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ABSTRACT The protection of confidential data (e.g., personal data) is a concern of increasing importance.
Data processing applications are often deployed in cloud or fog/edge computing systems. Such cloud-based
systems may change dynamically during operations, for example because of changes in the users, in the
deployed software services, or in the infrastructure. As a result, both the threats to data protection and the
availability of data protection mechanisms may change at run time, making efficient data protection very
challenging. This paper presents RADAR (Run-time Adaptations for DAta pRotection), an approach for
ensuring data protection in dynamically changing cloud-based systems. RADAR analyzes the configuration
of the cloud-based system automatically at run time, to detect changes in the threats to data protection or in the
availability of data protection mechanisms. If needed, RADAR automatically adapts the cloud-based system
to ensure the continued satisfaction of data protection requirements. From multiple possible adaptations
that lead to the satisfaction of data protection requirements, RADAR chooses an adaptation that has the
lowest negative implication on other goals, like costs and the availability of functionality. RADAR is a
comprehensive approach that combines pattern-based detection of problematic system configurations with
model-based automatic run-time adaptations and a search algorithm for finding the best adaptation. RADAR
is validated using two case studies from the cloud and fog computing domains, and the scalability of the
approach is evaluated using a set of controlled experiments.

INDEX TERMS Cloud computing, data protection, edge computing, fog computing, privacy, security,
self-adaptation.

I. INTRODUCTION
Many software systems process, store, or transfer data that
must be protected from unauthorized access. For exam-
ple, personal data must be protected in compliance with
applicable laws, such as the General Data Protection Reg-
ulation (GDPR) of the European Union (EU) [1]. Also
non-personal data may require protection, e.g., in the case
of trade secrets. Given our society’s increasing reliance on
data and on the processing of data by software systems, data
protection is a concern of increasing importance in the design,
development, and operation of software systems [2].

Data processing applications are often deployed in the
cloud [3]. While offering easy access to large computational
capacity, cloud platforms are associated with special data
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protection risks, stemming from virtualization, multi-tenancy
etc. [4]. The complexity of cloud systems, including many
different hardware and software components, services, and
different types of stakeholders, offers a large attack surface,
thus making it especially challenging to protect data stored
and/or processed in the cloud [5]. Recent trends to distribute
cloud-like services to the network edge, often referred to as
fog computing or edge computing, increase the difficulties of
data protection even further [6].

An important property of cloud-based systems (such as
cloud and fog/edge computing systems) is that they dynam-
ically change during run time. For example, new hardware
or software components may be deployed at any time, exist-
ing hardware or software components may be changed or
removed, tenants may join or leave, applications are auto-
matically scaled to cope with varying workloads etc. While
this flexibility is a major advantage of cloud and fog/edge
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services [7], it is a challenge for data protection. On the one
hand, the threats to data protection may change during run
time. For example, the migration of a software component
from a trusted to a non-trusted environment (e.g., from a
private to a public cloud) may significantly increase the risk
that an unauthorized party gains access to the processed data.
On the other hand, the availability of data protection mech-
anisms may also change during run time. For example, new
machines supporting secure hardware enclaves may become
available [8]. For these reasons, the optimal choice of data
protection mechanisms cannot be fully determined at
design time, since it depends on the specific cloud/fog/edge
configuration which may evolve at run time.

There are many different techniques for protecting data,
such as encryption, anonymization, and access control [9].
Yet, the problem of effectively and efficiently protecting data
in complex systems is largely unsolved [10]. One particu-
lar deficit is that most existing data protection mechanisms
offer only local protection, e.g., protecting the transfer of
data between two components of the system. On the other
hand, successful data protection must be end-to-end in sev-
eral aspects: throughout the whole system, across the whole
data lifecycle, taking into consideration all stakeholders [11].
To achieve end-to-end data protection, multiple data pro-
tection mechanisms have to be combined.
However, combining all conceivable data protection mech-

anisms is typically not feasible. Several existing data protec-
tionmechanisms have some limitations or drawbacks. For
example, a way to achieve secure data processing is by using
special hardware supporting secure hardware enclaves [8].
However, such special machines may not be available in all
computing environments, or as scarce resource they may be
more expensive to rent than other machines without special
security features. Another alternative is to use anonymized
data to protect the privacy of the involved data subjects [12].
However, anonymization degrades the utility of the data: for
example, if the names and addresses of persons in a dataset
are removed or overwritten with fictive values, this limits the
kinds of queries that can be answered based on the dataset.
Therefore, selecting the most appropriate data protection
mechanisms in a given situation is not straight-forward, and
should consider not only the data protection requirements,
but also other system goals like costs and the availability of
functionality.

To address these challenges, we present a novel approach
for ensuring the continued fulfillment of data protec-
tion requirements at run time, in an automatic way. Our
approach, called RADAR (Run-time Adaptations for DAta
pRotection), takes into account
• the current configuration of the cloud/fog/edge system;
• the threats to data protection stemming from the system
configuration;

• the availability of different data protection mechanisms
in the given system configuration;

• the ability of the available data protection mechanisms
to mitigate the detected threats;

• the impact of the data protection mechanisms on other
goals, such as costs and the availability of functionality.

We use techniques from the field of models@run.
time [13] to reason about the current configuration of the
cloud/fog/edge system, pattern matching [14] to detect prob-
lematic configurations (i.e., configurations that threaten data
protection), run-time adaptations to mitigate the detected
problematic configurations [15], and optimization to find
the best adaptation taking into account the impact on data
protection and other goals, like functionality and costs.

RADAR is the first comprehensive approach to ensure data
protection at run time while also optimizing other system
goals in cloud/fog systems. In particular, RADAR possesses
the following set of features which differentiates it from all
existing approaches that we are aware of:
• Most existing approaches only address design-time
activities (e.g., [16]) or only the detection of threats
at run time (e.g., [17]). In contrast, RADAR spans
the whole range of activities from capturing problem-
atic configurations and potential adaptations at design
time to automatic detection and automatic mitigation of
threats at run time.

• Most existing approaches only support specific types of
threats and mitigation actions (e.g., [18]). In contrast,
RADAR can handle arbitrarily complex problematic
configurations and arbitrarily complex adaptations of
the system configuration.

• Most existing approaches focus on handling specific
attacks on system security (e.g., [19]). In contrast,
RADAR focuses on detecting and mitigating system
configurations with high risks of violating data protec-
tion requirements.

• Most existing approaches focus only on data protection
or security (e.g., [20]). In contrast, RADAR also takes
into account other goals like costs and the availability of
functionality, in two ways. First, from the possible adap-
tations for mitigating a data protection threat, RADAR
chooses one that optimizes the other goals. Second,
RADAR ensures that adaptations aimed at optimizing
other goals are only carried out if they do not threaten
data protection.

• Most existing approaches use off-the-shelf solvers for
finding adaptations (e.g., [21]). In contrast, we exper-
iment with different search algorithms, and devise a
best-first search algorithm that is especially effective
for this challenging algorithmic problem, leading to
improved scalability.

The paper is organized as follows. Section II presents two
examples to motivate our work. Section III identifies a set
of requirements that the approach should fulfill. Section IV
analyzes related work. Section V presents our proposed
approach on a conceptual level, followed by details of a
prototypical technical realization in Section VI. Section VII
describes the experience from the practical evaluation of
the approach. Section VIII discusses the findings and puts
the results in perspective, while Section IX concludes the
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paper. The Appendix presents a formalization of the approach
and details of the technologies used in the prototypical
implementation.

II. MOTIVATING EXAMPLES
To motivate our work, we describe two example systems,
one from the cloud computing domain and one from the fog
computing domain.

FIGURE 1. Example cloud system, based on [22].

A. CLOUD EXAMPLE
Figure 1 shows schematically the configuration of a cloud
system of an industry partner in the project RestAssured,1

based on [22]. In the shown example, personal data (‘‘Data
record’’) about users within the EU (‘‘Data Subject’’2) is
processed by a company (‘‘Data Controller3 A’’). The ‘‘Data
Subject’’ explicitly agreed to the processing, as he or she
trusts ‘‘Data Controller A.’’ ‘‘Data Controller A’’ stores the
‘‘Data record’’ in an unencrypted database (‘‘DB’’) operated
by ‘‘IaaS4 Operator W.’’ The application (‘‘Component A’’)
of ‘‘Data Controller A’’ is operated on the infrastructure of
‘‘IaaS Operator X.’’ The ‘‘Data Subject’’ trusts neither ‘‘IaaS
Operator W’’ nor ‘‘IaaS Operator X.’’ Another actor (‘‘Data
Processor’’5) connects to ‘‘Component A’’ by using an appli-
cation (‘‘Component C’’) and receives the ‘‘Data record.’’

1https://restassuredh2020.eu/
2Data Subject is a term defined by the GDPR: ‘‘A data subject is

any person whose personal data is being collected, held or processed’’
(https://eugdprcompliant.com/what-is-data-subject/).

3Data Controller is a term defined by the GDPR: ‘‘The data
controller determines the purposes for which and the means by which
personal data is processed’’ (https://ec.europa.eu/info/law/law-topic/data-
protection/reform/rules-business-and-organisations/obligations/controller-
processor/what-data-controller-or-data-processor_en).

4Infrastructure as a Service
5Data Processor is a term defined by the GDPR: ‘‘The data

processor processes personal data only on behalf of the controller.
The data processor is usually a third party external to the company’’
(https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-
business-and-organisations/obligations/controller-processor/what-data-
controller-or-data-processor_en).

The ‘‘Data Processor’’ is trusted by the ‘‘Data Subject.’’
‘‘Component C’’ is run by the untrusted ‘‘SaaS6 Operator Z.’’
In addition, another company (‘‘Data Controller B’’) accesses
the same database (‘‘DB’’) using an application (‘‘Compo-
nent B’’). The ‘‘Data Subject’’ trusts neither ‘‘Data Controller
B’’ nor ‘‘IaaS Operator Y’’ that operates the infrastructure for
‘‘Component B.’’

This configuration is associated with multiple threats to
data protection. While the ‘‘Data Subject’’ trusts both ‘‘Data
Controller A’’ (the operator of the software that processes the
data of the ‘‘Data Subject’’) and the ‘‘Data Processor’’ that
in the end receives the data of the ‘‘Data Subject,’’ other,
untrusted actors along the path (‘‘IaaS Operator W,’’ ‘‘IaaS
Operator X,’’ ‘‘SaaS Operator Z’’) may have the opportunity
to gain unauthorized access to the data. Another problem is
that ‘‘Component B,’’ which also has access to the data of the
‘‘Data Subject,’’ is operated in the US. The GDPR prohibits
the processing of personal data of EU citizens outside the EU
(except in some explicitly allowed cases), thus this situation
represents a compliance threat.

It is important to note that these threats arise from the
interplay of multiple entities, and not from a property of
a single entity. Moreover, such data protection threats can
arise and vanish dynamically at run time, for example due
to operator changes, changes in trust levels, or changes in the
connections between components.

To address data protection threats arising at run time,
adaptations may be carried out. Examples of such adaptations
include turning on the encryption of data, migration of soft-
ware components, or disabling the data processing function-
alities affected by the threat. However, such adaptations may
adversely impact other system goals. For instance, disabling
data processing functionalities limits the functionality avail-
able to users and hence should be used only as a last resort.
Also, IaaS operators may charge different fees for the use
of their infrastructure; hence, different configurations may
incur different costs (e.g., a migration between IaaS clouds
may lead to a change in costs). Therefore, the choice of
the adaptation is a crucial decision. From multiple possible
system configurations that satisfy data protection require-
ments, the one with the lowest costs that does not restrict
functionality should be selected.

