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ABSTRACT Controlling distributed energy resources (DERs) in low voltage microgrids is a challenging
task for operators. The simultaneous operation of independent small-scale DER owners could compromise
the operator’s hierarchical and centralized control to reach system stability and cost optimization. Recent
Decentralized Energy Management (DEM) approaches provide flexibility for DERs control, but several
existing solutions depend on powerful and expensive computer clusters and their ability to deal with a
high burden of data in the communication channel. This work is motivated towards a DEM framework that
involves independent DER owners while microgrid operator still maintains a hierarchical control philosophy.
The framework must include a method to reduce the need of powerful computer clusters and depend on
low bandwidth communications channel. Here, a multi-layered framework for every DER, consisting of
physical, control, and agent layers for DEM is approached, where the agent layer participates in the energy
management task. An Asynchronous Decentralized PSO (ADPSO) algorithm is proposed for the agent layer
based on its primal characteristic: it can reach a consensus state between networked computing units by
exchanging asynchronously only the state variable through the communications channel. The proposed
solution allows the integration of DEM capabilities within the physical controller of the DERs, distinguishing
it from other decentralized solutions. Easiness of implementation and low computational requirements are
shown by performing DEM tests on single board computers. The tests show improved convergence rate,
improved swarm diversity behavior and fast consensus reaching of DEM optimization.

INDEX TERMS Energy management, smart grids, optimization.

NOMENCLATURE

A. ACRONYMS
ALM Augmented Lagrangian Methods.
ADMM Alternate Direction Method of Multipliers.
ADPSO Asynchronous Decentralized Particle

Swarm Optimization.
AFSO Artificial Fish Swarm Optimization.
CBPSO Chaotic Binary Particle Swarm Optimiza-

tion.

The associate editor coordinating the review of this manuscript and

approving it for publication was Salvatore Favuzza .

CSU Communications Supervisor Unit.
DER Distributed Energy Resource.
DGLDPSO Dynamic Group Learning Distributed PSO.
DEM Decentralized Energy Management.
EMS Energy Management System.
FGU Forecast Generation Unit.
GBMOHSA Grid-Based

Multiobjective Harmony Search Algorithm.
GWO Gray Wolf Optimization.
MPPT Maximum Power Point Tracker.
NRM Newton Raphson Method.
PATS Pattern Search.
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PC Personal Computer.
PDM Primal-Dual

Methods.
SPSO Synchronous Particle Swarm Optimization.
RMS Root Mean Squared.
SBC Single Board Computer.
SQS Sequential Quadratic Search.
TCP Transmission Control Protocol.

B. INDICES
g, h Index of an agent in a distributed environ-

ment.
i Index of a distributed energy generator on a

microgrid.
j Index of a particle in an artificial swarm.
k Iteration index of a swarm optimization

algorithm.
l Index of a power load on a microgrid.
m, n Index of electrical bus of a microgrid.
r Iteration index of a NRM solution.
t Index of a discrete interval of time.

C. VARIABLES
δm Voltage angle on the m-th bus.
δ(r) Estimated voltage angle matrix at iteration

r .
ϕ
j
1(t), ϕ

j
2(t) Cognition and social component for the

swarm learning behavior respectively.
h(r) Power flow state variable at iteration r .
Ag,Bg,Cg Dynamical equations coefficient matrices

for the g-th agent.
b(X ), c(X ) Linear and non-linear constraint matrix for

an optimization problem respectively.
Bi(t) Generation tariff for the i-th DER at time t .
Bgrid (t) Power tariff for the utility grid at time t .
Blow(t) Transitional low state tariff for the i-th DER

at time t .
Boff (t) Halt state tariff for the i-th DER at time t .
Bup(t) Transitional up state tariff for the i-th DER

at time t .
Costt Cost of microgrid operation at time t .
δjbest (k) Distance between xjbest (k) and gbest (k).
E Edge set corresponding to the underlying

graph of a network.
f (X ) Objective function for an optimization prob-

lem.
gbest (k) Best position achieved by local swarm of

agent g up to iteration k .
hbest (k) Best position achieved by the neighborhood

set of agent g up to iteration k .
hlow(t) Transitional low state for the i-th DER at

time t .
hoff (t) Halt state for the i-th DER at time t .
hup(t) Transitional up state for the i-th DER at

time t .

I Injected currents matrix for a microgrid.
Im Injected current at bus m.
J Computed Jacobian matrix.
P,Q Active and reactive matrices of power

injected on buses at iteration r .
Pgrid (t) Bi-directional

Power Interchanged between microgrid and
utility grid at time t .

Pgridmax (t) Maximum power interface capacity limit for
the utility grid at time t .

Pgridmin (t) Minimum power interface capacity limit for
the utility grid at time t .

