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ABSTRACT The distributed antenna systems (DAS) and non-orthogonal multiple access (NOMA) are the
key technologies to boost the data rate of the cellular system in terms of small cell and multiple access,
respectively. To meet the high data rate requirements for 5G and beyond, we suggest a framework of using
NOMA in DAS. In the proposed scheme, RRUs which are geographically distributed in the cell serve the
cell-edge users within their own coverage.Meanwhile, the macro BS, which covers the entire cell region with
relatively high transmit power, supports both the cell-center and the cell-edge users with identical resources
by using NOMA. Compared to the conventional DAS where the macro BS and the RRU serve the cell-center
and the cell-edge users, respectively, the proposed framework also boosts the data rate of the cell-center
user by improving the reliability of successive interference cancellation (SIC) at the cell-center user. In
the proposed framework, this paper also proposes the optimal power allocation rules maximizing the user
fairness in two different cases of instantaneous channel gain information (CGI) and channel distribution
information (CDI) known at the transmitter. Also, the power allocation methods maximizing the sum-rate
with a minimum rate constraint and the weighted sum-rate are presented in the case of CGI known at the
transmitter. Simulation results show that the proposed framework of using NOMA in DAS can boost data
rates more in a variety of system environments compared to the conventional NOMA or DAS.

INDEX TERMS Non-orthogonal multiple access (NOMA), distributed antenna systems (DAS), user
fairness, sum-rate maximization, power allocation.

I. INTRODUCTION
Supporting a large number of users with high data rates is
one of the most rewarding challenges for next generation
wireless communications. A promising method to comply
with this demand is to densely deploy small cells in a cellular
network, which improves the area spectral efficiency [1]. The
distributed antenna systems (DAS) has attracted consider-
able attention in both academia and industry to deploy the
small cells in cellular networks [2]–[4]. In the DAS, multiple
remote radio units (RRUs) are geographically distributed in a
cell and cover subsets of the entire region of the macro cell.
Cooperation of RRUs with the macro BS enables the DAS to
have larger capacity [2] and to reduce inter-cell interference
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and transmit power consumption [4], compared to the con-
ventional co-located system. The advantages of the DAS in
massivemultiple-inputmultiple-output (MIMO) antenna sys-
tems are shown in [5]. Also, some studies show the potential
for coexistence of DAS and other small cell techniques, e.g.,
picocells [6] and femtocells [7], in heterogeneous networks
(HetNets). The additional diversity and scaling behavior of
the massive DAS are also explored in [8].

In terms of multiple access, non-orthogonal multiple
access (NOMA) is regarded as a promising candidate
to improve the system throughput for 5G and beyond.
Power-domain NOMA serves multiple users in the same
time/frequency/code with different power levels relying on
successive interference cancellation (SIC) performed at the
receivers [9], [10]; therefore, NOMAprovides higher spectral
efficiency and system throughput compared to orthogonal
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multiple access (OMA). Many recent studies have applied
NOMA to various technologies including MIMO [11], wire-
less caching [12], relay networks [13], delay-sensitive net-
works [14], and blind modulation classification [15]. In
addition, cooperative NOMA is proposed in [16], [17] where
users can be used as relays to improve data rates.

Mostly, the existing researches have shown the advantages
of DAS and NOMA separately; on the other hand, this paper
proposed the framework of using NOMA in DAS and shows
that synergy can be created by collaboration of NOMA and
DAS. One of the example scenarios of our framework is
a vehicle-to-everything (V2X) network. Throughput max-
imization and high spectral efficiency are key challenges
for VANETs also due to proliferation of vehicular appli-
cations and crowded licensed spectrum [18]. The roadside
units (RSUs) in the V2X network that collects traffic infor-
mation and repeatedly provides services to vehicles can act
as RRUs in the DAS [19], [20]. NOMA also provides the
high spectral efficiency in high-mobility vehicular networks
as explored in [21], [22]; therefore, the proposed framework
of using NOMA in DAS would enhance the throughput of
the vehicular network. In similar to cooperative transmissions
for vehicular networks [23], this paper allows cooperation of
RRUs with the macro BS to maximize the sum-rate as well
as the user fairness.

A. CONTRIBUTIONS
This paper proposes the framework of using NOMA in DAS
to boost the system throughput for both user fairness and
sum-rate problems. The conventional DAS enhances data
rates of cell-edge users with the help of nearby RRUs; how-
ever, in this case, orthogonal resources have to be allocated
to RRUs and macro BS for mitigating interference among
them. Therefore, motivated from the fact that relatively high
power is available at the macro BS compared to RRUs so that
the macro BS can cover the whole cell, we employ NOMA
signaling at the macro BS while enjoying the advantages
of cooperation from RRUs. Then, the macro BS and RRUs
do not have to use orthogonal resources so that the system
throughput can be improved more. The conventional DAS
allows two different transmission schemes, blanket transmis-
sion and selective transmission [2]. Here, we focus on the
selective transmission scheme because RRUs in the blanket
transmission mode should transmit signals to all cell-edge
users but the power budget of the RRU is limited; therefore,
it is more reasonable to select one RRUunder the best channel
condition for improving the data rate of the cell-edge user.

The proposed framework using NOMA in DAS is strongly
motivated by the fact that the cooperation signal from the
RRU is helpful for the cell-center user as well as the cell-edge
user. The cooperation signal from the RRU directly improves
the data rate of the cell-edge user. In addition, the cooperation
signal from the RRU can be used for the cell-center user to
perform SIC much better with the appropriate power alloca-
tion. Therefore, we also propose the optimal power allocation
for the proposed framework of using NOMA in DAS. The

proposed scheme can be applied to any system in which any
entity can help cell-edge users and cooperate with the BS,
e.g., HetNets where a macro BS and femto/pico BSs coexist.

The main contributions of this paper are as follows:

• This paper proposes the framework of using NOMA in
DAS and observe the synergy effects created by collabo-
ration of NOMA and DAS. The cooperation signal from
the RRU can be used for the cell-center user to perform
SIC much better in the proposed framework.

• We derive the closed-form expressions of data rates in
the proposed framework of using NOMA in DAS. In
addition, this paper proposes the optimal power alloca-
tion rules in a variety of problem settings: 1) max-min
fairness, 2) sum-rate maximization with aminimum data
rate constraint, and 3) weighted sum-rate maximization.

• The two different CSI at the transmitter (CSIT) cases are
studied under the framework of using NOMA in DAS:
1) instantaneous channel gain information (CGI) known
at the transmitter, and 2) channel distribution informa-
tion CDI) known at the transmitter. More specifically,
we solve the max-min fairness problem in both CSIT
cases, and the max-sum-rate problem is handled in the
case of CDI known at the transmitter. Also, the impacts
of the imperfect CSI are studied when finding the opti-
mal power allocation.

• The simulation results show that the proposed frame-
work of using NOMA in DAS with the optimal power
allocation rule can boost the system throughput more
compared to conventional NOMA or DAS only. The
impacts of the level of CSIT and imperfect CSI are also
observed and the proposed framework still outperforms
the conventional ones even with the lack of CSI.

B. RELATED WORKS
The sum-rate and user fairness are important metrics of
NOMA, which have been studied actively in recent years.
The ergodic sum-rate of MIMO-NOMA with two users is
studied in [24], and the sum-rate performance of NOMA
with randomly deployed users is analyzed in [25]. In [26],
user scheduling for NOMA is studied to maximize the sum-
rate. The user fairness issues of NOMA are discussed in [10]
with instantaneous or statistical CSI at the BS. The power
allocation for NOMA based on proportional fairness schedul-
ing is studied for both max-sum-rate and max-min-rate prob-
lems in [27]. The joint optimization of power and channel
allocations for NOMA is studied in [28] for various criteria
including the fairness and the sum-rate. Overall, the above
studies have shown that NOMA can improve fairness and
sum-rate performances compared to OMA; however, they do
not apply NOMA signaling to the DAS.