B. FOG EXAMPLE
Figure 2 shows schematically the configuration of a fog com-
puting system of an industry partner (Nokia) in the project
FogProtect,7 based on [23]. This example is a case study from
the smart manufacturing domain, called ‘‘Factory in a Box’’
(FiaB). FiaB is a complete production environment, inte-
grated in a standard 20-feet freight container. The computing
capabilities within FiaB are considered as a fog node. This
fog node is connected on the one hand with a number of end
devices (‘‘Sensors,’’ ‘‘Robot,’’ ‘‘AR/VR glasses’’), and on the

6Software as a Service
7https://fogprotect.eu/
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FIGURE 2. Example fog system, based on [23].

other hand with a central cloud using a public network. This
heterogeneous infrastructure hosts a number of applications.
The applications consist of a varying number of components
that can be placed either in the fog node or in the cloud.

Some components may process sensitive data. For exam-
ple, the FiaB can produce tailored products for individual cus-
tomers (so-called lot-size-1 production), for which personal
data may have to be processed. Placing such components into
the public cloudwould pose a threat to data protection. Hence,
if a component processes sensitive personal data, it has to be
placed in the fog node.

During run time, many system parameters can change
dynamically, e.g., the resource requirements of components
or whether a component processes personal data. After such
changes, adaptations may be necessary, in particular to ensure
that the data protection constraints are still met. For example,
components can be migrated between the fog node and the
cloud. However, such adaptations may impact other goals.
For instance, since the fog node has only limited computing
power, migrating a component to the fog node may make it
necessary to switch off computation-intensive features, thus
limiting the available functionality. Hence it is important to
select the adaptation that restricts the functionality as little as
possible while ensuring data protection.

III. REQUIREMENTS
We identified several requirements that an approach to ensur-
ing data protection at run time should satisfy. The require-
ments are summarized in Table 1 and explained in the
following.

As we have seen in the motivating examples, problematic
system configurations (i.e., configurations threatening data
protection) may occur at run time. Our central requirements
are hence to detect such problematic configurations (R3) and
resolve them (R4) automatically at run time. Some aspects
need to be highlighted in connection with these requirements:
• We are interested in detecting and mitigating problem-
atic configurations, as opposed to detecting and miti-
gating the occurrence of specific attacks. Although the
detection and mitigation of the occurrence of specific
attacks is also an important field of research (including

TABLE 1. Requirements.

intrusion detection [24] and intrusion protection sys-
tems [19]), detecting and mitigating problematic con-
figurations is associated with significant advantages.
By detecting and mitigating problematic configurations,
attacks can be proactively prevented, as opposed to
reacting when it may be too late. In addition, data pro-
tection regulations like the GDPR require the mitigation
of threats before they materialize as specific attacks.

• The large complexity of modern computing systems is a
major source of data protection challenges. In line with
that, we are focusing on threats to data protection stem-
ming from the structure, properties, and interplay of
different entities, which is captured by the configuration
of the system.

To support the automatic detection of problematic con-
figurations at run time, as stipulated by R3, it has to be
determined what the problematic configurations are. Accord-
ing to current best practices, this requires a risk assessment
process, in which security and privacy experts assess the
kinds of assets to protect, the relevant threats and potential
vulnerabilities, and the business impact of potential misbeha-
viors [25], [26]. Hence this process must take place at design
time. The result of this process should be captured in a form
that will be usable by appropriate algorithms at run time. This
is formulated byR1. It should be noted that not every possible
threat is to be mitigated. Only those configurations should
be captured as problematic configurations, which would be
associated with an unacceptably high risk of data protection
violation.

To support the automatic mitigation of problematic config-
urations at run time, as stipulated by R4, the space of possible
adaptations that can be used for mitigation has to be defined.
This, too, has to be a design-time process in which software
and infrastructure experts define what types of adaptations
are possible, including in particular the possible run-time
adaptations (activation, deactivation, reconfiguration) of data
protection mechanisms. This is formulated by R2.

In a specific problematic configuration, there can be multi-
ple possible adaptations for mitigating the problem. Different
data protection mechanisms may have very different implica-
tions on the available functionality and on costs. Hence it is
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important to choose the best possible adaptation taking into
account all these factors, as captured by R5.
In a self-adaptive system (such as in cloud/fog/edge sys-

tems), there can be many other reasons for performing adap-
tations, not only for ensuring data protection. Other reasons
may include for example reducing costs. It is important that
data protection is taken into account also in the planning of
adaptations for such reasons. It has to be avoided that an
adaptation for some reason (e.g., to reduce costs) leads to a
problematic configuration in terms of data protection. This is
stipulated by R6.
Both R5 and R6 relate to other system goals than data

protection. Such other goals in cloud-based systems could
include energy consumption reduction [27], cost reduc-
tion [28], latency minimization [29], and many others [30].
In this paper, we focus on the minimization of costs and the
maximization of the available functionality as two representa-
tive examples, but the work presented here could be extended
to address other goals as well.

Together, R1–R6 represent a challenging set of require-
ments that an approach for ensuring data protection in
dynamic environments has to fulfill.

IV. RELATED WORK
Table 2 summarizes to what extent existing approaches for the
detection and mitigation of data protection threats (or more
generally, security threats) meet the requirements defined in
Section III.

TABLE 2. Overview of previous approaches and their coverage of the
requirements from Table 1. ‘‘ •’’ means that the approach fully meets
the given requirement, whereas ‘‘©’’ means partial fulfillment of the
requirement.

Several approaches focus on modeling and analyz-
ing security threats during system design. For instance,
Alebrahim et al. perform threat analysis based on a model

including the physical and virtual entities of a cloud system,
its providers and customers, as well as entities like legisla-
tors that are indirectly linked to the system [16]. Palm et al.
use patterns to capture problematic configurations in cloud
system models at design time [38].

In contrast to RADAR, such approaches do not address the
dynamic appearance of threats at run time, and assume that
control and mitigation strategies can be applied manually by
human experts.

With the rise of cloud computing, the run-time detection of
dynamically arising threats became important. For example,
Massonet et al. [18] and Schmieders et al. [42] propose
approaches to detect emerging violations of data location
restrictions in cloud systems through appropriate monitoring
and analysis techniques. These approaches are limited to one
specific type of threat stemming from geo-location violations,
and do not mitigate the identified threats.

Pasquale et al. address more general threats and capture
them with attack scenarios [17]. The approach aims to check
whether the conditions for an attack are met to recognize it
at an early stage. The approach assumes that the behavior
and the goals of an attacker are well known, which may limit
its practical applicability. In addition, the approach does not
aim at mitigating the identified threats, but only at evidence
collection.

In earlier work, we presented our preliminary approach to
automatically find problematic configurations in a run-time
model [35]. However, also that work did not include the
mitigation of detected threats.

Bürger et al. present an approach called SecVolution for
supporting the evolution of systems to ensure the fulfillment
of Essential Security Requirements [20], [31]. Changes in the
Security Context Knowledge (e.g., changes in relevant leg-
islation) may trigger the invocation of Security Maintenance
Rules. In contrast to our approach, Bürger et al. focus only on
partial automation, leaving significant work in the evolution
process to the developer team.

Pasquale et al. argue that the topology of both physical and
virtual assets is important to capture the state of a system
at run time [39]. If a threat for data security is identified
in a possible following state, the system needs to be pre-
vented from reaching this state. Tsigkanos et al. build on
this idea and use bigraphs to model the topology and the
security requirements [21].Model checking is used to analyze
threats and plan adaptations to mitigate the threats. A similar
approach is presented by Sartoli and Namin who use answer
set programming to reason about security violations and a
limited set of possible mitigation actions [15]. All of these
approaches were defined for cyber-physical systems, where
physical constraints help to limit the possibilities – both for
attacks and for adaptations. The problem considered in our
paper is more difficult, first because of the lack of such
limitations and second because we also consider costs and
functionalities together with data protection threats. Nev-
ertheless, the advanced algorithms used by RADAR make
it fast for even large systems, whereas the approach of
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Tsigkanos et al. takes a long time to execute already for
simple systems.

Nostro et al. use attack paths to identify the actions that
insider attackers can perform to reach their goals and
the respective mitigation actions to prevent those insider
threats [37]. Nguyen et al. use Bayesian Attack Graphs to
model threats, and propose Moving Target Defense by means
of VM migration to mitigate threats [36]. These approaches
involve very specific types of adaptation to mitigate a threat,
whereas RADAR can use a wide range of adaptations and
dynamically decide which one is the most appropriate in a
given situation.

Some papers propose methods for selecting the best
action, based on various metrics, to mitigate a given secu-
rity attack. Gonzalez-Granadillo et al. propose an approach
which selects an appropriate response plan for mitigating
identified attacks, taking into account financial and opera-
tional impact of the possible mitigation actions [32], [33].
Iannucci and Abdelwahed use multi-agent Markov Decision
Processes tomodel an intrusion response system,with the aim
of finding optimal responses, considering costs and response
time [19]. Kritikos et al. propose to configure an intrusion
detection system with security rules taking into account
speed, accuracy, and costs [34]. The approach of Puppala
and Pasupuleti aims at selecting appropriate countermeasures
to attacks captured by an attack graph, also considering the
costs of the countermeasures [40]. Salehie et al. use a causal
network to analyze the implications of asset changes on
security concerns and to select appropriate countermeasures,
taking into account the impact of the decision on the ful-
fillment of non-functional requirements like performance or
usability [41].

These approaches are focused on specific attacks against
system security (e.g., network intrusion) described by inde-
pendent attack paths, and consider local security measures
(e.g., patching or rebooting a server). In contrast, RADAR
captures and detects data protection threats stemming from
the arbitrarily complex interplay of components, and is able
to perform arbitrarily complex adaptations of the system
configuration.

Summary of related work. None of the approaches in the
literature that we are aware of fulfills all of the requirements
defined in Section III. In particular, most of the related papers
have at least one of the following limitations:
• They focus on the detection of problematic config-
urations, but do not mitigate the found problematic
configurations.

• They are limited to specific kinds of problematic config-
urations (e.g., geo-location problems).

• They address specific security attacks (e.g., network
intrusion), and not configurations posing threats to data
protection.

• They do not consider the data protection implication
of adaptations targeting other system goals (e.g., cost
improvement).

Our approach, which addresses all requirements from
Section III, thus goes significantly beyond the state of
the art.

V. THE PROPOSED APPROACH
In this section, we present RADAR (Run-time Adaptations
for DAta pRotection). RADAR is a model-based approach
to automatically ensure data protection at run time in cloud
and fog systems using adaptations. RADAR uses a run-time
model of the system and its environment [13]. The run-time
model is a compact representation of the relevant entities,
attributes and relations, which allows automated reasoning
about data protection threats and possible adaptations.

A. OVERVIEW
As shown in Figure 3, RADAR is divided into two phases,
the design time (upper part of the figure) and the deployment /
run time (lower part of the figure). Themain focus of RADAR
is on run time, but some preparatory activities are required at
design time.

At design time, a meta-model is provided, which defines
the modeling constructs that can appear in the run-time
model. Referring to this meta-model, problematic configu-
ration patterns (PCPs) are modeled. Problematic configu-
ration patterns describe configurations that pose threats to
data protection, in line with requirement R1. The problematic
configuration patterns are identified through a manual data
protection risk assessment. To provide means for mitigat-
ing problematic configurations, adaptation rules are defined.
An adaptation rule describes away to alter the run-timemodel
(and the system itself) to mitigate a problematic configura-
tion, thus fulfilling requirement R2.

At deployment time, a run-time model is generated which
represents the planned configuration of the system. At run
time, this run-time model is continuously updated by means
of monitoring so that it always reflects the current configura-
tion. Both at deployment time and at run time,8 the run-time
model is checked after each update for instances of problem-
atic configuration patterns (problematic configuration identi-
fication), thus fulfilling requirement R3. Found instances of
problematic configuration patterns are called PCP instances.

