
Received March 29, 2021, accepted April 11, 2021, date of publication May 6, 2021, date of current version May 17, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3077898

Write-Optimized and Consistent Skiplists
for Non-Volatile Memory
RENZHI XIAO , DAN FENG, (Senior Member, IEEE), YUCHONG HU , (Member, IEEE),
FANG WANG , (Member, IEEE), XUELIANG WEI , XIAOMIN ZOU, AND MENGYA LEI
Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information Storage System, Ministry of Education of China, School of Computer Science
and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Corresponding author: Dan Feng (dfeng@hust.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFB1003305, in part
by the National Natural Science Foundation of China under Grant 61772222, in part by the Shenzhen Knowledge Innovation
Program under Grant JCYJ20170307172447622, and in part by the Key Laboratory of Data Storage System, Ministry of Education.

ABSTRACT Skiplist as an in-memory index performs pretty well on rapid insertions because there are no
rotations or reallocations for rebalancing. The emerging non-volatile memory (NVM) technologies have
spurred a deep interest in designing efficient NVM-based skiplist. Because the data written to NVMmay be
partially updated or reordered by the memory controller, write operations in NVM-based persistent skiplist
may suffer data inconsistency in the face of system failures. Moreover, a traditional Redo-Logging-based
consistent Skiplist (RLS for short) guarantees data consistency but introduces double NVM writes, which
can significantly degrade the lifetime of NVM. In this paper, we propose two write-optimized and consistent
skiplists for NVM, called Atomic Skiplist (AS for short) and Atomic and Selective Consistency Skiplist
(ASCS for short). AS exploits log-free failure-atomic writes for both the 0th and internal levels of skiplist
to avoid double NVM writes of redo-logging. ASCS leverages selective consistency and log-free failure-
atomic writes to further reduce NVM writes from index pointers. Compared with RLS, experimental results
show that AS and ASCS reduce the number of cache-line flushes by 67.5% and 75%, decrease the insertion
latency by 32.3% - 40.9% and 36.2% - 54.2%, degrade the deletion latency by 38.7% - 47.1% and 44.9% -
57.8%, as well as increase insertion throughput by 49.1% and 65.0% and deletion throughput by 65.1% and
80.5%, respectively.

INDEX TERMS Non-volatile memory, consistency, write efficiency, skiplist.

I. INTRODUCTION
Non-volatile memory (NVM) technologies, such as phase-
change memory (PCM) [1], spin-transfer torque magnetic
RAM (STT-RAM) [2], resistive random access memory
(ReRAM) [3], and Intel Optane DC Persistent Memory
(DCPMM) [4], combine the non-volatility property of HDD
with byte-addressability and similar latency to DRAM to
offer some real competitive edges over DRAM. Skiplist is a
widely used in-memory index structure in key-value stores
[5], [6]. Therefore, an NVM-based persistent skiplist will
keep data persistent in the face of system power failure.

Unfortunately, when the system fails, the data written to
NVM may be partially updated or reordering, resulting in
data inconsistency in NVM. Therefore, NVM-based data

The associate editor coordinating the review of this manuscript and

approving it for publication was Ashish Mahajan .

structures must ensure data consistency in the face of sys-
tem failures [7]. The failure-atomic write unit of NVM is
8 bytes which is much smaller than that of block-based
storage [8]. For write units larger than 8 bytes, tradi-
tional consistency methods such as logging are used to
ensure data consistency [9]. NVM has limited endurance
(e.g.,107-108 writes [10]), but logging requires double writes,
which will harm the lifetime of NVM.

Skiplist does not require updating many nodes for
re-balance as B+Tree does and is easy to implement [11],
but at the expense of many pointer updates in the insert and
delete operations [12]. We find that only guaranteeing the
consistency of the 0th level of skiplist (i.e., the essential list)
can ensure the consistency of the entire NVM-based persis-
tent skiplist. Moreover, traditional double-write techniques
such as write-ahead-logging combined with frequent pointer
updates in skiplist increase consistency overhead and reduce

69850 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-7005-5734
https://orcid.org/0000-0003-1265-7141
https://orcid.org/0000-0002-2791-4158
https://orcid.org/0000-0003-3571-1702
https://orcid.org/0000-0001-7000-3176


R. Xiao et al.: Write-Optimized and Consistent Skiplists for NVM

the write performance of NVM-based persistent skiplist.
Therefore, NVM-based persistent skiplist needs to tackle data
inconsistency and write problems.

In this paper, we propose two write-optimized and con-
sistent skiplists for NVM, Atomic Skiplist and Atomic
and Selective Consistency Skiplist. Atomic Skiplist (AS for
short) uses a log-free failure-atomic write through ordered
8-byte atomic write with memory fence (MFENCE) and
cache-line flushes (CLFLUSH) instructions. Atomic and
Selective Consistency Skiplist (ASCS for short) employs a
selective consistency (SC) mechanism over log-free failure-
atomic write (Atomic) to further reduce consistency over-
head by only guaranteeing the consistency of the essen-
tial list of skiplist. We have implemented AS and ASCS
and evaluated them using four micro-benchmarks and two
macro-benchmarks generated byYCSB. Experimental results
show that our proposed AS and ASCS outperform a tradi-
tional Redo-Logging NVM-based consistent Skiplist (RLS
for short) by 67.5% and 75% in the number of CLFLUSH,
32.3% - 40.9% and 36.2% - 54.2% in the insertion latency,
38.7% - 47.1% and 44.9% - 57.8% in the deletion latency,
49.1% and 65.0% in the insertion throughput, as well as
65.1% and 80.5% in the deletion throughput, respectively.

The rest of the paper is organized as follows: We introduce
the skiplist index for NVM as background and our motivation
for the designs of new skiplists in Section II. We describe the
design of AS and ASCS in Section III. Section IV evaluates
the performance of AS and ASCS. Section V is the related
work, and Section VI concludes.