There have been some studies on NOMA in coordinated
multipoint (CoMP) systems. In [29], NOMA is used in a
coordinated two-point system to support a cell-edge user.
The authors of [30] propose the opportunistic BS selection
scheme for NOMA in a multi-cell CoMP system. While the
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previous studies of [29], [30] focus on using NOMA in the
system where macro BSs cooperate with each other under the
fixed power allocation, this paper considers using NOMA in
the DAS where RRUs (with relatively small power budget)
and the macro BS (with relatively large power budget) coex-
ist. Also, we propose the optimal power allocation rules for
NOMA in the DAS in the cases of CGI and CDI known at the
transmitter.

The authors of [31] propose a hybrid HetNet framework
where small cells employ NOMA and the massive MIMO
is deployed at the macro BS. This is different from our
framework, where the macro BS employs NOMA and dis-
tributed RRUs send cooperation signals for supporting weak
cell-edge users. The power controls for NOMA in HetNets
are proposed in [32], [33]; however, each user is served by
only one BS. This assumption is different from our model
where users could be served by both the macro BS and RRUs.

C. ORGANIZATION AND NOTATIONS
This paper is organized as follows. Section II describes the
system model including a cellular architecture of the DAS,
the channel model, and NOMA signaling. In Section III,
the closed-form expressions of data rates in our system
model are derived. The optimal power allocation rules for
the max-min fairness and the sum-rate maximization prob-
lems are proposed in Section IV and Section V, separately.
Section VI investigates the effects of the imperfect CSI on the
proposed framework and power allocation rules. The numeri-
cal results are shown in Section VII, and finally, Section VIII
concludes the paper.
Notation: X∗ and XT denote conjugate and transpose of

matrix X, respectively. E[·] denotes the expectation and
CN (µ, σ 2) denotes complex Gaussian distribution with mean
µ and variance σ 2.

II. SYSTEM MODEL
This section introduces the cellular architecture of the DAS
and the framework of using NOMA in DAS. In addition,
we describe the two different CSIT cases: 1) instantaneous
CGI known at the transmitter and 2) only CDI known at the
transmitter. The important notations describing the system
model introduced in this section are summarized in Table 1.

A. CELLULAR ARCHITECTURE OF DISTRIBUTED
ANTENNA SYSTEM
Consider a general multi-cell DAS illustrated in Fig. 1, where
each cell includes a macro BS and multiple RRUs. The macro
BS located at the center of the cell covers thewholemacro cell
while RRUs cover their own local areas including the cell-
edge. Note that Fig. 1 shows an example scenario in which
a cell consists of a macro BS and six RRUs and there are
interfering cells around the home cell; however, the number of
RRUs in a cell could depend on various system environments.
Let Pm and Pr denote the power budgets of the macro BS and
each RRU, respectively, and suppose that every RRU has the
identical power budget of Pr . Then, the total power budget

TABLE 1. System parameters.

FIGURE 1. NOMA transmission in multi-cell DAS.

within a cell becomes P = Pm + SPr , where S is the number
of RRUs in each cell. In general, the macro BS has larger
power than RRUs, i.e., Pm > Pr , and we assume that there
are L dominant interfering cells around the home cell.

Within each cell, N users are divided into K clusters, and
M users are grouped for each cluster, i.e., N = MK . We
assume that the total bandwidth B is divided to K subbands
and each cluster is served by using orthogonal subbands for
mitigating the inter-cluster interference. In practical scenar-
ios using NOMA, serving only two or three users in each
subband is reasonable as in [26], because complexity and
error propagation of SIC increase as the number of users
sharing the identical band grows. The 3GPP LTE Advanced
[34] also adopts pairing of two users (or four users optionally)
for NOMA signaling. Accordingly, this paper considers a
practical scenario with M = 2 which indicates N = 2K .
The advanced user pairing methods in [26], [28] can be used
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to form user clusters for NOMA signaling; however, user
pairing is out of scope of this paper.

Within each subband, we suppose that one user is close to
the macro BS (cell-center user) while another one is relatively
far from the macro BS (cell-edge user). For simplicity of
analysis, we consider a single cluster (i.e., two users) in each
cell, but our analysis can be easily extended to a general
multi-cluster scenario when the power budget for each cluster
is sufficiently large. The frequency reuse factor is assumed
to be one, which means that all the cells share the identical
frequency band.

B. CHANNEL MODEL
Let the home cell be the center cell in which our target users
are located described in Fig. 1. The Rayleigh fading channel
from RRU i in cell k to user j in the home cell is denoted as

h(k)i,j =
√
L(k)i,j g

(k)
i,j , where L

(k)
i,j and g(k)i,j are pathloss and fast

fading components, respectively, for all i ∈ {0, 1, · · · , S},
j ∈ {1, 2} and k ∈ {0, 1, · · · }. The macro BS is indexed as
i = 0 and the home cell is indexed as k = 0. Here, the slow
fading component L(k)i,j is modeled as L(k)i,j = 1/[d (k)i,j ]

η,

where d (k)i,j is the distance between RRU i in cell k to user
j in the home cell and η is the pathloss exponent. The fast
fading component follows the complex Gaussian distribution,
i.e., g(k)i,j ∼ CN (0, 1). For simplicity of notation, we drop

the cell index k of the home cell afterwards, i.e., hi,j = h(0)i,j ,

Li,j = L(0)i,j , and gi,j = g(0)i,j .
We consider two CSIT cases: 1) instantaneous CGI and

2) only CDI known at the transmitter [35]. The CGI is
the norm of the instantaneous channel gain, which can
be obtained by using feedback from receivers. Meanwhile,
the CDI is also known as the statistical CSI. In general,
the user who experiences a better signal-to-interference-plus-
noise ratio (SINR) is considered as the strong user, and
another one becomes the weak user. Depending on the CSIT
case, the macro BS determines whether the user is the strong
one or the weak one. In the case of the CGI known at the trans-
mitter, the instantaneous channel gain is used to determine the
strong and the weak users; on the other hand, the expected
channel power becomes a decision factor for determining the
strong user when the CDI is known at the transmitter.

1) INSTANTANEOUS CGI KNOWN AT THE TRANSMITTER
When the transmitter knows the instantaneous CGI, user j′ is
determined as the strong user as follows:

j′ = arg max
j∈{1,2}

|h0,j|2

σ 2
fj + σ

2
n
, (1)

where σ 2
fj denotes the interference power at user j which will

be specified in Section III, and σ 2
n is the noise power. Here,

the strong user does not always imply the cell-center user
because L0,1 < L0,2 is not equivalent to

|h0,1|2

σ 2f1
+σ 2n

<
|h0,2|2

σ 2f2
+σ 2n

due

to the randomness of channel gains and the effect of inter-cell
interference.

2) ONLY CDI KNOWN AT THE TRANSMITTER
In the case of CDI known at the transmitter, the following rule
determines user j′ as the strong user:

j′ = arg max
j∈{1,2}

L0,j
σ 2
fj + σ

2
n
. (2)

Here, the cell-edge user is more vulnerable to inter-cell
interference than the cell-center user so that L0,1 < L0,2
generally implies σ 2

f1
> σ 2

f2
. Therefore, the above rule (2) can

be reduced to j′ = argmaxj∈{1,2} L0,j. Thus, the cell-center
and the cell-edge users always become the strong and the
weak users, respectively.

