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ABSTRACT Extracting meaningful information on objects varying scale and shape is a challenging task
while obtaining distinctive features on small to large size objects to enhance overall object segmentation
accuracy from 3D point cloud. To handle this challenge, we propose an attention-based multi-scale atrous
convolutional neural network (AMSASeg) for object segmentation from 3D point cloud. Specifically, a back-
bone network consists of three modules: distinctive atrous spatial pyramid pooling (DASPP), FireModule,
and FireDeconv. The DASPP utilizes average pooling operations and atrous convolutions with different
sizes to aggregate distinctive information on objects at multiple scales. The FireModule and FireDeconv are
responsible to efficiently extract general features. Meanwhile, a spatial attention module (SAM) and channel
attention module (CAM) aggregate spatial and semantic information on smaller objects from low-level
and high-level layers, respectively. Our network enables to encode multi-scale information and extract
distinct feature on overall objects to enhance segmentation performance. We evaluate our method on KITTI
dataset. Experimental results demonstrate that the proposed network is effective to improve segmentation
performance on small to large objects at real-time speed.

INDEX TERMS Deep learning, convolutional neural network, object segmentation, 3D point cloud,

autonomous vehicles.

I. INTRODUCTION
Object segmentation from 3D point cloud is an important task
for autonomous vehicles to understand driving environment
around the vehicles. Nonetheless, segmenting the objects
is a challenging task to achieve competitive segmentation
performance in real-time due to sparsity and hugeness of the
point cloud. To perform 3D recognition such as segmentation
and detection, previous approaches directly processed the
point cloud [1] or voxelized the point cloud as pixels in an
image [2]. However, these methods suffer from expensive
computational cost, as they process all sparse and huge points,
thus not applicable for real-time application.

Recently, authors in [3] and [4] conducted object
segmentation from 3D point cloud by spherically
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transforming the point cloud into 2D range-images to apply
CNN-based approach. They employed efficient convolutional
and deconvolutional operations to extract general features
on road-objects inspired from [5]. They achieved signif-
icant performance on a large size object (car), however,
the performance degraded on small size objects such as
pedestrian and cyclist since their approaches were not able
to simultaneously extract discriminate features on the small
to large objects. To deal with these problems, we adopt a
spatial and channel attention mechanism for extracting spatial
to semantic-aware features on pedestrian and cyclist. More-
over, we leverage multi-scale atrous convolution to capture
contextual information on overall objects at multiple scales.
We therefore propose an attention-based multi-scale convo-
lutional neural network (AMSASeg) to improve segmenta-
tion performance on all objects such as car, pedestrian, and
cyclist.
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The proposed approach consists of three components:
(i) DASPP, (ii) SAM, and (iii) CAM, by leveraging CNN
architecture of [3]. The DASPP obtains multi-scale aware
features on overall objects. SAM is employed to provide
high-level features with spatial details on the smaller objects
from low-level features via skip-connections. Whereas,
CAM is used to enhance semantic features by model-
ing channel interdependency between pedestrian and cyclist
in high-level features. Further, we reduce the number of
down-sampling to maintain spatial information on the smaller
size objects and aggregate multi-scale information on small
to large objects by replacing the first max pooling layer with
the DASPP. In summary, the contribution of our research are
as follows:

« We design an attention-based multi-scale atrous CNN to
obtain distinctive features on small to large objects for
enhanced segmentation accuracy.

o The proposed network with DASPP, SAM (skip-
connection) and CAM increases the ability of the net-
work to segment all objects such as car, pedestrian and
cyclist by obtaining multi-scale information and enhanc-
ing spatial details and the final semantic features.

o The proposed approach based on multi-scale atrous
convolution and attention techniques satisfies real-time
speed, thus applicable for autonomous driving
application.

Il. RELATED WORK

A. SEMANTIC SEGMENTATION FROM 3D POINT CLOUD
Before deep learning-based approaches are applied to seg-
menting 3D point cloud, traditional methods conduct ground
removal, clustering of points into objects and classifying
the objects using handcrafted features for the point cloud
segmentation [6], [7]. Since these approaches depend on
handcrafted features and clustering algorithms such as ran-
dom sample consensus (RANSAC) and agglomerative clus-
tering, the methods based on the handcrafted features require
expensive computational cost and rely on random initial-
ization of parameters, therefore unable to be applied to
autonomous driving scenario.

