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ABSTRACT The rapid usage of the Internet for the last few decades has lead to the deployment of high-speed
networks in commercial and educational institutions. As network traffic is increasing, security challenges are
also increasing in the high-speed network. Although the Intrusion Detection System (IDS) has a significant
role in spotting potential attacks, the heavy traffic flow causes severe technical challenges relating to
monitoring and detecting the network activities. Moreover, the devastating nature of the Distributed Denial-
of-Service (DDoS) attack draws out as a significant cyber-attack regardless of the emergence of Software
Defined Network (SDN) architecture. This paper proposes a novel framework to address the performance
issues of IDS and the design issues of SDN about DDoS attacks by incorporating intelligence in the data
layer using Data Plane Development Kit (DPDK) in the SDN architecture. This novel framework is named as
DPDK based DDoS Detection (D3) framework, since DPDK provides fast packet processing and monitoring
in the data plane. Moreover, the statistical anomaly detection algorithm implemented in the data plane as
Virtual Network Function (VNF) using DPDK offers fast detection of DDoS attacks. The experimental
results of the D3 framework guarantee both efficiency and effect of the novel IDS framework. The publicly
available CICDoS datasets also ensure the detection effect of a single statistical anomaly detection algorithm
against the DDoS attack.

INDEX TERMS Data plane development kit (DPDK), denial of service attack (DoS), DPDK based DoS
detection (D3) framework, high-speed network, intrusion detection system (IDS), software defined network
(SDN), virtual network function (VNF).

I. INTRODUCTION
Distributed Denial of Service (DDoS) has been one of the
evergreen attacks for a few decades preventing legitimate
users from accessing services, incapacitating the target, and
causing high revenue loss. Recently the Amazon Web Ser-
vices (AWS) was attacked by DDoS attack with a peak traffic
volume of 2.3 Tbps in February 2020 [1] and GitHub was
targeted by 1.35 Tbps in February 2018 [2]. There has been
an exponential increase in the power, frequency, severity,
and volume of DDoS attacks despite the existence of all
detection and mitigation solutions. It is hard to detect DDoS
attacks without adversely affecting network resources. Thus,
the inevitable need of the research community is to focus
on developing an efficient Intrusion Detection System (IDS)
framework against DDoS attacks with high detection power.
The middlebox-based DDoS detection used in conventional

The associate editor coordinating the review of this manuscript and

approving it for publication was Chao Shen .

systems offers good accuracy, but it causes communication
overhead and rigidity. The requirement of customized hard-
ware with software in the middlebox defense technique is
incompatible with adaptable network architecture and fails to
maintain a global network intelligence [3]–[8]. So researchers
addressed this issue by a programmable network paradigm
called Software Defined Network (SDN) for challenging
security threats of DDoS [9]–[14] that delivers network intel-
ligence to incorporate the rapid change of network config-
uration in today’s data centers, industry, academic, and IoT
era. It helps to provide a holistic, cost-effective, lightweight
approach against DDoS attacks without any additional hard-
ware requirements, which is ideal for a modern changing
network scenario.

The introduction of network programmability, the global
network intelligence, the decoupling of data plane and con-
trol plane, traffic engineering with dynamic forwarding rules
of network traffic in SDN paved a secured and adaptable
innovation in the network architecture. But the centralized
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FIGURE 1. SDN vulnerabilities.

SDN controller causes potential threats due to its single point
failure. The major vulnerabilities in SDN can be categorized
into three major attacks based on the different plane of SDN
architecture [15], which is shown in Figure 1.
1) Data Plane Attacks: The space constraint in the data

plane results in buffer saturation and flow table over-
flow, which are the main reasons for the security chal-
lenges in data plane attacks. Due to the presence of
dump switches and the decision-making role of the
controller, the identification of genuine and malicious
flow in the data plane is a challenging task. As the
data traffic increases, the congestion in the control-data
plane link causes disconnection of the control plane and
data plane. Moreover, the data plane resources will be
compromised as the SDN controller is compromised.
Hence, the data plane attacks depend on the security of
the control plane.

2) Control Plane Attacks: The control plane is the targeted
plane for most of the attacks due to the centralized
nature of the controller. It includes threats from the
application, threats of scalability, and threats of avail-
ability.Most of the untreated data plane problems cause
saturation attacks in the control plane. The controller
is responsible for a customized security check of dif-
ferent applications with authentication of applications
and authorization of resources, which have not been
established yet. Moreover, today’s SDN controllers are
not able to handle the network traffic in a high-speed
network having a 10 Gbps link [16]. The lack of scal-
ability of the SDN controller and the unavailability of
network resources create a conducive environment for
DoS attacks in SDN. Multi-controller is not a good
solution for DDoS attacks as it can result in cascading
failure of all controllers.

3) Application Plane Attacks: It includes challenges con-
cerned with authentication and authorization, issues
related to access control and accountability. It is

important to authenticate every request from the
application to access network resources. However,
the authentication of a large number of SDN applica-
tions is challenging. Moreover, the malicious applica-
tion can bypass the SDN network due to the lack of
access control and accountability.

The DDoS attacks are categorized under the availability
threat of the controller. The reasons for DDoS vulnerabil-
ities are as follows: a) Buffer saturation due to the limited
memory space to buffer the information, b) Controller satu-
ration is the overhead in the controller due to the centralized
architecture of the controller, c) Flow Table overflow due to
limited TCAM memory, and d) Communication overhead of
control-data plane link causes bottleneck to the legitimate
users.

Even though the global view of the SDN controller is
beneficial to DDoS detection, the flow statistics of switches
received from the data plane lead to a significant detection
delay and communication overhead of South Bound Interface
(SBI), which results in bottleneck [17]–[20] and saturation
attack on the controller [16], [21]. Moreover, the contradic-
tory relationship of the centralized architecture of SDN and
the distributed nature of DDoS attacks cause several design
issues for building an efficient intrusion detection system in
SDN [22]. The design issues can be resolved by recommend-
ing any two alternatives. The first option is the participation of
the data plane in anomaly detection [23]–[26] which reduces
channel congestion and overloading of the SDN controller.
The second option is the introduction of lightweight statistical
anomaly detection algorithms [17], [18], [27], [28] which
is the best suit for the SDN controller. Radware Defense
Flow [29] is an example of a commercial solution for statisti-
cal anomaly detection. The statistical approaches can identify
new attacks, low rate attacks, and high rate attacks with faster
response time and minimum overhead to the controller since
it can detect attacks by a minimum number of features [18],
[30]–[32]. Moreover, the detection time reduces with the
fewer number of features [26] and with the low complexity
in the traffic characterization phase [33].

Even though these existing approaches deliver good accu-
racy and reduce SDN southbound communication overhead,
the performance of actuators in the data plane is lower com-
pared to the hardware path. Moreover, the deployment of a
high-speed network in today’s data centers, commercial and
academic institutions reveals the challenges of IDS concern-
ing network monitoring and network security [34]. Since IDS
is unable to handle the huge network traffic, it results in
huge packet drop and low detection rate. This problem can
be solved by scaling the network resources or by increasing
the bandwidth to handle it. However, it increases CAPEX
and OPEX expenditure. This problem of scaling of network
resources can be solved by introducing NFV technology but it
cannot handle the problem of bandwidth with OVS switches,
which can be resolved through DPDK. Hu et al. [35] have
recommended an IDS in a high-speed network using DPDK
capturing mechanism and SDN technology.
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Thus, the objective of this work is to build an efficient
and cost-effective IDS in a high-speed network against DDoS
attacks. The rationale of the proposed IDS framework named
DPDK based DDoS Detection (D3) framework in SDN envi-
ronment is to address the design issues of SDN environment
for DDoS defense and the limitation of IDS in a high-speed
network. The main contribution of this paper is outlined as
follows:

1) The proposed D3 framework is considered the first
DPDK based DDoS defense framework built on single
feature anomaly detection in SDN to the best of our
knowledge. The single point failure of the centralized
SDN controller and the incapability of dump switches
are eluded by using an integrated D3 framework of
NFV and SDN technology. Here, SDN abstracts net-
work control functions from network forwarding func-
tions, whereas the NFV abstracts IDS functions from
the hardware on which it runs.

