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ABSTRACT Advances in deep learning (DL) model design have pushed the boundaries of the areas in which
it can be applied. The fields with an immense availability of complex big data have been big beneficiaries of
these advances. One such field is human activity recognition (HAR). HAR is a popular area of research in
a connected world because internet-of-things (IoT) devices and smartphones are becoming more prevalent.
A major research goal of recent research work has been to improve predictive accuracy for devices with
limited computational resources. In this paper, we propose iSPLInception, a DL model motivated by the
Inception-ResNet architecture from Google, that not only achieves high predictive accuracy but also uses
fewer device resources. We evaluate the proposed model’s performance on four public HAR datasets from
the University of California, Irvine (UCI) machine learning repository. The proposed model’s performance
is compared to that of existing DL architectures that have been proposed in the recent past to solve the HAR
problem. The proposed model outperforms these approaches on several metrics of accuracy, cross-entropy
loss, and F1 score on all the four datasets. The performance of the proposed iSPLInception model is validated
on the UCI HAR using smartphones dataset, Opportunity activity recognition dataset, Daphnet freezing of
gait dataset, and PAMAP2 physical activity monitoring dataset. The experiments and result analysis indicate
that the proposed iSPLInception model achieves remarkable performance for HAR applications.

INDEX TERMS Human activity recognition, deep learning, inception module, Inception-ResNet, time-
series classification.

I. INTRODUCTION
Human activity recognition (HAR) as an area of research
has been advancing for decades due to its societal benefits
when applied in real-life human-centric applications. Poten-
tial application areas span elderly-care, healthcare, smart
homes, athletics, and abnormal activity monitoring [1]–[5].
As the world’s aging population continues to grow,
the demand for applications that continuously monitor the
physical well-being of a user has grown in tandem. The rapid
progress in semiconductor technology and the low cost of
sensors like gyroscopes, accelerometers, and magnetometers
that are lightweight, small, and consume very little power
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have made them easy to incorporate in most modern elec-
tronic devices like smartwatches and smartphones. This has
further motivated HAR-related research to become more
skewed towards becoming sensor-based [2]. This, however,
has not limited relevant research into other methods of
obtaining data for activity recognition like vision-based [6]
and Wi-Fi-based approaches [7], [8] but these have been
associated with several limitations.

Vision-based approaches utilize a vision sensor, a camera,
for example, that is placed in the environment where the
subject performs their daily activities. This renders them
constrained by factors like illumination, location, obstruction,
occlusion, privacy concerns among others. On the other hand,
Wi-Fi-based approaches leverage advances in Wi-Fi signals
and improved public wireless infrastructure to detect the
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change in patterns ofWi-Fi signals reflected by a human body
to recognize what activity a user is performing. Their lim-
itations include the computational complexity and resource
drain on these systems, signal fluctuations, interference of
Wi-Fi signals, and obstacles in the environment.

The biggest challenge for sensor-based HAR systems
is feature extraction. The ability to infer a specific class
to which a sensor stream belongs has been a subject of
immense research. Whereas in the past, statistical machine
learning (SML) approaches (both spectral and frequency-
based) have been proposed, recent works have built on what
Krizhevsky et al. [9] proposed in trying to address an image
recognition problem. Deep learning (DL) in general and con-
volutional neural networks have evolved a great deal espe-
cially in the context of HAR.

In the intelligent signal processing lab (iSPL), our key
research goal in activity recognition is to achieve the best
predictive accuracy and least cross-entropy loss when differ-
entiating between activities performed by a user. This is in
addition to performingHARon deviceswith very low compu-
tational resources, by users that are not domain experts with
very small datasets to work with. Whereas the majority of
successful HAR research has so far focused on basic human
activities, up-and-coming research explores more complex
activities. To be able to move towards complex human activ-
ities, however, it is desirable to exhaustively perform well
in classifying basic activities by evaluating existing publicly
available datasets and creating a benchmark on which HAR
approaches should be compared.

In this paper, we propose a DL model, iSPLInception,
that builds upon the work from [10] to perform the human
activity recognition task. Szegedy et al. [10] continued refin-
ing their work on the use of Inception modules and also
introduced a key component that has given very large models
the ability to converge faster and perform extremely well,
residual connections that were proposed by He et al. [11].
In doing so, we build a very deep and wide network that is
not only computationally efficient, converges very fast but is
also scalable.

Themain contributions made by this paper are summarized
below;
• We propose iSPLInception, a DL model for classi-
fying human activities. The proposed DL model is
based on the Inception-ResNet model and we have
built it to work on a human activity recognition task
achieving significant results when compared to existing
approaches.

• We establish a benchmark for future research of four
publicly available datasets. These were retrieved from
theUniversity of California, Irvine (UCI)machine learn-
ing repository. The datasets used are; the UCI HAR
using smartphones, Opportunity activity recognition,
Daphnet freezing of gait, and PAMAP2 physical activity
monitoring datasets.

• We compare our approach’s performance to exist-
ing research on the four datasets. We compare it to

a vanilla long short-term memory (vLSTM), stacked
long short-term memory (sLSTM), convolutional neu-
ral network (CNN), CNN-LSTM, and bidirectional
LSTM (BiLSTM) networks.

The remainder of this paper is organized as follows:
Section II explores the previous studies undertaken that relate
to our research and applicative context. Our proposed model
architecture is discussed in Section III. Section IV presents
the experimental setup and the results with specific observa-
tions we obtained during this study. Finally, a discussion and
conclusion around our proposed approach, the results, and
future works are presented in Section V.

