si}.

Then a new hyper-plane set L ′ ∪ ϕ
(
∪

1≤i≤m
fδ(SL ′,i)

)
can be

derived. If L ′ is not equal to L ′∪ϕ
(
∪

1≤i≤m
fδ(SL ′,i)

)
, let L ′ =

L ′ ∪ ϕ

(
∪

1≤i≤m
fδ(SL ′,i)

)
. Repeat this operation until L ′

unvaried.
Then all the generated hyper-planes in this process are put

into the set TL. Based on TL, the proper hyper-plane set can
be derived. For example, Fig. 3 is the hyper-planes set ϕ(TL)
which segments the data points well. Pseudocode for this
process is presented in Algorithm 1.

B. DERIVING THE CONNECTIVE COMPONENTS
After the hyper-plane set H is found, the adjacency between
data points can be determined. We define that if a data point
x is affiliated to l : (w, b) or |w · x + b| > 1, x is isolated to
l : (w, b). If two points xi and xj lie opposite side of any hyper-
plane l inH and there is at least one isolated to l, xi and xj are
not adjacent. Otherwise, they are adjacent. Then it can derive
some connective components based on this adjacent relation-
ship. We define this map is τH ,A : S → {C1,C2, . . . ,Ck},
where Ci, 1 ≤ i ≤ k is a connective component and A is the
affiliated relation matrix derived in Algorithm 1. Pseudocode
for this process is presented in Algorithm 2.
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FIGURE 2. Results of ϕ(fδ(S)). (a) Distribution of S is two concentric circles. (b) Distribution of S is two
interleaving moons. (c) Distribution of S is swiss-roll.

FIGURE 3. Results of connective components for synthetic datasets. Different colors represent different
connective components. The colored lines are the hyper-planes. (a) Distribution of two concentric
circles. (b) Distribution of two interleaving moons. (c) Distribution of swiss-roll.

Algorithm 1 Constructin Hyper-Planes
Input: The dataset S. The threshold δ ∈ <.
Output: The hyper-plane set TL. The affiliated matrix
A.(A(i, j) = 1means point xi is affiliated to the hyper-plane
lj,Otherwise, A (i, j) = 0.)
Initialization: P← {S}. TL ← ∅. L ′← ∅. A← ∅.
1: Repeat
2: curL ′← L ′, tempL ← ∅
3: for each set Si ∈ P do
4 : TL ← TL ∪ fδ (Si)
5 : tempL ← tempL ∪ fδ (Si)
6 : Let curA be a zero matrix, its size is |S|× |fδ (Si)|
7 : for each lj ∈ fδ (Si) do
8 : if xk ∈ S is affiliated to lj do
9 : curA (k, j) = 1
10 : end if
11 : end for
12 : A← (A, curA)
13 : end for
14 : L ′← L ′ ∪ ϕ (tempL)
15 : P← γL ′ (S)
16 : Until curL ′ = L ′

C. DETERMINING THE CLUSTER NUMBER AND CENTERS
Before finding the clusters’ center, we need compute the
validity index for the connective components. One of the
difficulties for computing the validity index is to choose
distance measures. Because they are related to data points’
distribution closely [25], [26], it is uneasy to computer the

proper distance when the distribution is unknown. Lots of
them have been proposed from seventies in last century to
now [3]–[5], [7], [27]–[31].

Because the adjacency between data points is defined
based on the hyper-plane set, we can also use this adjacency
relation to compute the distance more accurately. A new
measure of mean intra-connective-component distance and
nearest-connective-component distance for each connective
component is proposed as following:

All the point x is firstly transformed into x(H )
=

(dL(x, l1), . . . , dL(x, l|H |)) where li ∈ H (1 ≤ i ≤ |H |)
and dL(x, l : (w, b)) = (wx + b) / ‖w‖. Then the mean intra-
cluster distance of Ci is computed as:

IntraDis(i) =
∑

xp,xq∈Ci

2dg(x(H)p
, x(H)

q
)

|Ci| (|Ci| − 1)
(1)

where dg(xi, xj) is the geodesic distance between xi and xj
based on the adjacent relationship.