2) A lightweight statistical anomaly detection D3 algo-
rithm based on a single feature is introduced, which
is the best fit for the SDN environment for fast DDoS
detection.

3) The effect and efficiency of the D3 framework are
analyzed. The detection effect of the proposed D3 algo-
rithm is evaluated for the D3 framework and CIC DoS
datasets, whereas the efficiency of the D3 framework
is compared with other IDS alternatives. The perfor-
mance and detection time of the D3 framework is good
enough since it is implemented in OVS-DPDK.

4) This is a cost-effective approach since the framework
doesn’t involve any extra physical devices for its assis-
tance. Moreover, the network baseline created for nor-
mal network scenarios helps to track the abnormal
traffic, which can be applied in significant areas like
data centers, educational institutions, corporate, gov-
ernment, military, etc.

The abbreviations used in the proposed paper is listed
in Table 1 and the rest of the paper is systematized as follows:
Section 2 discusses the recent related works. Section 3 men-
tions the importance of DPDK for DDoS detection. The pro-
posed architecture and methodology of the D3 framework are
explained in Section 4. Section 5 presents the experimental
setup. The results and discussions are explained in Section 6.
Finally, Section 7 is summarized with the conclusion and
future scope.

II. RELATED WORK
A. PERFORMANCE OF IDS IN HIGH-SPEED NETWORKS
The data transfer on the internet is growing at a fast pace
which resulted in the deployment of high-speed networks in
commercial and educational institutions. In today’s network,
the role of IDS for identifying potential attacks is inevitable.
The heavy traffic causes major technical challenges for the
IDS about monitoring and detecting the network activities.
The incapability of IDS to process the large diverse traffic

TABLE 1. Acronyms.

causes the dropping of packets and low detection accuracy.
This limits the usage of IDS in the high-speed network.

Extensive studies are conducted [35]–[38] on the perfor-
mance of IDS in high-speed networks due to the potential
challenges that occur during heavy traffic. Hu et al. [36] pre-
sented the various challenges of packet capturing systems
in high-speed networks, which can be solved by using mul-
tithreaded architectures. Since the overloading of the IDS
misses malicious activities in high-speed networks, the mul-
tithreaded architecture optimizes IDS, and maximizes its
performance by reducing the overloading of IDS which in
turn decreases packet drop and increases CPU utilization.
Moreover, the studies [39], [40] describe that the detection
capacity of the IDS will decrease with the increase of the
packet drop rate. It depicts that the effectiveness of the IDS
will degrade with the packet loss. Thus, IDS performance
can be influenced by two aspects, namely, packet capturing
mechanism and packet detection mechanism.

Wu et al. [41] demonstrated the packet processing at
100 Gbps using DPDK packet capturing mechanism in user
space with no packet drop, wherein DPDK bypasses the
existing network stack for packet processing. Hu et al. [35]
presented a comprehensive study of the performance of two
open-source IDS namely Suricata and Snort in the high-speed
network. The objective of this study was to improve the
performance of IDS in the high-speed network by incor-
porating packet capturing and data processing approaches.
It also discussed the vital factors like memory utilization,
CPU utilization, packet drop rate, and detection accuracy
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which limits IDS application in high-speed networks. This
study concluded with challenges of open source IDS in the
high-speed network and provided its recommendation by
developing a new IDS in a high-speed network using DPDK
capturing mechanism and SDN technique.

B. DIFFERENT DEFENSE MECHANISM IN SDN AGAINST
DDOS ATTACKS
The dissonant relationship of SDN architecture and the nature
of DDoS attacks underline the relevance of an efficient
framework in SDN architecture to handle DoS attacks. The
main security issues in the design of SDN architecture are
single-point failure of the controller, the existence of dump
switches, and limited flow table memory. So, the framework
in SDN against DoS attack should address the defense strate-
gies for both data plane attacks and controller plane attacks.

1) DEFENSE AGAINST DDoS ATTACK ON DATA PLANE
In SDN, switches act as forwarding devices without any intel-
ligence, and all the decisions are carried out by the centralized
controller. When heavy traffic comes, it will increase the
bandwidth of the controller plane and reduce the performance
of the controller. So these dump switches [42] increase the
vulnerability of the data plane, for it can be easily targetted
by attackers because of the incapability of OpenFlow SDN
switches to handle threats on their own. Moreover expensive
and power-hungry characteristics of TCAM results in the
limited TCAM size of SDN switches [43], [44] [45], which
increases the risk of rapid overloading by flooding attacks
[46], [47]. This results in normal communication breakdown,
flow table overflow, and higher energy consumption [48],
[49] [50]. Thus the defensive mechanism should be quick and
cost-effective as updating OF switches or adding additional
appliances are costly.

Xu et al. [51] described a mathematical model for table
overflow attacks and pinpointed the potential victim in the
network topology. This paper also suggested three traffic
features that aid to identify attacks through monitoring mech-
anisms and the mitigation is performed using a token bucket
based algorithm. Thus, the proposed work provided a defense
against table overflow attacks in the target switch which
causes memory exhaustion. It also ensures stable transmis-
sion for a normal client and limits the rate of transmission for
attackers. It works effectively by reducing attack rate but the
routing complexity and overhead increase with topology size.

Durner et al. [52] introduced a statistical model and
lightweight approach for DoS defense in the data plane to
counter table overflow attacks due to flooding attacks. The
detection mechanism depends on the analysis of the header
field in the flow table and the attackers are identified using
hashing techniques which can be handled by defining new
rules. This method gives a good detection rate with fewer
false positives. Yet, the statistical method failed to identify
attackers whose header field change alternatively but perfor-
mance can be increased by selecting good features.

Since the SDN routing system is exhausted by low traffic
flows, which resulted in resource consumption in both data
and control plane, Dong et al. [53] proposed SPRT (Sequen-
tial Probability Ratio Test) for DDoS detection in controller
and switches to negate false positive and false negative
due to low traffic flows. SPRT is a statistical tool obtained
from the ratio of normal flow to low traffic flow. This pro-
posed methodology has outstanding accuracy, versatility, and
promptness compared to other detection techniques like per-
centage, count, and entropy of the flows. But the setting of the
threshold value in the real network scenario is challenging.

Yuan et al. [54] proposed a QoS mitigation approach based
on a peer support strategy that guards the SDN against flow
table overflow attacks. It is performed by integrating the
available idle resources (switches) in the SDN environment
to prevent an attack against the victim switch. Even though
redirecting the attack flows from saturated switches to idle
switches distribute the traffic to peer switches effectively,
the redirection action has no control over the rate of attack
traffic. The performance goes down when the attack rate
becomes high and there are no adequate resources (switches)
for redirection. Moreover, there is no detection mechanism
for identifying the attack which also makes it an ineffective
methodology for a complete solution against DDoS attacks.

