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ABSTRACT Automatic signal recognition (ASR) plays an important role in various applications such as
dynamic spectrum access and cognitive radio, hence it will be a key enabler for beyond 5G communications.
Recently, many research works have been exploring deep learning (DL) based ASR, where it has been shown
that simple convolutional neural networks (CNN) can outperform expert features based techniques. However,
such works have been primarily focusing on single-carrier signals. With the advent of spectrally efficient
filtered multicarrier waveforms, we propose in this paper, to revisit the DL based ASR to account for the
variety and complexity of these new transmission schemes. Specifically, we design two types of classification
algorithms. The first one relies on the cyclostationarity characteristics of the investigated waveforms com-
bined with a support vector machine (SVM) classifier; while the second one explores the use of a four-layer
CNN which performs both features extraction and classification. The proposed approaches do not require
any a priori knowledge of the received signal parameters, and their performance is evaluated in a multipath
channel through simulations for a signal-to-noise ratio (SNR) ranging from −8 to 20 dB. The simulation
results show that, despite cyclostationary characteristics being highly discriminative, the CNN outperforms
the cyclostationary based classification especially for short time received signals, and low SNR levels.

INDEX TERMS Automatic signal recognition, multicarrier waveforms, classification, deep neural networks,
support vector machines, cyclostationarity.

I. INTRODUCTION
Wireless communication has profoundly changed our soci-
eties, driving us forward from the industrial revolution to
the networked era. It has transformed individuals from pas-
sive consumers to active content creators across many fields.
Such technology has taken on a renewed significance since
2020, due to the COVID-19 pandemic [1]. Whereas social
distancing policies were imposed, universities and businesses
around the globe shifted to using digital solutions to fight
this crisis and provide essential services such as virus spread
monitoring, e-learning and online delivery services. However,
all these crucial applications and many more heavily rely
on reliable, high speed and secure communications, putting
tremendous pressure on wireless systems.

Undeniably, this pandemic is validating the need of
continuous connectivity, which could be achieved through
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flexible design of radio transceivers. In this context, mul-
ticarrier waveforms are great contenders to achieve such a
flexibility, with orthogonal frequency division multiplexing
(OFDM) being the most adopted one in current wireless sys-
tems. Its implementation is straightforward through inverse
fast fourier transform (IFFT)-fast fourier transform (FFT),
and its orthogonality both in time and frequency, allows a
simple per-subcarrier one tap equalization. However, its strict
synchronization needs, and low spectral containment, has led
to the development of multiple candidate waveforms over the
course of the last years. To relax the orthogonality condition,
multicarrier waveforms rely on different design of synthesis
functions. In this work, we focus on two families:

• Per-subcarrier filtered multicarriers: generalized fre-
quency division multiplexing (GFDM) [2], and filter
bank multicarrier (FBMC) [3], [4].

• Per-subband filtered group: universal filtered multicar-
rier (UFMC) [5], [6], and filtered orthogonal frequency
division multiplexing (F-OFDM) [7], [8].
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Performance comparison between the aforementioned wave-
forms has been a hotspot in recent years, as witnessed by
the large publication record [9], [9]–[11]. Moreover, from the
analysis of the waveforms frequency localization and spectral
efficiency, it was established that each multicarrier waveform
is suitable for a different application. Hence these waveforms
are still considered as strong candidates for beyond 5G tech-
nologies [12]–[15].

Furthermore, the flexibility of transceivers can be achieved
at the receiver side through automatic signal recognition
(ASR). Traditionally, this function was mostly used with
single-carrier signals and OFDM, and was adopted for
both civilian and military applications to achieve auto-
matic receiver configuration, interference mitigation, anti-
jamming [16], spectrum monitoring, and primary user
identification. Commonly, ASR has been subdivided into
subcategories then studied separately [17]. These categories
include, but are not limited to, automatic modulation clas-
sification (AMC) which aims at classifying the modulation
scheme, and wireless technology recognition (WTR) which
targets the more general task of identifying concurrent tech-
nologies. Either way, ASR has been dominantly achieved
based on signal processing techniques, often times paired
with machine learning (ML) classifiers [17]. These tech-
niques comprise likelihood-based (LB) approaches, which
considered optimal classifiers but at the expense of high com-
putational complexity, and feature-based (FB) ones which
are sub-optimal classifiers- widely investigated due to their
lower complexity. For instance, the authors in [18] developed
an algorithm to discriminate OFDM against single-carrier
signals, using higher order cyclic cumulants (CC) under gen-
eral conditions, including time dispersive channels and addi-
tive white Gaussian noise (AWGN). In [19], Spooner et al.
designed a signal-processing system which blindly classifies,
then estimates the parameters of several modulation schemes
using the spectral correlation function (SCF) and higher-
order CC paired to an unsupervised clustering algorithm for
constellation-size estimation. Cyclostationarity based classi-
fiers offer superior performance at very low signal-to-noise-
ratio (SNR), but require high number of samples. A wavelet
transform (WT) based higher-order statistical moments and
a feed-forward artificial neural network (ANN) was adopted
in [20] for modulation recognition. In [21], the authors pro-
posed a classification method based on the fourth and sixth
order cumulants paired with a support vector machine (SVM)
classifier, performing good results at SNR = 5 dB. In [22],
a WTR algorithm was developed based on the received sig-
nal strength indicator (RSSI) to differentiate technologies
such as Wi-Fi, long term evolution (LTE) and digital video
broadcasting-terrestrial (DVB-T).