The nearest-connective-component distance of Ci is com-
puted as:

InterDis(i) =
1
|Ci|

∑
xp∈Ci

min
xq /∈Ci

d(x(H)
p
, x(H)

q
) (2)

where d(xi, xj) is the Euclidean distance between xi and xj.
Based on them, the measureM of Ci is:

Mi =


InterDis(i)
IntraDis(i)

, |Ci| > max(1,
δ

4
)

0, |Ci| ≤ max(1,
δ

4
)

(3)
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Algorithm 2 Deriving the Connective Components
Input: The dataset S. The affiliated matrix A. The hyper-
plane set H .
Output: The connective component set C .
Initialization: Define the adjacent matrix adjM with size
|S|×|S|. All its elements are one. Let islM be a zeromatrix,
its size is |S| × |H |.
1: for each xi ∈ S and lj (w, b) ∈ H do
2: if |wxi + b| > 1 or A (i, j) == 1 do
3: islM (i, j) = 1
4: end if
5: end for
6: for xi, xj ∈ S do
7: for each lk ∈ H do
8: if xi, xj lie opposite side of lk and

islM (i, k)+ islM (j, k) > 0 do
9: adjM (i, j) = 0
10: break
11: end if
12: end for
13: end for
14: derive the connective component C1,C2, ... based on

adjM
15 : C ← {C1,C2, ...}

The threshold δ/4 is set to filter small size connective com-
ponents off. Points in connective component with the larger
M prefer to be in the same cluster with larger probability.

If xp ∈ Ci, xq ∈ Cj and xq is the nearest inter-class neigh-

bor of xp such that d
(
x(H)p , x(H)q

)
= min

x /∈Ci
d
(
x(H)p , x(H)

)
, we

define thatCj is a neighbor ofCi. IfMi is larger than the values
of all its neighbors’, Ci is a peak connective components
(PCC). If only one neighbor’sM is larger thanMi,Ci is called
hillside connective component (HCC).

PCC is the best connective component among all its neigh-
bors. To make the result more accurate, we adopt the PCC
whose M is larger than half of the connective components,
denoted as FPCC, as the seed of cluster centers. Pseudocode
for this process is presented in Algorithm 3.

D. DERIVING THE CLUSTERS
After the cluster centers are found, the clusters are extended
further by adding the HCCs gradually. Put a FPCC Ci into
Ri. Then repeat the following operation until no connective
component in Ri is unvisited. Pick an unvisited connective
component Cp from Ri. If Cq is a neighbor of Cp, Mp > Mq
and Cq is a HCC, put Cq into Ri. After all such Cq are done,
mark Cp is visited. Ri is one cluster. Pseudocode for this
process is presented in Algorithm 4.

E. COMPLEXITY ANALYSIS OF THE ALGORITHM
The flowchart of the algorithm is illustrated in Fig. 4. If the
dataset S contains n points with d dimensions, the complexity
analysis of each steps are followings:

Algorithm 3 Determining the Cluster Number and Centers
Input:Dataset S. The connective component setC = {Ci}.
Output: The FPCC set F . The HCC set HC . The neigh-
bor relationship matrix CR. (If Ci and Cj are neighbor,
CR (i, j) = 1. Otherwise, CR (i, j) = 0.)
Initialization: F ← ∅.HC ← ∅. Let CR be a zero matrix,
its size is |C| × |C|.
1: for each Ci ∈ C do
2: ComputeMi according to (3)
3: end for
4: for Ci,Cj ∈ C do
5: if there exist two points xp ∈ Ci, xq ∈ Cj and

d
(
x(H)p , x(H)q

)
= min

x /∈Ci
d
(
x(H)p , x(H)

)
do

6 : CR (i, j) = 1
7: end if
8: end for
9: for each Ci ∈ C do
10: if there doesn’t exist any connective component

Cj ∈ C satisfies CR (i, j) = 1 and Mj > Mi do
11: ifMi is bigger than half of the connective

components at least do
12 : F ← Ci
13: end if
14: end if
15: if there only exists one connective component Cj ∈ C

satisfies CR (i, j) = 1 and Mj > Mi do
16: HC ← Ci
17: end if
18: end for

FIGURE 4. The Flow-Chart of the Algorithm.