2) DEFENSE AGAINST DDOS ATTACK ON CONTROL PLANE
The controller is the brain of the SDN network, which pro-
vides complete visibility and intelligence to the network. The
centralized SDN controller is the most attractive target for
DDoS attacks. So the controller must be properly protected
by fast DDoS detection and mitigation strategy. Most of the
defense mechanisms of the controller are focused to avoid
resource saturation quickly.

Mousavi and St-Hilaire [55] proposed an entropy-based
early DDoS detection method for both bandwidth and mem-
ory exhaustion. It is a lightweight fast approach against flood-
ing attacks by calculating the entropy of the destination IP
address in the SDN controller. The attack is detected when the
entropy value is less than the experimental entropy threshold
over the 5 consecutive windows. But the attack against the
whole network is not identified and can support only a single
controller architecture. Sahoo et al. [27] proposed a general-
ized entropy approach in SDN controller using information
distance as detection metric to find the difference in the
probability distribution of low rate attack and normal traffic,
which is more accurate than detection method described by
Mousavi and St-Hilaire [55].

Zhang et al. [45] introduced a dynamic queue management
approach to prevent resource saturation attacks in the control
plane. The queues are expanded dynamically when a UDP
flooding attack occurs and can be aggregated during normal
traffic by a multi-layer fair queuing (MLFQ) based method
which does not need any extra appliances in the data plane.
But this method can only handle specific attacks.

Shin et al. [16] presented a defense framework called
AVANT-GUARD against controller bandwidth saturation
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threat caused by TCP-SYN flooding attack. The large TCP
connections initiated by attackers resulted in a large number
of packets to the controller. So AVANT-GUARD allows for-
warding plane to handle failed TCP connections, and the flow
messages are not sent to the controller until the handshake
process is completed successfully. These TCP connections
introduce an unavoidable and significant delay. Moreover,
this framework is suitable only for TCP-SYN attacks, and
the necessity of switch modification is undesirable in a real
deployment.

Wang et al. [56] introduced a DDoS defense named
Flood-Guard against control plane DDoS attack. Instead of
controller, the proactive flow rule analyzer monitors new
incoming attacks packets from the data plane cache and
automatically changes the flow rules when an attack occurs.
Even though it reduces the overloading of the controller
due to flooding attacks, it increases the delay in the data
processing. Moreover, Flood-Guard requires the deployment
of supplement devices in the data plane.

Cui et al. [28] proposed a SD-Anti-DDoS defense frame-
work by introducing an attack detection trigger for quick
response against DDoS attack and to reduce the overhead of
the SDN controller. It also traceback the attack source and
mitigate it. This framework falls short in the performance of
different OpenFlow version.

3) DEFENSE BY INTEGRATING INTELLIGENCE IN SWITCHES
As the controller is responsible for every decision-making of
switches in the SDN environment, switches are just forward-
ing devices. This result isn controller overloading and channel
congestion. The characteristic of SDN switches as simple
forwarding device increases the communication overhead,
delay in attack detection, and congestion in the controller.
These problems can be solved by incorporating intelligence in
the switches and thereby reducing overload in the controller
and its bandwidth. Thus the detection of malicious activities
can be detected quickly at the switch level.

Kalkan et al. [24] proposed SDNscore, a statistical
approach against the DoS attack. This is a packet-based
approach, where a score value is calculated to find an
unknown DDoS attack which is performed at switch level
and the verification module is handled by the controller. Even
though this method outperforms the entropy-based model,
this is not yet implemented in an SDN environment.

Biote et al. [25] presented a stateful approach called
StateSec against DDoS attacks in the SDN environment.
To achieve this goal, the switches handle the monitoring
function and detection using finite state machines, whereas
the mitigation is handled by the controller. This system pro-
vides improved reactivity and good detection by offloading
the controller. The implementation of in-switch processing
for monitoring traffic is integrated but the implementation
of detection algorithm in the switch-level is not yet imple-
mented.

Han et al. [23] introduced a collaborative intelligence in
both the data plane and control plane using a cross-plane

DDoS framework named OverWatch, where the data plane
detection is performed by a coarse-grained sensor using 4 sta-
tistical parameters and the controller plane detection using
an autoencoder ML algorithm. This is a good solution for
both attacks on the data plane and controller. It gives good
accuracy and reduces SDN southbound communication over-
head. But the performance of actuators in the data plane is low
when compared to the hardware path. This can be improved
by using DPDK.

Tan et al. [26] proposed a new framework for DDoS
detection and defense, where the trigger mechanism of DDoS
detection is performed in the data plane of the SDN environ-
ment and the SDN controller is responsible for the detection
and mitigation. The detection of the suspicious traffic is
performed by using a combined machine learning algorithm
of K-Means and KNN using 5 statistical features. The com-
bined detection method of both the data plane and control
plane improves its detection ability and efficiency. However,
the DDoS detection in large network traffic is yet to be solved.

In short, the limitation of existing systems include SDN
design problem like the overhead of controller, single-point
failure, the existence of dump switches, limited flowmemory,
and other problems including a selection of good feature
for detection, early detection, handling all common DDoS
attacks, IDS performance in high-speed network, setting
baselines, reduce the delay in data processing, and cost of
additional hardware for data plane security. Moreover, most
of the studies are focused on the detection effect than effi-
ciency. These issues are addressed by the proposed D3 frame-
work in the SDN environment.

III. IMPORTANCE OF DPDK IN DDOS DETECTION
1) As the NIC faces a bottleneck in the high-speed net-

work due to the large overhead of data buffering, copy-
ing and interruptions, DPDK offers fast network packet
processing in user space by avoiding the overhead
caused by kernel function, which advances the DDoS
detection rate [57].

2) Even though OpenFlow (OF) provides a programmable
data plane in SDN, the programmability with high
performance can be guaranteed only through theDPDK
framework [58].

3) OVS-DPDK guarantees the performance enhancement
of flow forwarding and network management along
with the efficiency of real-time packet processing with
full CPU utilization [59].

4) The main issue of DDoS attacks in the SDN envi-
ronment is the saturation of the controller due to the
arrival of a large number of packets. This can be
solved by adding intelligence in the data plane using
the DPDK framework which is logically the same as
OpenFlow [23].

5) DPDK handled the issues of commercial off-the-
shelf (COTS) based hardware used for intrusion
detection [60].

69684 VOLUME 9, 2021



J. E. Varghese, B. Muniyal: Efficient IDS Framework for DDoS Attacks in SDN Environment

FIGURE 2. Contribution in the security domain.

6) The challenges of IDS in a high-speed network can
be swept away by using the DPDK packet capturing
mechanism [35].

7) The amalgamation of DPDK with SDN switches offers
high performance with a lower performance cost and
can reduce overheads of the network traffic [35].

The contribution of the proposed work in the security domain
is shown in Figure 2.

IV. METHODOLOGY
A. SYSTEM ARCHITECTURE AND NETWORK MODEL
The virtual switches have a big role in connectingVNF hosted
in the same application or across multiple applications. OVS
is the most known virtual switch solution. However, the per-
formance limitation of OVS can be overcome by porting OVS
to DPDK called OVS-DPDK. The proposed framework is
called the D3 (DPDK based DDoS Detection) framework
since it uses the DPDK framework for DDoS detection.