II. BACKGROUND AND MOTIVATION
A. NON-VOLATILE MEMORY
Unlike traditional memory technologies such as SRAM and
DRAM that suffer from limited scalability and high power
consumption, emerging non-volatile memory technologies,
e.g., Intel Optane DC Persistent Memory [4], ReRAM [3],
PCM [13] and STT-RAM [2] can provide far larger mem-
ory capacity than DRAM and near-zero leakage power.
Moreover, NVMs can provide both the persistent prop-
erty of HDDs and nearly comparable read/write latency
to and byte-addressability properties of DRAM. There-
fore, NVMs have been considered promising candidates of
next-generation main memory.

However, NVMs are prevented from wide use as main
memory by their common limitations. First, NVMs gener-
ally have limited write endurance, e.g., 107-108 writes [10].
Second, write latency is much higher than reading latency
(i.e., 3-8X) [14], and writes also consume higher energy than
reads. Thus, reducing the amount of data to be written into
the NVM can increase the lifetime of NVM and reduce total
system latency. Many prior studies have devoted to improv-
ing the lifetime of NVM by reducing wear unevenness or
reducing writes [15]. Furthermore, and significantly, when
we use NVMs as main memory, the volatility-persistence
boundary moves from the interface between DRAM and

FIGURE 1. Example of a 4-level skiplist.

HDD to the interface between the volatile cache and persis-
tent NVM [16]. Data consistency, i.e., the correctness of data
after a system failure, must be guaranteed in NVM-based
systems [9]. Compared to traditional block storage devices,
NVM generally has a much smaller failure-atomic unit of 8
bytes [8], [17], [18]. For update units larger than 8 bytes,
the order of memory writes must be carefully ensured [19].
As a result, NVM-friendly data structures have to address
these limitations of NVMs, including tree-based structures,
hashing-based structures, and skiplist-based structures, and
so on.

B. SKIPLIST
As they are simpler and more stable than their balanced tree
counterparts to build from bottom to up [11], skiplist-based
data structures are widely used in main memory key-value
(KV) stores (HBase, MemSQL, LevelDB). As shown in
Figure 1, each level in a 4-level skiplist is a linked list. A node
with a unique key in the skiplist represents the node, and its
internal forward pointers point to its successor nodes. A level
count in each node represents the number of internal forward
pointers of this node [11]. For example, the level count of
node 25 is 2. There are many pointers in the skiplist point
to this node 25 called external forward pointers. Level 0
is an essential ordered linked list that contains all real KV
data and nodes in the skiplist called the essential list. Other
inner levels in the skiplist except level 0 are called internal
levels. A level number in each skiplist represents the number
of levels in the skiplist’s essential list and internal levels.
All pointers include internal forward pointers and external
forward pointers, except the pointers in the essential list, are
called index pointers.

C. CHALLENGES
One challenge in designing an NVM-based persistent skiplist
is hard to ensure crash consistency. As shown in Section II(A)
and II(B), write operations in skiplist may cause data incon-
sistency because NVM writes could partially be written or
reordered by the memory controller in the face of system
failure.

1) DATA INCONSISTENCY IN FACE OF SYSTEM FAILURE
Inserting a KV node to an NVM-based persistent skiplist may
cause data inconsistency. There are four inconsistent crash
cases when inserting a 2-level node 25 shown in Figure 2.
Invalid-key node means real KV data is partially written

VOLUME 9, 2021 69851



R. Xiao et al.: Write-Optimized and Consistent Skiplists for NVM

FIGURE 2. Four crash inconsistent cases of a skiplist when inserting
key 25.

shown in Figure 2(a). Missing the internal forward pointer
of node 25 in the essential list could cause previous existing
node 36 cannot be found in Figure 2(b). Figure 2(c) shows
that an uninitialized internal forward pointer of node 25 in
internal levels could point to an illegal address. These three
cases bring wrong results, so we must repair them after a sys-
tem failure. Figure 2(d) shows that missing external forward
pointer in internal levels only violates the semantics of the
skiplist and affects the search efficiency.

Therefore, memory write orders must be carefully
ensured [19] for consistency’s sake. To guarantee consistency
between non-volatile memory and volatile CPU caches for an
NVM-based persistent skiplist, we must ensure the ordering
of memory writes in some efficient ways.

2) WRITE PROBLEMS IN NVM-BASED CONSISTENT SKIPLIST
Current processors typically provide ordered memory write
operations such as the memory fence instruction (MFENCE)
and the cache line flush instruction (CLFLUSH) to ensure
data consistency [18], [20]–[23]. CLFLUSH is used to
flush a dirty cache line back to memory. An MFENCE
instruction guarantees the previous store instruction before
this MFENCE persisted earlier than the store instruction
after this MFENCE. Unfortunately, these CLFLUSH and
MFENCE instructions are quite expensive to implement and
execute [20], [21], [24], because they incur significant exe-
cution overhead that is proportional to the number of NVM
writes [20], [24]. For granular updates larger than 8 bytes,
the traditional approach ensures data consistency through
double-write mechanisms such as redo or undo logging. The
logging mechanism first stores the new data (redo logging)
or old data (undo logging) into a log area in NVM and then
updates this data in place. However, the logging mechanism
introduces additional NVM writes, adversely affecting NVM
lifetime and system performance [9], [18], [20]. Therefore,
a traditional logging-based skiplist guarantees data consis-
tency in the face of system failure but further destroy NVM
lifetime.

D. MOTIVATION
Logging-based persistent skiplist guarantees the data con-
sistency but introduces double NVM writes, which can

degrade the lifetime of NVM. To obtain data consistency
of NVM-based persistent skiplist and decrease NVM writes,
we propose two write-optimized and consistent skiplists for
NVM. One exploits log-free failure-atomic writes for both
the essential list and internal levels of skiplist to avoid double
logging writes. The other employs selective consistency (SC)
combined with log-free failure-atomic writes to reduce data
consistency overhead and the number of NVM writes. The
selective consistency mechanism ensures the consistency of
the 0th level (essential list) of the skiplist and rebuilding
internal levels of the skiplist with small-scale reconstruction.