Step I.Constructing hyper-planes.We proved that the aver-
age computation complexity of map fδ : S → L is O(dn3).
The detailed proof is following:

Let T (n) denotes the average computation complexity of
map. Because the computational complexity of SVM and
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Algorithm 4 Deriving the Clusters
Input: The connective component set C = {Ci}. The
FPCC set F . The HCC set HC . The neighbor relationship
matrix CR.
Output: The cluster result R.
Initialization: R← ∅. TR← ∅.
1: for each Ci ∈ P do
2 : Ri← Ci
3 : Q← {Ci}
4: while Q is not empty do
5: select a connective component Cj ∈ Q
6 : Q← Q/

{
Cj
}

7: for each Ck which satisfies Ck ∈ HC and
CR (k, j) = 1 do

8 : Q← Q ∪ {Ck}
9 : Ri← Ri ∪ Ck
10 : end for
11 : end while
12 : R← R ∪ {Ri}
13: end for

K-means are O(n3) and O(dn), we have

T (n) ≤
1
n

n−1∑
i=1

(T (n− i)+ T (i− 1))+ c1n3

=
2
n

n−1∑
i=1

T (i)+ c1n3 (4)

where c1 is a constant number. Let

B(n) =
2
n

n−1∑
i=1

T (i)+ c1n3 (5)

we have

nB(n)−(n− 1)B(n)=2B(n− 1)+ c1(n4−(n− 1)4) (6)

Then

nB(n)− (n+ 1)B(n− 1) = 4c1n3 − 6c1n2 + 4c1n− c1 (7)

Therefore
B(n)
n+ 1

−
B(n− 1)

n
≤ c2n (8)

where c2 is a constant number. Let

F(n) =
B(n)
n+ 1

(9)

we can get F(n) ≤ c2n(n− 1)/2. Then we have

T (n) ≤ c3n3 (10)

where c3 is a constant number.
Therefore, the computational complexity of theAlgorithm 1

is O(dIn3) where I is the number of the algorithm’s iteration.
Because I � n in general, the average computational
complexity of step 1 is O(dn3).

Step II. Deriving the connective components. As shown in
Algorithm 2, the most time consuming process is computing
the adjM . So the computational complexity of step 2 is
O(d |H |n2). Because |H | < n, the computation complexity
is less than O(dn3).
Step III. Determining the cluster number and centers.

The computational complexity of computing (1) is d |Ci|3.
Because

∑
|Ci| = n, the computational complexity of step 3

is no more than O(dn3).
Step IV. Deriving the clusters. As shown in Algorithm 4,

the computational complexity of step 4 is O(d |C|2), which is
less than O(dn2).
Based on the analysis of each step, the algorithm’s compu-

tational complexity is O(dn3).

III. EXPERIMENTAL RESULTS
For benchmarking our algorithm, we applied the proposed
algorithm on some synthetic data and some real-world
datasets.

A. EXPERIMENTS WITH PRESET δ
Three synthetic datasets are generated for evaluating the
algorithm’s representable capability. Their distributions are
two concentric circles, two interleaving moons, and swiss-
roll as shown in Fig. 1. These manifolds are also the most
commonly used ones for testing clustering algorithms. Each
dataset contains 1600 data points involving with the Gaussian
noises. The hyper-plane set H = ϕ(TL). And the values of
δ are set to be 110, 110, and 45, respectively. Experimental
results are presented in Fig. 3 where it shows that the connec-
tive components are the ideal clusters. This method also can
achieve ideal result on real-world datasets.

As pointed out by Rodriguez and Laio, the Olivetti Face
Dataset (OFD) poses a serious challenge for algorithms to
find the number of clusters automatically because the ‘‘ideal’’
number of clusters is comparable with the number of ele-
ments in the data set [9]. Our algorithm can also get ideal
result on these data as shown in Fig. 5. It is derived by
approaching the algorithm on the first 100 image in OFD
where H = TL and δ = 15.