For both CSIT cases, the weak user always decodes its
signal directly, and the strong user decodes its own data after
performing SIC. From now on, we denote the weak user as
user 1, and the strong user as user 2. We first assume the
perfect channel estimation, and the effects of imperfect CSIT
will be studied in Section VI.

C. NONORTHOGONAL MULTIPLE ACCESS
The single selection scheme, where each user is served by one
RRUor by themacroBSwith the strongest channel condition,
is one of the standard transmission schemes in the DAS [2].
This paper is also based on the single selection scheme; how-
ever, it is different that the macro BS supports both strong and
weak users by using NOMA in our framework. In general,
the macro BS has relatively larger power compared to RRUs,
and it is available to employ NOMA signaling for supporting
both users. Therefore, user 1 simultaneously receives the
NOMA signal from the macro BS and the cooperation signal
from the RRU having the strongest channel condition.

When the CGI is available at the transmitter, the RRU q is
selected to serve user 1 where q = argmaxp∈{1,2...,S}|hp,1|

2.
On the other hand, in the case of CDI known at the transmitter,
the RRU q serves user 1 where q = argmaxp∈{1,2...,S}Lq,1.
Since the single RRU is selected, other RRUs could server
other users with orthogonal bands in a general multi-user
scenario. To summarize, we specify the roles of the macro BS
and the RRU as follows: 1) The macro BS serves both weak
and strong users by using NOMA, and 2) the RRU cooperates
with the macro BS by serving the user in its own coverage as
in the conventional single selection scheme in DAS.

Denote xi,j as the data symbol which is sent from RRU i to
user j at the home cell, for all i ∈ {0, 1, . . . , S}, and j ∈ {1, 2}.
Again, note that themacro BS is indexed as i = 0. Then, when
RRU q in the home cell is selected to serve user 1, the received
signals of users 1 and 2 are given by

r1 = h0,1(
√
P1x0,1 +

√
P2x0,2)+ hq,1

√
Prxq,1 + f1 + n1

(3)

r2 = h0,2(
√
P1x0,1 +

√
P2x0,2)+ hq,2

√
Prxq,1 + f2 + n2

(4)

where rj, fj, nj are the received signal, inter-cell interference,
noise at user j ∈ {1, 2} of the home cell, respectively. The
macro BS allocates power levels of P1 and P2 to users 1 and
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2, respectively, satisfying Pm = P1 + P2. The inter-cell
interference to user j in the home cell is written as

fj =
L∑
k=1

[
h(k)0,j

(√
P(k)1 x(k)0,1 +

√
P(k)2 x(k)0,2︸ ︷︷ ︸

NOMA signals from cell k

)

+ h(k)qk ,j
√
Prx

(k)
qk ,1︸ ︷︷ ︸

RRU signal from cell k

]
(5)

where P(k)1 and P(k)2 are the allocated power levels of the BS
for users in cell k , and x(k)i,j is the symbol transmitted from
cell k . Since the single selection scheme is adopted, only one
RRU from each interfering cell shares the frequency band
with users 1 and 2 of the home cell, and its index is denoted
as qk ∈ {1, 2, . . . , S} in the k-th cell. Suppose thatE[|n1|2] =
E[|n2|2] = σ 2

n and E[|xi,j|2] = 1 for all i ∈ {0, 1, · · · , S} and
j ∈ {1, 2}. User 1 decodes x0,1 and xq,1 directly; on the other
hand, user 2 performs SIC for canceling x0,1 and xq,1 from
the received signal first, and then decodes x0,2. This receiver
process will be explained more clearly in Section III.

III. DATA RATE DERIVATION WITH THE
ALAMOUTI SCHEME
In recent years, many studies applied the Alamouti scheme
to NOMA systems to derive a data rate gain of NOMA as
well as a diversity gain of the Alamouti scheme [29], [36],
[37]. For cooperation of the macro BS and an RRU, we also
adopt the Alamouti scheme and derive the data rate of each
user. We let x0,1(1) = a(1), x0,1(2) = −a∗(2), xq,1(1) = a(2),
xq,1(2) = a∗(1), x0,2(1) = b(1), x0,2(2) = b(2) where xi,j(t)
is the data symbol at time t . The symbols a and b denote the
data symbols for users 1 and 2, respectively.

The Alamouti scheme decodes two received symbols in
consecutive time slots, i.e., r1(1) and r1(2), as follows:

[y1(1) y1(2)]T =

[
h∗0,1
√
P1 hq,1

√
Pr

h∗q,1
√
Pr −h∗0,1

√
P1

]
[r1(1) r∗1 (2)]

T.

Specifically, the decoded symbols of y1(1) and y1(2) are
obtained as

y1(1) = (|h0,1|2P1 + |hq,1|2Pr )a(1)+ |h0,1|2
√
P1P2b(1)

+h∗0,1hq,1
√
P2Prb∗(2)+ h∗0,1

√
P1f1(1)

+hq,1
√
Pr f ∗1 (2)+ ñ1(1) (6)

y1(2) = (|h0,1|2P1 + |hq,1|2Pr )a(2)− |h0,1|2
√
P1P2b∗(2)

+h∗0,1hq,1
√
P2Prb(1)+ h∗q,1

√
Pr f1(1)

−h∗0,1
√
P1f ∗1 (2)+ ñ1(2). (7)

and ñ1(t) ∼ CN (0, (|h0,1|2P1+|hq,1|2Pr )σ 2
n ). In (6), the sig-

nal component is (|h0,1|2P1 + |hq,1|2Pr )a(1) and the remain-
ing components indicate intra-cell interference, inter-cell
interference and noise components respectively, as follows:

ysig1 (1) = (|h0,1|2P1 + |hq,1|2Pr )a(1)

yintra1 (1) = |h0,1|2
√
P1P2b(1)+ h∗0,1hq,1

√
P2Prb∗(2)

yinter1 (1) = h∗0,1
√
P1f1(1)+ hq,1

√
Pr f ∗1 (2)

y1(1) = ysig1 (1)+ yintra1 (1)+ yinter1 (1)+ ñ1(1).

Then, the SINR for decoding user 1’s signal from y1(1) can
be obtained as

SINR1 = E
[

|ysig1 (1)|2

|yintra1 (1)+ yinter1 (1)+ ñ1(1)|2

]
(8)

=
Ea[|y

sig
1 (1)|2]

Eb[|yintra1 (1)|2]+ Efj [|yinter1 (1)|2]+ σ 2
n

(9)

=
(|h0,1|2P1 + |hq,1|2Pr )2

(|h0,1|2P1 + |hq,1|2Pr )(|h0,1|2P2 + σ 2
f1
+ σ 2

n )
(10)

=
|h0,1|2P1 + |hq,1|2Pr
|h0,1|2P2 + σ 2

f1
+ σ 2

n
, (11)

where Ea and Eb indicates the expectation with respect to
data symbols a and b, and Efj is the expectation with respect
to random variables in (5), i.e., h(k)0,j , x

(k)
0,1, x

(k)
0,2, and x

(k)
qk ,1

for

all k . Since h(k)0,j , x
(k)
0,1, x

(k)
0,2, and x

(k)
qk ,1

are independent for all
k , we can compute the expected value of f1(1) by taking
averages of each component in (5) independently; therefore,
the variance of inter-cell interference is obtained by

σ 2
f1 =

L∑
k=1

(
L(k)0,1Pm + L

(k)
qk ,1

Pr
)
. (12)

Note that f1(1) and f1(2) have the same variance of σ 2
f1
.