II. RELATED WORK
The multitude of application areas within which HAR is
applicable has made it a well-researched field. In the intel-
ligent signal processing lab (iSPL) of Kyungpook national
university (KNU), our work focuses on wearable/handheld
sensor-based recognition of human activities. HAR based on
signal generating sensors is geared towards classifying the
body’s physical motions and gestures from which one can
infer a user’s action or behavior. HARhas been used in health-
care [2], [12], surveillance-based security systems [5], sports
activity monitoring [13], mobile and edge computing [14],
and ambient assisted living (AAL) [15]. The widespread
use of smartphones and watches that are equipped with a
multitude of sensors has led to the need for customized
modern methods to monitor physical activities, habits, and
behavior.

A. HUMAN ACTIVITY RECOGNITION
Chen et al. [6] put together an impressive collection of work
on HAR. HAR aims at differentiating among common activi-
ties of daily life (ADL) like running, sitting, laying, riding,
exercising, etc. The approaches to solving the HAR prob-
lem have evolved from traditional machine learning (ML)
algorithms that were dominant in the early 2000s [3] to
deep learning (DL)-based approaches [1], [2], [7], [16], [17].
Every solution in several technological fields that involves big
data currently relies on or is transitioning towards using DL.
Several problems in speech recognition, natural language pro-
cessing, signal processing, and image recognition have found
optimal solutions from deep learning and neural networks.
More recently, several papers [1], [2], [7], [17] have been
published featuring DL models that can extract and select
features, recognize human activities, and even make use of
the recognized activities in real-world applications.

This paper focuses on HAR that relies on motion sen-
sors and therefore, we limit ourselves to reviewing work on
motion sensor-based approaches. Most modern smartphones
are equipped with motion sensors and thus making this type
of HAR the most widely researched. Chen et al. [6] con-
sider activity recognition to be a complex process that is
characterized by four basic tasks which include (1) choos-
ing and deploying appropriate sensors to objects and envi-
ronments to monitor and capture a user’s behavior along
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with the state change of the environment, (2) collecting,
storing and processing perceived information through data
analysis techniques and/or knowledge representation for-
malisms at appropriate levels of abstraction; 3) creating com-
putational activity models in a way that allows software
systems/agents to conduct reasoning and manipulation, and
4) to select or develop reasoning algorithms to infer activities
from sensor data. They furthermore suggest that each task has
a raft of methods, technologies, and tools that are available for
use. It is often the case that the selection of a method used for
one task is dependent on the method of another task.

From the above tasks, researchers have classified HAR
into; vision-based [6], sensor-based [2], [13], [16], and radio
frequency-based [7], [8]: considering the sensing mech-
anisms and tools used, data-driven vs knowledge-driven
activity recognition: in which models or mechanisms that
interpret sensor data to infer activities can either rely on the
patterns learned from data (bottom-up) or from rich prior
knowledge in the domain of interest (top-down) [6]. Our work
is sensor-based and data-driven whose aim is to establish a
verifiable benchmark for HAR datasets.

The ideal process for HAR uses data from common sen-
sors embedded in smartphones, watches, or standalone sen-
sors; accelerometer, gyroscope, magnetometer, and linear
accelerometer [1], [18]. The data is preprocessed, windowed,
and then loaded into a machine learning model for analy-
sis, a process we refer to as extract transform load (ETL),
ready for the deep learning model to infer from a list of
already learned human activities. The statistical machine
learning (SML) techniques that were used in the past to
distinguish among different human activities [3], [18], [19]
made HAR out to be difficult and complicated, requiring
domain knowledge and a lot of varied data to recognize
patterns.

Damaševičius et al. [20] use the Jaccard distance to tell
different activities apart, Lin et al. [3] create a social computer
game named Fish’n’Steps to link a player’s daily footstep
count to the growth and activity of an animated virtual fish
in a fish tank using a pedometer’s step count. Jain and
Kanhangad [19] use the histogram of gradient (HOG) and
centroid signature-based Fourier descriptors to generate fea-
tures from sensor signals that are then classified using multi-
class support vector machine (SVM) and k-nearest neighbors
(k-NN) classifiers. Anguita et al. [18] using smartphone
signal data, engineer features both in time and frequency
domains and use a multiclass SVM to group them into the
6 classes of walking, walking-upstairs, walking-downstairs,
sitting, standing, and laying down. We use a variation of
the UCI HAR smartphone dataset [18], in our work. This
work has been extended by Garcia-Gonzalez et al. [21]
with a new dataset that only contains four activities of
active, inactive, walking, and driving and data from the
accelerometer, gyroscope, magnetometer, and global posi-
tioning system (GPS) of the smartphone. Thu and Han [22]
address the presence of postural transitions within another
variation of this dataset and propose a way to deal with

them when trying to improve the classification of the
activities.

Chavarriaga et al. [23] while presenting the outcomes
from the Opportunity challenge used the nearest centroid
classifier, k-NN, quadratic discriminant analysis, and linear
discriminant analysis. The dataset from this work we refer
to as the Opportunity dataset and was first proposed by
Roggen et al. [24]. Reiss and Stricker [25] in establishing a
benchmark dataset for physical activity monitoring focused
on 12 protocol activities. They used the Weka toolkit with
5 different SML classifiers to obtain different benchmarks
that include the intensity estimation task; where classes are
obtained based on the metabolic equivalent (light, moderate
and vigorous), the basic activity recognition task which has
5 activity classes (lie, sit/stand, walk, run and cycle), the back-
ground activity recognition task that has the basic activities
and the other class and finally the all activity recognition
task that defines a separate class for each of the 12 activities.
In our work, we refer to this dataset as the PAMAP2 dataset.
Bachlin et al. [26] introduces a wearable system whose aim
is to assist walking of Parkinson’s disease patients along with
theDaphnet dataset. This dataset contains freeze or no freeze
classes with data from wearable acceleration sensors placed
on both legs and the hip.