Meanwhile, these experimental results indicate that the
parameter δ varies greatly as to the data distribution, the quan-
tity of points and the clusters’ number. In Sec. 3.B.2, we will
discuss how to find its proper value in detail.

B. EXPERIMENTS ON REAL BENCHMARK DATASETS
1) THE DATASETS
This part introduces the real-world datasets. Among them,
20 benchmark datasets are obtained from different reposito-
ries [32]–[36]. Because different features of these data points
have different meanings, the range of all features should
be normalized to be same so that each feature contributes
approximately proportionately to the final similarity mea-
sure. Instead of being standardized to standard deviation 1,
values of each feature are normalized by using min-max
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FIGURE 5. Visualization results on the first 100 images in OFD. Images in
the same connective components are with same colors.

normalization except for those image datasets. Because of
the reason mentioned in Sec. 3.1, the OFD is also included
in the datasets. Table 1 contains a summary of these datasets.
All the data are centralized by shifting the origin to their mean
before being processed.

2) THE PARAMETERS’ SETTING
There are two parameters H and δ in the algorithm. The
hyper-plane dataset H is easily to be set. In all these experi-
ments they all are TL. As shown in Sec. 3.A, δ is important
and difficult to be set. Here, we present a scheme to determine
it automatically. It includes two parts. The first step gets its
approximate range. The second one determines the value.
Step I. set δ to be big enough firstly. Then we can get the

connective components and calculate the average values of
FPCCs’Mf . Let δ = δ/2. Repeat the operation until δ is small
enough. Fig. 6 is the bar charts results. The value of X-axis
andY-axis are the divided time and the average of FPCCs’Mf ,
respectively. The minimum andmaximum of the range are set
to be the two neighbors (blue spots in Fig. 6) of the last valley
point (red spot in Fig. 6). When δ’s proper value is small,
there may be no valley point in the line chart as shown in the
Fig.6.s and Fig.6.t. Under this circumstance, the minimum
and maximum values are set to be the last two points.
Step II.After the range of δ is gotten, its value can be found

based the quantity of points assigned into clusters. Fig. 7 is the
line charts by adaptively sampling in the range. The value of
X-axis and Y-axis are δ and quantity of the points in clusters,
respectively. The last valley points are set to be the value of δ,
as the red spots shown in Fig. 7. It indicates that this method
is effective although the proposed algorithm doesn’t obtain

TABLE 1. Summary of datasets.

the best results always. After δ is determined, the algorithm
is repeated 5 times to derive the best result.

3) THE EXPERIMENTAL RESULTS AND ANALYSIS
This part presents the experimental results. Before it is given,
the compared methods and evaluation measures are briefly
introduced.

Our algorithm only assigns part of the points into the
different categories. Other points are viewed as outliers.
So it is compared with the related algorithms CFSFDP and
DBSCAN which also can find outliers. Whereas CFSFDP
and DBSCAN are both sensible to their main parameters’
values, their results are derived by adaptively sampling their
main parameters’ space. These parameters are CFSFDP’s dc
and DBSCAN’s eps and min_samples. CFSFDP’s dc and
DBSCAN’s eps are the thresholds for determining the adja-
cent relationship. Only when the distance between two points
is smaller than them, these two points are considered to be
neighbors. Min_samples is the number of samples (or total
weight) in a neighborhood for a point to be considered as
a core point. These three parameters are the most important
ones for their algorithms. All values of the other parameters
like the methods for distance computing or the nearest neigh-
bor search are set to be default ones.

