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ABSTRACT The cross-aisles shuttle-based storage/retrieval system has not only storage function but also
the sorting function and makes full use of warehouse space to achieve high-density storage. It uses ‘‘part-to-
picker’’ order picking mode to respond quickly to orders and shorten sorting time. In this paper, through the
analysis of the system, an effective evaluation method for the efficiency and time of system picking under
a single instruction operation cycle is presented. The objective function of system minimum cost under the
condition of satisfying customer’s demand is constructed. The objective function is solved by an improved
particle swarm algorithm based on the optimized initial particle swarm optimization. By optimizing, we can
find the optimal configuration of the system (i.e., the number of tiers, number of aisles and number of bays,
number of picking stations, and number of lifts with minimal system cost). Finally, the impact of different
configurations on system performance is summarized. This method can guide the design planner to design
a more reasonable system under minimum cost control.

INDEX TERMS Shuttle-based storage/retrieval system, performance analysis, system design, part-to-picker,
improved particle swarm optimization.

I. INTRODUCTION
A. BACKGROUND
With the rapid development of the e-commerce industry
and the continuous innovation of automation technology,
the ‘‘Part-To-Picker’’ order picking system has replaced the
traditional ‘‘Picker-To-Part’’ picking model, widely favored
by e-commerce companies [1]. ‘‘Part-To-Picker’’ order pick-
ing systems mainly include the following: automated storage
and retrieval system (AS/RS), shuttle-based storage/retrieval
system (SBS/RS), and an order sorting system based on
mobile robots (Robotic mobile fulfillment systems, RMFS).
AS/RS is the parallel work of stackers dedicated to each aisle
to complete the storage and retrieval tasks of the system [2].
SBS/RS is an automatic shuttle that runs along the aisle and
cooperates with a lift to complete the task of storage and
retrieval across tiers. In SBS/RS, shuttles replace the pickers,
receive orders from the picking station through a wireless
network, and perform parallel operations to complete storage
and sorting tasks.

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

The cross-aisles shuttle-based storage/retrieval system
(CASBS/RS) takes the shuttle as the carrier and cooperates
with the lift to perform tasks. It is also a kind of SBS/RS.
Its large storage capacity, small footprint, high sorting effi-
ciency, and fast response speed have received extensive atten-
tion from e-commerce companies. CASBS/RS is composed
of multi-tier and multi-aisle three-dimensional racks, aisle
shuttle, cross-aisle shuttle, lift, picking table, buffer area, and
conveyor belt. Each piece of equipment works in parallel with
each other, shortening the order picking time and improving
the picking efficiency. The reloading shuttle can transport
cargos in different aisles to the same picking station so that the
system can pick-to-order across aisles and shorten the order
picking time.

B. SYSTEM LAYOUT
The layout configuration of each level of CASBS/RS is
shown in the Fig.1. In the CASBS/RS system, turnaround
boxes are generally used as containers to place cargos on
shelves to facilitate selection and realize dense cargos storage.
As shown in Fig.1, each storage aisle has a row of shelves on
both sides, a white square on each row of shelves is a storage
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FIGURE 1. The top view of the CASBS/RS system.

space, which can be placed in a turnaround box. Shuttle is
responsible for the horizontal movement of cargos and lift is
responsible for the vertical movement of cargos. Shuttle are
further divided into aisle shuttle and cross-aisle shuttle.

There is an aisle shuttle responsible for horizontal move-
ment of cargos in the X-direction on each tier of the
three-dimensional rack. In the front section of the three-
dimensional rack in each aisle, there is a group of high-
speed lift (a high-speed lift for warehousing and a high-speed
lift for warehousing) responsible for the vertical movement
of cargos. Each group of high-speed lifts serves only one
pick-up platform, relying on a conveyor to transport cargos
between the pick-up platform and the lift. A major advantage
of CASBS/RS system over traditional SBS/RS system is that
in each level there is a cross-aisle shuttle responsible for
horizontal movement of cargos in the Y direction so that
cargos can be transported across aisles by the cross-aisle
shuttle, greatly improving the flexibility of the system and the
selection task can be directly selected on a single order. The
grey area in Fig.1 is a buffer area, which is mainly divided
into two parts, one part is between the warehouse lift and
the cross-aisle shuttle, the other part is between the aisle
shuttle and the cross-aisle shuttle. The main function is to
temporarily store the tote, reduce the time taken up by the tote
for shuttle and lift, improve the shuttle and shuttle operation
efficiency, and improve throughput capacity.