B. DEEP LEARNING
The SML techniques that have been used in the past required
deep domain understanding to implement, let alone design.
The biggest challenge of relying on hand-crafted features is
the failure to find an accurate characteristic or group of char-
acteristics that differentiate all the activities. In recent years,
however, more advanced DL-based classification pipelines
have been built for HAR [2], [16], [17], [41]. DL significantly
differs from SML in that it makes it more convenient to
extract and classify complex data even with data coming from
heterogeneous sensor sources and modalities [16]. With DL
approaches, the idea is such that raw or preprocessed data is
fed to a trained DL model at one end and the classification
result comes out at the other end including internal feature
generation [37]–[40].

Some of the challenges for the systems based on this
approach face include; the need for a lot of training data for
them to be extensively usable, intra-class variations: where
activity has different characteristics when performed by dif-
ferent users, inter-class similarities: where activities share
a lot of characteristics, like jogging and running might be
perceived as similar from a sensor’s perspective, and data
imbalances where data in one or more classes is signifi-
cantly more than that of other classes. Some solutions that
have been proposed include transfer learning (TL) [1] a
phenomenon that allows models trained on a source dataset,
which is ideally bigger and more generalized, is retrained on
a smaller or more specific target dataset to address this. The
ability of a DL model to perform extremely well when the
data for training and testing is taken from the distribution (or
user) has made this very viable. Additionally, using hybrid
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networks optimized for different sensor modalities comes in
handy when working with HAR problems [35], [36].

C. INCEPTION-ResNet
Since Krizhevsky et al. [9] and their ‘‘AlexNet’’ network
from the ImageNet LSVRC-2010 contest, the convolutional
neural network (CNN) has become the go-to architecture for
not only image recognition tasks but also any task that uses
complex data that would lead to complex relations being used
to distinguish one class from another. Szegedy et al. [27],
through GoogLeNet (Inception-v1), goes even further to
improve on the ease with which relations can be discovered
while achieving a smaller number of parameters yet being
a lot more accurate [27]. The key idea introduced by the
Inception-v1 architecture is the inception module that has
undergone several improvements since 2015 when it was
released.

The GoogleNet network is comprised of these modules
stacked upon each other, with max-pooling layers that halve
the resolution of the grid. Adding 1× 1 convolutional layers
to the network increases the depth and this is used heavily
in Inception-ResNet [10]. However, in [10], 1 × 1 convolu-
tions are used both as dimensionality reduction modules to
remove computational bottlenecks, which would have other-
wise limited the size of the built networks and therefore not
just increasing the depth, but also the width of the resultant
networks without significantly penalizing the network on
performance.

Inception-v2 and v3 were both introduced in [28].
Ioffe et al. [29] introduced batch normalization which was
used in Inception-v2 and Szegedy et al. [28] added fac-
torization in v3. The fourth iteration, Inception-v4, was a
further improvement to v3 [10]. In [10], they also introduce
Inception-ResNet which we have modified and made use of
in this research work. Although Szegedy et al. [10] does not
seem to support the view that residual connections introduced
by He et al. [11] are inherently necessary for training very
deep convolutional models, more than one research has come
out to make this claim. The residual connection enables the
proposed model to grow significantly while maintaining its
superior performance and not overfit like other deep neural
networks.

In our approach, we use this Inception-ResNet network to
perform the HAR task and we have only made use of a few
parts of the original architecture from [10] as elaborated in
Section III. Our work significantly differs from all the works
mentioned here, although shares slight similarities with the
works by Xu et al. [16] and a bit more structural similarities
with [30]. They proposed a model that combines a modified
Inception model with a gated recurrent unit (GRU), which is
a variant of the CNN-LSTM architecture. On the other hand,
Ismail Fawaz et al. [30] built an ‘‘InceptionTime’’ model
to address general time series classification (TSC) problems
from the UCR time series archive and uses the 85 datasets
therein to compare and redefine what the HIVE-COTE algo-
rithm has been able to achieve on the same datasets.

III. PROPOSED iSPLInception MODEL
Although previous deep learning approaches have advanced
the performance of HAR systems, they have been unable
to improve performance as well when they scale and thus
led to overfitting. We propose the intelligent signal process-
ing lab Inception (iSPLInception) that builds on the suc-
cesses realized by the Inception-ResNet model in other fields
of deep learning to address the activity recognition task.
The iSPLInception model proposed here is premised on the
Inception-ResNet model, especially the residual connection
and Inception module. Fig. 1 shows our implementation of
the Inception module using TensorFlow’s Keras API.

FIGURE 1. Modified Inception module used in the proposed
iSPLInception model.

Inception modules are quite useful when building models
that are very deep and wide. In each Inceptionmodule, we run
convolutions with different kernel sizes in parallel after which
we concatenate the output from these parallel operations. The
immediate layer before this block provides the input. This
is connected to both a 1 × 1 1-dimension convolution layer
(Conv1D) and theMaxPool1D, a 1×3max pooling operation.
This 1 × 1 Conv1D is a cheap operation that works as a
dimensionality reduction layer for the input features and is
much cheaper to work with by removing the extra channel as
presented in [10] and [28]. We refer to this 1 × 1 Conv1D
as a bottleneck that reduces the input channels to 1. It acts
as input for 3 more convolution layers; a 1 × 1, a 1 × 3,
and a 1 × 5 Conv1D. These are either connected to the
concatenation layer or the residual node depending on the
level of the network on which a particular layer is. The kernel
sizes of 1×3 and 1×5 Conv1D layers are determined by the
maximum kernel size hyperparameter. TheMaxPool1D layer
is connected to a 1 × 1 Conv1D layer that is also connected
to either the residual node or concatenation layer.