III. THE DESIGN OF AS AND ASCS
In this section, we describe the design of the Atomic
Skiplist and Atomic and Selective Consistency Skiplist,
which are write-optimized and consistent NVM-based per-
sistent skiplists.

A. DESIGN GOALS
Based on the above observations, our design goals are:
• Reduce NVM writes and cache line flush num-
bers through log-free failure-atomic write. Log-free
failure-atomic write (Atomic) is an 8-byte atomic write
ordered with CLFLUSH and memory fence (MFENCE)
to avoid double writes of the redo/undo logging.
We implement write operations (insert and delete) of
NVM-based persistent skiplist with log-free failure-
atomic writes to obtain an NVM-based consistent
skiplist called Atomic Skiplist (AS for short).

• Reduce consistency overhead by a selective consis-
tency mechanism over log-free failure-atomic writes.
Selective consistency (SC) ensures the consistency of
the 0th level of the NVM-based persistent skiplist with
log-free failure-atomic writes and not guarantees that
of the internal levels of skiplist with no MFENCE and
CLFLUSH instructions. We implement the write oper-
ations with Atomic and SC can further reduce NVM
writes and CLFLUSH numbers to obtain an NVM-based
low-consistency persistent skiplist called Atomic and
Selective Consistency Skiplist (ASCS for short).

B. THE OVERVIEW OF ATOMIC SKIPLIST
Atomic Skiplist (AS for short) uses log-free failure-atomic
writes for both the 0th level (i.e., essential list) and inter-
nal levels of NVM-based persistent skiplist. As shown in
Figure 3, for a k-level skiplist (here k is 4), AS guarantees
the consistency of the 0th level using log-free failure-atomic
writes (Atomic). AS also ensures the consistency of the 1st to
(k-1)-th levels by Atomic.

1) OPERATIONS
In this section, we introduce the write operations in AS stem-
ming from insertion and deletion. For simplicity, we use the
clflush_with_mfence function to ensure the log-free failure-
atomic write of the data in NVM, which is executed by

69852 VOLUME 9, 2021



R. Xiao et al.: Write-Optimized and Consistent Skiplists for NVM

FIGURE 3. The layout of AS and ASCS.

a CLFLUSH instruction then followed by an MFENCE
instruction.

Insertion: For inserting a new key-value pair, for exam-
ple, (25, value), AS first find the node vector update[i] of
the positions to be inserted in every level from currLevel-1
to 0, as shown in Figure 4(a). We use a random num-
ber generator to generate a 2-level node 25. We first
persist the key-value pair,i.e., (25, value) in NVM with
the clflush_with_mfence function shown in Figure 4(b);
Second, we copy the 0th level’s the forward pointer of the
node 18 (P18.1) to the 0th level’s the forward pointer of the
node 25 (P25.1) and persist P25.1 to NVM with log-free
failure-atomic write shown in Figure 4(c). Then we copy
the address of node 25 to P18.1 and persist P18.1 with
the clflush_with_mfence function shown in Figure 4(d).
AS updates other internal levels of persistent skiplist from
bottom to top with log-free failure-atomic writes like level 0
shown in Figure 4(e).

Deletion: For example, for deleting a key-value pair,
key 25, AS first searches the node to be deleted according
to the key. If node 25 exists, AS first finds the two exter-
nal forward pointers point to node 25 from up to bottom
in Figure 5(a). AS updates the internal levels of persistent
skiplist from top to bottom with CLFLUSH and MFENCE
instructions shown in Figure 5(b), then updates the essen-
tial list with CLFLUSH and MFENCE instructions (log-
free failure-atomic writes) demonstrated in Figure 5(c). After
persisting the essential list, we then free the node 25 shown
in Figure 5(d).
Recovery: AS uses log-free failure-atomic writes to

ensure consistency of the essential list and internal levels of
NVM-based persistent skiplist. Hence, its recovery process
is easy to implement from either normal shutdown or system
failures.

There is a regular shutdown flag in AS, a valid flag
(e.g., 1) stands for normal shutdown, and a false flag stands
for system failure. Because AS is all stored in NVM, we can
quickly recover it without any more operations when the
system is normal shutdown. However, the recovery of AS is
more complicated when system failures. Since the insertion
and deletion operations of ASmay cause the data inconsistent

problem, we take the insertion operation as an example
to demonstrate the recovery process of AS. As shown in
Figure 4(b), we first persist the key-value pair with
CLFLUSH and MFENCE instructions. If a system failure
occurs in this process, AS may partially update the key-value
entry to NVM. It doesn’t affect the consistency of AS
because AS cannot find the partially updated key-value entry.
As shown in Figure 4(c) and Figure 4(d), then we strictly
control the ordering of forwarding pointer updates of the
essential list in AS to guarantee the 0th-level consistency of
AS. When a system failure occurs between Figure 4(c) and
Figure 4(d), the new key-value pair also cannot found in the
essential list of AS, so it was not to affect the data consistency
of AS. If a system failure occurs after Figure 4(d) but before
Figure 4(e), we can replay the process of updating other
internal levels of AS after the consistency of the essential list
is guaranteed. Since AS ensures the consistency of internal
levels like the essential list with CLFLUSH and MFENCE
instructions shown in Figure 4(e), AS can quickly recover the
consistency of internal levels. In this way, AS can recover to
a consistent state when system failures.