Pi(t) Power reference for the i-th DER at time t .
Pimax (t) Maximum power interface capacity limit for

the i-th DER at time t .
Pimin (t) Minimum power interface capacity limit for

the i-th DER at time t .
Ploss(t) Power loss on a microgrid at time t .
Ro,Rp Real numbers set of size o and p respec-

tively.
Sm Injected complex power at bus m.
ug Input vector for the g-th agent’s dynamical

equations.
V Bus voltages matrix for a microgrid.
V(r) Estimated voltage magnitude matrix at iter-

ation r .
vj(k) Velocity estimation of a virtual particle at

iteration k .
Vm(t) Voltage magnitude on them-th bus at time t .
Vn,
V ∗n

Voltage of a node and its complex conjugate
respectively.

w(k) Inertial factor for velocity in the iteration k .
X State variable for an optimization problem.
Xg Vector state for the g-th agent’s dynamical

equations.
xj(k) Position estimation of a virtual particle at

iteration k .
xjbest (k) Best position achieved by particle j up to

iteration k .
Y Admittance matrix for a microgrid.
Yg Output vector for the g-th agent’s dynamical

equations.
Ymn,
Y ∗mn

Admittance matrix element and its complex
conjugate.

D. CONSTANTS
ϕ1, ϕ2 Maximum Cognition and Social compo-

nent limits for the swarm learning behavior
respectively.

� Set of agents in a distributed environment.
bL , bU Lower and upper limits for the linear con-

straint matrix.
cL , cU Lower and upper limits for the non-linear

constraint matrix.
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N Total number of agents in a distributed envi-
ronment.

NDER Total number of distributed energy resources
on a microgrid.

mδ Threshold for stopping criteria.
Ng Neighborhood set of agents for g-th agent.
Nit Total iterations of a swarm optimization

algorithm.
NL Total number of loads on a microgrid.
Nm Total number of electrical nodes of a micro-

grid.
o, p, q Dimensions of vectors.
pδ Percentage of swarm population employed

for stopping criteria.
T Total regular spaced intervals of time t .
Vmmin
Vmmax

Minimum and maximum allowed voltage at
bus m respectively.

wmax ,wmin Maximum and minimum inertial factor lim-
its respectively.

XL ,XU Lower and upper limits of the state variable
X respectively.

I. INTRODUCTION
Microgrids are a paradigm of construction and operation
of electric power systems where several distributed energy
resources (DERs) are interfaced through power electronics
converters and connected to a local grid [1]. By means of
setting the controllable variables for each DER, an energy
management system (EMS) achieves an efficient and optimal
utilization of the local energy resources and to control the
power flow between the nodes of the microgrid.

As microgrid technology has consolidated, the number
of existing controllable DERs have increased and the opti-
mization problem has become more complex to solve. Also,
distinct operative scenarios have arisen and the interaction
between different stakeholders on a microgrid operation is
gaining attention. In this work, attention is given to this last
case as it describes the complexity of allowing the participa-
tion of DERs of independent owners on energy management.

Multiple EMS paradigms have been explored and reported
in the literature in the last years. In the centralized EMS
paradigm, a single operator knows and manages the whole
physical structure of the microgrid and its measurement
data. This paradigm has the advantage of having all the
microgrid information concentrated in a single processing
place, but the volume of this information might become
prohibitive in cases with frequent information exchange or
large-scale microgrids. Within this paradigm, a first class of
algorithms are characterized by approaching the optimization
solution to be efficiently performed in a single central pro-
cessing unit. The GreyWolf Optimization (GWO) introduced
in [2] to solve optimal power flow problems, the Chaotic
Binary PSO (CBPSO) is developed for optimal DER schedul-
ing in [3], the Grid based Multiobjective Harmony Search
Algorithm (GBMOHSA) applied in [4] to reduce voltage

deviations and power losses are some of the algorithms of this
class. In some of these cases, the underlying complex models
could be reformulated to reduce the number of variables and
constraints to reduce the computational burden [5], but in gen-
eral, these algorithms do not enable consumer participation in
DEM.

A second class of algorithms comprises decentraliza-
tion of the optimization problem in autonomous problems
within zones or regions with smaller scope, this is typi-
cal in the multi-microgrid scenario. A twofold system whit
autonomous microgrids performing demand-side manage-
ment by linear programming and a trading center calculating
time of use tariffs is used in [6] to solve the joint energy
management and energy trading model among microgrids to
maximize self-generation. In [7], the global operation cost
between several microgrids trading energy with each other is
minimized by proposing an iterative and scalable distributed
algorithm that first addresses the problem decentralization
and then solves the sub-microgrid problem as a second step.
In [8], the total electricity cost minimization of multiple
households with DERs is treated in a two-level optimization:
load scheduling on a first level and energy storage scheduling
on a second level. In [9] a hierarchical decentralized System
of systems is proposed, and a bi-level optimization problem
is formulated for a multi-microgrid system. These algorithms
could enable consumer participation on energy management
but could not enable DEM integration on DER controllers as
they are more oriented to medium to large scale microgrids.