C. WORKFLOW
Batch order is processed, the picking task generated by the
WCS system is sent to CASBS/RS system. After the sorting
task has been reached, first request the aisle shuttle of the
aisle where the target cargos are located for service. If the
aisle shuttle of the current aisle is performing other tasks,
the sorting task will enter the waiting sequence and wait for
the aisle shuttle service to be completed; If the aisle shuttle in
this aisle is idle, this shuttle responds to the selection job and
reaches the cargo position where the target cargo is located to
pick up the cargo, then runs along the guide rail of the aisle
and transports the tote of the target cargo to the output caching
area. If the output caching area is full, the aisle shuttle car
needs to enter the waiting state andwait for the output caching
area to be idle.

FIGURE 2. The process of out-put delivery in CASBS/RS system.

If the outlet buffer is idle, the aisle shuttle unloads the cargo
turnaround box and enters the idle state waiting for the arrival
of a new selection task. The cargo turnaround boxes placed
in the out-of-warehouse buffer area request the cross-aisle
shuttle to be reloaded. In turn, the cross-aisle shuttle fulfills
functions by the FCFS principle, and the shuttle requests the
out-of-warehouse lift for service. If the out-of-warehouse lift
is in an in-service state, then the turnaround box waits. If the
warehouse lift is idle at this time, the cross-aisle shuttle will
unload the cargo to the lift and continue to respond to the new
task. After the warehouse lift receives the task request of the
cargo tote, it will transport the tote to one level and unload it
on the conveyor. The conveyor will transport the cargo tote to
the corresponding picking table. Finally, the worker picks the
cargos from the tote and completes the picking operation.

D. CONTRIBUTIONS
The main contributions of this paper are:

1) Present an effective evaluation method for the picking
efficiency and picking a time of CASBS/RS.

2) Establish a multi-objective mathematical model for the
minimum cost and the maximum throughput capacity of
CASBS/RS.

VOLUME 9, 2021 67787



D. Yang et al.: Research on Design of CASBS/RS

3) Design an improved PSO algorithm and optimize the
initial particles for solving the problem of the optimal
configuration.

4) Summarize the impact of different configurations on the
performance of the system. This research can guide the design
planner to design a more reasonable system under minimum
cost control.

II. LITERATURE REVIEW
Today, to meet customers’ needs, the timeliness of picking
order processing is increasingly important, so the operation
efficiency of the automatic picking system is also increas-
ing [3]. Enterprises adopt shuttle-based storage/retrieval sys-
tems with the advantages of large throughput, high flexibility,
and high utilization rate [4].

Currently, the research on shuttle-based storage/retrieval
systems mainly focuses on the system’s performance anal-
ysis, system design and operation strategy. Queuing theory is
generally used in the performance analysis of systems [5], [6].
By modeling the system as an integrated queuing network,
the cycle time and resource utilization are estimated [7].
They model each tier as a semi-open queueing network and
the vertical transfer unit as a multi-class queueing network.
Besides, some scholars present an analytic travel time model
and a calculation method for throughput performance of
SBS/RS [8]–[10]. They develop a closed-form expression for
the cycle time and consider the effect of shuttle acceleration
and deceleration. But these studies are only for a tier-captive
SBS/RS or tier to tier SBS/RS.

As for system design related problems, many researchers
have devoted themselves to study how warehouse layout
and device configuration influence system performance.
Malmborg and his team first researched this system. They
established an SBS/RS optimization model and optimized
system performance by setting system configuration parame-
ters [11]. On this basis, Malmborg adds the number of lifts
in the system to the model and presents a state equation
model to predict the system’s ratio of the two instruction
cycles. In addition to estimating the storage and retrieval
cycle time, the ratio can also be used to estimate the utilization
and throughput of the system [12]. Later, some scholars
studied other types of systems. Zhang [13] and Cao [14]
establish semi-open-loop queueing networks for tier to tier
SBS/RS and four-way SBS/RS, respectively, and study the
optimal configuration when the system reaches the maximum
performance.