With the boost of deep learning-based techniques, many
authors [1]-[4] performed 3D recognition such as classifica-
tion, segmentation and detection based on CNN approaches
to overcome limitations of the previous approaches. Authors
of PointNet [1] employed multi-layer perceptrons to extract
local to global features for classification and segmentation by
processing all points of the point cloud. Zhou and Tuzel [2]
proposed VoxelNet to detect road-objects from 3D point
cloud. The VoxelNet voxelizes the point cloud into 3D vox-
els as pixels in an image to apply conventional convolu-
tion. These approaches achieved significant performance in
each perception task. However, processing and voxelizing
all points are time-consuming, therefore not suitable for
real-time applications such as autonomous navigation.

To address the computational problem, the methods
in [3], [4] utilized efficient convolutional and transposed
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convolutional modules of FireModule and FireDeconv,
respectively. The modules are capable to extract general
features with low computational cost, which enables each
method to operate in real-time. However, the approaches
could not extract distinctive features on all objects. Thus,
their segmentation performance is insufficient for practical
uses.

B. SEMANTIC SEGMENTATION FROM IMAGES

Image semantic segmentation have attracted interests of
many researchers due to the wide applicability such as
biomedical understanding and autonomous vehicles [8]-[15].
U-Net with an encoder-decoder architecture proposed in [8]
successfully segmented medical images and presented a stan-
dard for segmentation architecture. The work [9] presented
3D Otsu algorithm based on local contrast for multi-level
color image segmentation. By combining the thresholded
image and input image, the approach preserved fine details
and boundaries with reduced execution time for higher qual-
ity segmentation.

Recently, several methods proposed attention tech-
niques to enhance feature representation for more accurate
segmentation [10]-[14]. The feature pyramid encoding net-
work [10] was presented for real-time segmentation. It also
employed spatial and channel attention blocks to provide
spatial and contextual information to features. In [11],
squeeze-and-excitation block was proposed aiming to
enhance feature representation by recalibrating channel-wise
features. Squeeze operation aggregates global spatial infor-
mation through global average pooling to generate a channel
descriptor. To model channel-wise dependency, excitation
operation regards the descriptor as channel weights using a
gating mechanism to generate more informative features.

Similarly, self-attention modules were leveraged to capture
long-range contextual and spatial information in [12]. More-
over, Zhang et al. [13] proposed self-attention generative
adversarial networks, which modeled long-range dependency
for image generation tasks. By aggregating informative fea-
tures at short to long distance across image regions, the dis-
criminator could find cues at every location of images while
the generator could accurately draw images with fine details.
Further, authors in [14] adopted a hierarchical attention mech-
anism for a network to learn to combine multi-scale predic-
tions. Using the mechanism, they overcame limitations of
combining better prediction with worse prediction to employ
multi-scale inference for improved semantic segmentation
results.

Meanwhile, authors in [15] considered pooling operation,
which highly effected segmentation performance. They pro-
posed an efficient pooling method to extract more distinctive
features, namely distinctive atrous spatial pyramid pooling
(DASPP). The DASPP uses average pooling layers with
different rate to leverage diverse inputs, which are valu-
able to extract discriminate features inspired by the theory
of receptive fields in human visual ability [16], [17]. The
DASPP maximizes the effectiveness of atrous convolution
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FIGURE 1. An overview of proposed real-time object segmentation approach. DASPP is applied in early part of the proposed network. Blocks 1 to
3 downsample feature maps, whereas block 4 upsamples the features to restore original resolution. Spatial attention module is applied to three
skip-connections and channel attention module is applied to a feature map obtained by 1 x 1 convolution. BN: Batch Normalization.

AP: Average Pooling. MP: Max Pooling.

with diverse rate to enhance segmentation accuracy based on
atrous spatial pyramid pooling (ASPP) [18].

Ill. PROPOSED APPROACH

An overview of the proposed approach is depicted in Fig. 1.
Firstly, we spherically transform 3D point cloud to
2D range-images to efficiently process the point cloud.
Secondly, the proposed network employs DASPP, which is
used to obtain distinctive features on small to large objects.
Thirdly, FireModule and FireDeconv are used to extract gen-
eral features with low computational cost. Lastly, SAM and
CAM are exploited to model spatial information and chan-
nel interdependency for discriminant feature representation,
respectively. We therefore dedicate following subsections for
each component of the AMSASeg to present the proposed
approach in detail.