Driven by the complexity of feature extraction, especially
given the diversity and heterogeneity of today’s wireless
technologies, a new paradigm based on deep learning (DL)
techniques has been adopted in the last few years for ASR.
In [23], O’Shea et al, introduced the novel idea of directly
using the raw time domain in-phase and quadrature (I/Q) data

combined with deep convolutional neural network (CNN) to
avoid crafting expert features. The authors showed promis-
ing results for single-carrier modulation classification, out-
performing traditional AMC methods. Following the same
direction, while using the dataset called RML2016.10b [24],
the authors in [16] proposed a CNN based AMC model,
where a long symbol-rate observation sequence alongside
an estimated SNR are used as training data, and a trans-
fer learning method was introduced to improve the effi-
ciency of retraining. In [25], the authors presented a generic
methodology to easily design and implement DL based wire-
less signal classifiers, which was validated using the same
RML2016.10b dataset. This leads to the conclusion that most
of the new research efforts using DL techniques focus on
single-carrier waveforms.

With the advent of the filtered multicarrier waveforms, it is
of a prime importance to revisit DL-based ASR to account
for the variety and complexity of these novel transmission
mechanisms. Being relatively new waveforms, few works
were reported in the direction of classifying the novel OFDM
variants using DL models. To the best of the author’s knowl-
edge, the work in [26] was the first to apply neural net-
works for the classification of three of these new waveforms,
namely UFMC, FBMC and OFDM. Based on a 7-layer CNN,
the authors successfully classified the investigated signals,
using amplitude data instead of I/Q, and improved the CNN
performance through the use of principal component analysis
(PCA). Therefore, the purpose of the present work is to
extend the range of the investigated multicarrier waveforms,
to account for the two main aforementioned filtered multicar-
rier families, while providing the following contributions:

• A novel cyclostationary features and SVM based wave-
forms classifier. Indeed, this is the first work that con-
siders CC paired to ML techniques to classify the
non-orthogonal multicarrier waveforms.

• ACNNbased classifier, where the features are implicitly
learned by the model from the I/Q input data.

• Both models are evaluated taking into consideration
AWGN and multipaths fading channels.

The remainder of this paper is organized as follows.
Section II introduces the signal models used herein.
Section III details the proposed classification models.
In Section IV the simulation environment is presented and
results are discussed. Lastly, Section V concludes this work
and sets future perspectives.
Notations:1f stands for the subcarrier spacing, for a total

number of subcarriers Nc. We consider critically-sampled
discrete-time signal, where the sampling frequency is fs =
1
Ts
= Nc1f . The notation (nTs) , [n] is adopted, where n

stands for time index. Time domain transmitted signals are
denoted x(·), while y(·) represents their received counterparts.
N is the multicarrier symbol spacing in time. (.)o subscript,
denotes OFDM signal models. (.)g refers to GFDM signals,
while (.)f is used for FBMC. UFMC signals are presented
as (.)u, finally (.)fo stands for F-OFDM. d(.)c indicates the
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nearest integer function. ∗ is the linear convolution. Vectors
are denoted by lowercase bold letters. ˜(.) is used to express
the estimated value of (.).

II. SIGNAL MODEL
In a multicarrier transmission system, the transmitted signal
can be represented by [9], [27]:

x [n] =
∞∑

r=−∞

Nc−1∑
q=0

sq,rgq,r [n] , (1)

where sq,r denotes the transmitted data symbol on the q-th
subcarrier during the r-th period. Without loss of generality,
we consider the data symbols to be zero-mean independent
and identically distributed (i.i.d) random variables, drawn
from a quadrature amplitude modulation (QAM) constella-
tion. gq,r [n] is the synthesis function which maps the data
symbol to the waveform, and is given by:

gq,r [n] = gtx [n-rN] e
j 2πqnNc , (2)

with gtx[n] is the transmit prototype filter, which corresponds
to a distribution of the symbol energy in frequency, time,
or any other domain [9]. This definition of the synthesis
function as given in (2) is also referred to as a Gabor Sys-
tem [9]. It implies that a single pulse shape is considered as a
prototype and all others are shifted and modulated copies of
this shape.