C. THE OVERVIEW OF ATOMIC AND SELECTIVE
CONSISTENCY SKIPLIST
Atomic and Selective Consistency Skiplist (ASCS for short)
uses log-free failure-atomic writes only for the essen-
tial list but updates the internal levels without MFENCE
and CLFLUSH instructions. ASCS uses selective consis-
tency (SC) scheme to divide the NVM-based skiplist into
two groups for different consistency requirements, i.e., the
0th-level of skiplist (the essential list) is consistent, and the
internal levels of skiplist are persistent. Still, ASCS can
reconstruct it by the consistent 0th-level of skiplist in the face
of system failures. As shown in Figure 3, for a k-level skiplist
(here k is 4), ASCS guarantees the consistency of the essential
list using log-free failure-atomic writes (Atomic) and rebuilds
internal levels through the consistency of the essential list of
skiplist.

1) OPERATIONS
Insertion: The insertion of ASCS is very similar to that of
AS when inserting a 2-level node 25 shown in Figure 4.
Since ASCS only needs to ensure the skiplist’s essential list’s
consistency, the only difference is that ASCS adjusts other
internal levels of the skiplist like level 0 but without the
clflush_with_mfence function.

Deletion: The deletion of ASCS is very similar to that
of AS when deleting a 2-level node 25 shown in Figure 5.
Compared with Atomic Skiplist, the only difference is that
ASCS updates the internal levels of persistent skiplist from
top to bottom without CLFLUSH andMFENCE instructions.

Recovery: Since the essential list of ASCS is consistent,
rebuild-from-consistent is sufficient to recover anASCS from
either normal shutdown or system failures. When inserting
a 2-level node 25, the recovery process of ASCS is very
similar to that of AS. ASCS changes other internal levels for

VOLUME 9, 2021 69853



R. Xiao et al.: Write-Optimized and Consistent Skiplists for NVM

FIGURE 4. The insertion algorithm of Atomic Skiplist when inserting a 2-level node 25.

FIGURE 5. The deletion algorithm of Atomic Skiplist when deleting a 2-level node 25.

no consistent requirements, so ASCS needs more time than
AS to recover the internal levels from the consistency of the
essential list of skiplist.

The insertion, query, and deletion of a particular key-value
node require an average time complexity of O(log(N)), where
N is the number of nodes in the skiplist. AS can significantly
reduce NVMwrites to avoid the double writes of write-ahead
logging. Compared with AS, ASCS can further reduce NVM
writes by SC, so ASCS can further extend the lifetime of
NVM.

IV. EVALUATION
This section evaluates the number of cache line flush per
insert and micro-benchmark latency and macro benchmark
throughput for our proposed write-optimized and consistent
skiplists.

A. EXPERIMENTAL SETUP
We use the HP Labs Quartz simulator [25] to simulate
NVM by adding extra delay in the CLFLUSH operation.
Table 1 shows our server configurations.

For comparison, we implemented a Redo-Logging-based
scheme for consistent and persistent Skiplist (RLS for short),

TABLE 1. Server configurations.

and a non-consistency version of persistent skiplist for the
PM to get better performance purpose called No Barrier and
No Flush Skiplist (NBNFS for short). Our consistent skiplists
for persistent memory include Atomic Skiplist (AS for short)
and Atomic and Selective Consistency Skiplist (ASCS for
short).We use four micro-benchmarks such as RandomNum-
ber, Document Word, Fingerprint, and Sequence Number
to test the number of CLFLUSH count per key-value pair
insert operation and the latency of insert and delete opera-
tion. We also use two macro-benchmarks such as INSERT
and DELETE datasets to test the throughput of different
skiplists.

RandomNum: The dataset has 224 keys and each key has
16 bytes. This dataset is generated by a random function and
widely used in previousworks [18], [26].We use randomkeys
in this dataset as the keys of the skiplist’s entries.

69854 VOLUME 9, 2021



R. Xiao et al.: Write-Optimized and Consistent Skiplists for NVM

Docword: The dataset has five text collections, and we
use the biggest collection, PubMed abstracts, for evaluation.
PubMed abstracts include 8.2 million documents and a total
of 730 million words [27]. We use document IDs and word
IDs in conjunction as the keys of the skiplist’s entries.

Fingerprint: The dataset extracted from MacOS included
daily snapshots of theMacOSX server collected by the Stony
Brook University File System and Storage Lab [28]. We use
the 16-byte MacOS’s MD5 fingerprints of data chunks as
keys of entries in the skiplist.

SequenceNum: The dataset contains 224 keys, and each
key is a sequential number from 0 to 224 - 1. We set
this dataset to observe the possible difference between the
Skiplist_Log and our consistent skiplists between Random-
Num and SequenceNum.

INSERT: The dataset contains 24 million keys, and each
key is Zipfian generated from YCSB workload-A in the load
phase.

DELETE: The dataset is the same as the INSERT dataset.
We only change all insert operations of the INSERT dataset
to delete operations for the DELETE dataset.

The NVM read/write latency is set to 200/600 nanosecond.
All experimental results are the average of 5 independent
runs.

B. THE NUMBER OF CLFLUSH PER INSERT
We study the number of cache line flush (CLFLUSH) per
insert to test the write efficiency of different skiplists. The
number of CLFLUSH per insert is higher means that the write
efficiency per insert is lower. In these experiments, we first
insert items into skiplists until the load number reaches the
predefined value (e.g., 2/4/8 million items). Then we use the
total number of CLFLUSH divided by the predefined value
to calculate the average number of CLFLUSH of requesting
an item. Figure 6 shows the average number of CLFLUSH of
inserting an item. As shown in the figures, RLS has the high-
est number of CLFLUSH because RLS uses a redo-logging
mechanism to guarantee data consistency which takes two
NVMwrites (one for logging first, another for write in-place).
Compared with RLS, our consistent skiplists AS and ASCS
significantly degrade the average number of CLFLUSH of
inserting an item. Compared with RLS, AS reduces the
number of CLFLUSH per insert by 67.5% because AS
uses log-free failure-atomic write method (Atomic) to avoid
double-write to NVM and only write the NVM with ordered
MFENCE and CLFLUSH instructions. Compared with RLS
and AS, ASCS reduces the number of CLFLUSH per insert
by 75% and 33.3% respectively, because ASCS adopts Selec-
tive Consistency (SC) based on Atomic to further reduce
the number of CLFLUSH in the cost of increasing recovery
overhead. Therefore, the write-optimized efficiency of AS
and ASCS have higher than that of RLS.