If a PCP instance is detected, a reconfiguration is trig-
gered [43], in line with requirement R4. Reconfiguration is
carried out using adaptations, i.e., instances of the adaptation
rules [44]. Since there may be several possible adaptations
to eliminate the found PCP instances, these adaptations are
compared to select the best one. The potential adaptations are
examined using a functionality analysis and a cost analysis.
Depending on the results of the comparison, the best adapta-
tion is selected and applied (i.e., executed in the real system),
thus fulfilling requirement R5, and the run-time model is

8Figure 3 shows deployment time and run time combined, because the
same activities are performed. The difference is only that at deployment time
the planned configuration is analyzed and possibly improved, whereas at run
time the same is done with the actual configuration.
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FIGURE 3. Overview of the RADAR approach.

updated accordingly. If no PCP instance is detected in the
run-time model, the same reconfiguration algorithm is used
to search for adaptations that would improve costs or func-
tionality without introducing PCP instances, thus fulfilling
requirement R6.

The individual elements of RADAR are described in detail
in the following subsections. In addition, the Appendix con-
tains a formal description of the approach.

B. META-MODEL
The meta-model in RADAR serves as the basis for the
run-time model. The meta-model specifies which types of
nodes and edges can exist in the run-time model and which
attributes the nodes can have. The meta-model can be
regarded as a simplified UML class model, whereas the
run-time model can be regarded as a simplified UML object
model. The problematic configuration patterns also use the
types, attributes, and relations from the meta-model. Thus,
the meta-model ensures compatibility between the problem-
atic configuration patterns and the run-time model.

We use a meta-model designed for cloud and fog comput-
ing. However, RADAR is independent of the specific meta-
model, so the given meta-model can be changed or extended
if needed to apply RADAR in a specific context.

Our specific meta-model is based on an established stan-
dard for modeling cloud systems, namely TOSCA (Topol-
ogy and Orchestration Specification for Cloud Applications).
TOSCA was originally conceived for the specification of
cloud system topologies, but has also been extended to other
related paradigms like fog computing [45]. In TOSCA, there
are two different types of elements making up a topology:

nodes and relations. The nodes represent the individual
components, while the relations represent the connections
between the nodes. The nodes and relations are represented as
node templates and relation templates in a topology template.
Several objects can be instantiated on the basis of a template.

TOSCA defines a set of normative node types and corre-
sponding relations, and allows the definition of further types.
For our purposes, several further node types are needed (see
Figure 4). To be able to reason about data protection, it is
crucial to model the relevant actors [46]. For example, a data
protection violation can occur when one actor has access to
data of another actor without the latter’s consent. TOSCA
does not provide normative node types to represent actors.
Thus, we extend TOSCA with new node types to represent
actors. These node types inherit from the abstract node type
‘‘Actor’’ and its direct descendants ‘‘DataSpecificRole’’ and
‘‘CloudSpecificRole.’’ Subtypes of ‘‘DataSpecificRole’’ rep-
resent actor roles relating to data, e.g., producing or process-
ing data. Subtypes of ‘‘CloudSpecificRole’’ represent actor
roles relating to a cloud service, in terms of developing, oper-
ating, or using a service. These roles are divided into the tree
layers IaaS (Infrastructure-as-a-Service), PaaS (Platform-as-
a-Service) and SaaS (Software-as-a-Service).

Furthermore, the data that needs protection must also
be modeled, requiring further node types. The added node
types are the abstract ‘‘DataSet’’ node type from which the
‘‘DataFlow’’ and ‘‘StoredDataSet’’ node types inherit, and
the ‘‘Record’’ node type. The ‘‘Record’’ node type repre-
sents individual data entries, which are collected within a
‘‘DataSet.’’ The difference between ‘‘StoredDataSet’’ and
‘‘DataFlow’’ is that ‘‘StoredDataSet’’ represents a data set
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FIGURE 4. TOSCA inheritance tree with additions. (Relations were
omitted for clarity.).

persisted in a database, while a ‘‘DataFlow’’ represents data
in transit.

With the addition of node types, the addition of relations is
also necessary. The relations can be seen in Table 3. The first
five relations, which have a gray background, are normative
TOSCA relation types. The following relations were added,
mostly to represent relations between actors and data or
between data and the computing infrastructure.

In our earlier work, we used a proprietary meta-model
to represent cloud systems [46]. Because of the advan-
tages of a standard-based modeling approach, we decided
to switch to the meta-model based on TOSCA as presented
here. The change in the meta-model went smoothly, as the
RADAR approach is not dependent on the specifics of the
meta-model.

C. PROBLEMATIC CONFIGURATION PATTERNS (PCPs)
Modern computer systems exhibit a complex interplay of
different components. Even if each component is secure in
itself, the interplay of multiple components may still give rise
to a problematic configuration, i.e., a configuration in which
data protection is threatened. To address this issue, RADAR
uses problematic configuration patterns (PCPs), based on the
notion of risk patterns introduced in [22]. A PCP describes

TABLE 3. Relations of the meta-model. (Relations with a gray background
color are part of the normative TOSCA notation.).

a pattern which, if found in the run-time model, means
that the system is in a problematic configuration. A PCP
models an interplay of some components that threatens data
protection. Instances of PCPs as sub-structures within the
run-time model are to be avoided. If an instance of a PCP
arises in the run-time model, then the run-time model and
the underlying system have to be changed in such a way that
the PCP instance disappears from the run-time model. This
pattern-based approach has the advantage that a PCP suc-
cinctly defines an infinite class of problematic configurations
(namely all those configurations that contain an instance of
the given PCP).

To create PCPs, IT security experts identify at design time
the constellations of system components that would threaten
data protection. For capturing such constellations, we define a
graphical modeling language, called PCP language. The PCP
language refers to the meta-model to ensure that the PCPs are
compatible with the run-time model.

1) GRAPHICAL NOTATION
The PCP language is inspired by the UML object diagram
notation and defines the elements that can be used to represent
a PCP. This includes objects, attributes, and relations. The
syntax of the PCP language is shown in Figure 5. Objects
are represented by a rectangle, in which a colon is placed
followed by the type of the object. Optionally, a section with
attribute descriptions may be given below the object type.
Each line of the attribute description section consists of the
name of an attribute, followed by either ‘‘==’’ or ‘‘!=,’’ and
a value.

Relations are denoted by lines connecting pairs of objects.
The name of the relation and an arrowhead indicating the
direction of the relation are written next to the line. The name
of the relation may optionally be preceded by the annotation
<<does not exist>>.
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FIGURE 5. Problematic configuration pattern language.

2) SEMANTICS
If a set of objects can be found in the run-time model so that
(1) their types match the object types in the PCP, (2) their
attribute values are in line with the attribute descriptions in
the PCP and (3) their relations are in line with the relation
descriptions in the PCP, then these objects in the run-time
model form an instance of the PCP. In this case, a match of
the PCP has been found in the run-time model.

The condition that the attributes of the objects in the
run-time model are in line with the attribute descriptions in
the PCP means the following:
• For any attribute description of the form
‘‘attribute == value’’ in the PCP, the given
attribute of the corresponding object in the run-time
model has the given value.

• For any attribute description of the form ‘‘attribute
!= value’’ in the PCP, the given attribute of the cor-
responding object in the run-time model has a different
value from the given one.

Similarly, the condition that the relations of the objects in
the run-time model are in line with the relation descriptions
in the PCP means the following:
• For any relation description without the annotation
‘‘<<does not exist>>’’ in the PCP, the given
relation exists between the corresponding objects in the
run-time model.

• For any relation description with the annotation
‘‘<<does not exist>>’’ in the PCP, the given
relation does not exist between the corresponding
objects in the run-time model.

The semantics is further detailed in Section V-F, and for-
malized in the appendix.

3) EXAMPLES
Figures 6–7 show two example problematic configuration
patterns. These examples are taken from [22] and fitted to

FIGURE 6. Example problematic configuration pattern A.

FIGURE 7. Example problematic configuration pattern B.

the current meta-model. Problematic configuration pattern A
represents a situation where a data set contains a sensitive,
unencrypted record belonging to a data subject. The data set
is stored in a database in unencrypted form. The database is
hosted by a DBMS, which in turn is hosted on a compute
node. The compute node is operated by an IaaS operator
who is not trusted by the data subject, as captured by the
‘‘<<does not exist>> trusts’’ relation descrip-
tion. Such a constellation of objects is indeed problematic,
since the untrusted IaaS operator may gain unauthorized
access to the sensitive data stored on the compute node oper-
ated by the IaaS operator.

The problematic configuration pattern in Figure 7 (prob-
lematic configuration pattern B) represents a situation where
a data set contains a sensitive record of a data subject (an EU
citizen). The data set is stored in a database, which is hosted
on a DBMS which is accessed by a software component. The
software component is hosted on a compute node outside the
EU, as shown by the attribute description ‘‘location !=
EU.’’ Such a constellation is indeed problematic, because the
GDPR does not allow in general the processing of data of EU
citizens outside the EU [1].

These examples demonstrate how PCPs can capture data
protection issues that arise through the interplay of multiple
components.

D. ADAPTATION RULES
If one or more PCP instances are found in the run-timemodel,
they should be mitigated. To do this, the run-time model has
to be adapted, together with the system that it represents [47].
On the model level, the adaptation may involve adding or
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removing objects, adding or removing relations, and chang-
ing attribute values. We propose the RADAR Adaptation
Language for capturing at design time the potential types of
adaptations in the form of adaptation rules.

Adaptation rules are associated with the PCPs that they
may mitigate. It is important to note that a PCP may be
mitigated by multiple adaptation rules. It is discussed in
Section V-H how to choose the adaptation rule to apply in
such cases.

An adaptation rule consists of three parts, similarly to the
Event–Condition–Action structure of ECA rules [48]:
• PCP: The PCP to be mitigated by the adaptation rule.
If an instance of this PCP is found in the run-timemodel,
this event activates the adaptation rule.

• Precondition: Represents constraints on the run-time
model that – in addition to the existence of a PCP
instance – are required for the adaptation rule to be
applicable.

• Adaptation action: Describes the changes to be carried
out.

As a simple example, an adaptation rule could describe the
following: if a software component accessing sensitive data
is hosted on a server in an insecure environment (PCP), and
there is another server available in a secure environment (pre-
condition), then the software component should be migrated
from the server in the insecure environment to the server in
the secure environment (adaptation action).

RADAR adaptation rules are syntactically similar to the
‘‘security maintenance rules’’ of [20]. But in contrast to secu-
rity maintenance rules which may include tasks for develop-
ers, RADAR adaptation rules only contain actions that can be
executed automatically.

1) GRAPHICAL NOTATION
Using the RADAR Adaptation Language, an adaptation rule
is captured by a single model using a graphical notation
inspired by UML object diagrams. The PCP and precondition
parts of the adaptation rule are modeled using the constructs
of the PCP language, described in Section V-C.
For modeling adaptation actions, further notation is nec-

essary, which is shown in Figure 8. Adaptation actions may
include the creation and deletion of objects or relations,
as indicated by the <<create>> and <<delete>>
annotations. In addition, adaptation actions can also include
the setting of the values of objects’ attributes, using the
‘‘attribute = value’’ notation.

2) SEMANTICS
An adaptation rule expresses the following: if an instance of
the PCP is found in the run-time model, and additionally also
the precondition matches the run-time model, then the adap-
tation action can be carried out to change the run-time model,
and this change could mitigate the found PCP instance.

Carrying out the adaptation action means the follow-
ing. If an object is annotated with ‘‘<<create>>’’
in the adaptation rule, then the object is added to the

FIGURE 8. Constructs of the RADAR adaptation language for modeling
adaptation actions.

run-time model. On the other hand, if the object is anno-
tated with ‘‘<<delete>>,’’ then the object is removed
from the run-time model. Similarly, relations annotated with
‘‘<<create>>’’ and ‘‘<<delete>>’’ in the adapta-
tion rule are added to respectively removed from the run-time
model.

Attributes cannot be added or removed, only their value can
be changed. If the adaptation rule contains ‘‘attribute name=
value’’ in an object, then the corresponding attribute of the
object is set to the new value.