A. SPHERICAL TRANSFORMATION FROM 3D POINT
CLOUD TO 2D RANGE-IMAGES

We spherically transform 3D point cloud to 2D range-images
in order to efficiently process the point cloud. Each point
of the point cloud can be represented as a set of Cartesian
coordinate, (x, Yy, z). Therefore, the formula for spherical
transformation can be defined as:

. z L@
a = arcsin (xz— +y2+Z2) ,a = L_AaJ 1)
. y s B
B = arcsin <—x2 +y2> B = L_A,BJ 2)

where o and B are azimuth and zenith angles. & and ,3
represent the position of a point on 2D range-images. A« and
ApB are resolutions for discretizing the point cloud. We obtain
spherically transformed range-images, which are tensors with
a shape of H x W x C, where H, W and C encode the
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height, width and channel, respectively. Since the point cloud
is generated by a Velodyne HDL-64E LiDAR with 64 vertical
channels, the H is 64. Road-objects are annotated based on 3D
bounding boxes in a front view area of 90°. We discretize the
area into 512 grids, which determine W is 512. In the point
cloud, each point contains not only Cartesian coordinates
(x,y,z) but also intensity at each point and distance d
VX2 4+ y? + 72. Therefore, C of channels of the range-images
is 5. We utilize this 64 x 512 x 5 range-images as input data of
the proposed network. By using the 2D images based on 2D
CNN-based approach, we can efficiently process huge and
sparse point cloud to achieve real-time speed.

B. AMSASeg: AN ATTENTION-BASED MULTI-SCALE
ATROUS CNN ARCHITECTURE FOR REAL-TIME OBJECT
SEGMENTATION FROM 3D POINT CLOUD

An attention-based multi-scale atrous CNN architec-
ture (AMSASeg) has an encoder-decoder architecture as
shown in Fig. 1. Our network is able to obtain distinctive
features on overall objects such as car, pedestrian, and cyclist
by leveraging multi-scale atrous convolution. The proposed
network consists of a backbone network [3] and three com-
ponents: DASPP, SAM, and CAM. The backbone network
can extract general features employing FireModule and
FireDeconv for efficient convolution and deconvolution. The
DASPP aggregates small to large contextual information on
all objects. Further, the SAM introduces spatial details from
low-level features to high-level features via skip-connections
while the CAM enhances semantic representation of the final
feature.

1) BACKBONE NETWORK

The most popular backbone network for a segmentation
task [8] has an encoder-decoder architecture. The encoder
extracts general features by down-sampling input images,
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FIGURE 2. Illustration of FireModule and FireDeconv. (a) An efficient
convolution module (FireModule). (b) An efficient deconvolution module
(FireDeconv).

whereas the decoder upsamples the features to generate spec-
ified features for point-wise classification with the same res-
olution as the input images. However, the backbone network
employs general convolution and transposed convolution lay-
ers for the encoder and decoder, not applicable for embed-
ded application due to expensive computational cost and
parameters.

To reduce the cost and parameters, authors in [3]
and [4] exploit efficient convolution and deconvolution
modules, namely FireModule and FireDeconv, for the
encoder and decoder with reduced computational cost. How-
ever, the structure of [3] loses spatial information due
to multiple max pooling layers, which disseminate spa-
tial information to aggregate contextual information, thus
not suitable for accurate segmentation. Moreover, it is
essential to aggregate contextually diverse information for
enhanced segmentation performance [16], [17]. Based on
these considerations, we hence leverage average pool-
ing layers with different rate and multi-scale atrous con-
volution for the first pooling operation in a backbone
network.

For an encoder, a structure of FireModule is illustrated
in Fig. 2 (a). The FireModule applies 1 x 1 convolution
(squeeze layer) to input features with C channels to reduce
the number of channels to %. And then, 1 x 1 and 3 x 3
convolutional layers (expand layer) are applied in parallel
to obtain two feature maps with channel dimension equal
to % Finally, the two features are concatenated for generating
features with C channels.

For a decoder, we utilize FireDeconv, which is as the same
as the FireModule except for a transposed convolutional layer
between the squeeze layer and expand layer as illustrated
in Fig. 2 (b). Moreover, the number of up-sampling is reduced
due to reduction of the number of down-sampling, which
alleviates computational cost. After recovering the original
resolution, we perform 1 x 1 convolution to generate 4 chan-
nels where each channel represents each class (background,
car, pedestrian, and cyclist).
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FIGURE 3. A structure of distinctive atrous spatial pyramid
pooling (DASPP).