Similarly, the SINR for decoding user 1’s signal from y1(2)
becomes exactly the same as (11). Accordingly, from both (6)
and (7), the data rate for decoding its own signal at user
1 becomes

Z1 = log2
(
1+
|h0,1|2P1 + |hq,1|2Pr
|h0,1|2P2 + σ 2

f1
+ σ 2

n

)
. (13)

Now we define the channel power to noise ratio as

0i,j =
|hi,j|2

σ 2n
. Then, Z1 can be rewritten as follows:

Z1 = log2
(
1+

00,1P1 + 0q,1Pr
00,1P2 + D1

)
, (14)

where D1 = σ
2
f1
/σ 2

n + 1.
The decoded signals at user 2 are similarly expressed by

[y2(1) y2(2)]T =
[
h∗0,2
√
P1 hq,2

√
Pr

h∗q,2
√
Pr −h∗0,2

√
P1

]
[r2(1) r∗2 (2)]

T,

(15)

and specifically,

y2(1) = (|h0,2|2P1 + |hq,2|2Pr )a(1)+ |h0,2|2
√
P1P2b(1)

+h∗0,2hq,2
√
P2Prb∗(2)+ h∗0,2

√
P1f2(1)

+hq,2
√
Pr f ∗2 (2)+ ñ2(1) (16)

y2(2) = (|h0,2|2P1 + |hq,2|2Pr )a(2)− |h0,2|2
√
P1P2b∗(2)

+h∗0,2hq,2
√
P2Prb(1)+ h∗q,2

√
Pr f2(1)

−h∗0,2
√
P1f ∗2 (2)+ ñ2(2), (17)
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where ñ2(t) ∼ CN (0, (|h0,2|2P1 + |hq,2|2Pr )σ 2
n ). Similar to

σ 2
f1
, inter-cell interference f2 follows the zero-mean complex

Gaussian distribution with the variance

σ 2
f2 =

L∑
k=1

(
L(k)0,2Pm + L

(k)
qj,2

Pr
)
. (18)

From (16) and (17), the data rate for decoding the signal of
user 1 at user 2, becomes

Z2 = log2
(
1+

00,2P1 + 0q,2Pr
00,2P2 + D2

)
, (19)

where D2 = σ 2
f2
/σ 2

n + 1. Since the data symbols for user
1 should be decoded at both user sides, the data rate of the
signal for user 1 can be finally written as

R1 = min(Z1,Z2), (20)

when the instantaneous CGI is known at the transmitter.
Note that in conventional NOMA, Pr = 0; therefore,

Z1 < Z2 is always satisfied so that R1 = Z1. On the other
hand, Z1 < Z2 is not always guaranteed in our framework of
using NOMA in the DAS, because of the cooperation signal
from the RRU; therefore, we have to compare Z1 and Z2
for determining R1 and it also gives an impact on finding
the optimal power allocation. If only CDI is known at the
transmitter, the expected data rates should be considered as
follows: E[R1] = E[min(Z1,Z2)].
After user 2 performs SIC to cancel x0,2 and xq,1 from r2(1)

and r2(2), the desired symbols of user 2, i.e., x0,1, can be
decoded directly. Then, the data rate of user 2 becomes

R2 = log2
(
1+

00,2P2
D2

)
(21)

in the case of the CGI known at the transmitter.With only CDI
at the transmitter, the expected data rate has to be obtained as
E[R2] = E[log2(1+

00,2P2
D2

)].

IV. MAX-MIN FAIRNESS PROBLEM
In this section, the optimal power allocation rule is proposed
for the max-min fairness problem in our framework. The two
different CSIT cases are studied: 1) instantaneous CGI and 2)
only CDI known at the transmitter.

A. CGI KNOWN AT THE TRANSMITTER
Recall that 00,1/D1 < 00,2/D2 from (1) i.e., user 1 and user
2 are denoted as the weak and strong users, respectively. Let
Popt1 be the optimal power allocation for the weak user, and

Pm−P
opt
1 is allocated to the strong user. Themax-min fairness

problem is formulated as

max
P1∈[0,Pm]

min
{
R1(P1),R2(P1)

}
(22)

subject to Z2(P1) ≥ Rsic (23)

whereRsic is the data rate threshold to guarantee the reliability
of SIC operation at user 2.

We first state Lemma 1, and the optimal power allocation
that solves the problem of (22)–(23) can be obtained by using
Lemma 1 as described in Theorem 1.
Lemma 1: R1 is an increasing function of P1, and R2 is a

decreasing function of P1 for P1 ≤ Pm.
Proof: For P1 ≤ Pm, we obtain

∂R2
∂P1
=

1
ln2

−00,2

00,2P2 + D2
< 0, (24)

∂Z1
∂P1
=

1
ln2

00,1

00,1P2 + D1
> 0, (25)

∂Z2
∂P1
=

1
ln2

00,2

00,2P2 + D2
> 0. (26)

Since Z1 and Z2 are increasing functions of P1, the data rate
of user 1, R1 = min(Z1,Z2), is also an increasing function
of P1.
Theorem 1: The optimal power allocation Popt1 for the

max-min fairness problem of (22)–(23) becomes

Popt1 =


P?1, Z2(P?1) ≥ Rsic
Psic1 , Z2(P?1) < Rsic, Psic1 ∈ [0,Pm]
outage, otherwise

(27)

where

P?1 =

{
PR1 , PR1 ∈ [0,Pm]
0, otherwise

(28)

Psic1 =
(2Rsic − 1)(00,2Pm + D2)− 0q,2Pr

2Rsic00,2
(29)

and PR1 = max(PZ1 ,PZ2 ). PZ1 and PZ2 are given in (30)
and (31), respectively, shown at the bottom of the page.

Proof: We first obtain P?1 which is the solution without
the SIC constraint (23). For any P1 ≤ Pm, Z1(Pm) > 0,

Z2 > 0, Z1(−
0q,1
00,1

Pr ) = 0 and Z2(−
0q,2
00,2

Pr ) =

0 are satisfied; therefore, we have R1(Pm) > 0 and
R1
(
max{−0q,1

00,1
Pr ,−

0q,2
00,2

Pr }
)
= 0. Similarly, we also have

R2(Pm) = 0 and lim
P1→−∞

R2(P1) = ∞. It means that R1(P1)

and R2(P1) functions of P1 should intersect each other in
P1 ∈ [0,Pm]. Therefore, according to Lemma 1, min(R1,R2)
is maximized, when R1 = R2 for any P1 ≤ Pm.

PZ1 = Pm −
1

200,100,2
·

{
− [00,1D2 + 00,2D1]+

√
[00,1D2 + 00,2D1]2 + 400,100,2(00,1Pm + 0q,1Pr )D2

}
(30)

PZ2 = Pm −
−D2 +

√
D2
2 + (00,2Pm + 0q,2Pr )D2

00,2
(31)
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Let Z1 = R2 and Z2 = R2 are satisfied when P1 = PZ1
and P1 = PZ2 , respectively. By solving quadratic equations,
the closed-form expressions of PZ1 and PZ2 are obtained as
in (30) and (31), respectively. It can be easily shown that PR1
is an unique solution of R1(P1) = R2(P1) for P1 ≤ Pm.