The semantics of adaptation rules is further detailed in
Section V-H and formalized in the appendix.

3) EXAMPLE
Figure 9 shows an adaptation rule to mitigate the problematic
configuration pattern A from Figure 6. In the upper left
part is the problematic configuration pattern that has already
been explained. In the upper right part is the precondition,
specifying that there has to be another IaaS operator that is
trusted by the data subject and also offers a compute node
hosting a DBMS. In the bottom part is the adaptation action,
specifying that the database is moved from the DBMS hosted
on the compute node operated by the untrusted IaaS operator
to the DBMS on the compute node operated by the trusted
IaaS operator.

E. RUN-TIME MODEL
The run-time model represents the data-protection-related
aspects of the configuration of the system and its envi-
ronment. The run-time model, which is a UML object
model, is an instantiation of the meta-model described in
Section V-B. The run-time model is created during deploy-
ment. During run time, whenever the configuration changes,
the run-time model is updated to represent the current
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FIGURE 9. Example adaptation rule.

configuration. We assume that an appropriate monitoring
functionality is in place that ensures that the run-time model
correctly mirrors the actual system configuration, in line with
similar assumptions in other works on self-adaptation using
models at run time [49], [50].

Figure 10 shows an example run-time model, adopted
from [22]. This run-time model is a representation of a real
cloud system.

In the example there is a ‘‘DataSubject’’ that has some data
in form of a ‘‘Record,’’ which is part of a ‘‘StoredDataSet’’
and a ‘‘DataFlow.’’ The ‘‘StoredDataSet’’ represents the data
stored in the ‘‘Database,’’ while the ‘‘DataFlow’’ is a repre-
sentation for data in transit. The ‘‘StoredDataSet’’ is stored
in a ‘‘Database,’’ which is hosted on a ‘‘DBMS,’’ which in
turn is hosted on a ‘‘Compute’’ node. The ‘‘Compute’’ node
is provided by an ‘‘IaaSOperator.’’ The ‘‘DBMS’’ is accessed
by multiple ‘‘SoftwareComponents.’’ Additionally there are
connections between the ‘‘DataSubject’’ and the other actors,
showing which actors the ‘‘DataSubject’’ trusts.

F. PROBLEMATIC CONFIGURATION IDENTIFICATION
Using the already introduced concepts (PCP, run-time
model), it is possible to detect problematic configurations.
The current configuration is problematic, if and only if at least
one part of the run-time model matches a PCP. In that case,
the part of the run-time model matching the PCP is called a
PCP instance.

A subset of objects in the run-time model matches a PCP,
if and only if all of the following conditions are met:
• Each object appearing in the PCP must also exist in the
run-time model.

• All attributes appearing in the PCP must have appropri-
ate values in the run-time model.

• Relations appearing without annotation in the PCP
must be also present in the run-time model. On the

other hand, relations appearing with the<<must not
exist>> annotation in the PCPmust not appear in the
run-time model.

It should be noted that attributes not represented in the PCP
can have any value in the run-time model, without affecting
whether there is a match. Similarly, relations not represented
in the PCPmay ormay not exist in the run-timemodel without
affecting whether there is a match.

In [22] it was proposed to use graph pattern matching
to identify PCP instances in the run-time model. The goal
of graph pattern matching is to find all matches of a given
‘‘pattern graph’’ in a ‘‘data graph’’ [14]. This is indeed similar
to the task of identifying matches of PCPs in the run-time
model. However, the above definition of a match includes
concepts that are beyond the scope of basic graph pattern
matching: types of objects, inheritance, attributes of objects,
named relations. Therefore, a more powerful technique is
needed to find matches of PCPs in the run-time model, which
is presented in Appendix II.

G. PROBLEMATIC CONFIGURATION PATTERN INSTANCE
Problematic configuration pattern instances (PCP instances)
represent problems found in the run-time model. They are
parts of the run-time model matching a PCP. There can be
several PCP instances in the run-time model, even multiple
instances of the same PCP.

An example PCP instance is marked in the run-time model
shown in Figure 10. The highlighted part of the run-time
model is an instance of problematic configuration pattern A
from Figure 6.

H. ADAPTATIONS
The identified PCP instances have to be mitigated by appro-
priate adaptations, i.e., by the application of appropriate adap-
tation rules. Suppose that a part of the run-time model has
been identified as an instance of a PCP. Moreover, suppose
that there is an adaptation rule that may mitigate the given
PCP. The adaptation rule is applicable to the current run-time
model, if and only if the run-time model satisfies the precon-
dition of the adaptation rule.

Suppose that the adaptation rule is applicable. Then,
applying the adaptation rule to the run-time model means
performing the actions of the adaptation rule, i.e., creating
and deleting objects and relations and setting attributes as
prescribed by the adaptation rule.

I. COST ANALYSIS
As part of the reconfiguration process (see Section V-K),
different adaptations are compared, and one of the compar-
ison metrics is the cost implication of the adaptations. For
this purpose, RADAR analyzes the costs incurred in a given
configuration.

Some types of objects are relevant for the cost analysis,
while others are not. For example, compute nodes may be
rented from IaaS providers incurring costs, thus compute
nodes are relevant for the cost analysis.
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FIGURE 10. Example run-time model. An instance of PCP A (see Figure 6) in the run-time model is highlighted with gray background.

The types relevant for the cost analysis are associated with
two cost-related attributes:

• The attribute costIncurred is Boolean and has the
value true if and only if the given object is used and
hence incurs costs.

• The attribute usageCost is a non-negative number
specifying the costs incurred if the given object is
used.

The total cost incurred in the configuration defined by a
given run-time model is calculated by adding up the usage
costs (usageCost) of the cost-relevant objects that are in
use (costIncurred == true).

In the example of Figure 10, there are two Compute nodes
with costIncurred == true, hence usage cost is the
sum of their costs: 1.1136+ 1.1136 = 2.2272.

J. FUNCTIONALITY ANALYSIS
Adaptations for protecting data may impair the availability of
functionalities to users, for example by switching off some
functionalities altogether or by making them inaccessible
for some users. While such adaptations may be effective
in protecting data and in some cases they may be the only
way to protect data, the impairment of available function-
ality is certainly a drawback that needs to be considered
when deciding which adaptation to make. Hence, within the
reconfiguration process (see Section V-K), the availability
of functionality in run-time models resulting from different
adaptation possibilities is compared.

For quantifying the availability of functionality in a
run-time model, RADAR uses the following approach:

• Objects of some given types are considered functionality
providers. For example, we consider objects of the type
SoftwareComponent as functionality providers.

• Objects of some given types are considered functionality
consumers. For example, we consider objects of the
types SaaSUser and DataSubject as functionality
consumers.

• A functionality consumer can use the functionality pro-
vided by a functionality provider if and only if there
is a path in the run-time model from the functionality
provider to the functionality consumer, consisting of
relations from a given set. For example, the relation
accesses between a SoftwareComponent and a
DBMS may appear in such a path, while the relation
trusts between two Actors may not.

• The number of pairs of functionality provider and func-
tionality consumer for which the functionality consumer
can use the functionality provided by the functionality
provider is used as a metric to quantify the availability
of functionality in the given run-time model.

The functionality analysis proceeds as follows. All nodes
of the run-time model are stored in a list. The nodes in
the list are checked for nodes of functionality consumer
types and functionality provider types. Then, starting from
a consumer node, a depth-first search algorithm is used.
The algorithm identifies paths of relations that are suitable
to access functionalities, between a consumer node and a
provider node. Once any node is visited, it is added to a list.
This ensures that every node is only visited once. When a
source node is reached, the counter of available functions is
incremented.
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In the example of Figure 10, the DataSubject can use
the functionality provided by two SoftwareComponents.
If an adaptation that removes the Records of the
DataSubject from the Database were executed,
the number of available functionalities would drop from two
to zero. Thus, this adaptation should only be performed if
there is no better way to ensure data protection.

K. RECONFIGURATION
There can be two reasons for looking for adaptations in the
RADAR approach. Either at least one PCP instance has been
identified in the run-time model and should be mitigated,
or there is no PCP instance and the aim is to look for adapta-
tions to improve the amount of available functionalities and
reduce costs. In both cases, RADAR has to decide which
adaptations to carry out. This decision is complicated by
several factors9:
• There may be multiple adaptations to mitigate a given
PCP instance. At least one of them should be selected.

• There may be multiple PCP instances in the run-time
model, and they all have to be mitigated.

• An adaptation to mitigate a PCP instance may also
mitigate another PCP instance, or may create new PCP
instances in the run-time model.

• To mitigate all PCP instances in the run-time model,
a sequence of adaptations may be needed.

• In a sequence of adaptations, an adaptation rule may be
used multiple times.

• In a sequence of adaptations, the order of the adap-
tations may be important. For example, an adaptation
may become applicable only after another adaptation has
been carried out.

• The length of the sequence of necessary adaptations is
not bounded. (This is because an adaptation may create
new PCP instances in the run-time model, requiring new
adaptations etc.)

• Different sequences of adaptations may have different
impact on costs and available functionality.

RADAR uses an adaptation planning algorithm that takes
as input the current run-time model, the identified PCP
instances in the run-time model, and the set of available adap-
tation rules. If there is at least one PCP instance in the current
run-time model, the aim of the adaptation planning algorithm
is to determine a sequence of adaptations that transforms
the current run-time model to a new model with no PCP
instances, and with optimal impact on costs and available
functionality.

If there is no PCP instance in the current run-time model,
the aim is to improve the available functionality and/or reduce
the costs, without introducing PCP instances. In this case,
the planning algorithm uses the set of adaptation rules that
are aimed at functionality and cost improvements. These

9The following list is formulated for the case in which the aim is to
mitigate found PCP instances, but most items apply in analogous way also
to the case in which functionality and costs should be improved

adaptation rules use the same form as the adaptation rules
aimed at mitigating data protection threats. The difference
is that the PCP part of these adaptation rules can be empty.
Otherwise, the adaptation planning algorithm works in both
cases in the same way.

To reason about possible adaptation sequences, the adap-
tation planning algorithm constructs a search tree (see
Figure 11). Every node in the search tree represents a possible
run-timemodel. The root node represents the current run-time
model (MRT). A child node represents the run-time model
obtained from the run-time model of the parent node through
an adaptation. That is, ifM andM ′ are two possible run-time
models and M ′ is a child of M in the search tree, then there
is an adaptation rule ad such that ad is applicable in M and
applying ad toM results inM ′ (ad(M ) = M ′). In the example
of Figure 11, each arc of the search tree is labeled with the
adaptation rule used to create the child node from the parent
node.

FIGURE 11. Example search tree of the adaptation planning algorithm.

The RADAR adaptation planning algorithm is schemat-
ically shown in Algorithm 1. The algorithm implements a
bounded backtrack search in the space of possible run-time
models reachable from the current run-time model via
sequences of adaptations. During the search, the algorithm
iteratively builds up the search tree by exploring the children
of already found nodes. The set S consists of the nodes of the
search tree that have already been found but not yet processed.
At the beginning, S consists of the root node, which is the
current run-time model (line 3). In a general step of the algo-
rithm, a node is selected from S (line 5) and is evaluated in
terms of PCPs (line 6). If the model is free of PCP instances,
then it is also evaluated in terms of costs and available func-
tionality (line 7). In this evaluation, the available functionality
is the primary aspect of comparison, while costs act as a
tie-breaker if the amount of available functionality is equal.
The algorithm keeps track of the best solution found so far,
i.e., the possible run-time model with no PCP instances and
minimal impact on costs and available functionality (line 8),
as well as the adaptation sequence leading to this solution
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Algorithm 1 RADAR Adaptation Planning Algorithm
1: best← NULL F best solution found so far
2: bestPath← NULL F path from root to best solution
3: S ← {MRT

} F set of nodes that are being explored
4: while S 6= ∅ do
5: M ← selectNode(S)
6: if M contains no PCP instance then
7: if M is better than best then
8: best← M
9: bestPath← path from MRT to M
10: end if
11: end if
12: T ← generateChildren(M )
13: S ← S \ {M} ∪ T
14: if termination criterion then
15: break
16: end if
17: end while
18: return bestPath

(line 9). After the current node has been evaluated, it is
removed from S and the children of the node are added to S
instead (lines 12-13). To avoid an endless search in the poten-
tially unbounded space of possible solutions, the search is
aborted when a predefined termination criterion is met (lines
14-16). Such a termination criterion could be for instance
a maximum allowed time budget for the execution of the
algorithm. At the end, the algorithm returns the adaptation
sequence leading to the best found solution (line 18), which
is then executed in the real system.