Fig.8 is the visualization of the results on OFD. The
result of DBSCAN is derived by adjusting two main param-
eters eps and min_samples to generate a best result which
contains the points nearly as many as ours. The result of
CFSFDP is selected in the work [9], which is the best result.
Both CFSFDP and our algorithm contained no single cluster
included images of two different categories while DBSCAN
does. CFSFDP and our algorithm got 22 and 26 correct
clusters respectively.
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FIGURE 6. The relationship between the average values of FPCCs and δ. The orange bar is the average value of
the FPCCs’ M. The green, blue and red spots are the value of the δ. (a) Breast Tissue. (b) Wine. (c) Parkison.
(d) Seeds. (e) Glass. (f) Vertabral. (g) Leaf. (h) Dermatology. (i) Synthetic. (j) R15. (k) S1_001S1. (l) AI4I 2020 Mp.
(m) Imm. (n) Jaffe. (o) Jaffe with noise. (p) Coil20. (q) Coil20 with noise. (r) USPS. (s) OFD. (t) OFD with noise.
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FIGURE 6. (Continued.) The relationship between the average values of FPCCs and δ. The orange bar is the
average value of the FPCCs’ M. The green, blue and red spots are the value of the δ. (a) Breast Tissue. (b) Wine.
(c) Parkison. (d) Seeds. (e) Glass. (f) Vertabral. (g) Leaf. (h) Dermatology. (i) Synthetic. (j) R15. (k) S1_001S1.
(l) AI4I 2020 Mp. (m) Imm. (n) Jaffe. (o) Jaffe with noise. (p) Coil20. (q) Coil20 with noise. (r) USPS. (s) OFD.
(t) OFD with noise.
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FIGURE 7. The Performance of the algorithm as a function of δ: ARI (orange bar), NMI (gray bar) and quantity of
points in clusters (blue line). The red spot is the value of δ which is selected for clustering algorithm. (a) Breast
Tissue. (b) Wine. (c) Parkison. (d) Seeds. (e) Glass. (f) Vertabral. (g) Leaf. (h) Dermatology. (i) Synthetic. (j) R15.
(k) S1_001S1. (l) AI4I 2020 Mp. (m) Imm. (n) Jaffe. (o) Jaffe with noise. (p) Coil20. (q) Coil20 with noise. (r) USPS.
(s) OFD. (t) OFD with noise.
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FIGURE 7. (Continued.) The Performance of the algorithm as a function of δ: ARI (orange bar), NMI (gray bar) and
quantity of points in clusters (blue line). The red spot is the value of δ which is selected for clustering algorithm.
(a) Breast Tissue. (b) Wine. (c) Parkison. (d) Seeds. (e) Glass. (f) Vertabral. (g) Leaf. (h) Dermatology. (i) Synthetic.
(j) R15. (k) S1_001S1. (l) AI4I 2020 Mp. (m) Imm. (n) Jaffe. (o) Jaffe with noise. (p) Coil20. (q) Coil20 with noise.
(r) USPS. (s) OFD. (t) OFD with noise.
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FIGURE 8. Pictorial clusters’ results on OFD. (a) DBSCAN. (b) CFSFDP. (c) Our Algorithm. Faces with same color belong to the same cluster while
the gray images are not in any cluster.

TABLE 2. ARI on Real-world datasets.

For presenting the quantitative results, the performances
are measured by three benchmark measures Adjusted
Rand Index (ARI) [37], Normalized Mutual information
(NMI) [38] and F-Score. ARI and NMI range from [−1,1]
and [0,1], respectively. The lager the values of ARI and NMI,
the better the clustering results. 1 means the clustering results
are identical. 0 or −1 means that the two set of clusters are
independent. F-Score is a way of combining the precision and
recall of the cluster, and it is defined as the harmonic mean of
the model’s precision and recall as following:

F − Score = 2×
precesion× recall
precesion+ recall

. (11)

TABLE 3. NMI on Real-world datasets.

Table 2, Table 3 and Table 4 are the ARI, NMI and F-Score
results which are derived by carrying the three algorithms on
the datasets.

The performances of CFSFDP and DBSCAN are related
to the quantity of these points put into clusters. The fewer
the quantity of points, the better the clustering results usu-
ally. Therefore, the quantity of points in CFSFDP’s and
DBSCAN’s results is set to be more than 3/4 of those
in our algorithm’s results. The parameters’ ranges and
sampling steps are shown in Table 5, Table 6, and Table 7.
Although our algorithm did not always get a better ARI,
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FIGURE 9. Results of Regret across all 20 datasets. The red spots represent the mean. The green lines represent the median. (a) ARI Regret. (b) NMI
Regret. (c) F-Score Regret.