Note that the optimal solution should be in the range of
[0,Pm], i.e., P

opt
1 ∈ [0,Pm]. First, when PR1 ∈ [0,Pm],

we just have Popt1 = PR1 . Second, if PR1 < 0, according
to Lemma 2, R2(a) ≤ R2(0) ≤ R2(PR1 ) and R1(PR1 ) ≤
R1(0) ≤ R1(a) are satisfied for any a ∈ [0,Pm]. Accordingly,
min(R1(a),R2(a)) ≤ min(R1(0),R2(0)) for any a ∈ [0,Pm]
so that Popt1 = 0. Lastly, the case of PR1 > Pm could not
happen because PZ1 ,PZ2 < Pm from (30) and (31). Thus,
without the SIC constraint of (23), the optimal solution can
be represented as (28).

Now, consider the SIC constraint of (23), i.e., Z2 ≥ Rsic.
Let the solution to Z2 = Rsic asPsic1 , which is obtained as (29).
If Z2(P?1) ≥ Rsic, the optimal solution is still P?1. On the
other hand, if Z2(P?1) < Rsic and Psic1 ∈ [0,Pm], we have
P?1 < Psic1 and Psic1 becomes the optimal power allocation
because max-min(R1,R2) is a decreasing function of P1 for
P1 > P?1. Otherwise, the SIC constraint cannot be satisfied
and the system outage occurs. Thus, the optimum solution
becomes (27).
Remark: Power allocated to user 1 should be at least greater

than or equal to the threshold value of Psic1 to guarantee the
reliability of SIC by satisfying (23). It can be seen from (29)
that Psic1 increases as Rsic grows so that the optimal solution
Popt1 also increases as shown in (27).

B. CDI KNOWN AT THE TRANSMITTER
Recall that L0,1

σ 2f1
+σ 2n

<
L0,2

σ 2f2
+σ 2n

from (2), and we know the order

of distances from the macro BS to users when the CDI is
known at the transmitter. Therefore, the cell-center and the
cell-edge users are considered as the strong and weak users,
respectively. In this scenario, we would like to maximize the
minimum expected data rate among users. Again, let Popt1 be
the optimal power allocation for user 1 (i.e., the weak user).
The max-min fairness problem is then formulated as follows:

max
P1∈[0,Pm]

min
{
E[R1(P1)],E[R2(P1)]

}
(32)

subject to E[Z2(P1)] ≥ Rsic. (33)

After performing SIC, the average data rate of user 1 (i.e.,
strong user) is written asE[R2] = E[log2(1+

00,2P2
D2

)]. Define
Cl(x) as the ergodic capacity of an i.i.d MISO channel with l
transmit antennas given by [42]

Cl(x) =
e1/x

ln2

l−1∑
k=0

Ek+1
(1
x

)
(34)

where En(x) =
∫
∞

1
e−xt
tn dt is an exponential integral. Accord-

ing to [42], the closed-form expression of the expected data
rate for user 2 can be obtained as

E[R2] = C1

( L0,2P2
σ 2
f2
+ σ 2

n

)
. (35)

Similar to (20), the expected data rate of user 1 can be
written as

E[R1] = E[min{Z1,Z2}]. (36)

In the conventional NOMA, the closed-form expression
of (36) can be obtained by introducing a parameter which is
the minimum of the channel gain of users, as in [43]. How-
ever, in this work, the derivation in [43] cannot be directly
applied because of the cooperation signal sent from the RRU.
Instead, we define the upper bound on E[R1], denoted by
E[RUB1 ], as

E[min{Z1,Z2}] ≤ E[RUB1 ] , min
{
E[Z1],E[Z2]

}
. (37)

The expected data rate for detecting the desired signal at
user 1 is obtained by

E[Z1] = E
[
log2

(
1+
|h0,1|2P1 + |hq,1|2Pr
|h0,1|2P2 + σ 2

f1
+ σ 2

n

)]
(38)

= E
[
log2

(
1+
|h0,1|2Pm + |hq,1|2Pr

σ 2
f1
+ σ 2

n

)]
−E

[
log2

(
1+
|h0,1|2P2
σ 2
f1
+ σ 2

n

)]
=

L0,1Pm
L0,1Pm − Lq,1Pr

C1

( L0,1Pm
σ 2
f1
+ σ 2

n

)
− C1

( L0,1P2
σ 2
f1
+ σ 2

n

)
+

Lq,1Pr
Lq,1Pr − L0,1Pm

C1

( Lq,1Pr
σ 2
f1
+ σ 2

n

)
. (39)

Similarly, E[Z2] can be derived as

E[Z2] = E
[
log2(1+

|h0,2|2P1 + |hq,2|2Pr
|h0,2|2P2 + σ 2

f1
+ σ 2

n
)
]

(40)

=
L0,2Pm

L0,2Pm − Lq,2Pr
C1

( L0,2Pm
σ 2
f1
+ σ 2

n

)
− C1

( L0,2P2
σ 2
f1
+ σ 2

n

)
+

Lq,2Pr

Lq,2Pr − L
(2)
0,0Pm

C1

( Lq,2Pr
σ 2
f1
+ σ 2

n

)
(41)

Now, we would like to maximize the upper bound on the
objective function in (32), which is

min
{
E[R1(P1)],E[R2(P1)]

}
≤ min

{
E[RUB1 ],E[R2]

}
. (42)

Denote the power allocation that maximizes the upper
bound of (42) as PUB1 . Although PUB1 is not optimal for the
original max-min problem of (32)–(33), we use this subopti-
mal power allocation in simulation because the closed-form
expression of E[R1] is difficult to obtain; nevertheless,
Section VII shows that the power allocation rule based on
the relaxed problem still achieves a sufficiently large perfor-
mance gain compared to the existing schemes. In order to
obtain PUB1 , we first state the following lemma.
Lemma 2: E[RUB1 ] and E[R1] are increasing functions

of P1. E[R2] is a decreasing function of P1.
Proof: It is already shown that Z1 and Z2 are increasing

functions and R2 is a decreasing function of P1 in the proof
of Lemma 1. The expectation operation does not affect this
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proof; therefore, E[Z1] and E[Z2] are increasing functions
and E[R2] is a decreasing function of P1, which completes
the proofs for E[RUB1 ] and E[R2].
According to Lemma 1, min{Z1,Z2} is an increasing func-

tion of P1. We can rewrite R1(h,P1) = min{Z1,Z2}, where h
is a vector consisting of all channel gains. Let the probability
density function of h be fH(h). Since R1 is an increasing
function of P1, R1(h, y)− R1(h, x) > 0 for any non-negative
y > x. Then, the following inequality is still satisfied:

E[R1(h, y)]− E[R1(h, x)]

=

∫
fH(h)>0

fH(h)[R1(h, y)− R1(h, x)]dh > 0, (43)

which completes the proof for R1.
If the SIC constraint (33) is not considered, according to

Lemma 2, PUB1 is obtained whenE[R2] = min
{
E[Z1],E[Z2]

}
and PUB1 ∈ [0,Pm]. However, a closed-form solution of
E[R2] = min

{
E[Z1],E[Z2]

}
is difficult to obtain due

to the integration operation in E[R2], E[Z1], and E[Z2].
Since E[RUB1 ] is an increasing function and E[R2] is a
decreasing function of P1, the optimal solution PUB1 can be
directly obtained by using a bisection algorithm. Consid-
ering the SIC constraint, the optimal power allocation is
presented in the above Algorithm. Algorithm includes the
case where E[R2] cannot reach E[R1] for any P1 ∈ [0,Pm],
which means that the optimal solution becomes PUB1 = 0.
Finally, the upper bound of the max-min fairness becomes
min{E[RUB1 (PUB1 )],E[R2(PUB1 )]}.
Note that although the bisection search has been generally

used for finding the power allocations in NOMA systems
[10], [46], our Algorithm is the first one which is applied to
NOMA-assisted DASs. The computational complexity of the
bisection search in Algorithm depends on ε which controls
the trade-off between the accuracy and the complexity of
Algorithm. When n iterations are in progress, the difference

Algorithm Bisection Method for the Problem of (32)–(33)
1: Initialize u1 = 0, v1 = Pm, u2 = 0, v2 = Pm
2: while v1 − u1 ≥ ε
3: P1 = v1 + u1/2
4: if E[R1(P1)] < E[R2(P1)] : u1 = P1
5: else v1 = P1
6: end while
7: P?1 = P1
8: while v2 − u2 ≥ ε
9: P1 = v2 + u2/2
10: if E[Z2(P1)] < Rsic : u2 = P1
11: else v2 = P1
12: end while
13: Psic1 = P1
14: if E[Z2(Psic1 )] < Rsic : Outage
15: elseif Psic1 > P?1 : P

UB
1 = Psic1

16: else PUB1 = P?1

between u and v is Pm(0.5)n; therefore, the bisection search
ends when n ≥ log2(Pm/ε).