The effectiveness of the algorithm may be significantly
influenced by the way the next node to explore is selected
(line 5). We experimented with the following strategies:

• Depth-first-search: the node that was put last into S is
selected.

• Breadth-first-search: the node that was put first into S is
selected.

• Random: a node is randomly selected from S.
• Best-first-search: the node which is associated with the
lowest number of PCP instances is selected. From nodes
with an equal number of PCP instances, the node with
the highest amount of available functionality is selected.
If there is still a tie, the node with the least cost is
selected. If there is still a tie, the node is selected
randomly.

VI. PROTOTYPICAL REALIZATION
This section outlines the main characteristics of our prototyp-
ical realization of RADAR.10 Wefirst give an overview of the
software structure, then we describe the interfaces provided
or required by RADAR. More information about the used
technologies is given in the Appendix.

10The prototypical realization is publicly available from https://
git.uni-due.de/fogprotect/radar

FIGURE 12. Main components of RADAR.

A. OVERVIEW
As shown in Figure 12, the prototypical realization of
RADAR is structured into four components.

• The Meta-Model (see Section V-B) is based on
the Eclipse Modeling Framework (EMF), a model-
ing framework and tool for creating Java source code
based on a structured data model. Information from the
Meta-Model is used by the Model Repository and the
Adaptation Logic.

• TheModel Repository contains models of specific sys-
tem configurations, based on the EMF meta-model. The
Model Repository contains two kinds of models:

– The run-time model represents the current config-
uration of the managed systems at run time. After
a managed system registers with RADAR, a rep-
resentation of the managed system is added to the
run-time model. The parts of the run-time model
corresponding to individual managed systems are
identified by unique IDs.

– A target configuration represents the result of a
possible sequence of adaptations that is being eval-
uated in terms of costs and functionality.

• The RestController offers RESTful interfaces between
RADAR and other systems. This includes interfaces to
monitor managed systems and to execute adaptations on
managed systems, as well as an interface to import and
export TOSCA topology templates (see Section VI-B2).
In particular, changes in the configuration of managed
systems are reflected through the monitoring interface,
triggering the RestController to update the run-time
model appropriately.

• The Adaptation Logic is responsible for determining
if there is a need for adaptation, and if this is the case,
for determining the adaptation to perform. More specif-
ically, if the run-time model is updated, the Adaptation
Logic searches for instances of the problematic con-
figuration patterns in the run-time model. In case of a
match, the Adaptation Logic generates possible target
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configurations using the adaptation rules and evaluates
them to find the best sequence of adaptations.

B. INTERFACES
This section contains details on the interfaces provided by
the ‘‘RestController’’ (see Figure 12), which relate to the
handling of managed systems and the TOSCA export/import.
All of these interfaces are RESTful web services and are as
such referred to by their URL paths.

1) HANDLING MANAGED SYSTEMS
Figure 13 gives an overview of our approach to monitoring
and adaptation execution. In particular, the figure shows that
some of the managed systems may be only monitored but not
adapted, or only adapted but notmonitored, or bothmonitored
and adapted.

FIGURE 13. Monitoring and adaptation execution.

Themonitoring functionality is divided into a general mon-
itoring gateway and system-specificmonitoring adapters. The
monitoring gateway offers a common interface for updating
the run-time model. Systems to be monitored will typically
not use this interface directly; rather, a system-specific mon-
itoring adapter is used to observe the given system and
transform monitoring data gained from the system into the
format required by the monitoring gateway. We distinguish
two different ways ofmonitoring. In event-drivenmonitoring,
the managed system updates the run-time model after any
change by invoking the monitoring adapter. In time-driven
monitoring, the monitoring adapter observes the managed
system at certain time intervals to detect changes. Both pos-
sibilities can be used simultaneously.

Also the functionality to execute adaptations is divided into
a general adaptation execution gateway and system-specific
execution adapters. The execution gateway offers a generic
(i.e., system-independent) interface for the adaptation logic

to specify the adaptations that need to be carried out. This
interface will typically not be implemented directly by the
systems that need to actually execute the adaptations; rather,
a system-specific execution adapter transforms the adapta-
tions into calls to the API of the system to be adapted. The
execution adapter is called by the execution gateway.

The following interfaces are provided by the RestCon-
troller for handling managed systems:
• /registerManagedSystem
This web service allows the registration of a new man-
aged system with RADAR. The request body contains
a JSON representation of the initial configuration of
the new managed system and the URL address of the
managed system’s execution interface (see below). The
web service returns the ID of the managed systemwithin
the run-time model in the response body, or −1 if the
request failed for any reason.

• /updateRuntimeModel/{id}
This web service allows the monitoring adapter to
update the run-time model. The {id} in the path should
be the ID of the managed system (as returned by ‘‘/reg-
isterManagedSystem’’). The part of the run-time model
belonging to this ID will be updated with the changed
model supplied in the request body as a JSON object.

In addition, the following interface is provided by the
execution adapters:
• /executeAdaptation
This service allows the execution gateway to pass a
selected target configuration to the appropriate execu-
tion adapter. The target configuration is transmitted as
a JSON representation. The execution adapter may con-
vert the information into a different format suitable for
invoking the APIs of the managed system to execute the
adaptation.

2) TOSCA EXPORT/IMPORT
RADAR provides the possibility to export the run-timemodel
in TOSCA format and to import a TOSCAdescription into the
run-time model. We implemented this functionality based on
the TOSCA Simple Profile in YAML.11 The TOSCA Simple
Profile in YAML specifies a rendering of TOSCA in the
YAML language.12 A TOSCA topology template defines the
structure of a service in the form of a graph [45].

a: IMPORTING FROM TOSCA INTO THE RUN-TIME MODEL
Since we already support importing JSON representations of
models fitting the meta-model (see Section II-A), we only
have to convert the topology templates from YAML to JSON.
To import a given TOSCA topology template, we assume it
is aligned with the RADARmeta-model. Topology templates
that are not aligned with the RADAR meta-model can still

11http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-
YAML/v1.0/csprd02/TOSCA-Simple-Profile-YAML-v1.0-csprd02.html

12YAML is a human-readable data serialization standard, see
https://yaml.org/
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FIGURE 14. Steps in an exemplary sequence applying RADAR to the cloud example.

be imported, but may not include all the possibilities offered
by the RADAR meta-model. For demonstration purposes the
TOSCA import / export interface currently supports a subset
of the RADAR meta-model.

Our TOSCA-to-JSON translator transfers the information
from the TOSCA Simple Profile in YAML into a graph
consisting of JSON elements. To create a JSON string from
a graph, the Gson library is used. Gson is an open-source
Java serialization / deserialization library to convert Java
objects to JSON and back.13 When importing the topology,
both attribute values and relations are transferred. In addition,
each object is assigned an ID, which is required in the EMF
run-timemodel. Unlike the TOSCASimple Profile in YAML,
EMF realizes relations using the assigned IDs. The transfer
of attribute values and relationships is split into two steps.
First an object is created for each element of the TOSCA
topology. Furthermore, attribute values (e.g., instance name,
type) are transferred and IDs are assigned. In a second run,
the relations are transferred by making use of the generated
IDs. Following this translation, the JSON object is imported
into EMF, thereby creating an initial run-time model.

b: EXPORTING THE RUN-TIME MODEL TO TOSCA
When exporting the run-time model, the JSON string gen-
erated by EMF is converted into a graph by using Gson.
Attribute values and relations are transferred into YAML
format. Since no IDs are needed in TOSCA Simple Profile in
YAML, they are not transferred. In this case, the relations can
be transferred directly, without requiring a second run. The
division into attributes and relations is restored. It is possible
to export only the part of the run-time model corresponding
to a managed system by specifying its ID. Moreover, it is
also possible to export target configurations into a TOSCA
topology template the same way.

VII. EVALUATION
In this section, we investigate the practical applicability of the
RADAR approach. In Section VII-A, we demonstrate how

13https://github.com/google/gson

RADAR can be applied to complex, real-world distributed
systems in cloud and fog computing. In Section VII-B,
we present empirical results on the performance of RADAR,
while Section VII-C demonstrates the use of RADAR over a
period of time.

A. CASE STUDY
We applied RADAR to the cloud and fog examples intro-
duced in Section II. In both cases, the meta-model based on
TOSCA presented in Section V-B was used.

1) CLOUD EXAMPLE
Figure 14 shows a possible sequence of steps that RADAR
performs in the cloud example. At design time, PCPs are
identified by a data protection assessment carried out by
experts. The identified PCPs are modeled using the PCP
language. To address the PCPs, adaptation rules are defined
with the RADAR adaptation language.

At deployment time, a deployment plan is created using
TOSCA. Until this point, each step is carried out manually.
From this moment, however, the process is automated by
RADAR. The deployment plan is imported by RADAR and
turned into an initial run-time model. For the cloud example
presented in Section II-A, the initial run-timemodel is the one
shown in Figure 10. RADAR analyses this initial run-time
model and finds PCP instances capturing the possibility that
the untrusted actors ‘‘IaaS Operator W,’’ ‘‘IaaS Operator
X’’ and ‘‘SaaS Operator Z’’ might gain unauthorised access
to sensitive data. For example, a match of the PCP shown
in Figure 6 is identified: the data record is not encrypted
and contains sensitive data belonging to the Data Subject.
Furthermore, the data subject does not trust ‘‘IaaS Operator
W’’ who operates the infrastructure on which the database is
hosted. Due to the fact that the untrusted IaaS operator might
be able to access the unencrypted data, there is a potential data
protection violation. The designers may have overlooked this
problematic configuration, but RADAR detects the threat.

To address the found PCP instances, RADAR considers
applying adaptation rules to reconfigure the initial run-time
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model. In the particular case, RADAR considers the follow-
ing possibilities:
• Migrating the database to a compute node operated by a
trusted operator. This adaptation rule is not applicable in
the given situation, since its pre-condition is not satisfied
(there is no other IaaS operator that the Data Subject
would trust).

• Terminating the storage of the data in the database.
While this adaptation is applicable and would solve the
identified data protection threats, it would result in a
significant loss of functionality (the components that
need access to the database would be limited in their
functionality).

• Switching on encryption of the data records. This adap-
tation is applicable and solves the identified data protec-
tion threats without limiting the available functionality.

Hence, RADAR performs a reconfiguration to encrypt
the data records. The initial run-time model is adjusted and
then re-examined by RADAR for PCP instances and pos-
sibilities for functionality improvements or cost reductions.
Since neither PCP instances nor improvement possibilities
are found, the system is deployed according to the updated
initial run-time model.

During run time, the run-time model is kept up-to-date
by means of monitoring. In the considered scenario, the sys-
tem changes and the run-time model is updated as shown
in Figure 15. A new component B, which is hosted on a
compute node located in the US, accesses the DBMS. This
access violates the GDPR and is recognized as an instance of
the PCP shown in Figure 7. The PCP instance is highlighted
in Figure 15.

FIGURE 15. Excerpt of the example run-time model after a change in the
system. (The identified instance of PCP B (see Figure 7) is highlighted).

Tomitigate the found PCP instance, RADAR considers the
following possible adaptations:
• Component B’s access to the database is disabled. This
adaptation is applicable and would resolve the PCP
instance, but it would imply a restriction of functionality
of component B.