Fig. 2 illustrates the full view of our proposed iSPLIn-
ception model. Being a HAR problem, the input is a group
of signals with a uniform length (window size). The input
array is of the shape (batch size, window size, number of
signals). The number of samples per input sequence, S, can
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FIGURE 2. The architecture of our proposed iSPLInception network.

be described as

S = win_size× sampling_rate (1)

where win_size is the size of each window in seconds, and
sampling_rate is in Hz. For example, the UCI HAR smart-
phone dataset has signals from 6 sensors sampled at 50 Hz
(20 milliseconds (ms) per sample). We create 2.56 s over-
lapping windows which translate to 128 data samples per
window.

From (1), the input shape to the model depends entirely
on the dataset we are dealing with. The window size also
varies from one dataset to the other which allows the iSPLIn-
ception model to be utilized to solve a variety of HAR TSC
problems. The input signals are passed on to the batch nor-
malization (BatchNorm) layer which acts as our ‘‘previous
layer’’ for the first Inception block from Fig. 1. The output
for the Inception module is then passed on to another Batch-
Norm layer before a rectified linear unit (ReLU). The number
of Inception module, BatchNorm, and ReLU layers used
is determined by the depth hyperparameter. Our proposed
model was been built to be scalable and so we can have as
many inception blocks as needed making this model wider
and deeper without significantly increasing model size in
terms of parameters. For every 3 of these blocks, we add a
residual connection that connects the input layer of the first
inception module, in Fig. 2’s case a BatchNorm layer, to the
output of the activation function which is combined using the
Add layer.

The output from this residual operation is activated using
a ReLU activation layer. The presence or absence of the
residual connection entirely depends on the depth hyperpa-
rameter of the proposed model. The second ReLU activation
depends on whether the Inception block has a residual con-
nection or not. The residual connection is referred to as a
shortcut and allows us to feed fresh information through a
skip connection [10] to succeeding layers. In [10], we learn

that succeeding layers can learn as much information from
the same input data as preceding layers or even more. The
output from the final ReLU activation function goes through
1-dimensional global average pooling (GAP1D) as presented
by Ismail Fawaz et al. [30].

A. CLASSIFICATION LAYER
We use a sigmoid classification layer with binary
cross-entropy for the Daphnet dataset and softmax classi-
fication with categorical cross-entropy for the rest of the
datasets. The general cross-entropy loss, CEgeneral, can be
described as

CEgeneral = −
C∑
i

ti log si (2)

where ti and si are the true values and the model scores
(predicted values) respectively for the ith class in classes C .
Usually, an activation function like Softmax or Sigmoid is
applied to the scores si before the CE Loss computation and
thus we use f (si) to refer to the activations [31].
While working with the Daphnet dataset, a binary classifi-

cation problem, we use the sigmoid activation function which
squashes an input vector in the range (0, 1) and is applied
independently to each element of the scores s, si. The sigmoid
activation function, Sigmoid(x), can be denoted by

Sigmoid(x) =
1

1+ e−x
(3)

where Sigmoid(x) is the sigmoid function for the input x and e
is the Euler’s number. By combining (2) and (3), we obtain
the binary cross-entropy (sigmoid) loss, CEsig, which can be
defined by

CEsig = −
C ′=2∑
i=1

ti log{f (si)}

= −t1 log{f (s1)} − (1− t1) log{1− f (s1)} (4)
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where it is assumed that there are two classes: C1 and C2.
t1[0, 1] and s1 are the groundtruth and the score for C1, and
t2 = 1− t1 and s2 = 1− s1 are the groundtruth and the score
for C2. More information on the sigmoid activation function
and loss can be found in [31].

On the other hand, the softmax function, σ , also squashes a
vector in the range (0, 1) and all the resulting elements add up
to 1. The softmax function cannot be computed independently
for each input value because it depends on all the elements
of this vector. The input values can be positive, negative,
zero, or greater than one, but the softmax transforms them
into values between 0 and 1, so that they can be interpreted as
probabilities. Amodel has trained to output a probability over
theC classes for each input vector. The softmax activation for
the ith input vector, σ (Es)i, is denoted by

σ (Es)i =
esi∑C
j=1 e

sj
(5)

where Es is the input vector, esi is the standard exponential
function for the input vector, C is the number of classes
in the multi-class classifier, esj is the standard exponen-
tial function for the output vector. The term at the bot-
tom is the normalization term. It ensures that all the output
values of the function will sum to 1 and each be in the
range (0, 1).

We combine this softmax activation with CEgeneral from
(2) to get the categorical cross-entropy (softmax) loss. This
softmax loss, CEsoftmax can be denoted by

CEsoftmax = − log

(
esp∑C
j e

sj

)
(6)

where esp is the softmax score for the positive class p.
In multi-class classification where the labels are one-hot
encoded, only the positive class Cp keeps its term in the loss.
There is only one element of the target vector t in (2) which
is nonzero, ti = tp. This is the reason why (6) is softmax
loss [31].