2) DISTINCTIVE ATROUS SPATIAL PYRAMID POOLING

To accurately segment objects regardless of the size, extract-
ing small to large information from input images is essential.
Therefore, we employ distinctive atrous spatial pyramid pool-
ing (DASPP) [15] to tackle the problem as shown in Fig. 3.
Firstly, we exploit average pooling layers with filter sizes of 3,
5, and 7 in parallel. Next, these pooling layers are connected
to atrous convolution layers with dilation rate equal to 12,
24 and 36. In addition, a global average pooling is used to
aggregate global contextual information. Shortcut is applied
to facilitate information flow. Features from the 5 branches
are concatenated and reduced to original numbers by 1 x 1
convolution operation. Finally, features of the shortcut are
element-wisely summed with concatenated features. Batch
normalization (BN) is used to accelerate the learning of each
branch. The DASPP can be formulated as follows:

Y = p(mling(X) + AT (AP (X)) + AT12(AP3(X))
+AT24(APs(X)) + AT36(AP7(X))  (3)

where X and Y encode input and output features of the
DASPP. Ij01ing(X) represents a global average pooling.
AT; denotes atrous convolution with i rate using a 3 x 3 filter.
AP; means average pooling with a i x i filter. In addition,
‘+’ indicates the concatenation of the features.

3) SPATIAL ATTENTION MODULE

One difficulty in segmenting objects such as pedestrian and
cyclist arises due to smallness of appearance. To address this
problem, we employ spatial attention module (SAM) [10].
Low-level features contain rich spatial information, however,
the information disseminates as passed to high-level layers.
To incorporate spatial-aware features, we employ SAM as
illustrated in Fig. 4 (a). First, we apply an average pooling
to low-level features along the channel axis and apply a
1 x 1 convolutional layer to produce a spatial attention map.
The spatial attention map with rich spatial information is
transferred via skip-connection to high-level layers for the
distinct representation of smaller objects by element-wise
multiplication.
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FIGURE 4. The structure of attention modules. (a) Spatial attention
module (SAM). (b) Channel attention module (CAM).

4) CHANNEL ATTENTION MODULE

Channel attention module (CAM) is employed to enhance
semantic feature representation as shown in Fig. 4. (b).
In high-level layers, each channel map can be considered
as a class-specific response and the semantic response are
related with each other [12]. Therefore, the feature represen-
tation on specific classes can be enhanced by modeling inter-
dependency among the channels. Firstly, we reshape input
features X € RA*W*C to RNXC by combining width and
height dimensions into a dimension N, (N = H x W). Next,
we conduct a matrix multiplication between the reshaped X
and the transpose of X. We apply a softmax to get an attention
map AC*C.

ew (%)
C
izi exp (XiX;)
where a;; measures the i channel’s impact on the j channel.
Moreover, we multiply the XV*€ by A“*C and reshape
the result to R*W*C_ Lastly, the result is multiplied by a

learnable value («) and perform an element-wise summation
with the original X to obtain the output ¥ € R¥*WxC,

“

aji =

C
Vi=a) (4iX;)+X 3)
i=1

where Y; represents the final feature map. The equation means
that the final feature of each channel is a weighted sum of
features of all channels and an original feature, which models
semantic interdependency between the channels. Therefore,
CAM is applied to the final features generated by 1 x 1
convolutional layer. Finally, we apply softmax activation to
the feature maps so as to obtain point-wise prediction.

IV. EXPERIMENTS

In this section, we describe experimental details. This section
is divided into four subsections: object scale estimation,
implementation details, experimental results, and architecture
ablation. In addition, we conduct above-mentioned experi-
ments on KITTI dataset.
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A. OBJECT SCALE ESTIMATION

In autonomous driving scenarios, object recognition depends
on a scale of road-objects (car, pedestrian, and cyclist). How-
ever, the objects can be large or small in various scenes.
By approximately estimating the scale of the objects, we can
intuitively understand scale-related effectiveness of the pro-
posed network on each object. To estimate the scale of the
objects, we select representative scenes, where each object
appears large or small, as shown in Fig. 5. In addition,
we count points of car, pedestrian, and cyclist to calculate
an average scale by dividing object-points with all points in
two representative scenes as shown in Table 1. Car occu-
pies 18.5 % of the scenes meanwhile pedestrian and cyclist
occupy 3.3 % and 2.8 % of the scenes on average. Therefore,
we are able to consider car as a large object and human-related
objects (pedestrian and cyclist) as small objects.

A
__

Range-images

Ground truth

FIGURE 5. Representative scenes on each object. From left to right,
the scenes represent car, pedestrian, and cyclist colored by the pink,
green, and brown. The first row shows larger-scale objects meanwhile
the second row shows smaller-scale objects.