FIGURE 10. Noise images in three image datasets. (a) Coil20. (b) Jaffe. (c) OFD.

NMI and F-Score, it obtained the best performance than the
others.

It shows that the proposed algorithm is more robust
because all its parameters are set automatically. Meanwhile,
CFSFDP’s andDBSCAN’s results are the best ones which are
selected manually. And Table 5, Table 6, and Table 7 show
that the main parameters of CFSFDP and DBSCAN vary
greatly under different circumstances. The experiments also
reveal that the method for deriving the approximated range is
robust. As shown in Fig. 7, the performance in the selected
range of δ is usually high in more than half of the examples.
Meanwhile, our results are more stable, which means

that the algorithm can deal with the data distributed on
more complex manifolds. For demonstrating its stableness,
the measure regret is adopted. When an algorithm is carried

on s specific dataset, the regret is the difference between
this algorithm’s index and the highest index from among all
algorithms which are approached to the same dataset [21].
Fig. 9 contains the boxplots of the three algorithms car-
ried on all the datasets. The mean and median of regret for
ARI, NMI and F-Score of the proposed algorithm are both
best.

The most important step of the algorithm is constructing
hyper-planes. If the hyper-planes segment the points well,
we may get the ideal results as shown in Fig. 3 and Fig. 5.
However, it is not easy to find all the proper hyper-planes
because the marginal between points may be not clear. Three
reasons may lead to a narrow marginal. They are noise, dense
data points and high dimensions of data. So we tested our
algorithm on the datasets such as two large scale datasets
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TABLE 4. F-Score on Real-world datasets.

TABLE 5. CFSFDP’s dc’s space and sampling step.

S1_001S1 and AI2020 and two high dimensional dataset
Imm and Jaffe. We also construct three datasets by adding
heavy Gaussian noise to the three image datasets Jaffe,
Coil20 and OFD as shown in the Fig 10. The experimental
results indicate that our algorithm is still valid for these
dataset. The reason is that the SVM in our algorithm is based
on the soft margin formulation that is a most commonly
used formulation for SVM. It allows SVM to make a certain
number of mistakes and keep margin as wide as possible.
So other points can still be classified correctly.

TABLE 6. DBSCAN’s Min_samples’ space and sampling step.

TABLE 7. DBSCAN’s Eps’s space and sampling step.

The proposed algorithm’s main problem is that the time
complexity is high. When it is approached to the large scale
dataset, the algorithm’s consuming time increases greatly as
shown in Table 8. Because the connective components are
segmented by linear structures, we can use the Euclidean dis-
tance to approximate geodesic distance instead of the multi-
view methods [39]. So in the experiments, we use Euclidean
distance to replace dg

(
xi, xj

)
in (1) when it is approached on

the two large scale datasets S1_001S1 and AI4I 2020 MP.
Besides, the running time of our algorithm is less than
CFSFDP when it is approached on the image datasets. The
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TABLE 8. The Algorithms’ running time (S).

reason is that it measures the similarity between images with
complex wavelet structural similarity (CW-SSIM) index [40]
as suggested by Rodriguez and Laio [9]. Its time complexity
is high.

IV. CONCLUSION AND FUTURE WORK
To find data’s intrinsic patterns, one common used idea is
to approximate nonlinear models by using linear ones. Our
algorithm is based on this idea. We give a new method
for constructing hyper-planes. The experimental results and
analysis indicate that it can find the proper hyper-planes to
segment points. By combining the linear structures, the final
results can approximate the nonlinear manifolds more flexi-
bly and accurately. We also present a scheme to determine the
parameters’ values. The experiments shows that it is robust to
be applied.

The main problem is that our algorithm’s computational
complexity is high. It limits the approach for large scale data.
Based on some existed methods [41], the dense region of
points may be found more efficiently. It is our next direction
in the future work.

Another problem is that our algorithm only put part of
points into categories. How to derive the clusters which con-
tain all the data points will also be investigated in the future
work.
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