Considering propagation through a multipath channel,
the signal is given by [27]:

rch [n] = x[n] ∗ h[n] =
Lch−1∑
j=0

h[ηj]e
−j2π fdjnx[n− ηj], (3)

where ηj represents a discrete propagation delay. Lch denotes
the number of multipaths, and h[ηj] is the time varying chan-
nel gain associated to the l-th path. fdj = fc

vd
c represents the

motion induced-frequency shift, also known as the Doppler
shift, where c is the speed of light and vq is the relative speed
between the transmitter and receiver.

Finally, we consider two impairments at the receiver: The
symbol time offset δ, reflecting the unknown time of arrival
of the signal, and the carrier frequency offset κ due to inaccu-
racy between transmitter and receiver oscillators. Hence the
received signal can be expressed as:

y [n] = ej
2πnκ
Nc rch[n+ δ]+ z[n], (4)

where z [n] is an additive Gaussian noise with variance σ 2
z .

It is well known from the Balian-low theorem (BLT) that
there exists no prototype gtx[n] that achieves orthogonality,
and which is well localized both in time and frequency, and
achieves critical density [9], [28], [29]. Therefore, it has been
common practice to deal with the limit of BLT by relaxing one
of the three conditions.

Conventional OFDM is the special case where the
frequency-localization has been relaxed. It is orthogonal,
and achieves critical density. However its rectangular pulse

shape, leads to a sinc-transfer function with very high
out of band (OOB) emissions. In the presence of multipath
channels, the multicarrier symbols overlap at the receiver
introducing inter symbol interference (ISI). To address this
problem, OFDM extends the symbol duration using a
cyclic prefix (CP) of length Ncp > max(ηj). Hence,
the received OFDM signal can be expressed as:

yo [n] = ej
2πnκ
Nc

∞∑
r=−∞

Nc−1∑
q=0

Lch−1∑
j=0

sq,rh[ηj]

e−j2π fdj (n+δ)ej
2πq(n−ηj−rNo+δ)

Nc + z[n], (5)

where No = Nc + Ncp is the OFDM symbol length.

A. UFMC AND F-OFDM SIGNALS
Motivated by the concept of resource block (RB) introduced
in LTE system, UFMC subdivides the total bandwidth intoNc
subcarriers, then groups them into S subbands, with Q sub-
carriers each [5], [30]. Each subband is filtered by a shifted
version of the prototype filter g[n], of length L. The centered

filter is denoted by gQ [n] = g [n] ej
2πQ/2n
Nc [31]. Considering

propagation through a multipath channel, the discrete-time
baseband received UFMC signal can be expressed as follows:

yu [n] = ej
2πnκ
Nc

S−1∑
s=0

+∞∑
r=−∞

Q−1∑
q=0

Lch−1∑
j=0

L−1∑
l=0

ss,q,r

h[ηj]e
−j2π fdj (n+δ)gQ

[
n− l − ηj − rNu + δ

]
ej

2πql
Nc ej

2π (S0+sQ)(n−ηj−rNu+δ)
Nc + z[n], (6)

where ss,q,r are the complex symbols transmitted on the
q-th subcarrier in the s-th subband during the r-th period.
S0 stands for the starting frequency of the lowest subband.

ej
2π(S0+sQ)n

Nc performs frequency shifting of both the data and
filter coefficients to the appropriate subband.

A CP-variant of subband filtered technique
namely F-OFDM, has also been proposed in [7], [32]. This
waveform has the same signal model as UFMC but uses
much longer filters of the order of half symbol duration to
process the subband. It offers better spectral containment
at the expense of ISI due to the filter tail. Both UFMC
and F-OFDM are categorized as subband filtered multicarrier
(SFMC) techniques.

B. FBMC SIGNAL
To address the lack of spectral containment of OFDM, FBMC
focuses on improving the frequency localization using a pro-
totype filter that spans over K multicarrier symbols in the
time domain. The Martin-Bellanger-Mirabbasi [33]–[35] is
such a filter that has been widely investigated in the recent
years. It was adopted in the European project, Physical layer
for dynamic access (PHYDYAS) [3], hence it is commonly
referred to as the PHYDYAS filter. It offers very low OOB
leakage at the expense of complex orthogonality. Indeed,
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the chosen filter causes self-interference between subcar-
riers as well as between multicarrier symbols. To address
this drawback, FBMC restores orthogonality in real-plane by
mean of Offset Quadrature Amplitude Modulation (OQAM)
operation. The QAM data symbols of the q-th subcarrier are
converted to OQAM as explained in (7):

for q even

{
uq,r ′ = <(sq,r )
uq,r ′+1 = =(sq,r )j

,

for q odd

{
uq,r ′ = =(sq,r )j
uq,r ′ = <(sq,r )

, (7)

where <(sq,r ) and =(sq,r ) represent the real and imaginary
parts of sq,r respectively, and r ′ = 2r . The real and imaginary
parts of the complex data symbol are transmitted with a half
symbol time delay Nc

2 . Defining sRq,r = <(sq,r ) and s
I
q,r =

=(sq,r ), the received signal can be expressed as follows:

yf [n]