In addition to using softmax loss for the UCI HAR,
PAMAP2, and Opportunity datasets and sigmoid loss for
the Daphnet dataset, other key distinctions on the way we
treated these datasets is expanded upon in the experiment
setup section of this paper.

B. MODEL IMPLEMENTATION
The proposed model architecture was implemented in Ten-
sorFlow [32] using the Keras API. TensorFlow is an interface
for expressing machine learning algorithms and an imple-
mentation for executing such algorithms. We use TensorFlow
2.4.0 which supports eager execution and accelerates training
on GPUs.

Keras is a high-level API for TensorFlow that enables users
to easily build artificial neural networks by abstracting all the
complexities. More details on the deep learning machine and
technology used are summarized in Table 1.

TABLE 1. Deep learning machine specifications.

IV. EXPERIMENTS AND RESULTS
In this section, we first introduce the experimental setup
in terms of how we configured the different models with
their respective parameters, the different configurations of the
datasets, and further analysis of the machine specifications on
which we ran the experiments. Next, we present and discuss
the results we obtained for each dataset and compare the
results for the different models.

A. EXPERIMENTAL SETUP
To thoroughly evaluate the performance of the proposed
model on the HAR problem and against that of the other
models, we used four publicly available and benchmark
datasets which we describe in more detail as we present their
results. Fig. 3 illustrates the architectures we implemented for
the CNN [33], CNN-LSTM [2], vanilla LSTM [2], stacked
LSTM [2], and BiLSTM [22] networks. These models have
been proposed to perform TSC especially the HAR task in
the past with resounding success and are elucidated upon in
a subsequent subsection.

All the models were trained on the same train, validation,
and test sets for consistency and more meaningful compari-
son. The publicly available datasets we used have been online
for a long time and several research works have made use of
them with each claiming superiority over the other [18], [19],
[23], [25], [26].

In our experiments, we made specific configurations to
these datasets that would result in a more uniform bench-
mark for deep learning applications and newer approaches
to compare with. For example, since all datasets have
subject-specific information, we have ensured that data from
the same subjects has not been used in both training and test-
ing sets. However, when working with the Daphnet dataset,
we used some data from the same user in both the testing
and validation sets although it was from different experi-
ments/drills. This was due to the rarity of data that belongs
to the freeze class. Some additional considerations have been
mentioned in subsequent subsections.
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FIGURE 3. Architectures of the CNN, CNN-LSTM, vanilla LSTM, and stacked LSTM models used in our experiments.

B. MODEL CONFIGURATIONS
In Fig. 3, at the very top is the CNN model we built using
the Keras sequential API. Just like our iSPLInception model,
it has a BatchNorm layer just after the Input layer. This is
followed by an ensemble of Convolution blocks that have

1 Conv1D layer followed by a BatchNorm layer and a ReLU
activation layer. The number of these blocks is defined by the
depth parameter of our network. In our experiments, we chose
5 as the depth of our CNN. The output from the last block
is flattened using the Flatten layer and then passed on to a
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Dense layer with 100 neurons, a ReLU activation, another
Dense layer with neurons equal to the number of classes in the
dataset, a BatchNorm layer, and finally an Activation layer
that is either Softmax or Sigmoid.

The architecture we adopted for the CNN-LSTM network
is quite like those from [1] and [2]. We build it using the
sequential API and is comprised of an Input layer that is iden-
tical for all the models used. The input is however reshaped
to a specified number of steps (n_steps), length of each step
(length), and the number of signals (signals) for eachwindow.
For example, a typical input to the model is comprised of the
length of the window and the number of signals (channels).
We split each window of x time steps into sub-sequences. x
should be divisible by n_steps. For the UCI HAR dataset,
we set the n_steps = 4 since x = 128 and 128 is divisible
by 4. The use of a reshape layer enables us to accommodate
any dataset with uniform inputs as well as the test set without
having to preprocess the input to the network.

The reshaped input is then fed to a BatchNorm layer,
followed by the Convolution blocks. Each convolution block
is comprised of 2 Conv1D, one after the other, and a Max-
Pool1D layer. After the final convolution block, we flatten
the output and feed the flattened output to the LSTM block.
We include a dropout of 0.3 before a 100 neuron Dense
layer after which is a Dense classification layer with the
number of neurons equal to the number of classes and an
activation function that is either Sigmoid for binary classi-
fication or SoftMax for multi-class classification.

One thing to note is the use of the time distributed wrapper
for the convolution blocks. According to [32] and the Tensor-
Flow documentation, this wrapper allows us to apply a layer
to every temporal slice of an input. The input should be at
least 3D, and the dimension of index one will be the temporal
dimension. If we consider a batch of 64 data samples from the
UCI HAR dataset, where each sample has a window length
of 128 data points and 9 signals (channels), we will convert
this to 4-time slices/steps each, of 32 data points. The batch
input shape is (64, 4, 32, 9). Since this kind of layer applies the
same instance of Conv1D to each of the timestamps, the same
set of weights are used at each timestamp.

The architecture we adopted for the vLSTM, a simple
vanilla LSTM network, is also shown in Fig. 3 and features a
single LSTM layer with 128 hidden neurons that are followed
by a Dropout layer, then a 100 neuron Dense layer. This
culminates into a classification layer which is a Dense layer
whose number of neurons is equivalent to the number of
classes of the dataset and is the same for all models.

The stacked LSTM network, sLSTM, just like the
name suggests, is one where we just stacked together a
bunch of LSTM layers whose depth is determined by the
depth parameter which is then followed by the fully con-
nected 100 neurons Dense layer and a classification layer
that is just like that of the other architectures described
previously.