TABLE 1. Object-points and average scale (%) of each object on
representative scenes. All points indicate the number of entire points in
two scenes.

Object-points | All points | Average scale
Car 12,142 65,536 18.5
Pedestrian 2,176 65,536 3.3
Cyclist 1,831 65,536 2.8

B. IMPLEMENTATION DETAILS

1) NETWORK CONFIGURATION

The network configuration of AMSASeg is shown in Table 2.
From layer 1 to block 3, we efficiently extract feature maps
employing FireModule. To downsample features along the
dimension of width, we use a convolutional layer and two
max pooling (MP) layer with a 3 x 3 filter. Whereas, block 4
contains three FireDeconv to restore original dimension for
point-wise prediction. Further, a 1 x 1 convolutional layer
is used to generate feature maps equal to the number of
object-classes. Finally, CAM is applied to enhance semantic
representation.

2) TRAINING DETAILS
We use spherically transformed 10,848 range-images from
3D point cloud in KITTI dataset [19] to train proposed
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TABLE 2. Network configuration of proposed AMSASeg.

Layer Input Operation Output
Layerl 64 x 512 x 5 3 x3Conv | 64 x 256 x 64
Layer2 | 64 x 256 x 64 DASPP 64 X 256 x 64
Blockl 64 X 256 X 64 FireModule 64 x 256 x 128
64 x 256 x 128 | FireModule | 64 x 256 x 128
64 x 256 x 128 3 x 3MP 64 x 128 x 128
Block2 | 64 x 128 x 128 | FireModule | 64 x 128 x 256
64 x 128 x 256 | FireModule | 64 x 128 X 256
64 x 128 x 256 3 X 3MP 64 x 64 x 256
64 x 64 x 256 | FireModule | 64 x 64 x 348
Block3 | 64 x 64 x 348 | FireModule | 64 X 64 x 348
64 x 64 x 348 | FireModule | 64 X 64 x 512
64 x 64 x 512 | FireModule | 64 x 64 x 512
64 x 64 x 512 FireDeconv | 64 x 128 x 256
Block4 | 64 x 128 x 256 | FireDeconv | 64 x 256 x 128
64 x 256 x 128 | FireDeconv 64 x 512 x 64
Layer3 64 x 512 x 64 1 x 1 Conv 64 x 512 x 4
Layer4 64 x 512 x 4 CAM 64 x 512 x 4

network. Further, we split the images into 8,057 training
set and 2,791 validation set. We implement our network on
Pytorch platform and train the network for around 12 hours
by using NVIDIA TITAN Xp GPU. Further, we use focal
loss [20] to measure the loss of predicted value. The focal
loss is given as follows:

FL (pc) = — (1 — po)Y log (pe) (6)

where p, is a predicted probability according to the c class and
y is the focusing parameter equal to 2, which is an optimal
value for better training [20].

C. EXPERIMENTAL RESULTS
We evaluate AMSASeg on KITTI dataset. For the evaluation,
we leverage two metrics: intersection over union (IoU) and
average runtime (AR). IoU is given as follows:

loU, = 1Ge N Pe| 7

|Ge U Pl

where G, and P, are ground-truth and predicted point of
the class-c. Further, the AR of processing each image in
validation set is measured. The AR can compare complexity
of a network with other networks and measure capability
of the network for real-time operation. We quantitatively
and qualitatively compare proposed AMSASeg with exist-
ing real-time segmentation algorithms: SqueezeSeg [3],
PointSeg [4], U-Net [8], and SalsaNet [21]. For a comparison
of segmentation performance, we train the algorithms with
the same network configuration described in [3], [4], [8], [21].
We set batch size as 8 and learning rate as 0.0001. During
the training, focal loss with an optimal focusing parame-
ter of 2 and Adam [22] are employed as the loss func-
tion and optimizer, respectively. The quantitative results
show that AMSASeg improves segmentation performance
on all objects such as car, pedestrian, and cyclist compared
to backbone network [3] as shown in Table 3. Moreover,
we achieve the highest accuracy on smaller objects (pedes-
trian and cyclist) with competitive performance on car com-
pared to [4], [8], [21]. Further, we achieve comparable AR
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TABLE 3. Comparison of segmentation performance (loU%) and average
runtime (AR) (msec).