= ej
2πnκ
Nc

∞∑
r=−∞

Nc−1∑
q=0

Lch−1∑
j=0

jq(−1)rsRq,rh
[
ηj
]

e−j2π fdj (n+δ)g
[
n− rNc − ηj + δ

]
ej2πq

(n−rNc−ηj+δ)
Nc

+ ej
2πnκ
Nc j

∞∑
r=−∞

Nc−1∑
q=0

Lch−1∑
j=0

jq(−1)rsIq,rh
[
ηj
]
e−j2π fdj (n+δ)

g
[
n− rNc −

Nc
2
− ηj + δ

]
ej2πq

(n−rNc−
Nc
2 −ηj+δ)

Nc + z[n]. (8)

C. GFDM SIGNAL
GFDM belongs to the same category as FBMC as it
applies a per-subcarrier filtering. GFDM introduces the con-
cept of subsymbols since each subcarrier caries, not only
one, but M -QAM data symbols. To avoid the long filters
of FBMC, GFDM applies circular pulse shaping of the
individual subcarriers [2], which keeps the symbol’s length
unchanged before and after filtering. The received GFDM
signal can be given by (9):

yg [n] = ej
2πnκ
Nc

∞∑
r=−∞

Nc−1∑
q=0

M−1∑
k=0

sq,k,r

Lch−1∑
j=0

h[ηj]e
−j2π fdj (n+δ)gD

[
n− kNc − ηj − rNg + δ

]
ej

2πq(n−ηj−rNg+δ)
Nc + z[n], (9)

where Ng = MNc + Ncp, and sq,k,r is the data symbol
transmitted on the q-th subcarrier and k-th subsymbol during
the r-th period [27]. The complex exponential applies the
shifting of the prototype filter g [n] in the frequency domain.
gD [n] = g [n mod D] performs the circular shifting in time
(D = NcM ) [36].Mainly three filters are used for GFDM, the
root raised cosine (RRC) filter, the raised cosine (RC) and the
Xia filter.

The different filtering approaches adopted in the inves-
tigated waveforms, result in different power densities and

spectral efficiencies [9]–[11], as well as different statistical
features which can be used to classify these signals.

III. PROPOSED CLASSIFICATION MODELS
In this section, we present the different waveform classifi-
cation models adopted in this paper. They fall in the scope
of supervised learning, where the goal is to learn a map-
ping between input and output spaces, for a set of inputs
U = {u1, . . . , um} associated to a set of known outputs
V = {v1, . . . , vm}. Note that m stands for the number of
available training examples. Generally speaking, in super-
vised learning, the available labeled data are split into a
training set D and a testing set. Using the samples in the
training set, the learning algorithm infers a predictor [37],
which can then be used to predict the labels of newly acquired
instances, such as the ones in the testing set. The latter
are indeed used to evaluate the performance of the learned
model.

Since the task of waveform identification aims at inferring
discrete outputs, it can be treated as a multi-classification
problem, where the input is the received complex
discrete-time signals and the output is the transmitted wave-
form. Several ML algorithms can then be used to this end,
such as the K-nearest neighbors (K-NN), decision trees, SVM
and ANN. We focus on the last two ones as they have been
extensively used for modulation recognition in single-carrier
signals [19], [23], [38]–[40]. They both show comparable
performance with the appropriate choice of their parameters.
Most importantly, they can both learn non-linear functions
-though with different approaches- which is relevant for
multicarrier signals classification.

We extend the idea presented in [23] and explore the use of
raw I/Q data for multicarrier waveforms with deep CNN, then
compare it to a novel cyclostationary and SVM based classi-
fication routine as depicted in Fig. 1. Multicarrier signals are
more complex compared to single-carriers, hence comparing
the performance of implicitly learned features to hand crafted
ones is interesting.

A. SUPPORT VECTOR MACHINES MODEL
SVMs classify the data by identifying the hyperplane which
best separates one class from the others. The data instances
closest to the hyperplane are called support vectors while
their distance to the line is referred to as the margin [41].
The main goal of SVM then is to maximize this distance
to ensure that the separation between classes is as wide as
possible. SVM is different than ANN in that it does not
suffer from the multilocal minima, hence it avoids overfit-
ting [41]. Furthermore, it is a sparse technique; in fact, once
the support vectors are identified, SVM relies only on this
subset of the training data for future prediction. Kernels are
adopted in practice to implement the SVM algorithm. They
are used to transform the input space into higher dimen-
sions, where the different classes can be linearly separable,
thus reducing the complexity of the training. Common types
of kernels include linear, polynomial and radial functions.
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FIGURE 1. System model.