A third class of algorithms applies distributed comput-
ing techniques to parallelize processing between several
high-performance processing units. These algorithms achieve
promising performance and effectiveness for large-scale
microgrids. The Augmented Lagrangian based Alternat-
ing Direction Inexact Newton Method in [10] is used to
reformulate the power flow optimization problem to a dis-
tributed least-squares problem for rapid convergence. Addi-
tional results on Augmented Lagrangian Methods (ALM)
and Primal-Dual Methods (PDM) are studied for the smart
grid context in [11]. In [12], a distributed algorithm based
on Alternating Direction Method of multipliers (ADMM)
decompose the original optimal power flow problem into sev-
eral subproblems to be solved by several distributed agents.
An interesting approach to cloud workflow scheduling appli-
cations is presented in [13], where a Dynamic Group Learn-
ing Distributed Particle Swarm Optimization (DGLDPSO)
with improvements is used for the development of an intel-
ligent partitioning in distributed optimization algorithm for
electric power systems. This class of algorithms shows high
computational efficiency on large-scale microgrids managed
with the centralized paradigm, but work needs to be done to
reduce the dependency on powerful computer clusters and
high speed communications channels.

The fourth class of algorithms considered here includes
decentralization techniques based on the cooperation of sev-
eral processing units distributed in different physical regions
over the microgrid. In [14] an asynchronous distributed
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TABLE 1. Comparison of energy management optimization approaches.

version of ADMM is proposed to solve optimization prob-
lems over a star computer network. In [16], an optimal power
flow problem is formulated and solved byDistributed Control
Units in a modular framework; the lack of need for powerful
computers for these units is remarked. The adoption of a
modular framework is also present in [17] where a PSO
algorithm to solve general optimization problems coopera-
tively by sharing the optimization variable and performing
a finite-time average consensus algorithm for each step is
presented. In [15], a Neurodynamic-Based Distributed Opti-
mal Control Algorithm is used for the distributed optimiza-
tion of economic system operation in a multienergy system
with combined heat and power, and conventional generators.
In [18], an improved coordinate descent method algorithm
is used by a multi-layered model that puts processing agents
in the same physical place that power nodes. In this class,
work has been done to reduce the need of powerful and
expensive computers to enable DER integration on DEM.
Also, the awareness for independent DER owners and their
DEM participation needs is increasing.

A. MOTIVATION
Distributed computing algorithms (third class) show promis-
ing benefits, particularly in large-scale medium voltage
microgrids. However, distributed computing infrastructure
could be too expensive for a small group of DER own-
ers [19]. DEM paradigm and algorithms of the fourth class
could help to raise social awareness and interest in energy

management before making any investment. Also, decentral-
ization maintains a level of hierarchy similar to the micro-
grid operator/owner centralized philosophy and their sense of
ownership is preserved. As shown on the comparison Table 1,
this work is intended to take further steps in avoiding power-
ful computers for the distributed processors, and to integrate
DEM capabilities on DER controllers. These DEM-enabled
DER controllers could allow owner and consumer participa-
tion in the energy management of a microgrid.

B. CONTRIBUTIONS
In this paper, the decentralization of a low voltage microgrid
EMS based on a multi-layered framework for DER control is
approached. An Asynchronous Decentralized PSO (ADPSO)
algorithm is proposed for DEM optimization. This solution is
similar to [14] as it allows a system supervisor to coordinate
distributed controllers over a star communications network
to cooperate in the solution search. The modular distributed
framework exists in [16], [17]. In ADPSO, the solution search
requires only the exchange of the state variable between
agents and the supervisor completely in asynchronous man-
ner [20], meaning that there is no need for synchronization
between distributed controllers and the supervisor does not
need to wait for every controller to progress in order to update
the state variable. This distinguish this work from other works
where at least one algorithm variable must be kept synchro-
nized across all agents [11], [12], [15]. Moreover, the collab-
orative operation of ADPSO algorithm allows the reduction
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of the swarm population on each computational agent, which
implies lower function evaluations in that agent. This implies
a potential lack of need of powerful computers similar to [16],
but different to the majority of DEM algorithms. With this,
the integration of DEM on DER controllers is expected.

The contributions and features are summarized as follows:

1) An asynchronous and decentralized algorithm based on
particle swarm optimization (ADPSO) is proposed to
solve optimization of energy management problems.
The algorithm only needs the global state variable to
be exchanged individually between a processing agent
and a communications supervisor to reach a consensus
state between the agents.

2) The proposed algorithm has low complexity and is easy
to implement with reasonable efficiency on limited
computing power processors.

3) The multi-layered framework for decentralized EMS
could lead to integrate energy management capabilities
into the DER controllers of the microgrid.