Finally, the BiLSTM network has a BatchNorm after
the Input layer that is followed by the single Bidirectional

LSTM network that uses a concatenation merge mode.
This is followed by a 100-neuron dense layer. The out-
put layer is the same as those described before for other
models.

The source code and more details of how the models were
configured and set up can be found on the accompanying
GitHub repository in [34].

C. PERFORMANCE MEASURES
Naturally, the overall human activity datasets that are col-
lected in a natural environment are often imbalanced among
classes. Whereas some of the classes may contain many
samples, other classesmight have only a few samples. Among
our 4 datasets, the UCI HAR dataset is a balanced dataset
with the class with the lowest number of samples in the train
set having 13% while the largest class having 19%. The same
goes for the validation and test classes. However, the activities
of the Opportunity dataset are extremely imbalanced, where
the Drink from Cup class accounts for more than 23% of the
training data while the Close Drawer 2 only has 2% of the
training data. PAMAP2 has some imbalances but Daphnet is
the most imbalanced of the 4 datasets where the No Freeze
class accounts for over 91% of the data with the Freeze class
having just 9%.

When evaluating the performance of a model on a dataset,
accuracy is the most intuitive performance measure and it is
simply a ratio of correctly predicted observations to the total
observations. One may be let to think that, if we have high
accuracy then the proposed model is the best. Yes, accuracy
is a great measure but only when you have symmetric datasets
where values of false positives and false negatives are almost
the same. Therefore, you must look at other parameters to
evaluate the performance of your model. The accuracy, A,
of the model is computed as

A =
TP+ TN

TP+ FP+ FN + TN
(7)

where TP and FP are the number of true and false positives,
respectively, and TN and FN correspond to the number of
true and false negatives.

When any classifier predicts the classification accuracy of
each class, the classes with higher amounts of data achieve
very high accuracy which is not the case for smaller classes.
The overall classification accuracy is not an appropriate index
for performance evaluation [16]. F1 score, F1, considers
the correct classification of each class as equally important.
It considers both the precision and the recall of each class
to compute the score. Precision, P, is the ratio of correctly
predicted positive observations to the total predicted positive
observations and can be defined as

P =
TP

TP+ FP
(8)

Recall or sensitivity, R, is the ratio of correctly predicted
positive observations to all observations in the actual class
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and can be defined as

R =
TP

TP+ FN
(9)

The F1 score is the weighted average of P and R which
counters class imbalances by weighting classes according to
their sample proportion and can be defined as

F1 = 2 ∗
R ∗ P
R+ P

(10)

where R is the recall and P is the precision.
In our experiments, we evaluate the models based on the

model’s accuracy, categorical or binary cross-entropy loss,
the F1 score from (10), and the number of total parameters
generated by the model. Several models generate lower loss
values due to their small sizes which put bigger, deeper, and
more complex models at a disadvantage.

D. UCI HAR DATASET
The UCI HAR smartphone dataset was proposed by
Anguita et al. [18] and is built from the recordings
of 30 subjects performing physical/basic activities of daily
life (BADL) with a waist-mounted smartphone that has
embedded inertial sensors. The goal is to classify 6 activi-
ties with data recorded from triaxial linear acceleration and
triaxial angular velocity at a constant sampling frequency
of 50 Hz. The dataset contains three static postures (standing,
sitting, lying), and three dynamic activities (walking, walking
downstairs and walking upstairs). The data was sampled in
fixed-width sliding windows of 2.56 seconds with a 50%
overlap which resulted in 128 readings per window.

The signals were preprocessed for noise reduction with a
median filter and a 3rd order low-pass Butterworth filter with
a 20 Hz cutoff frequency. The acceleration signal, which has
gravitational and body motion components, was separated
using another Butterworth low-pass filter into body acceler-
ation and gravity. In total, we obtained 9 signals/channels to
act as input to the DL models.

To provide a benchmark worth reproducing and for
comparing with future work, using the datareader.py file
from [34], we split the dataset into the train, test, and valida-
tion sets based on the subjects as shown in Table 2. This was
meant to ensure consistent and verifiable results for all our
models and the generalizability of the trained models across
all users. The minimum and maximum class percentages
indicate a well-balanced dataset across the 6 classes.

Table 3 shows the results we obtained from the UCI HAR
dataset using the different models.

Our iSPLInception network attains the highest test accu-
racy of 95.09% and F1 score of 95% when compared to the
other models. It is closely followed by the CNN-LSTM net-
work that attains a 0.61% lower accuracy and 94% F1 score.
The categorical cross-entropy loss from (6) is 0.1761 which
is better than that of the CNN-LSTM model that attained
0.2137. For the model size, however, the proposed model
has over 1,300,000 parameters which are significantly high
when compared to the vanilla LSTM network with just about

TABLE 2. Splitting the UCI HAR dataset and data disparity.

TABLE 3. Performance of the different models on the UCI HAR dataset.

85,000 parameters although has far fewer parameters than
the CNN-LSTM network that has over twice the number of
parameters.

We illustrate the training and validation accuracy and
loss for the iSPLInception model in Fig. 4. We trained
the proposed model and the other models for a maximum
of 350 epochs with early stopping patience set to 100 epochs
and used a learning rate scheduler to iteratively reduce the
learning rate when the training plateaus. Fig. 5 shows how
the models performed on the UCI HAR dataset with our
iSPLInception model being better than the other models.

FIGURE 4. Performance of the iSPLInception model on the UCI HAR
dataset.