V. MAX-SUM-RATE PROBLEM
In this section, the sum-rate maximization problem with a
minimum rate constraint and the weighted sum-rate maxi-
mization problem are studied, when the CGI is known at the
transmitter.

A. SUM-RATE MAXIMIZATION WITH A MINIMUM RATE
CONSTRAINT
The sum-rate maximization problem can be formulated as

max
P1∈[0,Pm]

R1(P1)+ R2(P1) (44)

subject to min
{
R1(P1),R2(P1)

}
≥ Rt , (45)

Z2(P1) ≥ Rsic (46)

where Rt is the minimum data rate constraint and Rsic is the
data rate threshold for guaranteeing the reliability of SIC. We
first state the following lemma.
Lemma 3: The sum-rate of R1 + R2 is a non-increasing

function of P1 for P1 ≤ Pm.
Proof: Since 00,1

D1
<

00,2
D2

from (1), we have

∂Z1
∂P1
+
∂R2
∂P1
=

1
ln2

00,1/D1 − 00,2/D2

(00,1D1
P2 + 1)(00,2D2

P2 + 1)
< 0 (47)

∂Z2
∂P1
+
∂R2
∂P1
= 0 (48)

for P1 ≤ Pm. Since Z1 + R2 and Z2 + R2 are both
non-increasing functions of P1, min{Z1,Z2} + R2 is also a
non-increasing function of P1.
The outage event occurs when any user fails to achieve the
minimum data rate. Based on Lemma 3, the following theo-
rem provides the solution of (44)–(46).
Theorem 2: The optimal power allocation for maximizing

the sum-rate with a minimum rate constraint becomes

Popt1 =


P?1, P?1 ∈ [0,Pm],P?1 ≤ PR2
0, P?1 < 0 ≤ PR2
outage, otherwise

(49)

where

PR2 = Pm −
(2Rt − 1)D2

00,2
, (50)

P?1 = max(PZ1 ,PZ2 ,P
sic
1 ), (51)

PZ1 =
(2Rt − 1)(00,1Pm + D1)− 0q,1Pr

2Rt00,1
, (52)

PZ2 =
(2Rt − 1)(00,2Pm + D2)− 0q,2Pr

2Rt00,2
, (53)

and Psic1 is the same as in (29).
Proof: Let the solutions for R2(P1) = Rt , Z1(P1) = Rt

and Z2(P1) = Rt , be PR2 ,PZ1 and PZ2 , respectively. Then,
PR2 ,PZ1 , and PZ2 can be obtained as (50), (52), and (53),
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respectively. From Lemma 1, Z1 and Z2 are increasing func-
tions of P1, and R2 is a decreasing function of P1. Using these
properties, the constraints of (45) and (46) can be converted
as follows:

P1 ≥ PZ1 , P1 ≥ PZ2 , P1 ≤ PR2 , P1 ≥ P
sic
1 . (54)

Therefore, the constraints of (45) and (46) are summarized
as

max(PZ1 ,PZ2 ,P
sic
1 ) = P?1 ≤ P1 ≤ PR2 . (55)

If P?1 > PR2 is satisfied, the outage event occurs. When
P?1 ≤ PR2 , the optimum solution Popt1 can be obtained by con-
sidering 3 cases depending on the value of P?1. The following
three cases describe this step.
Case A:When P?1 ∈ [0,Pm], according to Lemma 3, R1+

R2 is a non-increasing function of P1; therefore, P
opt
1 = P?1

gives the maximum sum-rate.
Case B: When P?1 < 0 ≤ PR2 , the boundary condition

P1 ≥ 0 should be tested. The minimum value of P1 is picked
from the interval of [P?1,PR2 ] ∩ [0,Pm], which is P

opt
1 = 0.

Case C:When P?1 > Pm or PR2 < 0, [P?1,PR2 ]∩ [0,Pm] =
φ; therefore, there is no solution which implies the outage
event.

B. WEIGHTED SUM-RATE MAXIMIZATION
The weighted sum-rate maximization problem is formulated
as

max
P1∈[0,Pm]

w1R1(P1)+ w2R2(P1) (56)

subject to Z2(P1) ≥ Rsic (57)

where w1 and w2 are the weight factors for users’ data rates.
The solution of the above problem can be found by dividing
into the following two cases depending on w1 and w2.
Case A: w1 ≤ w2
In this case, the objective function can be rewritten as

w1R1 +w2R2 = w1(R1 + R2)+ (w2 −w1)R2. Here, R1 + R2
and R2 are non-increasing and decreasing functions of P1,
respectively. Accordingly, the objective function is also a
non-increasing function of P1; therefore, the optimal solution
Popt1 is obtained as

Popt1 =

{
Psic0 , Psic1 ≤ Pm
outage, otherwise

(58)

where Psic0 = max{Psic1 , 0}.
Case B: w1 > w2
In this case, to find the optimal solution, we first obtain

the region of P1 that satisfies Z1 ≤ Z2. Let the solution for
Z1(P1) = Z2(P1) be P1 = PZ . Then, PZ can be obtained as

PZ =
0q,1(00,2Pm + D2)− 0q,2(00,1Pm + D1)
00,2(0q,1Pr + D1)− 00,1(0q,2Pr + D2)

Pr . (59)

From the equations (47) and (48), we can derive ∂Z1
∂P1

< ∂Z2
∂P1

for P1 ≤ Pm. Accordingly, R1 is expressed as

R1(P1) =

{
Z2(P1), P1 < PZ
Z1(P1), P1 ≥ PZ

for P1 ≤ Pm. (60)

Using the above equation, we can derive the following
lemma.
Lemma 4: If w1 > w2, the weighted sum-rate of w1R1 +

w2R2 is an increasing function of P1 for P1 < PZ .
Proof: For P1 < PZ ,

∂(w1R1 + w2R2)
∂P1

= w1
∂Z2
∂P1
+ w2

∂R2
∂P1

= (w1 − w2)
∂Z2
∂P1

> 0. (61)

Sincew1−w2 > 0 and ∂Z2
∂P1

> 0 forP1 ≤ Pm, the derivative
in (61) is always positive, which completes the proof.
If P1 ≥ PZ , the weighted sum-rate becomes w1Z1 + w2R2.
In this case, the objective function is not monotonic, so we
need to find the value that makes the derivative zero. Let PR
be the solution to the following equation,

w1
∂Z1(PR)
∂P1

+ w2
∂R2(PR)
∂P1

= 0. (62)

Then, PR can be derived as

PR = Pm −
w2D1/00,1 − w1D2/00,2

w1 − w2
, (63)

and it gives the following lemma.
Lemma 5: If w1 > w2, w1Z1 + w2R2 is increasing for