4) An experimental setup to test ADPSO in the agent layer
of the multi-layered framework for decentralized EMS
is performed. The algorithm is implemented in an IEEE
802.11 network of single board computers (SBCs) opti-
mizing an active power scheduling and optimal power
flow problem for a microgrid. This experimental setup
shows easiness of implementation and low computa-
tional requirements of the proposal. The DEM tests
show improved convergence rate, improved swarm
diversity behavior and fast consensus among SBCs.

5) In its current formulation, the power flow constraint
evaluation is the main drawback of the proposal due
to its long processing steps and time.

The paper is organized as follows: Sect. II presents the
decentralized architecture, the management problem defi-
nition, the optimization algorithm and the complete EMS
solution proposed; Sect. III presents the agent layer simula-
tions where a decentralized EMS is developed and simulated
by single-board computers and a PC and Sect. IV presents
conclusions of the work.

II. DECENTRALIZED EMS FOR A GRID CONNECTED AC
MICROGRID
A. DECENTRALIZED EMS ARCHITECTURE
Similar to related work, the proposal is based on a
multi-layered framework. Our reference framework is
depicted on Fig. 1. In this framework, it is assumed that each
DER has a modular controller consisting of three layers: a
component layer referring to the physical component inter-
face to the microgrid, a control layer where the operation
of the previous is controlled (e.g. governors, MPPT devices,
charge controllers, etc.) and an agent layer where reference
control signals are locally used to manage the control layer.
Within this framework, each local DER controller performs
energy management functions. The decentralized agent layer

FIGURE 1. Reference of a multi-layered framework for decentralized EMS.

FIGURE 2. Concept of a microgrid with a decentralized EMS framework.

provides the overall management for the microgrid, super-
vised by a central supervisor unit.

A microgrid with a decentralized EMS framework is
shown on Fig. 2. According to Fig. 2 electrical parameters
are measured over the microgrid electrical buses (i.e. mag-
nitude and frequency of voltage, active and reactive power)
and transmitted to a Forecast Generation Unit (FGU) which
in turn builds estimated profiles for DER generation, load
demand, microgrid losses, and other information [21], [22].
These profiles are then transmitted by a Communications
Supervisor Unit (CSU) to the agent layermodule in eachDER
controller. As mentioned, the data exchanged corresponds
to the state variable of the energy management problem
which will be subsequently treated as control layer power
references. Thus, each agent layer module will generate
power references for its corresponding control layer module.
These power references will be optimized to accomplish a
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prescribed optimization objective, subject to the availability
described by the estimated profiles and the safe and reliable
operation constraints of the microgrid.

Implementation of a FGU usually involves different
statistical or artificial intelligence techniques and its meth-
ods and complexity validate its execution on a central sin-
gle or multi-threaded processing unit [23], [24]. The CSU
could be a variable complexity data server using an open
or private communications protocol over a physical net-
work [25]. In this paper a decentralized solution to the
optimal schedule and power flow will be formulated and
solved.

B. DECENTRALIZED EMS FORMULATION
The algorithm described in this section is inspired on the
algorithm of [26], [27], which was proposed towards con-
sensus seeking of solutions to complex problems in dis-
tributed environments. Start by assuming a set of agents
� = {g = 1, . . . ,N }, where N is the number of agents,
the dynamical equations of each agent is given by:

Ẋg = AgXg + Bgug
Yg = CgXg, (1)

where Xg ∈ Ro denotes the state vector, ug ∈ Rp is the
input vector, and Yg ∈ Rq is the output vector of agent
g ∈ �. Variables o, p and q denote the dimensions of vectors.
By concatenation of all the vectors, the entire set of vectors
are given by:

XN×o =
[
(X1)T . . . (XN )T

]T
uN×p =

[
(u1)T . . . (uN )T

]T
YN×q =

[
(Y1)T . . . (YN )T

]T
(2)

Cooperation and coordination require that each member
of � has to be aware of the output state vector, thus each
member have to communicate with each other. By calling
neighborhood set Ng to the set of agents from which agent
g can interchange information, two agents named g and h are
nodes connected to each other in the network graph and have a
direct or indirect link to transfer their status and state vectors.
This is expressed by:

∀g = 1, . . . ,N ,

Ng = h = 1, . . . ,N |g 6= h; (g, h) ∈ E, (3)

where E is the edge set that corresponds to the underlying
graph of the network. When agents cooperate to solve a
problem, they reach consensus when their output vectors
converge to the same value or consensus state. Then the
main goal of the proposed algorithm will reach a consen-
sus state for each agent layer module in the DERs of the
microgrid.

FIGURE 3. Asynchronous decentralized PSO algorithm operational flow.