C. INSERT LATENCY
We compare the average insertion latency of different
skiplists, as shown in Figure 7. In all experiments, we first

TABLE 2. The differences between AS and ASCS in the reconstructed
internal levels.

insert items into skiplists until the load number reaches
the predefined value (e.g., 2/4/8 million items). After
that, we insert 10,000 items into the skiplist, then delete
10,000 items from the skiplist. Eventually, we calculate the
average insertion latency of requesting an item. For 4 million
items, compared with RLS, AS and ASCS reduce the average
insertion latency of requesting an item by 32.3% - 40.9%
and 36.2% - 54.2% in four different workloads, respectively.
There are similar insertion rules for 2 million items and 8mil-
lion items. Compared with non-consistent persistent skiplist
NBNFS, AS and ASCS obtain the data consistency in the cost
of increasing some insertion latency. Atomic Skiplist (AS for
short) has lower insertion latency than RLS because AS uses
a log-free failure-atomic write mechanism to avoid double
write overhead of the redo-logging method. Compared with
AS, Atomic and Selective Consistency Skiplist (ASCS for
short) uses selective consistency based on the failure-atomic
write mechanism to further degrade the average insertion
latency by up to 22.5%, becauseASCS can reduce the number
of CLFLUSH at the cost of sacrificing the performance of
rebuilding internal levels. To insert a 2-level node 25 in
figure 4 as an example, Table 2 shows the differences between
AS and ASCS in the reconstructed internal levels.

D. DELETE LATENCY
As shown in Figure 8, we compare the average deletion
latency of requesting an item for different skiplists. Similar
to insertion operation, we delete 10,000 entries in different
skiplists then calculate the average latency of deleting an
item. For 4 million items, compared with RLS, AS and ASCS
decrease the average deletion latency by 38.7% - 47.1%
and 44.9% - 57.8% in four different workloads, respectively.
There are similar deletion rules for 2 million items and
8 million items. Redo-Logging consistent Skiplist (RLS for
short) has the highest deletion latency because it mainly has
double write overhead caused by the redo-logging mecha-
nism; AS has a lower deletion latency than RLS because it
uses Atomic to avoid double write to NVM. ASCS employs
Atomic and Selective Consistency (SC) to further reduce the
average deletion latency by up to 20.4% compared with AS
because ASCS reduces the consistency overhead of deletion
operation at the cost of the additional overhead of rebuild-
ing internal levels. Compared with NBNFS, AS and ASCS
obtain data consistency at the expense of additional deletion
latencies.

E. EFFECT OF NVM WRITE LATENCY
Various NVM has different write latencies. To test the effect
of diverse NVM write latencies on skiplists, we set all

VOLUME 9, 2021 69855



R. Xiao et al.: Write-Optimized and Consistent Skiplists for NVM

FIGURE 6. The average number of CLFLUSH when inserting a key-value entry. Each result is an average of five different runs.

FIGURE 7. Results of the average insertion latency when inserting a key-value entry.

FIGURE 8. Results of the average deletion latency when deleting a key-value entry.

FIGURE 9. The average insertion and deletion latency of a request with different NVM write latencies (Load number is 4 million items).

NVM read latency to 200 nanoseconds, and set its write
latency to 300, 600, 900, and 1200 nanoseconds, respectively.
We insert or delete 10,000 items to skiplists when they have
loaded 4 million items and calculate the latency of a request.
We choose two micro-benchmark (e.g., RandomNum and
SequenceNum) to observe how the random and sequential
characteristics of the key affect different skiplists, especially
RLS. Figure 9 shows the average insertion and deletion

latency for four different skiplists with various NVM write
latencies. The increase in NVM write latency has led to an
increase in the insertion and deletion latency of skiplists, but
the write optimization of skiplists we proposed is better than
RLS. When the NVM write latency is 300ns, compared with
RLS, AS and ASCS reduce the average insertion latency
by 18.6% and 27.4% in Figure 9(a) and 28.1% and 40.2%
in Figure 9(c), respectively; and when the NVMwrite latency

69856 VOLUME 9, 2021



R. Xiao et al.: Write-Optimized and Consistent Skiplists for NVM

FIGURE 10. Results of the average throughput when requesting
24 million items.

is 1200ns, compared with RLS, AS and ASCS decrease the
average insertion latency by 41.6% and 48.3% in Figure 9(a)
and 48.1% and 59.6% in Figure 9(c), respectively. The dele-
tion latency of skiplists has a similar rule as the insertion
latency of skiplists shown in Figure 9(b) and Figure 9(d).
The insertion and deletion latency in the sequential feature
of keys (SequenceNum) lower than that in the random char-
acteristic of keys (RandomNum) for all skiplists.

F. PERFORMANCE OF YCSB WORKLOADS
As shown in Figure 10, we compare the average insertion and
deletion throughput of different skiplists. We generate two
YCSB workloads, e.g., the INSERT dataset and the DELETE
dataset. The generative method of these two datasets can be
seen in the experimental setup section (e.g., IV(A)). To test
the insertion and deletion throughput of skiplists, we record
the time of inserting 24 million key-value items into skiplists,
then record the time of deleting these 24 million items from
skiplists. Finally, the insertion and deletion throughputs of
different skiplists are calculated by dividing 24 million by
the corresponding insertion and deletion time. Figure 10
shows the insertion and deletion throughput of skiplists in
YCSB 24 million key-value (KV) items. Compared with
RLS, AS and ASCS increase the average insertion through-
put by 49.1% and 65.0%, and improve the average deletion
throughput by 65.1% and 80.5% respectively. Because AS
uses log-free failure-atomic write to avoid the double write
to NVM of RLS, and ASCS takes the SC mechanism on
the top of log-free failure-atomic write to further reduce the
number of rights to NVM. Therefore, ASCS outperforms AS
by 10.7% and 9.3% in insertion and deletion throughputs,
respectively.