P1 ≤ PR and decreasing for PR < P1 ≤ Pm.
Proof: The derivative of w1Z1 + w2R2 is derived as

∂(w1Z1 + w2R2)
∂P1

= −
1

α(P1)
(w1 − w2)(P1 − PR), (64)

where

α(P1) = ln2
(
Pm − P1 +

D1

00,1

)(
Pm − P1 +

D2

00,2

)
, (65)

which is positive for P1 ≤ Pm. Therefore, the derivative is
positive for P1 ≤ PR and negative for PR < P1 ≤ Pm.
Based on Lemma 4 and Lemma 5, the following theorem

provides the optimal power allocation for w1 > w2.
Theorem 3: When w1 is lager than w2, the optimal power

allocation of the weighted sum-rate problem becomes

Popt1 =


P?1, P?1 ∈ [Psic0 ,Pm], P

sic
1 ≤ Pm

Psic0 , P?1 < Psic0 , P
sic
1 ≤ Pm

Pm P?1 > Pm, Psic1 ≤ Pm
outage, Psic1 > Pm,

(66)

where P?1 = max(PZ ,PR).
Proof: From Lemma 4 and Lemma 5, the weighted

sum-rate is increasing for P1 ≤ P?1 and decreasing for P?1 <
P1 ≤ Pm. Thus, the weighted sum-rate is maximized when
P1 = P?1. If the outage event does not occur, i.e., Psic1 ≤
Pm, the constraint of the problem (56) can be converted to
P1 ∈ [Psic0 ,Pm]. Therefore, the optimal power allocation is
obtained as (66).
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VI. POWER ALLOCATION UNDER IMPERFECT CSIT
This section extends the CSI condition to the case of imper-
fect CSI. Here, we assume that the slow fading component Li,j
is known at transmitter but the estimation of the fast fading
gain is not exactly accurate. According to [47], the estimated
channel ĥi,j is modeled by

hi,j = ĥi,j + zi,j =
√
Li,j(ĝi,j + εi,j) (67)

where εi,j ∼ CN (0, σ 2
ε ) is the channel estimation error with

σ 2
ε being its variance, and ĝi,j is the estimated fast fading

component which is uncorrelated with εi,j.
Applying (67) to (3) and (4), the received signals can be

represented as

r1 = ĥ0,1(
√
P1x0,1 +

√
P2x0,2)+ ĥq,1

√
Prxq,1

+z0,1(
√
P1x0,1 +

√
P2x0,2)+ zq,1

√
Prxq,1 + f1 + n1

(68)

r2 = ĥ0,2(
√
P1x0,1 +

√
P2x0,2)+ ĥq,2

√
Prxq,1

+z0,2(
√
P1x0,1 +

√
P2x0,2)+ zq,2

√
Prxq,1 + f2 + n2

(69)

where the third and the fourth terms represent interference
caused by channel estimation errors. Based on (68), the SINR
for decoding user 1’s signal becomes

SINR1 =
|ĥ0,1|2P1 + |ĥq,1|2Pr

|ĥ0,1|2P2 + (L0,1Pm + Lq,1Pr )σ 2
ε + σ

2
f1
+ σ 2

n

.

(70)

The data rate for decoding its own signal at user 1 becomes

Z1 = log2
(
1+

0̂0,1P1 + 0̂q,1Pr
0̂0,1P2 + D̄1

)
, (71)

where 0̂i,j = |ĥi,j|2/σ 2
n and

D̄j =
(L0,jPm + Lq,jPr )σ 2

ε + σ
2
fj

σ 2
n

. (72)

In the similar way, Z2 and R2 can be derived as

Z2 = log2
(
1+

0̂0,2P1 + 0̂q,2Pr
0̂0,2P2 + D̄2

)
(73)

R2 = log2
(
1+

0̂0,2P2
D̄2

)
. (74)

By applying (71)–(74) to Section IV and V, the optimal
power allocation rules maximizing the min-max rate and the
sum-rate can be obtained even with the imperfect CSI.

VII. NUMERICAL RESULTS
This section shows the numerical results of the proposed
power allocation methods for NOMA in DAS. The system
model is based on Fig. 1, where the number of RRUs are
assumed to be S = 6. TheNt -th tier of interfering cells around
the home cell consists of 6Nt interfering cells. We consider

FIGURE 2. The impacts of Nt on minimum rate with CGI.

FIGURE 3. The impacts of Nt on sum-rate with CGI.

the third-tier of interfering cells in simulation, i.e., Nt = 3,
so that the total number of interfering cells is L = 36. The
path loss exponent is η = 2.5 and the cell radius is 200 m. In
Figs. 2 and 3, we can see that the effects ofmore than third-tier
interfering cells on the minimum rate and the sum-rate of the
home cell are very small; therefore Nt = 3 is a reasonable
choice. For simplicity, suppose only one cluster, i.e., K = 1.
In addition, B = 5 MHz, N0 = −90 dBm/Hz, Rsic = 0.5
bps/Hz, Pm = 40 dBm and Pr = 30 dBm are used. For
the general case, the cell-center user is uniformly distributed
within the circle with a normalized radius of 0.3, and the
cell-edge user is uniformly distributed within the ring which
is the region between inner and outer circles whose normal-
ized radii are 0.8 and 1.0. All of the above environments are
assumed in this section unless otherwise noted. We compare
the proposed technique with the following schemes:
• Conventional in DAS: The single selection scheme is
assumed for this comparison technique, which means
that a cell-center user is served by the macro BS and a
cell-edge user is served by the RRUwith the best channel
gain only. In other words, each RRU or the macro BS
serve the users in its own coverage.

• OMA in DAS: Similar to the proposed scheme,
the macro BS serves both the cell-center and the
cell-edge users but OMA signaling is used. As in [44],
a half of the total bandwidth B is allocated to both users.

• Conventional NOMA: The DAS is not considered in
this scheme. The macro BS with power budget of P
serves two users by NOMA with appropriate power
allocations without any RRU. For fair comparisons with
other schemes using DAS, the macro BS of this scheme
has the power budget of P = Pm + SPr .
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A. MAX-MIN FAIRNESS
1) INSTANTANEOUS CGI KNOWN AT THE TRANSMITTER
Fig. 4 shows plots of the minimum rate versus the normalized
distance between the cell-center and the cell-edge user; for
example, when the distance is the same as the cell radius,
the normalized distance becomes one. Here, the cell-center
user is located at normalized distance of 0.15. Recall that
the cell-edge user in this case does not always indicate the
weak user. In Fig. 4, the proposed scheme outperforms all
the comparison techniques. Around 0.67 of the normalized
distance, the peaks of minimum rates of the schemes using
DAS appear because the RRU is 0.67 of the cell radius away
from the macro BS so that the signal from the RRU is the
strongest at this point. However, conventional NOMA does
not have any RRU; therefore, its performance decreases with
the normalized distance of the cell-edge user.We can see from
Fig. 4 that the conventional DAS could be valuable when the
cell-edge user is near to the RRU; however, as the cell-edge
user becomes farther away from the RRU, the cooperation
signal from themacro BSwould be helpful to improve its data
rate which can be seen from performances of the proposed
scheme and OMA in DAS.

In Fig. 5, the minimum rates of comparison schemes are
shown with respect to the total power budget P. Here, the nor-
malized distance from the cell-edge user to the macro BS is
between 0.8 and 1 of the cell radius; therefore, the schemes

FIGURE 4. Minimum rate versus distance of the far user.