C. ASYNCHRONOUS DECENTRALIZED PSO ALGORITHM
PSO algorithm is a well-known optimization algorithm and
different implementations are found on literature regarding
EMSs optimization. In the usual implementation of PSO,
the algorithm runs on a single computer which is well suited
for centralized EMS operation. As the EMS optimization
problem grows, PSO requires modifications to reach an ade-
quate optimization result and to avoid increments in the com-
putational processing and in the time consumed (i.e. using
a considerable large particle swarm population, changes on
dynamic update functions). In this paper, a simultaneous
cooperative implementation of the algorithm is proposed
as it seems advantageous to reduce those increments. The
simultaneous cooperative execution on several computers
could improve the optimization search and could allow to
build a decentralized EMSoptimization. The operational flow
of an asynchronous decentralized PSO shown on Fig. 3 is
proposed.

As in PSO algorithm, ADSPO is based on the expression
of movement in k iterations of virtual particles represented
by their positions and velocities. Let xj(k) be the position
estimation of the j-th particle on iteration k and let xjbest (k) be
the best position achieved by a particle j from the beginning
of the execution to current iteration; on the other hand, let
gbest (k) be the best position achieved for the local swarm of
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agent g. The value of gbest (k) is given by:

gbest (k) = argmin {f (gbest (k − 1)) ,

f
(
xjbest (k)

)
, hbest (k)

}
, (4)

where:

hbest (k) = min [gbest (k)]h , h ∈ Ng , (5)

is the best position of the neighborhood set for agent g up to
the k-th iteration. Eq. (4) states that the current best position
of the local swarm, gbest (k), is the minimum value between
the previous iteration best, gbest (k − 1), the j local particle
best position, xjbest (k), and the current best position in the
neighborhood, hbest (k). In this scheme, the dynamic update
of particles is given by:

vj(k + 1) = w(k)vj(k)+ ϕi1(k)
(
xjbest (k)− xj(k)

)
+ϕ

j
2(k)

(
gbest (k)− xj(k)

)
xj(k + 1) = xj(k)+ vj(k + 1) (6)

Coefficient w(k) in (6) represents an inertial factor for
speed in the k-th iteration, here updated in a linearly decreas-
ing fashion between wmin and wmax limits:

w(k) = wmax −
wmax − wmin

Nit
× k. (7)

To represent the cognition and social components of
the swarm behavior, coefficients ϕj1(t) ∈

[
0, ϕ1

]n and
ϕ
j
2(t) ∈

[
0, ϕ2

]n in (6) are learning coefficients for each
particle and the swarm, respectively.

Diversity in the swarm population is considered as stop-
ping criteria in this work. If diversity is low, i.e. the individual
particles are close to each other, then it is assumed that con-
vergence has been obtained. A maximum distance criterion
is used. First, the distance between each particle objective
function value and the objective function value resulting from
the neighborhood best position:

δjbest (k) = f
(
xjbest (k)

)
− f (hbest (k)) . (8)

Then, the particles are sorted by distance and a pδ set of the
closest particles is selected. The optimization is stopped if the
maximum distance from the set is below a threshold mδ . As a
note, pδ must not be chosen too low for a reliable detection of
convergence nor too high to avoid wasting of computational
resources. As mentioned, in ADPSO the swarm population
of each agent share the term hbest (k), which gives the same
stopping criteria for all agents without any agent been aware
of the other agents individual particle positions.

In other words, ADPSO decentralized nature is based on
the interaction of a communications supervisor unit (CSU)
with the agent layer module in each DER. Here, the main role
of the CSU is to set the start of the optimization algorithm
execution, to store hbest (k) obtained during execution and
to receive/send that global best result from/to any of the
requesting agents. Agent layer module’s role is to perform the
dynamic position and velocity update of their internal swarm
and to request/provide an updated global best to CSU.

According to Fig. 3, the mentioned interaction is per-
formed at two moments in the operational flow. The first
moment occurs at the beginning of each dynamic update of
the swarm, when each agent polls the global best position
stored in the CSU and if this value is better than its local
best then updates its local value. The second moment of
interaction is performed whenever any local particle in any
agent finds a new local best. At this moment, the performing
agent updates its local best asynchronously and in this same
asynchronous manner the agent sends a broadcasting mes-
sage with the new local best to CSU to update the global best.
As a result, all the state vectors of XN×o converge to the same
value and the dynamic solution of the optimization problem is
achieved. In other words, a consensus state is achieved using
ADPSO for the cooperative participation of various agent
layer modules at microgrid DERs.

With this approach, a contribution to the energy manage-
ment of small scale microgrids is obtained. The characteris-
tics of the ADPSO algorithm exposed is simple to implement
and several agents could converge to a consensus state in this
scheme. Also, the algorithm is of low complexity and require
low computational resources thus could be implemented in
limited processing power processors. In the next Section a
management problem definition will be presented to apply
ADPSO in an EMS context.