1) SYSTEM ARCHITECTURE
The different schematic design of the DDoS detection frame-
work in the SDN environment is shown in Figure 3, wherein
Figure 3(a) depicts DDoS attack detection in SDN controller
plane described in sections II-B1,VI-A, Figure 3(b) depicts
the collaboration of data plane in DDoS detection with the
controller plane mentioned in section VI-B, and Figure 3(c)
depicts the proposed system architecture which is the inte-
gration of DPDK in the Data plane for the fast processing of
packets and high performance.

The DPDK framework of the proposed architecture facil-
itates the data processing in a fast manner, as the data pro-
cessing occurs in user space using PMD without any kernel
interrupts. Thus, it delivers fast switching as PMD polls
data directly from NIC which in turn improves the perfor-
mance of the OVS switch. Thus it addresses the problem
of a high-speed network regarding packet capturing. Apart
from the advantage of OVS-DPDK, there is another level

FIGURE 3. System design of DDoS detection framework in SDN
environment: (a) Controller-based framework (b) Cross-plane framework
(c) DPDK based DDoS Detection (D3) framework.

of optimization performed to increase the performance of
network function by running DPDK inside CNF. This will
take advantage of DPDK inside the application of DDoS
attack detection in addition to the DPDK accelerated OVS.
This helps the framework to detect the DDoS attack in a fast
manner. Thus it solves the issues of DDoS attack detection in
a SDN environment.

2) NETWORK MODEL
The network model consists of OVS-DPDK as a bridge,
PacketGen and AttackGen are Pktgen-DPDK applica-
tion [61] for normal and attack traffic respectively, DUT
symbolizing data server enabled by a fast packet processing
framework of DPDK and DPDK based intrusion detection
system for DDoS attacks, and faucet SDN controller [62] are
responsible for monitoring and configuring network based
on the detection of attacks. Thus, the experimental SDN
test network is a simple star topology having five hosts and
a switch connected to the SDN controller and the imple-
mentation details are provided in Section V. Figure 4 and
Figure 5 depict the network model of the proposed system
and its notation respectively, where PacketGen (contains two
hosts) and AttackGen (contains one host) send packets to
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FIGURE 4. Network model of the proposed system.

FIGURE 5. Notation of the network model.

the DUT (contains two hosts) through OVS-DPDK, and the
faucet controller changes the network configuration (policy
creation) based on attack detection. Thus, DPDK enables fast
data processing and improves the performance of network
functions in the D3 framework along with high performance
and flexibility. The network intelligence in the switch level
lessens the overloading of the controller and reduces channel
congestion. This is a cost-effective approach since no external
resources are needed for implementing the model.

B. PROPOSED METHODOLOGY
The functionalities of the D3 framework are classified into
two main modules, namely the DPDK based detection mod-
ule and the Control plane mitigation module, which is
depicted in Figure 6. The DDoS detection takes place at the
data plane and the DDoSmitigation is managed by the control
plane. A detailed explanation of each module is described
below.

1) DPDK BASED DETECTION MODULE
This module integrates network intelligence for DDoS detec-
tion using the DPDK framework in the data plane and the
functionalities are described below.

a: DATA PRE-PROCESSING
The data preprocessing module is built on the ‘Testpmd’
DPDK application, which consists of two methods namely

FIGURE 6. Modules in the D3 framework.

packet capturing and traffic aggregation. Packet capturing
in the D3 module uses the ‘ethdev’ library for forwarding
packets between ethernet port and PMD features supported
by NIC. The ‘iofwd’ is the forwarding engine used for the
D3 application, which is the simplest and fastest forwarding
mode [63]. This DUT performs detection of an anomaly
for each port which is considered as a different destination.
Here, the network packets for each destination address are
considered as network flows.

The traffic aggregation module in the D3 application
collects the average throughput value ‘Th’ for each network
flows in an interval of ‘δt’ called stat_period . Consider X(t)
be X1, X2, X3, . . . . . .. Xn; represents ‘Th’ of ‘n’ different net-
work flows at the time interval of ‘δt’. These ‘Th’ values are
considered as the single statistical parameter for the anomaly
detection, which represents bandwidth utilization per
flow [64], [65].

b: ANOMALY DETECTION MODULE
The anomaly detection performed in the D3 framework is
named as D3 Algorithm, wherein a single statistical fea-
ture ‘Th’ is extracted from the traffic aggregation module
for detecting anomalies. The rate of change of throughput
corresponding to normal traffic and attack traffic is differ-
ent. The idea behind DDoS detection is that as a DDoS
attack progresses, a massive rate of change occurs. Moreover,
the DPDK framework with a single statistical metric makes
detection faster.

A lightweight statistical flow monitoring and anomaly
detection approach is described in Algorithm 1. In the
D3 Algorithm, throughput values are collected for every
stat_period of δt in a moving window size of n where
n > 10 [66]. Here δt is assigned as 1 second for fast detection
and a baseline is established for the minimum and maximum
throughput during training.

Moving average is a technical indicator that refers to an
average throughput for a network system over a specified

69686 VOLUME 9, 2021



J. E. Varghese, B. Muniyal: Efficient IDS Framework for DDoS Attacks in SDN Environment

Algorithm 1 D3 Algorithm( The Outlier Detection)
1: INPUT: V[n]← Throughput value of each destination,

t[n]← current time, w← window size.
2: OUTPUT: Triggering the controller based on the detec-

tion of the outlier values.
3: procedure IDENTIFY_THE_OUTLIER_VALUES
4: Extract the single feature throughput during a time

interval and append it to ‘V [w]’.
5: Iterate and sort the values inside each ‘w’ and apply

the weighting moving average (WMA) formula to the
window, where the largest throughput value gets the
highest weight.

6: Continue it for p training index to calculate the max-
imum throughput as Vmax

n and minimum throughput as
Vmin
n

7: for each flow metric Vn+1 at tn+1 do
8: if tn+1 = tn+ δ t then
9: Add the new entry as an actual value V actual

n+1
in history records in V [w].

10: Calculate the prediction value V predict
n+1 using

WMA, where the largest value gets the highest weight.

V predict
n+1 =

n∑
i=1

λV actual
n+1 ; where

n∑
i=1

λ = 1 (1)

11: Evaluate the ratio metric Rpredict to compare
prediction value and actual value.

Rpredictn+1 =
V actual
n+1

V predict
n+1

(2)

12: Calculate the mean and standard deviation for
ratio metrics as Rmean and σ

13: Use Pauta criterion to evaluate the prediction
range

Ru← Rmean + 3 ∗ σ (3)

Rl ← Rmean − 3 ∗ σ (4)

14: if (Rpredictn+1 > Ru && V actual
n+1 > Vmax

n ) ‖
(Rpredictn+1 < Rl && V actual

n+1 < Vmin
n ) then

15: Trigger alert to controller
16: boolTrigger ← 1
17: else
18: Normal Traffic
19: boolTrigger ← 0
20: Append ratio metrics Rn+1 and actual

value V actual
n+1 to the sliding window R[w] and V [w]

respectively.
21: end if
22: end if
23: end for
24: return boolTrigger
25: end procedure

period. It helps to keep track and identify trends by smoothing
normal fluctuations. Thus, the moving average acts as an ana-
lytical tool to identify the current trend and the potential for

FIGURE 7. Block diagram of mitigation module.