V. RELATED WORK
A. NVM-BASED TREE STRUCTURES
Most previous studies focus on adapting persistent B-Tree or
B+Tree or radix tree to NVM [17], [20], [21], [24], [29], [30].
NVM-based persistent B+Tree and skiplist have different
characteristics, so they face diverse challenges. NVM-based
B-Tree or B+Tree has to shift half entries of a node on
average when inserting a new KV entry, while skiplist has

better locality and no need to move existing items. To guar-
antee data consistency, shifting each entry requires multiple
CLFLUSH and MFENCE instructions. Moreover, B-Tree or
B+Tree may suffer split or merge operation for re-balance,
which causes more NVM writes and reduces insertion or
deletion performance. The wB+Tree [21], and NV-Tree [20]
employ unsorted leaf nodes to avoid moving entries, so they
significantly reduce the number of NVM writes. NV-Tree
[20], FPTree [30] and ROART [31] leverage selective con-
sistency or persistence to reduce data consistency over-
head. This method inspires our work. FAST_FAIR [17] uses
Failure-Atomic ShifT (FAST) and Failure-Atomic In-place
Rebalance (FAIR) for node split/merge operation to avoid
expensive duplicate copy operations, which inspire our
log-free failure-atomic writes used for NVM-based persistent
skiplist.

B. NVM-BASED SKIPLIST
NoveLSM [32], SLM-DB [33] and MatrixKV [34] place
persistent skiplist of log-structure merge tree (LSM-Tree)in
NVM to reduce serialization and compaction overhead.
NV-Skiplist [35] is an NVM-DRAM hybrid consistent
skiplist whose internal levels are stored in DRAM and pri-
mary essential list stored in NVM. However, NV-Skiplist
requires more time to recover to a consistent state when
system failures due to the volatility of the internal index of
a large-scale skiplist. Inspired by TSU [36], we improve the
analysis of the inconsistency cases of skiplist when system
failures. In this paper, we propose Atomic Skiplist (AS for
short) and Atomic and Selective Consistency Skiplist (ASCS
for short), which are orthogonal to previous works, and strives
to explore the consistency of skiplist stored only in NVM
without DRAM participant. Chen et al. [37] propose a per-
sistent skiplist for the Intel Optane DC Persistent Memory.

VI. CONCLUSION
In this paper, we present two NVM-based write-optimized
and consistent skiplists called AS and ASCS, for sys-
tems with all skiplists stored in only a persistent NVM
environment. AS employs log-free failure-atomic writes
to significantly reduce NVM writes of traditional Redo-
Logging-based Skiplist (RLS for short). AS and ASCS both
guarantee data consistency when system failures. Compared
with RLS, experimental results demonstrate that AS and
ASCS reduce the number of cache-line flushes (CLFLUSH),
decrease the insertion and deletion latencies, and increase
the insertion and deletion throughputs. We also evaluate the
write efficiencies of AS and ASCS in different NVM write
latencies for various NVM technologies.

REFERENCES
[1] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran,

M. Asheghi, and K. E. Goodson, ‘‘Phase change memory,’’ Proc. IEEE,
vol. 98, no. 12, pp. 2201–2227, Dec. 2010.

[2] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, ‘‘Evalu-
ating STT-RAM as an energy-efficient main memory alternative,’’ in Proc.
IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Piscataway, NJ,
USA, Apr. 2013, pp. 256–267.

VOLUME 9, 2021 69857



R. Xiao et al.: Write-Optimized and Consistent Skiplists for NVM

[3] M. Mao, Y. Cao, S. Yu, and C. Chakrabarti, ‘‘Optimizing latency, energy,
and reliability of 1T1R ReRAM through appropriate voltage settings,’’ in
Proc. 33rd IEEE Int. Conf. Comput. Design (ICCD), Piscataway, NJ, USA,
Oct. 2015, pp. 359–366.

[4] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour,
Y. J. Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and
S. Swanson, ‘‘Basic performance measurements of the Intel Optane
DC persistent memory module,’’ 2019, arXiv:1903.05714. [Online].
Available: http://arxiv.org/abs/1903.05714

[5] L. George, HBase: The Definitive Guide: Random Access to Your Planet-
Size Data. Newton, MA, USA: O’Reilly Media, 2011.

[6] A. Lakshman and P.Malik, ‘‘Cassandra: A decentralized structured storage
system,’’ ACM SIGOPS Operating Syst. Rev., vol. 44, no. 2, pp. 35–40,
Apr. 2010.

[7] S. Pelley, P. M. Chen, and T. F. Wenisch, ‘‘Memory persistency,’’ ACM
SIGARCH Comput. Archit. News, vol. 42, no. 3, pp. 265–276, Oct. 2014.

[8] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, ‘‘System software for persistent memory,’’ in
Proc. 9th Eur. Conf. Comput. Syst. (EuroSys), New York, NY, USA, 2014,
p. 15.

[9] H. Volos, A. J. Tack, and M. M. Swift, ‘‘Mnemosyne: Lightweight per-
sistent memory,’’ ACM SIGPLAN Notices, vol. 46, no. 3, pp. 91–104,
Mar. 2011.

[10] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, ‘‘A durable and energy efficient
main memory using phase change memory technology,’’ in Proc. 36th
Annu. Int. Symp. Comput. Archit. (ISCA), New York, NY, USA, 2009,
pp. 14–23.

[11] W. Pugh, ‘‘Skip lists: A probabilistic alternative to balanced trees,’’ Com-
mun. ACM, vol. 33, no. 6, pp. 668–676, Jun. 1990.