FIGURE 5. Minimum rate versus P with CGI.

where both the macro BS and the RRU serve the cell-edge
user are better than conventional DAS and conventional
NOMA. The performance gap between the proposed scheme
andOMA inDAS increases asP grows because the advantage
of using NOMA for helping the cell-edge user rather than
OMA becomes significant with large P. In addition, when
P is sufficiently large, i.e., P ≥ 6 Watts, increasing P does
not give much advantage for max-min fairness because the
inter-cell interference also increases.

The effects of imperfect CSI on the minimum rate are
also shown in Fig. 5. The solid graphs represent the case of
perfect CSI, and the dashed and the dotted graphs indicate
performances obtained with imperfect channel estimation
whose error variances σ 2

ε = 0.001 and σ 2
ε = 0.01, respec-

tively. When the channel estimation error is relatively large,
i.e., σ 2

ε = 0.01, the proposed scheme appears to be more
sensitive to imperfect CSI than other comparison techniques;
however, it still greatly outperforms others, and we can see
that the proposed framework of using NOMA in DAS is quite
robust to imperfect CSI while maintaining its advantages over
existing systems.

2) ONLY CDI KNOWN AT THE TRANSMITTER
The minimum rate versus P when CDI is known at the
transmitter is shown in Fig. 6. The upper bounds of the
proposed scheme and conventional NOMA are derived by
using the closed-form expressions of E[RUB1 ] and E[R2] with
power allocation of PUB1 obtained in Section IV-B. The plots
labeled as lower bound are obtained with power alloca-
tion of PUB1 . Since PUB1 is not the optimal solution of the
max-min problem, it can be viewed as a lower bound of max-
min(E[R1],E[R2]). Overall, the lower bound of the proposed
scheme is much greater than other comparison techniques;
therefore, the advantages of using both NOMA and DAS are
still effective even with CDI at the transmitter only.

FIGURE 6. Minimum rate versus P with CDI.

B. SUM-RATE MAXIMIZATION WITH A
MINIMUM RATE CONSTRAINT
The plots of sum-rates are shown in Figs. 7 and 8. In these
figures, we assume that the sum-rate becomes zero when the
system outage occurs, i.e., min(R1,R2) < Rt . Obviously,
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FIGURE 7. Sum-rate versus Rt .

FIGURE 8. Sum-rate versus P .

as Rt grows, the outage event occurs more frequently and
the sum-rates of all schemes decrease. We also mention that
the proposed scheme has generally low outage probability
which leads better sum-rates than other comparison tech-
niques. Owing to its poor channel conditions, the cell-edge
user would be more likely to experience the outage event
compared to the cell-center user; therefore, the proposed
scheme which greatly helps to improve the data rate of the
cell-edge user provides the best sum-rate performance. Com-
pared to the results of the max-min fairness in Section VII-A,
conventional DAS provides quite comparable sum-rates to
‘OMA in DAS’. The reason is that the cell-center user of
‘OMA in DAS’ achieve very large data rate by employing
all the power budget of the macro BS of ‘OMA in DAS’ for
serving the cell-center user.

In Fig. 8, Rt = 1 bps/Hz is assumed when the impacts of
P are observed. Similar to Fig. 5, the proposed scheme shows
much better sum-rate performances than other comparison
techniques even with the imperfect CSI. The difference is that
the sum-rate performance of conventional DAS is compara-
ble to that of ‘OMA in DAS’, which is consistent with the
results in Fig. 7. In addition, the sum-rate performance of the
proposed scheme appears to be more sensitive to imperfect
CSI compared to Fig. 5. This is because the sum-rate max-
imization problem in (44) has one more constraint of (45),
compared to the max-min fairness problem in (22); therefore,
outage events resulted from imperfect channel estimation
occur more frequently.

C. WEIGHTED SUM-RATE MAXIMIZATION
Figs. 9 and 10 show the plots of the weighted sum-rates,
where w1 + w2 = 2 is assumed. We can see that the pro-
posed scheme outperforms the comparison techniques when
w1 which is a weight factor for the cell-edge user is large,
i.e., w1 ≥ 1.55; however, when w1 < 1.55, the conventional
DAS shows the better weighted sum-rate performances than
the proposed scheme. Asw1 grows, the importance of the data
rate of the cell-edge user becomes more dominant; therefore,
the proposed scheme becomes to provide better performances
than others. On the other hand, whenw1 is small, the data rate
of the cell-center user becomes more dominant, and it leads
‘Conventional DAS’ to achieve the better weighted sum-rate
performance than the proposed scheme because the macro
BS of ‘Conventional DAS’ employs all the power budget
for serving the cell-center user. However, when w1 < 1.55,
the data rate of the cell-edge user is smaller than theminimum
data rate constraint of the sum-rate maximization problem,
i.e., R1 < Rt = 1 bps/Hz; therefore, when Rt is sufficiently
large, w1 has to be larger than 1.55 and the proposed scheme
would be the best solution.

Fig. 10 shows the plots of weighted sum-rates versus P,
where the weights are assumed to be w1 = 1.7, w2 = 0.3.
The results are consistent with Fig. 9, confirming that the
advantages of using both NOMA and DAS are still shown.

FIGURE 9. Weighted sum-rate versus w1.

FIGURE 10. Weighted sum-rate versus P .
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D. COMPOSITE FADING MODEL
Fig. 11 and Fig. 12 show that the proposed framework with
the appropriate power allocation rules can provide the better
minimum data rate and sum-rate compared to other com-
parison techniques even with the assumption of the κ − µ
fading model [48]. By changing the values of κ and µ,
we obtain performances of the proposed scheme and other
comparison techniques. Here, κ means the ratio between the
total power of the dominant components and the total power
of the scattered waves, andµmeans the number of clusters of
multipath.

FIGURE 11. Minimum rate versus P for κ-µ fading channel.

FIGURE 12. Sum-rate versus P for κ-µ fading channel.

In Fig. 11, the minimum rate for each scheme increases
with increasing κ and µ compared to Fig. 5 with (κ, µ) =
(0, 1). This is because larger κ and µ values reduce the
variance of the envelope Var(|h|). The data rate uses the log-
arithmic function which is concave, so the smaller variance
of the envelope, the higher data rate.

In Fig. 12, the proposed scheme and OMA in DAS outper-
form Fig. 8 with lower values of κ and µ. However, other
schemes have similar or lower performances because they
have higher probabilities of the outage event.

E. DISCUSSION
In summary, the proposed framework of using NOMA in
DAS outperforms the comparison techniques, i.e., OMA in

DAS, conventional DAS, and conventional NOMA. Through
numerical results, we verify that a combination of NOMAand
DAS could create significant synergy for improving the user
fairness and sum-rate performance. Especially, as the mini-
mum data rate constraint becomes strict, the advantages of the
proposed scheme increases. In addition, we can see that the
proposed scheme shows significant improvements compared
to existing techniques in both cases of CGI and CDI known
at the transmitter. Finally, the proposed framework of using
NOMA in DAS is also quite robust to the imperfect CSI.

VIII. CONCLUSION
This paper proposes the framework of using NOMA in DAS
for improving data rates of cell-edge users. The key idea
is that the macro BS with the larger power budget than
RRUs serve both the cell-center and the cell-edge users and
one of the RRUs transmits the cooperation signal to the
cell-edge user. We also presents the optimal power allocation
schemes in the proposed framework for the user fairness and
sum-rate maximization problems in both cases of CGI and
CDI known at the transmitter. Even though NOMA and DAS
have been considered to efficiently use the frequency and
spatial resources and to improve the users’ data, simulation
results show that a combination of NOMA and DAS shows
much better user fairness and sum-rate performances than
existing techniques.
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