TABLE 2. Ports listening to the services.

a change in an established trend. Assuming that when attacks
occur, throughput values increase. As a result, the value
of λ in Algorithm 1 is adaptively adjusted, with the highest
throughput value receiving the highest weight in predicting
the value for the next time slot. So, the ratio metrics derived
from the actual throughput value and the predicted throughput
value helps in identifying the instabilities from the normal
trend using the 3 sigma criterion (68-95-99.7 rule) of the
gaussian distribution. The value that breaks the normally
distributedmetrics is considered as outliers or anomalies [67].
This helps to find the deviation from the historical records
and current value in a better way. Moreover, the normal
traffic is added into the moving window to the next iteration
for creating the baselines, which helps to reduce the false
positives.

2) CONTROL PLANE MITIGATION MODULE
Early detection of DDoS attacks helps in corrective action by
changing the configuration (.yaml) file based on the trigger
received from the D3 algorithm using components like Col-
lectd, Prometheus, and Grafana, wherein Collectd is a dae-
mon for gathering statistics from an application, Prometheus
is a time-series database and monitoring system based on the
pull approach connected to Gauge controller and Collectd,
and Grafana is an open-source monitoring dashboard for
Prometheus databases used for data analysis and visualiza-
tion which notifies the SDN controller using Grafana alert
notification. The network faucet controller is responsible for
network configuration against DDoS attacks. The Figure 7
depicts the high-level block diagram of the mitigation module
and the ports listening to services are shown in Table 2.

1) Collectd gathers trigger indication from the DUT run-
ning D3 algorithm. The trigger indicator includes the
alert flag of each port

VOLUME 9, 2021 69687



J. E. Varghese, B. Muniyal: Efficient IDS Framework for DDoS Attacks in SDN Environment

TABLE 3. Advantage of the proposed system.

2) Prometheus receives the metrics from the Collectd
exporter through port 9103

3) Grafana listening at port 3000 receives the indicators
from the Prometheus exporter through port 9100

4) Grafana trigger alert to the SDN controller using
Grafana alert notification.

5) SDN controller generates network configuration file in
response to the alert.

The network configuration file can mitigate the malicious
traffic by dropping the malicious packet, rate-limiting the
flow towards the detected destination, blocking the port,
or redirecting the traffic to scrubbing centers for further anal-
ysis. Here dropping of packets is performed sincewe aremore
focused on DPDK based anomaly detection. The overhead of
the controller reduced significantly due to the involvement of
the data plane for anomaly detection.

C. ADVANTAGES OF THE PROPOSED SYSTEM
The advantage of the proposed system is shown in Table 3.
For result analysis and comparison of the D3 anomaly detec-
tion algorithm, the OverWatch algorithm [23] is used. Both
[23] and D3 algorithms are lightweight algorithms imple-
mented in the data plane for the detection of DDoS attacks
using ratio metric. The main difference between the [23]
algorithm and the D3 algorithm is shown in Table 4.

TABLE 4. Comparison of OverWatch with D3 algorithm.

D. FLOWCHART
The flowchart of the main phases of D3 modules is shown
in Figure 8, wherein basic functionalities of the ‘Testpmd’
application are shown in blue colored blocks, and additional
functionalities for DDoS detection in the D3 application are
shown in green colored blocks. The basic Testpmd function-
alities include:

(i) Initialization of DPDK invokes environment abstrac-
tion layer through rte_eal_init function to initialize DPDK
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FIGURE 8. Flowchart of D3 module.

runtime environment including buffer management, memory
management, PCI, load device driver, and map the kernel
mode to user mode.

(ii) Configuration process includes forwarding
configuration through set_def _fwd_config function, record-
ing the information related to logical cores and socket
using set_default_fwd_lcores_config function, initializ-
ing the ethernet address as destination address through
set_def _peer_eth_addrs and logging of the analyzed port
details using set_default_fwd_ports_config function.

(iii) Parsing the parameters of CLI to acquire the config-
uration details of logical cores, queues, ports, memory dis-
tribution, acquiring devices, setting offload, and initializing
forward engine using launch_args_parse function.

(iv) Configuration of parsed parameters are initialized
through the init_config function.
(v) Launching device under test (DUT) using start_port

function. The ‘iofwd’ forwarding mode is used where
pkt_burst_receive handles the function for receiving and
releasing the packets.

The additional functionalities of the D3 module comprise
two main sections: training and testing. In the training phase
collects a single statistical feature ‘Th’ from each port of DUT
for a fixed stat_period of 1 second. After the training period,
evaluate the WMA of the sorted array, find the V predict

n+1 ,
Rpredictn+1 by maintaining a baseline of minimum and maximum
throughput value. In the testing phase, check the anomaly by
using the 3-sigma criterion. Based on the DDoS trigger faucet
configure the network file. Thus, the DPDK based DDoS
Detection (module) uses a single metric predictive approach
for anomaly detection.

V. EXPERIMENTAL SETUP
The experimental setup includes a host machine (Host-
VM) which contains five containers namely OVSdaemon,
PacketGen, AttackGen, DUT , and Faucet connected to the
OVS-DPDK switch. Even though the container has a fast
boot-up time, low overhead and is easy to deploy, yet the
container networking can be accelerated by running DPDK
inside containers [73]. The initialization steps include instal-
lation of OVS-DPDK, the binding of IGB_UIO driver in
DPDK to NIC (NIC sends packets directly to user space),
allocation of the huge pages (4096*2MB), initialization of
the OVS database server and OVS controller, and creation
of OVS-DPDK bridge. Each container is configured with
one memory bank with socket memory of 512 MB and uses
virtual devices instead of PCI devices that are connected to
the net_virtio-user driver. The hardware and the software
requirements for this lab environment are depicted in Table 5
and Table 6.

TABLE 5. Hardware requirements.

TABLE 6. Software requirements.
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FIGURE 9. Test environment.

The OVS-DPDK bridge is named ‘OvS-br’ has five virtual
ports of dpdkvhostuser type; two virtual ports for Pack-
etGen, one port for AttackGen, and two virtual ports for
DUT. The PacketGen container and the AttackGen containers
hold the Pktgen-DPDK (Packet Generator in DPDK frame-
work) application used for generating network traffic through
Vhost1 (dpdkPort1), Vhost2 (dpdkPort2) for normal traffic,
and Vhost5 (dpdkPort5) for attack traffic by regulating the
rate of traffic. The DUT container receives packets from the
Pktgen-DPDK application through Vhost3 (dpdkPort3) and
Vhost4 (dpdkPort4) and Vhost5 (dpdkPort5) for executing
statistical anomaly detection named D3 (Dpdk based DDoS
Detection) module. The OvS-br is also connected to the
faucet controller for managing the network configuration,
which is attached to a time-series database called Prometheus
and Grafana dashboard for visualization. The entire setup is
shown in Figure 9.

The entire lab setup has 10 cores where core 1 handles
ovs-switchd daemon and core 2 is responsible for DPDK
PMD functionalities. PacketGen uses cores 0,3,4 to generate
‘packets in an interactive promiscuous mode, wherein core 3
is the master core for invoking command-line interface and
managing slave cores whereas slave core 0 and slave core 4
are responsible for generating packets in dpdkport1 and dpd-
kport2 respectively. AttackGen uses cores 8,9 to generate
attacks wherein core 8 is the master core and core 9 is the
slave core responsible for attack generation in dpdkport5. The
DUT uses another three cores 5, 6, and 7, wherein core 5 is
the master core for managing slaves and detecting attacks
while core 6 and core 7 are slave cores that are functioning
in ‘iofwd’ forwarding mode with a burst of 64 packets and
2048 descriptors in Rx and Tx rings. The distribution of CPU
resources on Host-VM is shown in Table 7.