D. MANAGEMENT PROBLEM DEFINITION
As mentioned earlier, an optimal schedule and power flow
energy management solution searches for an optimal set of
power references for every DER in the microgrid. In this
sense, in the very deep, the solution of the EMS is the solution
of an optimization problem. Start by formulating the general
optimization problem as follows:

min
X

f (X )

s. t.: XL ≤ X ≤ XU ,

bL ≤ b(X ) ≤ bU ,

cL ≤ c(X ) ≤ cU . (9)

where f (X ) is the objective function on which a minimiza-
tion of its value should be achieved, XL and XU are the
lower and upper limits of the state variable X , respectively;
b(X ) and c(X ) are the linear and nonlinear constraints matri-
ces and their corresponding lower and upper limits bL , bU , cL
and cU .

1) OPERATIVE COST MINIMIZATION
For the EMS problem treated in this paper, the objective
is to get the lowest operational cost of the microgrid in a
daily basis. For this objective, operative costs in a microgrid
include: generation costs, start/stop transitional costs, halt
costs and cost for selling/buying energy to external grids.
All these costs must be accumulated on a daily basis. Accu-
mulating costs on a total of T regularly spaced intervals,
the operational cost of amicrogrid over a day could be defined
as the sum of the generation costs, start/stop transitional costs,
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halt costs and cost for selling/buying of energy to external
grids at each t interval. Considering variable X = [P]NDER×T
as the matrix of power references for the total of NDER
DERs at each interval and assuming in this approach that
NDER = N , the cost function is expressed as follows:

f (X ) =
T∑
t=1

Costt =
T∑
t=1

{ N∑
i=1

[
Pi(t)Bi(t)

+hupi (t)Bup(t)+ hdowniBdown(t)

+hoffiBoff (t)
]

+Pgrid (t)Bgrid (t)
}

(10)

where Pi(t) is the power reference for the i-th DER and Bi(t)
is its corresponding generation tariff at ordinal interval t;
Pgrid (t) is the bi-directional power interchanged between the
microgrid and its external grid. Bgrid (t) is the corresponding
tariff at interval t for the purchase or the selling of Pgrid (t),
according to Pgrid (t) flow direction. Moreover, hupi (t),
hdowni (t) and hoffi (t) are the operative transitional states for
the i-th DER and the halt state and Bup(t), Bdown(t) and
Boff (t) are the cost associated with those states, respectively.
It must be observed that those parameters considered in (10)
could be simplified, i.e. considering full time operating DERs
thus transitional states are not required to be considered,
or more detailed, i.e. by considering fuel consumption
costs, solid or gasses waste generation costs. A review
of additional control models and variants are provided
in [28]–[31].

2) POWER BALANCE AND LIMITS CONSTRAINT
Power balance between power generation and demand is a
main constraint in this optimization problem formulation.
The total power generated/supplied from DERs plus the
power interchanged with utility grid minus distribution power
lossesmust be equal to local load demand. Local load demand
is an estimated profile provided by an FGU (according to
Fig. 2) and the power from DERs, the power interchanged
with the utility grid and losses will be determined by the
optimization process. The power balance at the t-th interval
of the day is given by:

N∑
i=1

[Pi(t)]+ Pgrid (t)− Ploss(t) =
NL∑
l=1

Ll(t)

t = 1, 2, 3, . . . ,T (11)

where Ll(t) is the power demanded by the l-th load, NL is
the total number of loads and Ploss are the power losses.
Also, each DER has its own power generation limits, given
either by the limits expressed in the estimated generation
profiles provided by FGUs, or by its respective minimum and
maximum power interface capacity. Respective limits also
apply to Pgrid (t). Both limits are expressed by:

Pimin(t) ≤ Pi(t) ≤ Pimax (t)

Pgridmin(t) ≤ Pgrid (t) ≤ Pgridmax (t) (12)

FIGURE 4. Small scale low voltage microgrid used in simulations.

3) POWER FLOW CONSTRAINT
The microgrid DER generation must be constrained in order
that voltage at buses does not exceed the existing limits estab-
lished in regulatory standards, i.e. ANSI C84.1. Therefore,
a voltage deviation constraint could be defined as:

Vmmin ≤ Vm(t) ≤ Vmmax (13)

where Vmmin and Vmmax are respectively the minimum and
maximum allowed voltage on the electrical bus m and Vm(t)
is the bus voltage expected at time t . Thus, the knowledge of
these expected voltage values on every bus of the microgrid is
key for evaluating this constraint. This problem, known as the
power flow problem, involves the computing of the voltage
magnitude |Vm| and angle δm on each bus m of a power
system given power generation and load demand. In this
context a radial microgrid is considered and the voltage on
the buses are estimated by a power flow analysis solved with
the Newton-Raphson method (NRM) [32].