In Fig. 6, the confusion matrices from our 6 models
are compared and show that the proposed model performs
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FIGURE 5. Comparing the various models on the UCI HAR dataset.

better in telling the different classes apart. In most of the
models, the sitting and standing classes are easily mixed
up because of their shared characteristics. Our iSPLIncep-
tion model however manages to tell them apart with more
precision.

E. OPPORTUNITY DATASET
Roggen et al. [24] proposed the Opportunity activity recog-
nition dataset which comprises naturalistic activities which
were collected in a sensor-rich environment using 72 environ-
mental and body sensors. It comprises recordings of 12 sub-
jects using 15 networked sensor systems, with 72 sensors
of 10 modalities, integrated with the environment, in objects,
and on the body. These characteristics make it well suited to
benchmark various activity recognition approaches.

We considered data from only the inertial measurement
units that belong to the columns between 38 and 134.We took
data from the triaxial accelerometer, gyroscope, magnetome-
ter, and others but excluded the quaternion measurements.
This resulted in 77 signals (channels) as our input. The data
was sampled at 30 Hz and we extracted 3-second windows
that resulted in 90 samples per window from (1).

The Opportunity dataset is initially an 18-class multi-class
classification problem, but we exclude the null class, an addi-
tional label, and thus use 17 classes. These are listed
in Table 4. Of these, ‘‘Close Drawer 1’’ and ‘‘Close Drawer
2’’ are the smallest with just about 2.5% each of the entire
dataset whereas the ‘‘Drink from Cup’’ class has the most
data.

This dataset is considered imbalanced due to the disparity
in the distribution of the data for the classes. Table 5 sum-
marizes the subject data, the number of samples in the train
test and validation sets and the percentage of the smallest and
largest classes in the dataset.

In Table 6, we summarize the results from training our
models on the Opportunity dataset.

TABLE 4. Classes we used for the opportunity dataset.

TABLE 5. Splitting the opportunity dataset and data disparity.

TABLE 6. Performance of the different models on the opportunity
dataset.

Our iSPLInception model performs significantly better on
this dataset when compared to the other models. With an F1
score of 88%which is 7% higher than that of the CNN-LSTM
and stacked LSTM models that each attained an 81% score.
We achieve an 88.14% model accuracy and a 0.4790 model
loss which are much higher than that of the stacked LSTM
and CNN-LSTM networks. The proposed model parameters
are only lower than those of the CNN-LSTMmodel like with
the UCI HAR dataset.

We illustrate the training and validation accuracy and
loss for the iSPLInception model in Fig. 7. We trained
the proposed model and the other models for a maximum
of 350 epochs with early stopping patience set to 100 epochs
and used a learning rate scheduler to iteratively reduce the
learning rate when the training plateaus. Fig. 8 shows how
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FIGURE 6. Confusion matrices for all the models on the UCI HAR dataset.

FIGURE 7. Performance of the iSPLInception model on the opportunity
dataset.

the models performed on the Opportunity dataset with our
iSPLInception model being significantly better than the other
models.

FIGURE 8. Comparing the various models on the opportunity dataset.

In Fig. 9, the confusion matrices from our 6 models are
compared and show that the proposed model performs better
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in telling the different classes apart. In most of the models,
the ‘‘Drawer’’ related classes are easily mixed up because of
their shared characteristics. Our iSPLInception model how-
ever performs better in telling them apart.

F. DAPHNET DATASET
Bachlin et al. [26] proposed the Daphnet Freezing of
Gait (Daphnet) dataset. It is a dataset devised to benchmark
automatic methods to recognize gait freeze from wearable
acceleration sensors placed on legs and the hip. About 50%
of the patients with advanced Parkinson’s disease (PD) suffer
from the freezing of gait (FOG), which is a sudden and
transient inability to walk. It often causes falls, interferes
with daily activities and significantly impairs quality of life.
Because gait deficits in PD patients are often resistant to
pharmacologic treatment, effective non-pharmacologic treat-
ments are of special interest.

The goal of their study was to evaluate the concept of a
wearable device that could obtain real-time gait data, process
these events and provide assistance based on pre-determined
specifications. They developed a real-time wearable FOG
detection system that automatically provided a cueing sound
when FOG is detected, and which stays until the subject
resumes walking.

This wearable assistive technology was evaluated in a
study with 10 PD patients. Over eight hours of data were
recorded. Two hundred and thirty-seven FOG events were
identified by professional physiotherapists in post-hoc video
analysis. The dataset was recorded in a lab setting with an
emphasis on generating many freeze events. Users performed
these kinds of tasks: straight-line walking, walking with
numerous turns, and finally, a more realistic activity of daily
living (ADL) task, where users went into different rooms
while fetching coffee, opening doors, etc.

This dataset contains 2 activities of Freeze and No
Freeze. The data was sampled in fixed-width sliding win-
dows of 3 seconds with a 50% overlap which resulted
in 192 readings per window because it was recorded at 64 Hz.
We used the 9 accelerometer signals, triaxial accelerometer
from the ankle, upper leg, and trunk as input to the DL
models.

To provide a benchmark worth reproducing and for
comparing with future work, using the datareader.py file
from [34], we split the dataset into the train, test, and val-
idation sets based on the experiments for each subject as
shown in Table 7. The disparity in percentages between the
No Freeze and Freeze classes indicates a very imbalanced
dataset.

In Table 8, we summarize the results from training our
models on the Daphnet dataset.

Our iSPLInception model performs better on this dataset
as well when compared to the other models. With an F1 score
of 94% that is 1% higher than that of the CNN, CNN-LSTM,
and stacked LSTM models that each attained a 93% score.
The worst model was the stacked LSTM with only 88%.