More formally, SVM aims at minimizing the objective func-
tion J such that [41]:

minθ,ξ J (θ, b, ξ ) =
1
2
θT θ + λ

m∑
i=1

ξi

subject to vi(θTφ(ui)+ b) > 1− ξi
and ξi > 0 ∀i, (10)

where θ is a weight vector, b is a bias, λ is a regularization
term, and ξi are slack variables. φ(u) is a transform function,
such that the kernel can be written as K (ui, uj) = φ(ui).φ(uj).
Note that (10) is the Soft-Margin primal form of the SVM,
where slack variables are introduced to allow the model to
misclassify few points when the data are not completely sep-
arable [41]. The learned parameters that solve this problem
determine the final classifier ui→ sign(θTφ(ui)− b), where
sign(.) is the sign function.

Finally, SVMwas initially introduced for binary classifica-
tion problems; the simplest and most common way to extend
it for multiclass problems is by implementing the one versus
rest technique [41], where C binary SVMs will be trained
independently to distinguish one class from all the others, C
denoting the number of classes. In this paper, we use SVM in
combination to manually extracted domain-specific features.

Proposed expert features vector:
One of the most distinctive features of communication sig-

nals is cyclostationarity. In fact modulated signals are often
coupled with coding, pulse shaping, cyclic prefixes which
leads to a built-in periodicity. Analysis of this property falls
in the scope of cyclostationary signal processing, which has
been extensively investigated in a wide variety of applica-
tions [42], [43]. A signal is wide sense cyclostationary of
order m if its statistics of order m, are periodic functions
of time. Such periodicity can be analyzed using Fourier
series [27], [30], [43].

The cyclostationarity characteristics of multicarrier sig-
nals are relatively less explored compared to single-carrier
ones. OFDM cyclostationarity is the one that has been widely
studied and used for classification purposes. The m-th order
cyclic cumulant of the subcarrier filtered family (GFDM
and FBMC) has been recently reported in [27], while those
of the subband filtered one (UFMC and F-OFDM) were
published in [44]. In this paper, the 2nd order, one conjugate
cumulant, also known as the non-conjugate cyclic autocorre-
lation function (CAF) is used as it is sufficient to discrimi-
nate between the investigated waveforms [45]. Furthermore,

TABLE 1. Summary of cyclostationary properties of filtered multicarrier
waveforms.

we define a reduced dimension version of CAF, separated
into ‘‘α-profile’’ and ‘‘τ -profile’’ as depicted in Fig. 2 and
Fig. 3. Note that the parameters used for these figures are the
same ones reported in the simulation section in Table 3, for
100 symbols. As can be noticed, each waveform has a unique
α and τ profile. First of all, for OFDM and the subband
filtered family, the cyclic frequencys (CFs) are inversely pro-
portional to the multicarrier symbol spacing, that is α = r

N ,
r ∈ Z as shown in Fig. 2a, 2b. and 2c. OFDM exhibits
cyclostationarity only at lag values proportional to the useful
time of the multicarrier symbol, τ = Nc, due to the use of CP,
such behavior is depicted in Fig. 3a. Additionally, as one can
notice in Fig. 3c, this property holds also for F-OFDM. Other
signatures arise in lags proportional to Nc

Q due to the subband
filtering for UFMC and F-OFDM [44].

FBMC α-profile and τ -profile are presented in Fig. 2d
and Fig. 3d respectively, its non-conjugate CAF exists only
for lag τ = 0, and CF proportional to the inverse of Nc

2 .
Finally, GFDM CFs are defined as r

Ng
, at delay zero due to

the circular filtering, and at delay τ = MNc due to the CP
insertion, where r is modeled as r = (M + ε), such that
ε = d

Ncp
Nc c for τ = 0, and r ∈ Z for the others [27].

A graphical representation of these properties is shown is
Fig. 2e and Fig. 3e. Spectrum lines may however exist in
some delays τ = ±a Nc, if the prototype filter is not ISI
free [46], which is not the case for the RRC filter investigated
in this paper. Finally, Table 1 summarizes the cyclostationary
features of the investigated signals.
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TABLE 2. Activation functions.

Since the CAF is mostly zero for non-CFs, we blindly
construct a features vector comprising only of non-zero CAF
values related to valid CFs and delays for each waveform.
To this end, C̃α2,1(τ ), is first computed using the following
consistent estimator [47]:

C̃αx (τ )(2,1) =
1
Ns

Ns∑
k=1

x[k]x∗[k + d]e−j2παk , (11)

where Ns denotes the total number of used samples. It is
defined for a discrete CF domain [− 1

2 ,
1
2 ), where the reso-

lution is 1α = 1
Ns
.

We propose to perform lags estimation at CF zero. The
magnitude of the CAF, C̃0

2,1(τ ) of the received discrete time
signal is calculated over a range of positive delay values
Vτ = [0 : 1τ : dmax]. In the current version of the
proposed approach, the delay resolution 1τ and maximum
dmax , are chosen to cover the possible peaks in the magnitude
of the CAF, of the considered waveforms. The delay value
τcandidate ∈ Vτ , is tested using the cyclostationarity algorithm
proposed in [47], applied to check whether α = 0 is indeed
a CF at this delay. If the test succeeded, τcandidate is added to
the delays vector τ̃ . If no delay is recovered then the signal
cannot be recognized.