VI. RESULTS AND DISCUSSION
To evaluate the performance of the IDS, the experiments
are broadly classified into two categories. The Framework
evaluation is performed to test the efficiency of the IDS
whereas the Algorithm evaluation is executed to check the
detection effect.

A. FRAMEWORK EVALUATION
The framework evaluation is performed by checking
efficiency in three ways.

1) Initially, test cases are conducted to compare the perfor-
mance and latency of OVS andOVS-DPDK at different
scenarios in our system configuration.

2) Secondly, the performance of packet capturing mech-
anisms in various IDS depicted in [35] is compared
with the D3 framework under a controlled environment
of 10 Gbps TCP flows.

3) Finally, the CPU utilization of the controller in the
D3 framework is also evaluated to illustrate the virtue
of the D3 framework compared with other SDN based
DDoS defense framework [26], [28].

1) TEST CASES FOR THE PERFORMANCE COMPARISON
BETWEEN OVS AND OVS-DPDK
Inspired by [74], the performance test of OVS-DPDK
on two parameters namely throughput and latency for a
virtualized network architecture is conducted. The host
machines are configured to the same subnet address
172.17.0.0/16, whereas the client machine is configured as
172.17.0.2 and the server machine as 172.17.0.3 with a gate-
way of 172.17.0.1. Thus the difference in network perfor-
mance to OVS and OVS-DPDK are evaluated by network test
cases.
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TABLE 7. Distribution of CPU resources on host-VM.

FIGURE 10. Performance comparison between OVS and OVS-DPDK with
varying loads.

Throughput Comparison: The throughput test of the
framework with OVS and OVS-DPDK is conducted using
iperf3 with varying transfer load. The throughput compar-
ison of OVS and OVS-DPDK with varying transfer loads
is shown in Figure 10, wherein X-axis represents varying
loads and Y-axis represents bandwidth in Gbps. Even though
the OVS-DPDK has high performance in bandwidth utiliza-
tion and the maximum bandwidth transfer compared to OVS
throughput, the clear distinction in performance starts from
a 10 GB load. Thereafter the variation between OVS and
OVS-DPDK increases from 16% to 20% due to polling,
huge pages, pinned CPU, and user space IO in OVS-DPDK.
Similarly, the time interval comparison between OVS and
OVS-DPDKwith varying load transfer is shown in Figure 11.
Even though the OVS-DPDK has taken less time compared
to OVS for load transfer, the clear distinction in time interval
starts from 10 GB load, which is the same for through-
put comparison. Thereafter the variation between OVS and
OVS-DPDK increases around 15% to 20.6% due to con-
text switching overhead in OVS. Hence, the overall network
performance of OVS-DPDK is 1.21 × greater than OVS,
whereas the time interval used for OVS is 7.25× greater than
OVS-DPDK. The CPU pinning and Huge page tables (Huge
TLB) support are the main reason for the performance of the
OVS-DPDK.

LatencyComparison: Tomeasure the delay, the latency
test of the framework with OVS and OVS-DPDK is per-
formed. The latency of OVS and OVS -DPDK with varying

FIGURE 11. Time interval comparison between OVS and OVS-DPDK with
varying load transfer.

packet size is depicted in Figure 12, wherein X-axis shows
varying packet size and Y-axis shows latency in millisec-
onds. The average of multiple latency test runs is taken into
consideration to find the performance variation. The result
depicts a parallel trendline that shows clear evidence of lower
latency of OVS-DPDK compared to OVS. The latency of
OVS-DPDK for various packet size of 64, 128, 256, 512
1024, and 1500 bytes has decreased by 51.92%, 51.37%,
53.57%, 54.20%, 48.11%, and 63.70% respectively. The
results clearly show the average latency of OVS is 2.23 ×
greater than OVS-DPDK. The reason for low latency is the
‘fastpath’ provided byOVS-DPDK by ignoring kernel, which
results in fast packet processing compared to OVS.

2) PERFORMANCE COMPARISON OF DIFFERENT IDS UNDER
10GBPS TCP FLOWS
The vital performance factors for evaluating the efficiency
of IDS include CPU utilization, memory utilization, and
packet drop rates. The IDS performance of various versions
of Snort and Suricata for different packet capturing mech-
anisms are investigated by Hu et al. [35]. It is compared
with the D3 framework under the same default configuration
of 10 Gbps TCP flow for 1800 seconds, which is depicted
in Figure 13. The X-axis shows the name of IDSs with packet
capturing mechanism and the Y-axis depicts the performance
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FIGURE 12. Latency comparison between OVS and OVS-DPDK with
varying packet size.

FIGURE 13. Performance comparison of different IDS under 10Gbps TCP
flows.

in terms of CPU utilization, memory utilization, and the
packet drop rate. The result shows that the D3 framework
using DPDK as a packet capturing mechanism improves
CPU utilization, reduces packet drop with optimum usage of
memory. The multithreaded architecture of the DPDK frame-
work increases performance. Regardless of its performance
improvements compared to other IDS in [35] D3 framework
incurs low-performance cost since it is executed in a container
test environment and requires no hardware. The discussions
of Figure 13 are
• The newer versions of Snort and Suricata are better
than the older versions. The newer version of Snort
is enabled by a multithreading framework which gives
better performance, whereas the newer version of Suri-
cata is integrated with extended BSD Packet Filter and
XDP support, which delivers packet capturing process
immediately after the reception from the hardware that
increases the performance of Suricata 4.1. The enabling
of eBPF and XDP decreases packet drop rates.

• AF_PACKET packet capturing mechanism is more sat-
isfactory than Libpcap. Even though both are Linux
native network sockets, AF_PACKET configure mem-
ory buffer for capturing packet compared to kernel. This
packet capturing mechanism saves both CPU resources
and time.

• Integration of DPDK packet capturing in the D3 frame-
work makes it better than other IDS in terms of better

FIGURE 14. CPU overhead of controller in D3 framework.

utilization of CPU with low overhead of memory and
zero drop rate of packets. DPDK bypasses the existing
network stack for fast packet processing which boosts
the performance of network application by a large mar-
gin with a set of libraries, processing techniques, and fast
I/O forwarding. The DPDK multithreaded architecture
optimizes IDS and maximizes its performance by reduc-
ing the overloading of IDS and by enhancing CPU uti-
lizationwith a zero drop rate. It also provides low latency
and zero-copy packet handling with a low-performance
cost. Moreover, a lightweight statistical anomaly detec-
tion used in theD3 frameworkmakes the detection easier
and faster.

3) CPU UTILIZATION OF CONTROLLER IN D3 FRAMEWORK
Figure 14 shows the CPU utilization of the controller indicat-
ing the overhead of the controller during DDoS attack flows.
As per the analysis in [26], the CPU utilization increases
when the attack occurs, where SD-Anti-DDoS [28] increases
to 35%, and NewFramework [26] increases to 15%. The pro-
posed D3 framework lingers on 0.2% of CPU utilization. The
large number of flows during attack detection in SDN con-
troller increase CPU utilization in both [28] and [26] frame-
work. In the [28] method, the controller is responsible for
collecting traffic information from the switches, processing
the data, detecting suspicious traffic, and mitigating attacks,
which increases the CPU utilization by 20% than [26]. In [26]
defense mechanism, the data collection and triggering of sus-
picious traffic is performed by the data plane which reduces
the controller overhead. The feature extractions, detection,
and mitigations are performed by the controller once the
trigger is generated. In the proposedD3 framework, the traffic
collection, feature extraction, and attack detection with a trig-
ger are performed on the data plane DPDK framework, which
reduces the overhead of the controller to 0.02% drastically.