For this power flow constraint, the relation between the
injected currents I and bus voltages V is described by the
admittance matrix Y:

I = YV, (14)

the injected current at bus m, Im, could be written as:

Im =
Nm∑
n=1

YmnVn, (15)

and the power flow problem formulation is given by:

Sm = Vm
Nm∑
n=1

Y ∗mnV
∗
n , (16)

where Sm is the injected complex power at busm, Y ∗mn and V
∗
n

are the complex conjugate of the admittance matrix element
Ymn and the complex conjugate of voltage at node n, Vn,
respectively. Expression (16) represents a set of nonlinear
system of equations where all variables are in complex form.
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TABLE 2. General characteristics of hardware employed in simulations.

The Newton-Raphson method linearizes the problem of find-
ing the magnitude and phase of the voltage with an iterative
process. By defining:

h(r) =
[
δ(r)
V(r)

]
, (17)

as the power flow state variable at iteration r and by using a
square Jacobian matrix J equation, the process involves the
iterative numerical computation of:

J
[
1δ(r)
1V(r)

]
=

[
1P(r)
1Q(r)

]
, (18)

to compute the next iteration value, h(r + 1) as follows:

h(r + 1) =
[
δ(r + 1)
V(r + 1)

]
=

[
δ(r)
V(r)

]
+

[
1δ(r)
1V(r)

]
. (19)

The steps are continuously processed until convergence is
obtained, i.e. until continuous values of h(r) are practically
equal up to a certain level of accuracy.

In the context of EMS problem formulation, the power
flow analysis is used to estimate the resulting voltage at
the buses for given active and reactive power managed in
every bus of the microgrid. If voltage parameter at any bus
does not complies with the standard voltage limits, then
another combination of active and reactive power references
for DERs must be evaluated until voltage limits be satisfied
in all microgrid buses. Expressions (10) to (13) represent the
optimization problem of the form of (9) and is proposed to
be solved with the ADPSO algorithm implemented in a star
network of SBCs.

III. SIMULATION
The algorithm of the previous section is used on the decen-
tralized EMS architecture of Fig. 2 to solve the optimiza-
tion problem of the cost function stated in (10) subject to
power balance, power limits and power flow constraints
in (11)- (13). In order to validate the performance of this
approach, a simulation of an optimization scenario of a
small-scale low voltage microgrid with three DERs (Fig. 4)
is performed.

The simulation case is a simplification of the mathemat-
ical formulation of (10) - (13). For illustrative purposes:
the Bup(t), Bdown(t), and Boff (t) costs were neglected; load
demand and DER generation profile, Pi(t), of the three
DERs were assumed to be provided by a FGU (shown on

FIGURE 5. a) Load demand and b) DER generation forecast profiles used
in simulations.

Fig. 5); Pgrid power profile is not determined but is assumed
to lie in the limits of [−30, 30] kW; and the voltage at
buses is required to be in the [0.87, 1.06] p.u. limits. With
these simplifications, the simulation problem takes the form
of (20).

A. DEM-ENABLED DER CONTROLLER
An experiment of agent layer emulation for simulated
DEM-enabled DER controllers for the problem (20) was
performed. For this experiment, a simple TCP socket-based
server was implemented using Python programming to play
the role of a CSU and was deployed in a personal computer
(PC). For the purpose of emulating the role of agent layer
module in a DER, a client was also written in Python and
deployed in single board computers (SBCs) for every one of
the three DERs in this microgrid.

min
X
f (X ) =

T∑
t=1

{ N∑
i=1

[
Pi(t)Bi(t)

]
+Pgrid (t)Bgrid (t)

}
s.t. :

N∑
i=1

Pi(t)+ Pgrid (t) =
NL∑
l=1

Ll(t)

0 ≤ Pi(t) ≤ Pimax [kW],

− 30 ≤ Pgrid (t) ≤ 30 [kW],

0.87 ≤ Vm(t) ≤ 1.06 [p.u.]. (20)

The server and those clients were connected over a com-
mon IEEE.802.11 TCP network. In this setup communi-
cations were only allowed between each agent and the
CSU, according to ADPSO. The SBCs used (two Raspberry
4 Model B+ [33] units [rPi4], and a BeagleBone Green [34]
unit [BBG]) have similar computational resources. These
resources are limited when compared with those of the PC
used for CSU (see Table 2) or when compared with dis-
tributed computing clusters.
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TABLE 3. SPSO vs. ADPSO results comparison.

FIGURE 6. a) Several runs of cost functions against time and b) Swarm
diversity (δjbest

) against time, for SPSO; c) Function cost against time and
d) Swarm diversity, for ADPSO.

1) ADPSO PERFORMANCE COMPARISON
Initially several rounds of SPSO were performed on a single
SBC to solve the same optimization problem and data, to be
used as performance reference. After that, several rounds of
ADPSO were performed on the hardware setup described.
In reference to parts a) and c) of Fig. 6, a repeatable best func-
tion cost profile and the lowest cost is obtained in ADPSO.
The small error bars in part c) of Fig. 6 indicate the small
variations between the three agents working in the opti-
mization with ADPSO, which shows the expected consensus
achievement. On the right, in parts b) and d), the depiction
of swarm diversities is shown for both SPSO and ADPSO.
It is shown that ADPSO diversity is higher initially, when the
initial search for a solution is needed, and it quickly reduces
as the best solution is found between the three agent units.
As expected, a consensus solution and algorithm convergence
are achieved by sharing only the state variable.