Once τ̃ is defined, a vector of CFs is formed for each
detected delay. Knowing that the CFs domain is symmetric,
we limit the search set to its positive part [0, 12 ). We use
the conventional cyclostationarity test to check whether the
estimated α̃ is indeed a CF of the received signal at the
investigated delay from τ̃ . Let I be the estimation interval.
The estimated CF, α̃, can be expressed as [30], [48]:

α̃ = argmax
α∈I

(|C̃α2,1(0)|
2). (12)

Once a CF passes the test, it is removed, and the search
is repeated until we construct a vector with nc CFs for each
delay.

B. CONVOLUTIONAL DEEP NEURAL NETWORKS MODEL
The core building block of any ANN is an artificial neuron,
which is a simple computational unit that processes weighted
inputs and produces an output using an activation function.
Table 2 presents the activation functions used in this paper.
A deep neural network (DNN) is an ANN with multiple
hidden layers,NL , between the input layer and the output one.

In a traditional flat feedforward ANN, each hidden layer is
made up of nl neurons, each of which is fully connected to all
neurons in the previous layer, while being independent from
the ones in the same layer [49]. As its name suggests, this
type of ANN requires the flattening of the training data into a

1-D vector. For images, the flattening of the pixels loses all of
the spatial structure, and the full connectivity leads to a very
high number of weights in larger images [50]. To circumvent
these limitations, convolutional ANN re-arrange the neurons
in 3 dimensions, then connect each neuron to only a local
region of the input volume, hence preserving the spatial rela-
tionship between the input data while reducing the number of
learnable parameters [49].

Communication signals are complex valued, thus, reshap-
ing them from 1-D complex vectors, to 2-D I/Q vectors - to
simulate an image- allows the use of the advances in CNN
to extract features and perform the classification task directly
from the raw received signals [24].

A CNN is made up of three types of layers, convolutional
layer, pooling and fully connected [49]. The convolutional
layer allows the extraction of a filter map from its input
using filters, essentially the neurons of this layer. Pooling
layers can be periodically inserted to reduce the spatial size
of the representation and the number of parameters, hence
allowing to control overfitting. This layer has no parameters
to learn, and is used to compress or generalize feature repre-
sentations. Finally, fully connected layers are used at the end
of the network to create final nonlinear combinations of the
learned features and to output probabilities of class predic-
tions through the use of nonlinear activation functions. As the
name implies, each neuron in this layer will be connected
to all neurons in the previous one. Mathematically speaking,
the convolutional layer can be represented by [16]:

uli = g(
nl−1∑
j=1

ul−1j ∗ k li,j + b
l
i), (13)

where l = 1 . . .NL is the layer index, k li,j are the convolution
kernels or filter weights of the l-th layer and b is a bias. The
filter map is in fact, the output of the kernels applied to the
previous layer [50]. The pooling layer- which is optional and
not adopted in the DNN architecture of the present work-
reduces the dimensionality of its input vector according to
the following equation [16]:

ul+1i = down(uli), (14)

where down(.) is a sub-sampling function computing max-
imum, average value, or L2-norm of its input vector [40].
Finally, the fully connected layer, or dense layer, is described
as:

U l
= g(θ lU l−1

+ bl), (15)

where θ is the weight matrix and b is a bias vector. The con-
volutional and pooling layers can be viewed as the features
extracting part of the DNN while the fully connected ones as
the classifier. The overall DNN can be represented as follows:

V = G(U ,2), (16)

where 2 are the entire network parameters and G is the
overall learned function. Typically, a DNN does not learn
perfect weights since there are too many unknowns. Instead,
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FIGURE 2. Cyclic frequency profile of the investigated waveforms.

FIGURE 3. Lag profile of the investigated waveforms.

the problem of learning is seen as an optimization problem
where an algorithm is used to navigate the space of possible
sets of weights to minimize a loss function. To achieve this
goal, DNN is typically trained using the popular stochastic
gradient descent algorithm, which starts with some random
initial weight values2 = 20 [40], then seeks to update them
while reducing the gradient of the error, such that:

2t+1 = 2t + η∇J (2t ), (17)

where η > 0 denotes the learning rate,∇ is the gradient oper-
ator, and J (.) is the loss function (the objective function [51]).
In this paper, we adopt the categorical cross-entropy [16],
[40] loss function. In addition, the Adam optimization algo-
rithm [52] is adopted instead of the classical stochastic

gradient descent described in (17), where the learning rate
η is not fixed, rather it is dynamically adapted to improve the
convergence.