B. ALGORITHM EVALUATION
The packet detection mechanism is evaluated by taking
the average of the 8 different test cases conducted in the
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FIGURE 15. Attack window in the time series.

D3 framework. Since the test cases have to be conducted
in high-speed network scenarios, both the normal and attack
packets are generated by Pktgen-DPDK, wherein the nor-
mal traffic consists of N1 and N2 series having packet
size of 256 and 512 with rate control of 25% and 50%
respectively; and the attack series consist packet size of 64,
128,1024, 1518 with rate control of 75% and 100%. Bymain-
taining a balanced dataset for both attack and normal series,
the attack traffic is initiated from the 51st second of the
time series to the 75th second of the time series, as shown
in Figure 15, after a fixed training time interval.

The detection time and memory utilization are the two
important parameters in the IDS framework against DDoS
detection. The detection time (also known as detection power)
indicates how fast the IDS can detect the attack without
overwhelming the resources, whereas the memory utilization
indicates the lightweight of the algorithm. The results of
the D3 algorithm are compared with OverWatch [23] in the
D3 framework since both are the predictive based algorithm.

The algorithm evaluation is performed in the D3 frame-
work and validated by publicly available CIC DoS
dataset using three performance metrics namely accuracy,
F1-measure, and α-error in IDS which are shown from
Eq. 5 and Eq. 7. The accuracy is defined as the ratio of
the correctly classified instances to the total instances. The
F1-measure shows the harmonic relationship between preci-
sion and recall, where the highest F1-measure indicates the
high flow detection accuracy. The α-error is caused when
there is no detection of attacks even though attacks exist. It is
also termed as the false-negative rate, which is considered the
most hazardous attack in IDS. So, the IDS should be efficient
enough to detect α-error as quickly as possible before it
corrupts the entire network or system.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(5)

α−error =
FN

FN + TP
(6)

FIGURE 16. Detection time comparison.

FIGURE 17. Memory utilization in D3 framework.

F1− measure =
2 ∗ Precision ∗ Recall
Precision+ Recall

(7)

where Precision = TP
TP+FP , Recall =

TP
TP+FN

1) USING D3 FRAMEWORK
a: DETECTION TIME
As per the result analysis in [23], the detection time of the
OverWatch is shown as 0.001 seconds. Figure 16 depicts the
detection time of algorithms in the D3 framework, wherein
the X-axis shows different detection algorithms and the
Y-axis shows the detection time in seconds. The detection
time of [23] in the OVS framework is reduced by 69.7%when
the D3 framework is used. The proposed D3 algorithm is
71.8% faster than [23] in the OVS framework and 6.9% faster
than OverWatch in the D3 framework. The detection power
of the D3 framework is due to the advantage of OVS-DPDK
and the usage of one metric rather than 4 metrics in [23].

b: MEMORY UTILIZATION
In the D3 framework, the memory utilization of the D3
algorithm is reduced by 0.5% than OverWatch as shown
in Figure 17, wherein the X-axis shows different detection
algorithms and the Y-axis shows the memory utilization
in KB. A slight difference in memory execution is due to the
single metric utilization in the D3 algorithm.

c: ACCURACY
The accuracy of the detection algorithms in theD3 framework
is shown in Figure 18, wherein the X-axis shows different
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FIGURE 18. Accuracy comparison in D3 framework.

FIGURE 19. F1-measure comparison in D3 framework.

detection algorithms and the Y-axis shows the percentage
of accuracy. The D3 algorithm increases the accuracy by
24.81% than the [23] detection algorithm. The D3 algorithm
is better than [23] since it uses network baseline and appended
normal traffic for the next time series prediction.

d: F1-MEASURE
The F1-measure of detection algorithms in the D3 framework
is shown in Figure 19, wherein the X-axis shows different
detection algorithms and the Y-axis shows the percentage
of F1-measure. The result depicts that the D3 algorithm has
improved F1-measure by 84.54% compared to [23] algorithm
in the D3 framework. The single elite feature in the D3 algo-
rithm and predictionmetric evaluation from the normal traffic
delivers a better F1-measure compared to the [23] algorithm.

e: α-ERROR
The α-Error of the detection algorithms in the D3 framework
is shown in Figure 20, wherein the X-axis shows different
detection algorithms and the Y-axis shows the α-Error rate
ranging from 0 to 1. The D3 algorithm decreases the α-error
to zero, which shows that the D3 algorithm is 100% better
than the [23] detection algorithm. The reason is that the attack
traffics are excluded from the network baseline, which gives
better prediction metrics for the next time series by reducing

FIGURE 20. α-error comparison in D3 framework.

FIGURE 21. ROC of OverWatch.

false negatives. Although theα-error is zero, theD3 algorithm
has false alarm (FP) rate of 0.0939, which correspondingly
lowers the F1-measure.

2) USING CIC DoS DATASETS
To validate the performance of the detection algorithm,
the performance metrics of the detection algorithms are also
analyzed with different publicly available CIC DoS datasets
namely CICDoS2017 [75] and CICDDoS2019 [76]. The
CICDoS2017 dataset comprises of low-volume application
layer DoS attack dataset with 8 different attacks and has a
total size of 4.6GB. The CICDDoS2019 dataset containing
volumetric attacks generated on March 11th, 2019 recorded
7 attacks [77].

a: ROC GRAPH
AUC value shows the degree of separability between classes.
The ROC curve of the OverWatch algorithm and D3 algo-
rithm for the different datasets are shown in Figure 21 and
Figure 22 respectively. The X-axis depicts the False Positive
Rate and the Y-axis depicts the True Positive Rate of the algo-
rithm. The AUC value of OverWatch for CICDoS2017 and
CICDDoS2019 are 0.788 and 0.855 respectively, whereas the
AUC value of the D3 algorithm for CICDoS2017 and CICD-
DoS2019 are 0.855 and 0.9 respectively. Here, the AUC value
of the D3 algorithm increases 5% than the OverWatch algo-
rithm in both datasets, which displays the efficiency of the
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FIGURE 22. ROC of D3.

FIGURE 23. Accuracy of CIC DoS datasets.

D3 anomaly detection algorithm to classify between classes.
Moreover, there is a difference in the AUC value between
datasets, where the AUC value of CICDoS2017 is lesser
than the CICDDoS2019, as the CICDoS2017 consists of low
volume application DoS attack, which is difficult to identify
than volumetric attacks in the CICDDoS2019 dataset.

b: ACCURACY
The accuracy of the detection algorithms using CICDoS2017
datasets and CICDDoS2019 datasets is shown in Figure 23,
wherein the X-axis shows different detection algorithms and
the Y-axis shows the percentage of accuracy. Initially, both
datasets are trained for 100 samples. For the CICDoS2017
dataset, the D3 algorithm increases the accuracy by 27%
than the [23] detection algorithm. Similarly, for the CICD-
DoS2019 dataset, the D3 algorithm increases the accuracy
by 2.72% than [23] detection algorithm. The D3 algorithm
is better than [23] because the next time-series prediction is
based on network baseline and appended normal traffic.