The averaged behavior of both algorithms for a series of
ten runs are shown on Fig. 7. Parts a) and b) shows better
performance in the optimization profile and a low swarm
diversity for ADPSO. The lower time for convergence needed
inADPSO is important in this work as it translates in avoiding
unnecessary wasting of computational resources, which are
limited in the context referred. In part c) of Fig. 7, the RMS
error of the observations are shown. RMS error is lower in
ADPSO, there are still some effects of randomness in the
optimized results of ADPSO. Techniques to reduce these

FIGURE 7. a) Averaged function cost optimization profiles; b) Standard
deviation of variabilities (δjbest

) against time; c) Function cost RMS error.

FIGURE 8. Recursive application of ADPSO, a) function cost behavior and
b) variability.

unwanted variations, probably by learning coefficients self-
adaptation, should be further investigated. Results are sum-
marized on comparison Table 3.

An example of the flexibility of the DEM-enabled DER
controller solution using ADPSO is shown on Fig. 8. Amulti-
round optimization run was performed, and its best cost
solution and swarm diversity were plotted. On part a) of
Fig. 8, the interactions and reactions of the agent modules are
observedwhen they share their best values. These interactions
allowed better optimization after restarting algorithm execu-
tion. The diversity of each agent swarm population is shown
on part b) of the same Fig. 8. Diversity re-initialization for
the second round of the optimization run is the responsible for
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FIGURE 9. Power flow test scenarios and their corresponding operational
cost.

the improved convergence rate in this case. Besides the flex-
ibility exemplification, diversity re-initialization in a single
round of ADPSO could be desirable to reduce the unwanted
randomness mentioned before. The possible uses of learning
coefficients and inertial weight self-adaptation, in this decen-
tralized context, should be further investigated.

2) EMS RESULTS
On Fig. 9 three power flow test scenarios are shown. The first
scenario, in part a), considers there is not DER generation.
Voltage limits violation are not expected in this case but,
with the test data, a high operational cost is obtained. The
scenario of part b) considers DER power references to be
maximum, e.g. to be equal to the values of DER generation
profiles of Fig. 5. The operational cost is very low due to
the high amount of energy sold to other grids, but the power
flow solution shows severe non-compliance to voltage limits
which makes this scenario impractical. The optimized DER
power references obtained by ADPSO algorithm are shown
on part c) of Fig. 9. DER generation is balanced with the
power flow solution to reach the lowest operational cost in
full compliance with the voltage limits specified.

Voltage at distribution buses and the power balance after
DEM optimization are shown on Fig. 10 for several optimiza-
tion runs. As expected, full compliance on voltage limits is
achieved (part a)). The power balance constraint of (11) is
accomplished, as noted on part b). As shown, power flow and
power balance constraints were achieved usingDEM-enabled
DER controllers and the decentralized framework approach.

There are two remaining aspects to be noted. Regarding to
simulation results, it is not clear if there must be an agent
layer module in every DER controller or if there must be
modules only in certain DERs. Unreported tests shown lower
RMS error and better convergence characteristics when an
agent module per DER was considered but the relation of
these results with our case and optimization problem could
be misdirecting and do not allow to generalize a conclusion.
On the other hand, the selected Newton-Raphson method

FIGURE 10. a) Voltage at buses and b) Power vs Load balance after DEM
optimization.

for the grid power flow solution contributions on the EMS
performance was not fully evaluated. In its present form,
the algorithm performs local evaluation of the power flow
constraint and results suggest that this evaluation could be
easily very time consuming and hard to run for SBCs. This
limitation does not allow the use of the proposed EMS in its
current form for real-time dispatch problems.

IV. CONCLUSION
A multi-layered framework for DEM optimization is
approached by proposing ADPSO algorithm for the agent
layer of the framework. The proposed ADPSO algorithm is
characterized for linear deceleration, asynchronous local best
updating, asynchronous global best broadcasting, global best
polling operations and swarm diversity measurement as con-
vergence criteria. It was shown that a consensus reach among
agent layer modules is achieved by exchanging only the state
variable through the communications channel. Each agent
communicates only with a CSU in a series of broadcast and
polling transactions. With the implementation over a comput-
ing network of single board computers, our results suggest
ADPSO is a low complexity algorithm, easy to implement
without needing powerful computers. To our consideration,
this decentralized EMS solution could be in the interest of
creating integrated EMS capabilities within DER controller
units. Further research must be done on the local power flow
constraint evaluation to improve efficiency.
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