TABLE 7. Splitting the Daphnet dataset and data disparity.

TABLE 8. Performance of the different models on the Daphnet dataset.

We achieve a 93.52% model accuracy and a 0.2271 model
loss which are higher than those of the stacked LSTM and
CNN-LSTM networks. The proposed model parameters are
only lower than those of the CNN-LSTMmodel like with the
UCI HAR dataset.

We illustrate the training and validation accuracy and
loss for the iSPLInception model in Fig. 10. We trained
the proposed model and the other models for a maximum
of 350 epochs with early stopping patience set to 100 epochs
and used a learning rate scheduler to iteratively reduce the
learning rate when the training plateaus. Fig. 11 shows
how the models performed on the Daphnet dataset with our
iSPLInception model showing better performance than the
other models.

In Fig. 12, the confusion matrices from our 6 models are
compared and show that the proposed model performs better
in telling the different classes apart. In most of the models,
the ‘‘Freeze’’ class is poorly classified due to the imbalance
of the data. The proposed model however performs best in
detecting these freeze events when compared to the other
models.

G. PAMAP2 DATASET
Reiss and Stricker [25] proposed a physical activity mon-
itoring dataset (PAMAP2) that consists of recordings from
9 participants (8 males and 1 female) instructed to carry out
18 lifestyle activities, including household activities (lie, sit,
stand, walk, run, cycle, Nordic walk, iron, vacuum clean,
rope jump, ascend and descend stairs) and a variety of
leisure activities (watch TV, computer work, drive a car,
fold laundry, clean house, play soccer). The subjects were
wearing 3 inertial measurement units (IMU) that recorded the
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FIGURE 9. Confusion matrices for all the models on the opportunity dataset.

FIGURE 10. Performance of the iSPLInception model on the Daphnet
dataset.

accelerometer, gyroscope, magnetometer, temperature and
heart rate data that were located on the hand, chest and ankle
over 10 hours in total.

FIGURE 11. Comparing the various models on the Daphnet dataset.

The PAMAP2 dataset we build has 36 dimensions.
The data was sampled in fixed-width sliding windows
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FIGURE 12. Confusion matrices for all the models on the Daphnet dataset.

TABLE 9. Splitting the PAMAP2 dataset and data disparity.

of 2.56 seconds with a 50% overlap which resulted
in 256 readings per window because it was recorded at
100Hz.We used 36 signals as input to the DLmodels. To pro-
vide a benchmark worth reproducing and for comparing with
future work, using the datareader.py file from [34], we split
the dataset into the train, test, and validation sets based on
the experiments for each subject as shown in Table 9. The
disparity in percentages between the No Freeze and Freeze
classes indicates a very imbalanced dataset.

In Table 10, we summarize the results from training our
models on the PAMAP2 dataset.

Our iSPLInception model performs better on this dataset
as well when compared to the other models. With an F1 score
of 89% that is 1% higher than that of the CNN-LSTM

TABLE 10. Performance of the different models on the PAMAP2 dataset.

model that attained an 88% score. The worst models were
the CNN and vanilla LSTM with only 86%. We achieved
an 89.09% model accuracy and a 0.4322 model loss which
are higher than those of the stacked LSTM and CNN-LSTM
networks.

We illustrate the training and validation accuracy and
loss for the iSPLInception model in Fig. 13. We trained
the proposed model and the other models for a maximum
of 350 epochs with early stopping patience set to 100 epochs
and used a learning rate scheduler to iteratively reduce the
learning rate when the training plateaus. Fig. 14 compares
the models’ performance on the PAMAP2 dataset with our
iSPLInception model showing better performance than the
others.
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FIGURE 13. Confusion matrices for all the models on the PAMAP2 dataset.

FIGURE 14. Performance of the iSPLInception model on the
PAMAP2 dataset.

In Fig. 15, the confusion matrices from our 6 models
are compared and show that the proposed model performs
better in telling the different classes apart. In all the mod-
els, the ‘‘Standing’’ class is poorly classified due to the
shared characteristics with Vacuum Cleaning and Ironing
since under normal circumstances, the two activities are per-
formed while standing. The proposed model still manages to
classify the classes reasonably well.

FIGURE 15. Comparing the various models on the PAMAP2 dataset.

V. CONCLUSION
In this paper, we proposed the iSPLInception, a model
architecture that strives to push the limits of model perfor-
mance in human activity recognition. The model is based
on the Inception-ResNet model and improves performance
on 4 benchmarked datasets. We compared the performance
of the proposed model against previous works in the realm
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of HAR that include CNN, CNN-LSTM, a vanilla LSTM,
and a stacked LSTM and the proposed model performs bet-
ter than all these networks on the 4 datasets from the UCI
machine learning repository. All the models are significantly
affected by imbalances in the dataset. Another issue identified
during our study was the significant change in performance
when data from the different users is mixed using cross-
validation. Just like in image recognition where a model will
always perform poorly on previously unseen data, the HAR
field suffers the same challenge. Using transfer learning has
made this challenge history and our iSPLInception model is
adaptable. The proposed model can be expanded to use more
inceptionmodules making it scalable with ease and having no
significant detriment to performance. We believe this paper
establishes a benchmark for deep learning on these four
datasets for future researchwork andmodel design. For future
work, we intend to use a subject independent method, like
cross-validation, to evaluate each dataset. Another interesting
research direction would be in using an ensemble of the best
DL models as opposed to cherry-picking one.
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