[12] M. A. Bender, M. Farach-Colton, R. Johnson, S. Mauras, T. Mayer,
C. A. Phillips, and H. Xu, ‘‘Write-optimized skip lists,’’ in Proc. 36th
ACM SIGMOD-SIGACT-SIGAI Symp. Princ. Database Syst., New York,
NY, USA, May 2017, pp. 69–78.

[13] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, ‘‘Scalable high performance
main memory system using phase-change memory technology,’’ ACM
SIGARCH Comput. Archit. News, vol. 37, no. 3, pp. 24–33, Jun. 2009.

[14] J. Yue and Y. Zhu, ‘‘Accelerating write by exploiting PCM asymmetries,’’
in Proc. IEEE 19th Int. Symp. High Perform. Comput. Archit. (HPCA),
Piscataway, NJ, USA, Feb. 2013, pp. 282–293.

[15] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and
B. Abali, ‘‘Enhancing lifetime and security of PCM-based main memory
with start-gap wear leveling,’’ in Proc. 42nd Annu. IEEE/ACM Int. Symp.
Microarchitecture, New York, NY, USA, Dec. 2009, pp. 14–23.

[16] Y. Lu, J. Shu, and L. Sun, ‘‘Blurred persistence in transactional persis-
tent memory,’’ in Proc. 31st Symp. Mass Storage Syst. Technol. (MSST),
Piscataway, NJ, USA, May 2015, pp. 1–13.

[17] D. Hwang, W.-H. Kim, Y. Won, and B. Nam, ‘‘Endurable transient
inconsistency in byte-addressable persistent b+-tree,’’ in Proc. 16th
USENIX Conf. File Storage Technol. (FAST), Berkeley, CA, USA, 2018,
pp. 187–200.

[18] X. Zhang, D. Feng, Y. Hua, J. Chen, and M. Fu, ‘‘A write-efficient and
consistent hashing scheme for non-volatile memory,’’ in Proc. 47th Int.
Conf. Parallel Process., New York, NY, USA, Aug. 2018, p. 87.

[19] F. Xia, D. Jiang, J. Xiong, and N. Sun, ‘‘HiKV: A hybrid index key-value
store for DRAM-NVM memory systems,’’ in Proc. USENIX Annu. Tech.
Conf. (ATC), Berkeley, CA, USA, 2017, pp. 349–362.

[20] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He, ‘‘NV-Tree:
Reducing consistency cost for NVM-based single level systems,’’ in Proc.
13th USENIX Conf. File Storage Technol. (FAST), Berkeley, CA, USA,
2015, pp. 167–181.

[21] S. Chen and Q. Jin, ‘‘Persistent b+-trees in non-volatile main memory,’’
Proc. VLDB Endowment, vol. 8, no. 7, pp. 786–797, Feb. 2015.

[22] P. Zuo, Y. Hua, and J. Wu, ‘‘Write-optimized and high-performance
hashing index scheme for persistent memory,’’ in Proc. USENIX Symp.
Operating Syst. Design Implement. (OSDI), Berkeley, CA, USA, 2018,
pp. 461–476.

[23] M. Nam, H. Cha, Y.-R. Choi, S. H. Noh, and B. Nam, ‘‘Write-optimized
dynamic hashing for persistent memory,’’ in Proc. 17th USENIX Conf. File
Storage Technol. (FAST), Berkeley, CA, USA, 2019, pp. 31–44.

[24] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell, ‘‘Con-
sistent and durable data structures for non-volatile byte-addressable mem-
ory,’’ in Proc. FAST, Berkeley, CA, USA, vol. 11, 2011, pp. 61–75.

[25] H. Volos, G. Magalhaes, L. Cherkasova, and J. Li, ‘‘Quartz: A
lightweight performance emulator for persistent memory software,’’
in Proc. 16th Annu. Middleware Conf., R. Lea, S. Gopalakrishnan,
E. Tilevich, A. L. Murphy, and M. Blackstock, Eds. Vancouver, BC,
Canada: ACM/IFIP, 2015, pp. 37–49.

[26] P. Zuo and Y. Hua, ‘‘A write-friendly hashing scheme for non-volatile
memory systems,’’ in Proc. MSST, Piscataway, NJ, USA, Dec. 2017,
pp. 1–10.

[27] D. Newman. (2008). Bags of Words Data Set. [Online]. Available:
http://archive.ics.uci.edu/ml/datasets/Bag+of+Words

[28] V. Tarasov, A. Mudrankit, W. Buik, P. Shilane, G. Kuenning, and
E. Zadok, ‘‘Generating realistic datasets for deduplication analysis,’’ in
Proc. USENIX Annu. Tech. Conf. (ATC), Berkeley, CA, USA, 2012,
pp. 261–272.

[29] S. Chen, P. B. Gibbons, and S. Nath, ‘‘Rethinking database algorithms for
phase change memory,’’ in Proc. CIDR, 2011, p. 5.

[30] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner, ‘‘FPTree:
A hybrid SCM-DRAM persistent and concurrent B-tree for storage class
memory,’’ in Proc. Int. Conf. Manage. Data, New York, NY, USA,
Jun. 2016, pp. 371–386.

[31] S. Ma, K. Chen, S. Chen, M. Liu, J. Zhu, H. Kang, and Y. Wu, ‘‘ROART:
Range-query optimized persistent ART,’’ in Proc. 19th USENIX Conf. File
Storage Technol. (FAST), Berkeley, CA, USA, 2021, pp. 1–16.

[32] S. Kannan, N. Bhat, A. Gavrilovska, A. Arpaci-Dusseau, and
R. Arpaci-Dusseau, ‘‘Redesigning LSMs for nonvolatile memory
with NoveLSM,’’ in Proc. USENIX Annu. Tech. Conf. (USENIX ATC),
pp. 993–1005, 2018.