Car | Pedestrian | Cyclist | AR

U-Net [8] 60.9 0.2 2.5 3.0
SqueezeSeg [3] 58.1 1.8 17.8 8.9
PointSeg [4] 66.7 5.1 12.9 10.1
SalsaNet [21] 69.3 4.1 8.7 5.3
AMSASeg (Proposed) | 66.7 23.6 22.8 9.6

at the cost of segmenting overall objects accurately. Further-
more, the qualitative results justify enhanced performance
as depicted in Fig. 6. By using yellow boxes, we highlight
improved segmentation results.

il gl e TG

Range-images

CU IR SN

U-Net

SN ISR SN

SqueezeSeg

PointSeg

SalsaNet

AMSASeg

N
I

Ground truth

FIGURE 6. Visual comparison of object segmentation. The pink, green,
brown, and black indicate car, pedestrian, cyclist, and background.

D. ARCHITECTURE ABLATION

This ablation study is dedicated to verify effectiveness of
each component (DASPP, SAM, and CAM) on the back-
bone network [3] for enhancing object segmentation perfor-
mance. We apply each component to the network, one by
one. Additionally, we compare the effectiveness of DASPP
with ASPP [18]. Moreover, we logically consider ablations
as shown in Table 4. The ablation study contains six cases.

o SqueezeSeg+SAM: SqueezeSeg with SAM in skip-
connections.

o SqueezeSeg+CAM: SqueezeSeg with CAM in the last
layer.

o SqueezeSeg(DASPP): SqueezeSeg with DASPP in the
first pooling layer.

o SqueezeSeg(DASPP)+CAM: SqueezeSeg with DASPP
and CAM.

o SqueezeSeg(ASPP)+CAM+SAM: SqueezeSeg with
ASPP, CAM, and SAM.

o SqueezeSeg(DASPP)+CAM+SAM: SqueezeSeg with
DASPP, CAM, and SAM. (AMSASeg)

As each component is applied to the backbone network,
DASPP and CAM improve segmentation performance by
extracting more discriminant features as shown Table 4.
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TABLE 4. Comparison of segmentation performance on ablation
study (loU%).

Car | Pedestrian | Cyclist
SqueezeSeg (SS) [3] 58.1 1.8 17.8
SS+SAM 58.5 1.2 11.1
SS+CAM 60.8 2.6 17.0
SS(DASPP) 65.2 10.1 17.9
SS(DASPP)+CAM 68.7 21.6 20.8
SS(ASPP)+CAM+SAM 63.2 8.4 18.7
SS(DASPP)+CAM+SAM | 66.7 23.6 22.8

Range-images

SqueezeSeg (SS)

SS+SAM

SS+CAM

SS(DASPP)+CAM

SS(ASPP}+CAM+SAM

SS(DASPP)+CAM+SAM

Ground truth

FIGURE 7. Visual comparison of object segmentation on ablation study.
The pink, green, brown, and black indicate car, pedestrian, cyclist, and
background.

However, SAM degrades the performance on smaller objects
such as pedestrian and cyclist since the backbone network
contains spatially poor information. We consider combina-
tions with DASPP and CAM or with DASPP, CAM, and
SAM because the SAM may play an important role in seg-
menting the smaller objects at spatially rich features. The
combination of DASPP and CAM achieves enhanced accu-
racy on car, pedestrian, and cyclist. Further, SAM added
to the combination also improves segmentation accuracy on
pedestrian and cyclist by 2%, despite degradation on car.
In addition, DASPP utilizes pooling operations with different
sizes based on ASPP to extract more distinctive features.
To verify effectiveness of DASPP on accurately segmenting
all objects compared with ASPP, we conduct an ablation of
backbone network with ASPP, CAM, and SAM. The seg-
mentation performance demonstrates that DASPP is effective
for accurate segmentation than ASPP. Therefore, we adopt a
backbone network with DASPP, CAM, and SAM as proposed
network (AMSASeg) to enhance segmentation performance
on all objects such as car, pedestrian, and cyclist. Further-
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more, we illustrate segmentation results on all ablations to
visually verify effectiveness of each component as shown
in Fig. 7.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed an attention-based multi-scale
atrous convolutional neural network for real-time object seg-
mentation from 3D point cloud. Multi-scale atrous convolu-
tion extracted distinctive features aggregating small to large
information on all objects. Furthermore, spatial and channel
attention module enhanced feature representation focusing
spatial to semantic information on smaller objects. Experi-
mental results showed that the proposed network is effec-
tive to enhance segmentation accuracy on all objects with
comparable average runtime. In the future, we will focus on
extracting object-level information to improve segmentation
performance on all objects by using manifold learning.
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