• Component B is migrated to an infrastructure located
in the EU. In the considered scenario, two appropriate

compute nodes are available in the EU, so that this adap-
tation is also applicable. This adaptation also resolves
the PCP instance and does not reduce the available
functionality.

RADAR therefore chooses the second adaptation possibility.
It compares the usage costs of both compute nodes, selects
the one that incurs less costs and executes the migration.

When the migration has been carried out, monitoring cap-
tures the change and updates the run-time model. RADAR
checks the updated run-time model again for data protection
violations. As there were no further changes to the system
beside the adaptation, no PCP instances are identified in the
updated run-time model. Furthermore, no possibility of func-
tionality improvement or cost reduction can be identified,
meaning that the system is operating in an optimal state.

2) FOG EXAMPLE
A similar sequence of steps as described above for the cloud
example is also performed in the fog example scenario.
First, PCPs are identified and modeled using the PCP lan-
guage at design time. Afterwards, the adaptation rules are
defined with the RADAR adaptation language. At deploy-
ment time, the deployment plan of the example fog sys-
tem shown in Figure 2 is imported, turned into a run-time
model and analysed by RADAR. Neither PCP instances nor
improvement possibilities are found.

In this particular scenario, the system changes during run
time several times. The changes in the system are detected by
RADAR and the run-time model is updated accordingly. Ini-
tially, the system processes no personal data. After a change
to lot-size-one production, the customer data processed by
the order management component and stored in a database
hosted on the cloud is now classified as sensitive. Storing
and processing sensitive data on a public cloud violates data
protection constraints. The violation is recognised as a PCP
instance. Since it is essential to process the customer data,
a migration of the order management component and the
customer data to the fog node is considered as a possible
adaptation. This adaptation restricts the functionality of the
order management component due to the computing power
of the fog node, but the adaptation has to be carried out
to prevent the violation of data protection. Since no further
changes are found in a second monitoring step apart from the
adaptation carried out, no further PCP instances are found
in the run-time model. Furthermore, there is no possibility
to improve the system by restoring functionality without
violating data protection constraints.

After some time, lot-size-one production ends, and thus
customer data are no longer classified as sensitive. The
run-time model is updated accordingly, and checked for PCP
instances. No matches are found. Subsequently, a possibility
to improve functionality by migrating the order management
component and customer data to the cloud is found, since
the processing and storing of the data no longer violates
data protection constraints. Accordingly, this adaptation is
carried out and the run-time model is updated. As before,

70832 VOLUME 9, 2021



Z. Á. Mann et al.: RADAR: Data Protection in Cloud-Based Computer Systems at Run Time

no PCP instances are found. Moreover, no further possibility
to improve functionality is found, since the system is working
in an optimal configuration.

B. PERFORMANCE MEASUREMENTS
RADAR contains some computationally intensive steps,
in particular the search for PCP instances in the run-time
model and the search for the best adaptation sequence in the
given situation. The practical applicability of RADAR could
be potentially hampered if these steps take too long. Hence
we investigate the performance and scalability of RADAR by
means of controlled experiments.

1) EXPERIMENT SETUP
As a basis for the performance tests, we use the run-time
model of the cloud example (Section VII-A1, Figure 10).
The run-time model contains two PCP instances, namely one
instance of PCP A (Figure 6) and one of PCP B (Figure 7).
To increase the variety of options for the adaptation algo-
rithm, the run-time model is extended with three additional
nodes. Those nodes represent an IaaS operator and two com-
pute nodes. These nodes are not connected to the other nodes
shown in Figure 10. The resulting run-timemodel is called the
basic run-time model. The basic run-time model is a realistic
model with known PCP instances; hence it is a good basis for
the controlled experiments.

To investigate the scalability of RADAR, we enlarge the
run-time model. Since the model enlargement method may
impact the structure of themodel, whichmay in turn influence
the performance of RADAR, we experiment with two differ-
ent methods for model enlargement. The first method uses k
copies of the basic run-time model. These copies are inter-
connected through the shared DataSubject node. The second
method adds a defined number of randomly selected nodes
and edges to the basic run-time model.

The basic run-time model contains 22 nodes, 23 edges, and
2 PCP instances. The first method produces a run-time model
with 1 + 21 · k nodes, 23 · k edges, and 2 · k PCP instances.
k is the number of copies of the basic run-time model, which
is used as an independent variable to control the size of the
run-time model. Since the copies share the DataSubject node,
each replication adds only 21 instead of 22 nodes.

The second method produces a run-time model with 22+n
nodes, 23+m edges, and 2+ z PCP instances, where n repre-
sents the number of added nodes, m represents the number
of added edges and z represents the number of additional
PCP instances. The number n of added nodes is used as inde-
pendent variable to control the size of the run-time model,
while the number m of added edges is random. Relations
that must exist according to the meta-model are set in any
case. For example, a SoftwareComponent must be hosted on
a Compute node. For this reason, the addition of a node may
require the addition of some further nodes. If this happens
with the nth added node, then the number of nodes actually
added will be slightly higher than the originally intended
number n. After adding the nodes and the necessary relations,

the enlargement algorithm checks which additional relations
are possible. Based on this, the enlargement algorithm deter-
mines how many additional relations are possible in the
currently given run-time model (max_rels). Next, a uniform
random number between 1 and max_rels is chosen, and the
chosen number of randomly selected relations are inserted.
Through this process, some additional PCP instances might
be created; thus, z is not known a priori.

The number of PCPs is fixed to 2, and there are 3 adaptation
rules to mitigate each of the PCPs, yielding 6 adaptation rules
altogether.

One of the adaptation rules (Figure 9) consists of migrating
a database from one DBMS to another one hosted on a
different compute node. After enlarging the run-time model
with one of the methods explained above, it is possible to
migrate a database to a DBMS hosted on a compute node,
which is either in another copy of the model (enlargement
method one) or a newly added node (enlargement method
two). Hence, as the number of nodes increases, also the
number of possible adaptations increases. Furthermore, such
adaptations significantly change the structure of the run-time
model by connecting two previously unconnected parts of the
run-time model.

The performance tests were run on a Fujitsu Celsius
w550 workstation with an Intel Xeon E3-1275v5 processor
with 3.6 GHz clock frequency and with 64 GB DDR4 mem-
ory. The machine was running Ubuntu 16.04 with kernel
version 4.10.0-42-generic as operating system, and Open-
JDK 64-Bit Server VM (build 14.000.1+7) as Java Virtual
Machine.

2) RESULTS
We performed one adaptation loop, consisting of searching
for PCP instances in the run-time model and then searching
for the best sequence of adaptations to mitigate the found
PCP instances. The time for the adaptation loop is capped
at 10 seconds, i.e., the best found adaptation sequence is
returned after 10 seconds.We performed this test for run-time
models of increasing size, and with four different algorithms
(best-first search, depth-first search, breadth-first search, ran-
dom search) for searching for the best sequence of adapta-
tions. Each test (i.e., each combination of run-timemodel size
and algorithm) was performed 100 times, and the average
results are reported. Since the order of the available adap-
tation rules may affect the results of the search algorithms,
the adaptation rules were ordered randomly for each test.

Table 4 and Table 5 show the results of the experiments.
In both tables, the first column displays the number of nodes
of the run-time model. The remaining columns each refer
to one algorithm and display a penalty value, characterizing
the quality of the best solution found by the algorithm. The
penalty is calculated by the formula 100 · a + 10 · b + 1 · c,
where a is the number of PCP instances, b is the increase in
the number of functionality restrictions, and c is the increase
in costs in the found solution. Note that b and c are relative to
the run-time model before the adaptation loop, and can also

VOLUME 9, 2021 70833



Z. Á. Mann et al.: RADAR: Data Protection in Cloud-Based Computer Systems at Run Time

be negative if the adaptation led to an improvement. For all of
a, b, c and the penalty, lower numbers are better. The weights
in the penalty function correspond to the relative importance
of the three considered metrics. The goal of the algorithms is
to find an adaptation sequence leading to the lowest penalty.
The lowest penalty in each row is highlighted. Furthermore,
solutions that do not mitigate all PCP instances (a > 0) are
marked with an asterisk (∗).

TABLE 4. Penalty of the solution achieved by the tested search
algorithms for run-time models of increasing size in the first scalability
experiment, with a timeout of 10 seconds. Smaller numbers are better.
In each row, the minimum is highlighted. Solutions that do not mitigate
all PCP instances are marked with an asterisk (∗).

The results of the performance test in which the first
enlargement method was used are shown in Table 4. For
the smallest run-time models, all search algorithms lead to
the same good results, but starting from 64 nodes, the results
are quite different. The best-first-search algorithm provides
the lowest penalty up to a run-time model size of 148 nodes.
The negative penalty values show that best-first search could
not only mitigate all found PCP instances, but at the same
time also the availability of functionalities and/or the costs
could be improved. For run-time models that consist of more
than 148 nodes, the depth-first-search algorithm provides
the lowest penalty. Breadth-first-search always leads to the
highest penalty. The random search algorithm is able to
provide better results than breadth-first-search, but is clearly
outperformed by best-first-search and depth-first-search.

The results of the performance test in which the second
enlargement method was used are shown in Table 5. Recall
from Section VII-B1 that the second enlargement method
does not always add exactly the same number of nodes; there-
fore, the average number of nodes in Table 5 is non-integer.
Again, the breadth-first-search algorithm leads to the high-
est penalty. Random search leads to acceptable results until
122 nodes, but its performance quickly deteriorates after-
wards. Best-first-search provides the lowest penalty in most
cases up to a model size of 222 nodes (in most cases again
with negative penalty values), while the depth-first-search
algorithm leads to a slightly higher penalty. For models with
more than 222 nodes, depth-first-search provides the lowest
penalty.

The two experiments provide similar insights about the
performance of the algorithms. The breadth-first-search algo-
rithm performs worst, because it processes all possibilities

TABLE 5. Results of the second scalability experiment; notation as
in Table 4.

on the first level of the search tree before it continues on
the second level, and so on. Even in run-time models of
moderate size, 10 seconds are not enough to reach a level
where all PCP instances are mitigated. Compared to the
other algorithms, breadth-first search also has the highest
memory consumption, since it has to keep an exponential
number of models in memory. Random search performs
somewhat better, but for bigger models it is consistently
outperformed by the more target-oriented algorithms. Depth-
first-search is the most efficient way to go deep enough
in the search tree for finding a solution that mitigates all
PCP instances, but the solutions found this way may be far
from optimal in terms of functionality and cost. Using its
more sophisticated search strategy that explicitly considers
all relevant metrics, best-first-search consistently finds the
best solution among the four algorithms, not only mitigating
all PCP instances but also improving functionality and/or
costs, up to a certain run-time model size. For the largest
run-time models, the 10 seconds are no longer sufficient for
best-first search to mitigate all PCP instances, because of
the additional time required for assessing different adaptation
possibilities.

Comparing the two experiments, it is apparent that the
first enlargement method leads to more difficult problem
instances. Indeed, for each algorithm, the point from which
the algorithm cannot mitigate all PCP instances is reached
sooner (i.e., with models of smaller size) with the first
enlargement method than with the second one. This is
probably due to the fact that, for models of equal size,
the first enlargement method leads to a higher number of PCP
instances than the second. More PCP instances mean that a
longer path needs to be found in the search tree, which makes
the problem more difficult for all search algorithms. It can
also be seen though that the best-first search and depth-first
search algorithms can better cope with this increase in com-
plexity than the other two algorithms.

From the experiments we can conclude that RADAR, using
either the best-first search or the depth-first search algorithm,
can quickly find a good sequence of adaptations to mitigate
multiple data protection threats in large run-time models.
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FIGURE 16. Applying RADAR over a period of time.

For example, the depth-first-search algorithm could find a
solution to mitigate all the 18 PCP instances in a run-time
model with 190 nodes in only 10 seconds.