[33] O. Kaiyrakhmet, S. Lee, B. Nam, S. H. Noh, and Y.-R. Choi, ‘‘SLM-
DB: Single-level key-value store with persistent memory,’’ in Proc. 17th
USENIX Conf. File Storage Technol. (FAST), 2019, pp. 191–205.

[34] T. Yao, Y. Zhang, J. Wan, Q. Cui, L. Tang, H. Jiang, C. Xie, and X. He,
‘‘MatrixKV: Reducing write stalls and write amplification in LSM-tree
based KV stores with matrix container in NVM,’’ in Proc. USENIX Annu.
Tech. Conf. (USENIX ATC), 2020, pp. 17–31.

[35] Q. Chen and H. Yeom, ‘‘Design of skiplist based key-value store on non-
volatile memory,’’ in Proc. IEEE 3rd Int. Workshops Found. Appl. Self Syst.
(FASW), Sep. 2018, pp. 44–50.

[36] S. Wang and Q. Cao, ‘‘TSU: A two-stage update approach for persistent
skiplist,’’ in Proc. Conf. Adv. Comput. Archit. Kunming, China: Springer,
2020, pp. 163–177.

[37] C. Chen, J. Yang, M. Lu, T. Wang, Z. Zheng, Y. Chen, W. Dai, B. He,
W.-F. Wong, G. Wu, Y. Zhao, and A. Rudoff, ‘‘Optimizing in-memory
database engine for AI-powered on-line decision augmentation using per-
sistent memory,’’ Proc. VLDB Endowment, vol. 14, no. 5, pp. 799–812,
Jan. 2021.

RENZHI XIAO received the B.E. degree in soft-
ware engineering from the Jiangxi University
of Science and Technology, Nanchang, China,
in 2013. He is currently pursuing the Ph.D. degree
with the Wuhan National Laboratory for Opto-
electronics (WNLO), Huazhong University of Sci-
ence and Technology (HUST), Wuhan, China. His
current research interests include in-memory key-
value store, non-volatile memory, and NVM-based
data structures.

DAN FENG (Senior Member, IEEE) received the
B.E., M.E., and Ph.D. degrees in computer sci-
ence and technology from the Huazhong Univer-
sity of Science and Technology (HUST), Wuhan,
China, in 1991, 1994, and 1997, respectively.
She is currently a Professor and the Dean of
the School of Computer Science and Technology,
HUST. She has over 100 publications in major
journals and international conferences, including
the IEEE TC, the IEEE TPDS, ACM-TOS, FAST,

USENIXATC, EuroSys, ICDCS, HPDC, SC, ICS, IPDPS, DAC, and DATE.
Her research interests include computer architecture, non-volatile memory
technology, distributed and parallel file systems, and massive storage sys-
tems. She is a member of the Association for Computing Machinery and the
Chair of the Information Storage Technology Committee, Chinese Computer
Academy. She served on the program committees of multiple international
conferences, including SC, in 2011 and 2013, and MSST, in 2012 and 2015.

69858 VOLUME 9, 2021



R. Xiao et al.: Write-Optimized and Consistent Skiplists for NVM

YUCHONG HU (Member, IEEE) received the
B.Eng. degree in computer science and technol-
ogy from the Special Class for the Gifted Young
(SCGY), University of Science and Technology
of China (USTC), in 2005, and the Ph.D. degree
in computer software and theory from the Univer-
sity of Science and Technology of China (USTC),
in 2010. He has published 12 papers as the
first/corresponding author in conferences FAST
(twice), INFOCOM, SoCC, and journals TOS,

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, IEEE TRANSACTIONS

ON NETWORKING, TIT, IEEE TRANSACTIONS ON INFORMATION FORENSICS AND

SECURITY, and IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS.
He also published more than 40 articles in major journals and conferences,
including IEEE TRANSACTIONS ON COMPUTERS, ATC, DSN, MSST, IWQoS,
SRDS, ICPP, ICPADS, ISPA, ISIT, and ICC. His research mainly focuses
on designing and implementing intelligent reliability mechanisms, based on
fault-tolerance, such as network coding or erasure coding, to improve reli-
ability, performance, and security for storage systems, which include cloud
storage, big-data storage, deduplicated backup, heterogeneous/hierarchical
storage, and in-memory NoSQL database.

FANG WANG (Member, IEEE) received the B.E.
and master’s degrees in computer science and the
Ph.D. degree in computer architecture from the
Huazhong University of Science and Technology
(HUST), Wuhan, China, in 1994, 1997, and 2001,
respectively. She is currently a Professor of com-
puter science and engineering with HUST. She
has more than 80 publications in major journals
and conferences, including IEEE TRANSACTIONS

ON COMPUTERS, IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS ON NETWORK AND SERVICE

MANAGEMENT, ACM TACO, SC, MSST, DATE, HiPC, ICDCS, HPDC, ICCD,
ICDE, and ICPP. Her research interests include distribute file systems,
parallel I/O storage systems, and graph processing systems.

XUELIANG WEI received the B.E. degree in com-
puter science and technology from the Huazhong
University of Science and Technology (HUST),
China, in 2015, where he is currently pursu-
ing the Ph.D. degree. His current research inter-
ests include non-volatile memories and computer
architecture.

XIAOMIN ZOU received the B.E. degree in digi-
tal media technology from Nanchang University,
China, in 2017. She is currently pursuing the
Ph.D. degree in computer architecture with the
Huazhong University of Science and Technology
(HUST), China. Her research interests include
in-memory key-value store, non-volatile memory,
and NVM-based data structures.

MENGYA LEI received the B.E. degree in elec-
tronic information engineering technology from
the Wuhan University of Science and Technol-
ogy (WUST), China, in 2017. She is currently
pursuing the Ph.D. degree in computer architec-
ture with the Huazhong University of Science
and Technology (HUST), China. Her research
interests include non-volatile memory (NVM) and
NVM-based operating systems.

VOLUME 9, 2021 69859