The convolutional DNN architecture of the network used in
this paper is depicted in Fig. 4. It is inspired from the model
used in [23], where the depth of the network is maintained
to 4-layer in total, and divided in two convolutional layers
and two dense fully connected ones, all using a ReLu activa-
tion function, except the last one where a SoftMax transfer
function is adopted to output probabilities of class values
directly. However, we change the number of filters, adopting
128 filters of length 1 × 3 in the first layer, followed by
80 filters of the same length in the second, while the dense
layer is of length 128 neurons, then finally 5-classes neurons
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FIGURE 4. Deep neural networks architecture.

in the output one. After each one of the three first layers
(2 Conv and one Dense) a dropout is used with a rate of
dr = 0.5, to prevent overfitting. Learning is performed using
the mini-batch gradient descent, where the training dataset is
split into smaller batches used to calculate themodel error and
update its coefficients. This training procedure is repeated
a number of times, referred to as number of epochs, until
the total error of the model has been sufficiently minimized.
In this paper, an early stoppingmethod is used to stop training
once the loss function of the model stops improving on a
validation dataset, to avoid overfitting.

IV. METHODOLOGY, RESULTS, AND DISCUSSIONS
A. SIMULATION DETAILS
In this section, the performance of the proposed classification
algorithms is analysed through numerical simulations. The
investigated waveforms are generated using the parameters
summarized in Table 3. We set the number of subcarriers to
Nc = 16 for all the waveforms, except GFDM, for which
Nc = 8, to generate signals with the samemulticarrier symbol
length. The cyclic prefix duration is set to Nc

4 which is larger
than the maximum channel delay. We opt for the prototype
filters proposed in literature, namely the Phydyas [3], [33],
[35] for FBMC with an overlapping factor K = 2, the trun-
cated sinc [7], [8] for F-OFDMwhere the filter length is set to
Nc
2 , the Chebyshev [5] for UFMC, and RRC for GFDM with
a roll-off factor β = 0.35. The transmitted data symbols are
from a quadrature phase shift keying (QPSK) constellation,
and all signals have been normalized to have a unit power.
We generate an overall database comprising of signals with
Nsymbols = 100, for an SNR ranging from −8 to 20 dB with
an interval of 2 dB, with a number of examples equal to
5000 for each SNR. In order to simulate the impact of the
multipath channel, we use the well known profile of the LTE
channel model. More precisely, the extended typical urban

TABLE 3. Simulation parameters.

model (ETU) [53] is adopted. All signals are generated using
Matlab, while the training is performed in Python, using
Keras library with TensorFlow backend.

The confusion matrix is one of the most intuitive ways
to visualise the results of a classification algorithm. In this
research work, the simulation is performed for an SNR rang-
ing from −8 to 20 dB, meaning that we have several confu-
sion matrices to analyze. In this case other measures based on
the confusion matrix can be used to assess the performance
of the classification routines, such as the model’s accuracy.
A multi-class classification can be understood as a binary
classification, where the class of interest c is positive, and all
other classes are negative. A correct recognition for a class c
is simply a True Positive (tpc), while the correct recognition
of all the other classes (c excluded) is a True Negative (tnc).
All other classes incorrectly declared as the class of interest c
is a False Positive (fpc), while the class c incorrectly predicted
as any other class is a False Negative (fnc). Using these four
definitions, we can define the Average Accuracy as:

A =
1
C

∑C
c=1 tpc + tnc

tpc + tnc + fpc + fnc
. (18)

It will be used to evaluate the overall effectiveness of the
proposed classifiers, alongside the cross-entropy loss.

B. RESULTS AND DISCUSSIONS
In the 5G-New Radio (NR) configurations [54], the con-
cept of subslot was introduced, where 2, 4 or 7 multicarrier
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FIGURE 5. Learning curves of the proposed CNN, with 128 samples.

FIGURE 6. Confusion matrices of the proposed CNN, with 128 samples.
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FIGURE 7. Per class accuracy for 128 samples.

symbols can be transmitted. We start by assessing the
performance of the proposed algorithms using the smallest
configuration, that is 2 multicarrier symbols. In our dataset,
the smallest symbols are UFMC and OFDM with Nu =
No = 20 samples each, while the longest is FBMC with
Nf = 40 samples, whereas Ng = 24 and Nfo = 28.
We evaluate the CNN architecture using Ns = 64 which
captures at least 2 symbols of all the investigated wave-
forms except FBMC. Using half of the available examples
(2500 examples per SNR), where 80% of the data is used
for training and 20% for validation and testing, we reach a
total accuracy of 0.92 across all SNR values, for roughly
7 minutes training. Notice that we use a vector of Ns =
64 for the I/Q data, per example, per waveform, per SNR.
In a second configuration, we double the number of samples
to capture multicarrier signals of length 128 (separated again
into 128 I, and 128 Q, per example, per waveform, per SNR).
Such configuration reaches an overall accuracy of 0.94 for
approximately 16 minutes training. Fig. 5 displays the learn-
ing curve of the proposed CNN architecture, monitoring both
the accuracy and the categorical-entropy loss on the training
and validation sets respectively. These figures show a good
fit. Notice that we set the total number of epochs to 100,
but using the early stopping method, the learning ends at
60 epochs since continued training of a good fit will likely
lead to an overfit.