To find the effect of training samples over the D3
algorithm, we increase the training set from 100 to 500 sam-
ples, which is named as ‘Extended D3’, wherein the CIC-
DoS2017 increases the accuracy by 27% than OverWatch
which is the same as D3, whereas the CICDDoS2019
increases the accuracy by 17% which is 14.69% more than

FIGURE 24. F1-measure of CICDoS2017.

FIGURE 25. F1-measure of CICDDoS2019.

the D3. This gives two conclusions that the D3 detection is
always superior to the OverWatch algorithm in accuracy and
the nature of the datasets determines whether to extend the
training set.

c: F1-MEASURE
To analyze the nature of flow detection accuracy over CIC
DoS datasets, the F1-measure of the CICDoS2017 dataset
and CICDDoS2019 dataset with varying sample sizes are
shown in Figure 24 and Figure 25 respectively. The X-axis
represents the sample size of the dataset and the Y-axis rep-
resents F1-measure, where the D3 algorithm has the highest
F1-measure than OverWatch.

The extensive training of the D3 algorithm brings different
effects in the F1-measure of CICDoS2017 datasets and
CICDDoS2019 datasets. The CICDoS2017 dataset com-
prises of low-rate attacks which increase the false posi-
tive rate in extensive training of the D3 algorithm, whereas
the CICDDoS2019 dataset comprises of mainly high rate
attacks which decrease false-positive rate and increase the
F1-measure during extensive training of D3. The high vol-
umetric attacks in the CICDDoS2019 dataset have main-
tained a distinct boundary for both normal and attack sce-
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TABLE 8. Comparison of different DDoS detection model in SDN with D3 framework.

FIGURE 26. α-error of CICDoS2017.

FIGURE 27. α-error of CICDDoS2019.

narios, whereas the low rate attacks in CICDoS2017 are
unable to fix a boundary for the normal scenario. This
increases the false positive rate during extensive training in
CICDoS2017. Thus D3 algorithm with a small training set
is optimum for unknown scenarios. The F1-measure of the
CICDoS2017 dataset shows that the F1-measure of Over-
Watch has decreased by 22.47% compared to the D3 algo-
rithm, whereas the extended D3 algorithm decreased by
2.24% due to the wrong boundary selection of extensive
training. The F1-measure of the CICDDoS2019 dataset of
OverWatch shows that the F1-measure of OverWatch has
decreased by 2.22% compared to the D3 algorithm, whereas
the extended D3 algorithm improved F1-measure by 8.89%
due to good boundary selection of extensive training.

d: α-ERROR
The false-negative rate of the CICDoS2017 dataset and the
CICDDoS2019 dataset with changing sample size are shown
in Figure 26 and Figure 27 respectively, wherein the X-axis

represents the sample size of the CIC DoS dataset and the
Y-axis represents α-error.

For the CICDoS2017 dataset, the α-error rate of Over-
Watch is 0.4, whereas the α-error rate of the D3 algorithm
is 0.1 but for the CICDDoS2019 dataset, the α-error rate of
OverWatch and D3 algorithm are 0.09 and 0.04 respectively.
The α-error rate of the CICDDoS2019 dataset is lesser than
CICDoS2017 due to the difference in the detection rate of
the volumetric attacks over low-rate attack detection. In both
CIC DoS datasets, the D3 algorithm works better than Over-
Watch in finding the α-error, since the normal traffic is only
considered for the traffic prediction.

Even though the D3 algorithm works better than Over-
Watch in both CIC DoS datasets, the extended training of
D3 gives better results in the CICDoS2017 dataset, whereas
the extended training of the D3 algorithm shows a negligible
increase of false-negative rate in the CICDDoS2019 dataset.
It is due to the inconsistency of network traffic caused by
a port scan attack in the CICDDoS2019 dataset. In the
CICDoS2017 dataset, the D3 algorithm decreases the α-error
by 77.91%, whereas the D3 algorithm with extended train-
ing decreases the α-error by 94.77% than the OverWatch
algorithm. Similarly, in the CICDDoS2019 dataset, the
D3 algorithm decreases the α-error by 74.44%, whereas the
D3 algorithm with extended training decreases α-error by
55.55% than OverWatch algorithm.

e: COMPARISON OF DIFFERENT DDoS DETECTION IN SDN
WITH D3 FRAMEWORK
The proposed work is compared with three lightweight
DDoS strategies in the SDN network, which is shown
in Table 8. The DDoS detection methods used in [17], [23],
and [26] are unsupervised self-organizing map (SOM), pre-
dictive anomaly detection, and combined machine learning
algorithm of K-Means and KNN respectively. The compari-
son results show that the D3 algorithm is superior to all other
detection methods, where it uses the advantage of DPDK to
provide the DDoS solution in high-speed networks. Table 9
depicts the simulated detection results of CIC DoS datasets
for different DDoS detection techniques. The simulation
result shows that the proposedD3 algorithm offers the highest
accuracy and lowest α-error rate in CICDDoS2019 compared
to other detection models, whereas the accuracy of the [26]
in CICDoS2017 has a negligible increase of 0.43% than
proposed D3 algorithm, but its α-error rate increases by
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TABLE 9. Comparison of accuracy versus α-error of D3 algorithm with
related works in CIC DoS datasets.

96.89% than proposed D3 algorithm. Thus, the comparison
results show the efficacy of the D3 algorithm to achieve
maximum accuracy and minimum α-error rate with single
feature extraction in both CIC DoS datasets.

The key findings of all the above experiments can be
summarized as follows: The D3 framework is highly efficient
compared to the existing systems in the SDN environment
as it offers an ideal packet capturing (DPDK) mechanism
compared to other IDS, enhances the performance than the
OVS framework, and provides low controller overhead in
a high-speed network. Moreover, the detection ability of
the D3 algorithm is superior in a high-speed network while
comparing its detection time, memory utilization, accuracy,
F1-measure, and α-error. The algorithm evaluation is also
validated by three different DDoS detections in SDN using
publicly available CIC DoS datasets.

VII. CONCLUSION & FUTURE WORK
DDoS detection is a hard problem in the cyber world to be
quickly identified without overwhelming the resources. The
proposed approach presents a fast DDoS Detection frame-
work using a single statistical parameter in the DPDK frame-
work of SDN architecture. This D3 framework solves the
problem regarding (i) the discordant relationship of DDoS
attack and SDN architecture (ii) the limitation of IDS in
the high-speed network. Moreover, the D3 detection algo-
rithm provides a good prediction of attacks with good detec-
tion performance. The experimental results show that the
D3 framework is successful in building a trade-off between
the detection effect and efficiency of the framework in a
high-speed network. It ensures a low α-error rate with a high
detection rate and detection power. Furthermore, it provides
a cost-effective approach with no external hardware usage.
This proof concept of IDS against DDoS attack is ideal for the
application areas like data centers, cooperation, government,
educational institution, etc.

This is the initial phase of the D3 framework. Due to
the limitation of the experimental environment, the scaling
of the framework is not performed. In future, the proposed
system can be advanced by (i) scaling up the framework with
more destination ports and for larger attacks, (ii) introducing
an adaptive threshold detection algorithm, (iii) optimization
technique in the DPDK detection framework, (iv) expand-
ing the mitigation module with various mitigation solutions,
and (v) dynamic resource management with load balancing
technique.
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