C. EFFECTS OF THE USAGE OF RADAR OVER TIME
In a further experiment, we analyze how RADAR deals with
PCP instances that occur at run time, i.e., how RADAR
detects PCP instances and resolves them by adapting the
system. For this purpose, we use an initial run-time model
resulting from applying the first model enlargement method
described in Section VII-B, and applying RADAR initially,
so that no PCP instances are present in the model. The result-
ing model consists of 337 nodes.

Starting from this initial run-time model, we perform a
sequence of changes. The changes happen at random points in
time. Each change introduces a randomly chosen number of
threats in the range from 2 to 20. After each change, RADAR
tries to detect and mitigate the introduced risks.

Figure 16 shows how the number of PCP instances in
the run-time model evolves over time. As can be seen, after
each change, RADAR successfully detects and mitigates the
introduced PCP instances until the number of PCP instances
returns to 0. The detection of the PCP instances takes less than
a second in each case. If there are few PCP instances (less than
five PCP instances for the given model size of 337 nodes)
in the run-time model, RADAR is able to select the best
adaptation sequence in less than five seconds. Otherwise,
the search for the best adaptation sequence is interrupted
by the timeout of 10 seconds. Even in such cases, RADAR
manages to identify an adaptation sequence that is useful in
mitigating the threats. After the sequence of adaptations has
been selected, the execution of the adaptations starts. The
duration of the execution depends on the number and kind
of the adaptations to be performed. Moreover, sometimes it
is possible to execute multiple adaptations simultaneously to
speed up the execution process.

If the run-time model contains too many PCP instances at
once, then it can happen that RADAR does not find within the
10 seconds time budget an adaptation sequence that would
mitigate all PCP instances. For a model size of 337 nodes,
this happens if the number of PCP instances is 15 or more.
Even in this case, RADAR selects an adaptation sequence

that mitigates as many PCP instances as possible. After-
wards, RADAR starts another search for adaptations until all
PCP instances are mitigated. This behavior can be observed
in Figure 16 around 800 seconds.

When all adaptations have been executed, the number of
PCP instances returns to 0 in each case. Thus, RADAR can
ensure long-term data protection even in the face of continu-
ously emerging threats.

VIII. DISCUSSION
This section describes some further considerations, such as
to which extent RADAR meets the defined requirements and
the threats to the validity of our empirical findings.

A. SATISFACTION OF THE REQUIREMENTS
We defined six requirements in Section III that an effective
run-time data protection approach should fulfill.

RADAR provides a language for the definition of prob-
lematic configuration patterns (Section V-C) and a lan-
guage for the definition of adaptation rules (Section V-D),
thus fulfilling requirements R1 and R2. As described in
Section V-F, RADAR automatically detects PCP instances,
and Section V-H shows how RADAR mitigates the found
PCP instances automatically using adaptations, thus fulfill-
ing requirements R3 and R4. RADAR takes functionality
and costs into consideration to find the best adaptation if
there is more than one possibility to mitigate a data protec-
tion risk (see Section V-K), thus fulfilling requirement R5.
Section V-K also shows how adaptations for other reasons
(e.g., to minimize costs) are supported by RADAR, while
also ensuring the continued compliance with data protection,
thus fulfilling requirement R6. Finally, the case studies of
Section VII-A demonstrate how all this works in practice.
Thus, RADAR fully supports the defined requirements.

B. RELATION TO EXISTING CLOUD SERVICES
In our earlier work, we analyzed the data protection impact of
vulnerabilities described in the cloud literature [38].Wemod-
eled the resulting threats to data protection in the form of
PCPs. The covered vulnerabilities included potential sig-
nature wrapping attacks on the control interfaces of Ama-
zon Web Services, side-channel attacks between colocated
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Amazon EC2 instances, and privilege exploitation attacks.
Thus, that study showed that PCPs can be used to capture a
variety of real-world data protection threats in existing cloud
services.

RADAR may be implemented on top of existing cloud
services, or could be integrated into a cloud service. In any
case, it is important that the relevant cloud services offer
appropriate monitoring and adaptation capabilities to facili-
tate the fulfillment of requirements R3 and R4, respectively.
Existing cloud services typically offer such interfaces [51],
[52]. Section VI-B1 shows how RADAR can be connected to
the monitoring and adaptation interfaces of cloud services.

C. THE SECURITY OF RADAR
RADAR ensures the protection of confidential data by detect-
ing and mitigating configurations that would threaten data
protection. However, RADAR also introduces an additional
attack surface. For example, an attacker may try to com-
promise the RADAR adaptation logic, or may try to per-
form a man-in-the-middle attack on the connection between
RADAR and the adapted systems. If such an attack succeeds,
the attacker may be able to overtake control over the cloud
system and thus gain access to the processed data.

To avoid such attacks, RADAR should be protected by
standard security measures. For example, the RADAR adap-
tation logic may be run in a trusted execution environment,
and the connections between RADAR and the adapted sys-
tems may be protected by authentication, encryption, and
digital signatures.

In contrast to the managed cloud services, RADAR is
not supposed to change frequently during run time. This is
why standard security techniques are appropriate for pro-
tecting RADAR, without the need to recursively apply a
RADAR-like adaptive approach to protect RADAR itself.

D. RELATION TO SECURITY GOALS
Data protection is transversal to traditional security goals like
confidentiality, integrity, and availability [53]. Indeed, data
protection contains aspects of confidentiality, integrity and
availability, but also other aspects, such as privacy [54]. For
example, the GDPR requires that personal data be protected
from unauthorized access (confidentiality) and that the cor-
rectness of data has to be ensured (which requires integrity),
but it also poses different types of requirements, such as
geo-location limitations, which go beyond traditional security
goals.

Hence, also RADAR is not limited to some of the tradi-
tional security goals. RADAR can capture problematic con-
figurations that would threaten data protection. Problematic
configurations may or may not relate to some of the tradi-
tional security goals. The design-time process of identifying
PCPs should take into account the traditional security goals
of confidentiality, integrity, and availability, but also all other
relevant requirements of applicable data protection laws and
policies.

E. THREATS TO VALIDITY
The internal validity of our experiments may be influenced
by the order in which the adaptation rules are provided to the
adaptation planning algorithm. To minimize the bias caused
by the order of adaptation rules, the adaptation rules were
ordered randomly for each test. Also other random effects
(such as an algorithm immediately finding the best adap-
tation sequence by chance) could threaten internal validity.
To address this, we performed the performance experiments
(cf. Section VII-B) 100 times.

The external validity is influenced by the selection of the
example systems towhichwe apply our approach. To ensure a
realistic setting for our evaluation, we applied our approach to
two examples from different domains defined in cooperation
with industry partners. Another threat to external validity is
a potential influence of the results by the size of the run-time
model. To avoid bias caused by run-timemodels with an unre-
alistically small number of nodes, we enlarged the run-time
model by additional nodes, using two different methods.

IX. CONCLUSION AND FUTURE WORK
This paper presented RADAR, a novel approach for ensur-
ing the continued protection of sensitive data in dynam-
ically changing cloud and fog systems. RADAR uses
self-adaptations to automatically react to changes during
run time. RADAR chooses the adaptation that ensures data
protection with the least negative impact on other system
properties like costs and the available functionalities.

To show its practical applicability, we applied RADAR
to two realistic case studies in the domains of cloud com-
puting and fog computing. In addition, we experimented
with four different algorithms for the computationally most
challenging part of RADAR, the search for the best adaptation
sequence. Our experiments demonstrated that with the two
best-performing search algorithms RADAR can resolve mul-
tiple data protection threats in run-timemodels with hundreds
of nodes within ten seconds. Thus, RADAR can be applied
to complex IT systems and ensure data protection in such
systems on the fly.

There aremultiple promising directions for future research.
On the one hand, RADAR could be extended so that more
complex problematic configurations (e.g., threats arising
from a sequence of patterns) can be captured. On the other
hand, further algorithmic enhancements could be devised to
improve the performance of RADAR (e.g., by using incre-
mental pattern matching algorithms). Also, the adaptation
logic of RADAR could be extended so that it can reason
about the time and computational cost of searching for the
best adaptation, as suggested in [55]. This way, urgent data
protection threats could be mitigated more quickly than other
threats that do not require such an urgent reaction.

APPENDIX I. FORMALIZATION
This section provides a formal description of RADAR.
Table 6 gives an overview of the used notation.
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TABLE 6. Overview of formal notation.

A. META-MODEL
The meta-model is given by the following tuple: Mmeta

=

(T ,R, I ), where T is the set of types, R is the set of associ-
ations between types, and I is the direct inheritance relation
between types.

Each type t ∈ T has a name and a set of attributes: t =
(nt ,At ). Here, nt is a string, that is, nt ∈ 6+. Each attribute
a ∈ At is characterized by a name and a type: a = (na, ta),
where na ∈ 6+ and ta ∈ B, where B is the set of basic types.

Each association r ∈ R is characterized by a name, a source
type and a target type: r = (nr , sr , gr ). Here, nr ∈ 6+, and
sr , gr ∈ T .
Finally, the direct inheritance relation is I ⊆ T ×T . A pair

(t1, t2) ∈ I means that type t1 inherits directly from type t2.
Based on I , we can define its transitive closure I∗ ⊆ T ×T

as follows: (t1, tk ) ∈ I∗ if and only if there is a sequence
of types t1, t2, . . . , tk ∈ T (where k is an arbitrary positive
integer) such that for each 1 ≤ j ≤ k − 1, (tj, tj+1) ∈ I . This
means that t1 directly or indirectly inherits from tk . For any
t ∈ T , (t, t) ∈ I∗ by definition.

B. PROBLEMATIC CONFIGURATION PATTERNS (PCPs)
Let P be the set of all problematic configuration patterns, then
p ∈ P is defined as the pair p = (Op,Rp). The elements of p
are as follows:

• Op is the set of objects in p. Each o ∈ Op is an object,
associated with a type name and a – possibly empty – set
of attribute descriptions: o = (npo,A

p
o).

– The type name must be the name of a type in the
meta-model, i.e., npo = nt for some t ∈ T . Let this
type t be denoted as tpo .

– If a ∈ Apo is an attribute description, then either a =
(npa, ‘‘==’’, v

p
a) or a = (npa, ‘‘!=’’, v

p
a). In both cases,

npa is the name of an attribute in the type tpo or one of
its super-types, i.e., npa = na′ for some a′ ∈ At ′ with
I∗(tpo , t ′), and v

p
a is a possible value of that attribute.

• Rp is the set of relation descriptions in p. If r ∈
Rp, then either r = (spr , g

p
r , n

p
r ) or r =

(spr , g
p
r , n

p
r , ‘‘<<does not exist>>’’), where spr , g

p
r

and npr denote the source object, target object, and name
of the relation, respectively. In both cases, there must
be a relation r ′ ∈ R with the same name between
the types of the involved objects or their super-types,
i.e., nr ′ = npr , I∗(tspr , sr ′ ) and I

∗(tgpr , gr ′ ).

C. ADAPTATION RULES
The set of adaptation rules is given by Ad . An adap-
tation rule ad ∈ Ad is given by the tuple ad =

(Oad ,Rad ,PCPad ,Pread ,Actad ). Here, Oad is the set of
objects in the adaptation rule, Rad is the set of relation
descriptions in the adaptation rule, PCPad ∈ P is the PCP
that ad mitigates, Pread is the precondition, and Actad is the
adaptation action.