Fig. 6 presents different confusion matrices for different
SNR values. An interesting behavior of the CNN for the
lowest SNR case in our dataset, that is SNR= −8 dB,
is the ability of the classifier to recognize GFDM with very
high accuracy. Our intuition behind this behavior, is that
this particular waveform exhibits very rich statistical features
due to its subsymbols concept and circular filtering (as it
was demonstrated with cyclostationarity [27]) rendering its
recognition more accurate even with very small number of
multicarrier symbols and with low SNR values. The clas-
sification performance increases for high SNR values, and
reaches a total accuracy of 0.99 at SNR 2 dB, for the chosen
configuration.

Fig. 7 shows the per class accuracy of the investi-
gated CNN model. GFDM classification is the highest

FIGURE 8. Accuracy comparison between 64, 128 and 256 samples.

TABLE 4. Training time.

followed by F-OFDM, UFMC, FBMC then OFDM. This
leads to the conclusion that, indeed, the filtering adopted in
the investigated waveforms results in distinctive statistical
features, which are captured and used by the CNN model to
correctly classify these new transmission schemes.

Finally Fig. 8 displays a comparison between the several
configurations, using the per SNR accuracy. We notice that
using longer symbols, or more examples both increase the
overall performance, for low SNR values. It is clear that
starting from 2 dB, all configurations perform equally, hence
increasing the number of examples only increases the com-
plexity and training time.

For the cyclostationary based routine, we consider different
configurations, as our features extraction method fails to
extract any other CF or lag different than zeros, with very
small number of symbols especially for low SNR values.
We start with 10 symbols, then 50, and finally use the entire
database, that is 100 multicarrier symbols to extract the α and
τ profile. To reduce the complexity of our vector estimation,
we construct only five cyclic frequencies (nc = 5) for each
waveform. We then feed this hand crafted features vector to
an SVM with a linear kernel. The routine achieves an overall
accuracy of 0.63, 0.83 and 0.93 for the three configurations
respectively, for roughly 6, 5 and less than 1 minute training
time each. Table 4 summarizes the training time and accuracy
of all the considered cases.
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FIGURE 9. Confusion matrices of the proposed CS + SVM, with different symbol lengths.

FIGURE 10. Accuracy comparison between 100, 50 and 10 symbols.

Fig. 9 shows the confusion matrices where the highest
classification accuracy is achieved, that is at 18 dB for the

10-symbol case, 6 dB for the 50-symbol case, and 4 dB for the
100 symbols case.We can clearly see that using longer signals
results in better estimation of the cyclic cumulant, since the
error estimation of these features for noise reduces with the
number of processed samples. These results are obtained
using 2000 examples from the available dataset with again,
80% for training, and 20% for validation and testing; when
using the 100 multicarrier symbols, good performance is
achieved with only 500 examples. Compared to the DL-based
approach the latter yields far better performance, as a total
accuracy of 1 is achieved at lower SNR with shorter signals.

Finally, Fig. 10 represents the overall accuracy for the
three considered configurations. From the figure, we notice
that the cyclostationary based routine is stable with a higher
number of multicarrier symbols and lower number of exam-
ples. In fact, the longer the processed signal is, the lower the
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estimation error of the AWGN CC is, making the features
vector more accurate.

V. CONCLUSION
In this paper, we have proposed and compared two dif-
ferent ASR techniques to classify multicarrier waveforms.
The investigated transmission schemes are mainly filtered
variants of the legacy OFDM, that offer higher spectral effi-
ciency and are better suited for a wide variety of applications.
They include, the per subband filtered family, namely UFMC
and F-OFDM, and the per subcarrier filtered one, that
is FBMC and GFDM. The use of different filtering tech-
niques in these waveforms results in a rich pool of cyclic
features, which we have taken advantage of to design a novel
recognition routine based on their α and τ profile combined
to an SVM classifier. Such technique follows the traditional
expert knowledge based ASR. We then have compared it to
the more advanced DNN based ASR, using a four-layer CNN
that can autonomously extract discriminative features from
the input signals then use them to classify the investigated
waveforms. We have noticed an interesting behavior of
the CNN with regard to the filtered multicarrier waveforms,
the more complex is the filtering technique, the easiest it is
to recognize it. The simulation results show that the CNN
classifier outperforms the cyclostationarity based one, as it
reaches an accuracy of 0.99 for SNR= 2 dB with only
2multicarrier symbols, while the expert features one achieves
an accuracy of 0.93 with 100 symbols. The main advantage
of the SVM based routine is the lower number of training
examples needed compared to the CNN, as the signals are
preprocessed and reduced to a smaller features vector before
being fed to the ML algorithm. In our future work, we will
focus on extending the present DL-based ASR approach,
using transfer learning to account for different channel prop-
agation environments and enrich the pool of the investigated
waveforms.
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