Let o ∈ Oad be an object. One possibility is that, as in the
PCP language, o = (nado ,Aado ), where nado is the type name
of o and Aado is a set of attribute descriptions, and the type of
o is denoted as tado . In addition, the object can be assigned
an annotation, so that o = (nado ,Aado ,<<create>>) or o =
(nado ,Aado ,<<delete>>). Each object o ∈ Oad belongs to
at least one of PCPad ,Pread ,Actad .
Let a ∈ Aado be an attribute description, then a belongs

to exactly one of PCPad ,Pread ,Actad . If a belongs to either
PCPad or Pread , then a has one of the forms defined in the
PCP language. If, on the other hand, a belongs to Actad , then
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a has the form (nada , ‘‘=’’, vada ). Here, nada is the name of an
attribute in the type tado or one of its super-types, i.e., nada =
na′ for some a′ ∈ At ′ with I∗(tado , t ′), and vada is a possible
value of that attribute.

Let r ∈ Rad be a relation description, then r belongs to
exactly one of PCPad ,Pread ,Actad . If r belongs to either
PCPad or Pread , then r has one of the forms defined in the
PCP language. If, on the other hand, r belongs to Actad , then
r has the form r = (sadr , gadr , nadr , annadr ). Here, sadr , gadr
and nadr denote the source object, target object, and name
of the relation, respectively. The annotation annadr is either
‘‘<<create>>’’ or ‘‘<<delete>>.’’

D. RUN-TIME MODEL
Formally, the run-time model is defined as MRT

=

(ORT,RRT). The elements ofMRT are as follows:
• ORT is the set of objects in the run-time model. Each
o ∈ ORT is an object, associated with a name, a type
name and a set of attributes: o = (nRTo , tRTo ,ARTo ).
– The name is an arbitrary string: nRTo ∈ 6∗.
– The type of the object is a type in the meta-model:
tRTo ∈ T .

– For an attribute a ∈ ARTo , a = (nRTa , vRTa ). Here, nRTa
is the name of an attribute in the type tRTo or one of
its super-types, i.e., nRTa = na′ for some a′ ∈ At ′
with I∗(tRTo , t ′), and vRTa is a possible value of that
attribute.

• RRT is the set of relations in the run-time model. If r ∈
RRT, then r = (sRTr , gRTr , nRTr ), where sRTr , gRTr ∈ ORT

denote the source and target object of the relation and
nRTr ∈ 6+ denotes the name of the relation. There must
be a relation r ′ ∈ R in the meta-model with the same
name between the types of the involved objects or their
super-types, i.e., nr ′ = nRTr , I∗(tsRTr , sr ′ ) and I∗(tgRTr , gr ′ ).

E. PROBLEMATIC CONFIGURATION IDENTIFICATION
A subset of objects O ⊆ ORT in the run-time model matches
a PCP p ∈ P, if and only if all of the following conditions are
met:
• Each object appearing in the PCP must also exist in
the run-time model. More precisely, for each object in
the PCP, there must be a corresponding object in the
run-timemodel belonging to the same type as or a (direct
or indirect) sub-type of the object in the PCP. That is,
there is an injective14 mapping f : Op → O, for which
∀o ∈ Op : I∗(tRTf (o), t

p
o ).

• All attributes appearing in the PCP must have appro-
priate values in the run-time model. If o ∈ Op and
a ∈ Apo is an attribute description in the PCP of the form
a = (npa, ‘‘==’’, v

p
a), then the attribute of the object f (o)

with the name npa must have the value vpa in the run-time
model: a′ ∈ ARTf (o), n

RT
a′ = npa ⇒ vRTa′ = vpa. On the

other hand, if a has the form a = (npa, ‘‘!=’’, v
p
a), then

14A mapping is called injective if the images of distinct elements are also
distinct.

the corresponding attribute of f (o) in the run-time model
must have a different value: a′ ∈ ARTf (o), n

RT
a′ = npa ⇒

vRTa′ 6= vpa.
• Relations appearing without annotation in the PCP
must be also present in the run-time model. That is,
if r ∈ Rp has the form r = (spr , g

p
r , n

p
r ), then

there must be a relation r ′ = (f (spr ), f (g
p
r ), n

p
r ) ∈

RRT in the run-time model. On the other hand, rela-
tions appearing with the <<must not exist>>

annotation in the PCP must not appear in the
run-time model. That is, if r ∈ Rp has the form
r = (spr , g

p
r , n

p
r ,<<must not exist>>), then

(f (spr ), f (g
p
r ), n

p
r ) 6∈ RRT must hold.

F. ADAPTATIONS
Suppose that a part of the run-time model O ⊆ ORT has been
identified as an instance of PCP p ∈ P, and f : Op → O
denotes the corresponding injective mapping, as described
above. Moreover, suppose that there is an adaptation rule
ad ∈ Ad which mitigates the given PCP, that is, PCPad = p.
Adaptation rule ad is applicable to the current run-time

model, if and only if also the precondition of ad is met,
i.e., O can be extended to O′ such that O ⊆ O′ ⊆ ORT

and O′ matches PCPad ∪Pread . It should be noted that Pread
has exactly the same syntactic structure as PCPs, and so the
definition of a match is also defined for PCPad ∪ Pread .
Suppose that ad is applicable. Then, applying adaptation

rule ad to run-timemodelMRT leads to a new run-timemodel
denoted as ad(MRT), which is the same asMRT except for the
following differences:
• Let o ∈ Oad be an object in the adaptation rule. If o is of
the form (nado ,Aado ,<<create>>), then ad(MRT) con-
tains a new object not contained inMRT, with name nado
and attributes according to Aado . On the other hand, if o
is of the form (nado ,Aado ,<<delete>>), then ad(MRT)
does not contain the object f (o), nor any relations
of f (o).

• If a ∈ Aado is an attribute description in ad and has
the form (nada , ‘‘=’’, vada ), then the attribute of f (o) with
name nada has the value vada in ad(MRT).

• If r ∈ Rad is a relation description in ad and has
the form (sadr , gadr , nadr ,<<create>>), then ad(MRT)
contains a new relation not contained inMRT, with name
nadr between the objects f (sadr ) and f (gadr ). On the other
hand, if r is of the form (sadr , gadr , nadr ,<<delete>>),
then ad(MRT) does not contain a relation with name nadr
between the objects f (sadr ) and f (gadr ).

G. COST ANALYSIS
Let TC ⊆ T denote the types relevant for the cost anal-
ysis. The types in TC are associated with two cost-related
attributes:

• The attribute costIncurred is Boolean and has the
value true if and only if the given object is used and
hence incurs costs.
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• The attribute usageCost is a non-negative number
specifying the costs incurred if the given object is used.

The total cost incurred in the configuration defined by
run-time model MRT is calculated by adding up the usage
costs of the cost-relevant objects that are in use:

C
(
MRT

)
=

∑
o∈ORT, tRTo ∈TC, o.costIncurred= true

o.usageCost.

H. FUNCTIONALITY ANALYSIS
Formally, a functionality is defined as f = (TSf ,TTf ,RPf ).
The elements of f are as follows:
• TSf ⊆ T denotes the set of types that act as providers of
the functionality f .

• TTf ⊆ T denotes the set of types that act as consumers
of the functionality f .

• RPf ⊆ R denotes the set of relations that are suitable to
provide the functionality f .

The set of functionalities is denoted as F . An instance of
a functionality f in the run-time model MRT is a path p =
(o1, o2, . . . , ok ) in MRT, such that
• the starting object of p has a type from TSf , i.e., tRTo1 ∈
TSf ,

• the end object of p has a type from TTf , i.e., tRTok ∈ TTf ,
• and each relation along p is in RPf , i.e., ∀i ∈ [1, k − 1],
∃r ∈ RPf , sRTr = oi, gRTr = oi+1.

The set of instances of functionality f in the run-time model
MRT is denoted by I

(
f ,MRT

)
.

The total number of available functionalities in the con-
figuration defined by run-time model MRT is calculated by
adding up the number of instances of each functionality:

F
(
MRT

)
=

∑
f ∈F

∣∣∣I (f ,MRT
)∣∣∣ .

APPENDIX II. USED TECHNOLOGIES
This section outlines the technologies that we used to con-
struct the meta-model, to store the run-time model and to
realize the adaptation planning algorithm.

A. ECLIPSE MODELING FRAMEWORK (EMF)
We implemented the meta-model using EMF. EMF allows to
transform structured data models into Java source code [56].
It also provides an editor to create these data models. EMF
generates the source code which forms the basis for the
run-time model and the target configurations. Both run-time
model and target configurations are based on the same meta-
model. We also use EMF to serialize the run-time model and
the target configurations into files in XMI format15 for test
purposes.

We implemented an additional transformation function-
ality to convert run-time models and target configurations
from EMF to JSON format,16 as well as to import JSON

15XMI (XML Metadata Interchange) is a standard for exchanging
meta-data information via XML.

16JavaScript Object Notation, https://www.json.org/

representations of run-time models and target configurations.
JSON is a widely used format for providing and receiving
information, and our implementation uses JSON format in the
interfaces described in Section VI-B.
As both EMF and the meta-model described in

Section V-B are compliant with UML, the meta-model was
easily implemented in EMF, with just two adjustments. First,
EMF represents a graph as a tree structure, hence a root node
had to be added to the meta-model. Second, to represent
relations in XMI and JSON, EMF uses IDs that consist
of meta-model-specific class names and run-time-generated
object identifiers. These IDs are unique for each object of a
run-time model / target configuration. We are using the IDs,
for example, to identify objects that should be updated due to
monitoring events.

B. HENSHIN
The adaptation logic uses the Henshin model transformation
library for finding PCP instances and performing adapta-
tions. Henshin provides a model transformation language for
EMF [57]. Henshin uses transformation rules that are made of
two parts: Left-hand side and right-hand side. The left-hand
side of a transformation rule captures the pattern that should
be found in amodel. The right-hand side of the transformation
rule specifies how elements of the model that match the
pattern should be transformed. After a pattern is detected and
transformed, an output model is returned. In a Henshin rule,
annotations are used to specify the role that the objects and
relations play in the rule.

We use Henshin transformation rules to identify PCP
instances. For this purpose, we use the annotations
<<preserve>> and <<forbid>> in the left-hand
side of a transformation rule. All elements annotated with
<<preserve>> must be present in the run-time model
to achieve a match. Elements with the <<forbid>>

annotation must not exist in the run-time model to achieve
a match.

We also use Henshin transformation rules to capture adap-
tation rules. Possible adaptations are represented by the
output model of a transformation and are saved as a tar-
get configuration. To encode adaptation actions in Henshin,
we use the annotations <<create>>, <<delete>>

and <<set>> in the right-hand side of a transforma-
tion rule. Nodes and edges annotated with <<create>>

are added to the model, while those annotated with
<<delete>> are removed from the model. Setting the
value of an attribute is achieved with <<set>>.

Thus, the PCP language and the RADAR adaptation lan-
guage described in Section V-C and Section V-D can be
mapped to Henshin. The mapping is shown in Figure 17.

C. SPRING BOOT
RADAR is implemented as a Java application using Spring
Boot. Spring Boot is part of the open-source Spring Frame-
work [58], and allows us to consistently configure and man-
age Java objects by using reflection. This simplifies, for
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FIGURE 17. Mapping the PCP language and the RADAR adaptation
language to Henshin.

example, the processing of the run-time model. Spring Boot
supports the creation of stand-alone Spring-based applica-
tions.17 An embedded Tomcat server as well as Apache
Groovy18 support make it easy to set up server applications
with multiple interfaces. These interfaces are needed to pro-
vide the functionalities described in Section VI-B. Spring
Boot makes it possible to deploy web applications directly as
JAR files that contain all the software infrastructure, includ-
ing a web server.

D. SIRIUS
Sirius19 is an Eclipse plugin for creating editors for an exist-
ing EMF meta-model. Such editors can be used to work with

17https://spring.io/projects/spring-boot
18Apache Groovy is a dynamic object-oriented programming and script-

ing language, see https://groovy-lang.org/.
19https://www.eclipse.org/sirius/doc/

models corresponding to the meta-model. We used Sirius to
create an editor that can create and edit models conforming
to the RADAR meta-model (see Section V-B). This way,
run-time models can be created and visualized, which is
useful for testing purposes.
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