With regard to operation strategy of SBS/RS, research
about order strategy, task scheduling strategy, and stor-
age assignment etc. have been developed for a long time.
Wang proposed a system optimization method that could
select system applicability according to different order types
and carried out applicability analysis of two types of ‘‘deliv-
ery to person’’ systems for different order types [15]. Wu put
forward the order sorting optimization model and opti-
mized the order sorting through the improved K-means
clustering algorithm to improve the picking efficiency of

the system [16]. Eder considers the classified storage strat-
egy based on probability and studies the impact of dif-
ferent storage strategies on system performance [17], [18].
Liu establishes an energy consumption model for the shuttle
robot system under dual-command operation, demonstrates
that the acceleration and maximum speed of system equip-
ment are the main factors affecting energy consumption,
and analyses the relationship between throughput and energy
consumption [19].

In terms of methods to solve SBS / RS related problems.
A time sequence mathematical model based on the motion
of the shuttles and stacker crane is proposed. An improved
Pareto-optimal elitist non-dominated sorting genetic algo-
rithm is used to solve the objectives of minimizing the total
working time of the stacker crane and the wasted shuttle
time [20]. Reference [21] proposes a hybrid algorithm based
on the ant colony algorithm, and an adaptive extensive neigh-
borhood search is submitted to solve the problem of system
throughput. However, these studies did not consider the total
cost of the system.

Based on previous research about SBS/RS, this study is
mainly aimed at Cross-aisles Shuttle Based System/Retrieval
System.An improved particle swarm algorithm is proposed to
determine the best system design scheme to meet the needs of
enterprises. And ensure the minimum total cost of the system.

III. PROBLEM DESCRIPTION
A. MAIN ASSUMPTIONS
The research is based on some assumptions which are in
accordance with real situations in CASBS/RS. and the main
assumptions are listed as follows:

1) Following the POSC (Point-Of-Service-Completion)
principle, the shuttle and lift stop at the last task after it has
completed the task.

2) Follow the FCFS (First-Come First-Served) principle
that shuttles, lifts, and picking desks all serve the received
requests on a first-come-first-service basis.

3) Random storage strategy, i.e. the probability that a pick-
ing order task hits a storage location is the same.

4) Only one cargo tote can be transported with the same
picking task of lift and shuttle.

5) The arrival rate of the picking order follows a Poisson
distribution with parameter lambda and the service time of
each service equipment follows a general distribution.

6) No more than one turnaround box per service
equipment.

B. MAIN NOTATIONS
To simplify the description of analytical models, we used the
main notations in the remainder of the paper are listed as
follows.

λr Arrival rate of picking tasks (i.e., the number of
tasks received by the system per hour per unit time)

nA Number of aisles in CASBS/RS
nT Number of tiers in CASBS/RS
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nC Number of bays in CASBS/RS
n Total number of storage locations in CASBS/RS
np The number of lifts in the system is also the number

of picking stations
µp Picking efficiency of each picking station (i.e., the

amount of picking per station per hour per unit time)
wA Width of single storage aisle
hT Height of single tier rack
ls Length of individual storage spaces
ws Width of single storage space
Lc Total length of the conveyor line
vs,A Average speed of aisle shuttle(m/s)
vs,C Average speed of cross-aisle shuttle (m/s)
vl Average lift speed (m/s)
vc Average conveyor speed (m/s)
Wshelf Width of storage shelf (m)
Lshelf Length of storage shelf (m)
Hshelf Height of storage rack (m)

C. OBJECTIVE FUNCTION
The total cost of the system includes three parts: the cost of
aisle shuttle and cross-aisle shuttles, the cost of lifts, and the
cost of shelves. Then the objective function 1 of the system
cost is as follows:

Cmin =
(
CS,A · nA + CS,C

)
· nT

+CL ·nP + Cs · (2 · nT · nC · nA) (1)

In this expression, CS,A is the unit price of the aisle shuttle,
CS,C is the unit price for the cross-aisle shuttle, CL is the
unit price of a group of lifts, Cs is the shelf price for a single
storage location.

The first part in (1) shows that is the total cost of the shuttle,
the second part is the total cost of the lift, and the third part is
the total cost of the three-dimensional rack. The unit price of
shuttle trucks and lift is much higher than the shelf price of
storage space. The number of all three is equal to the number
of system aisles nA, number of storage positions equals nT ,
number of lifts nP is related, then the variables of these three
parameters will lead to changes in system costs.

Considering costs, we also have to achieve a maximum
throughput of the system so that the target function of the
maximum throughput of system 2 is:

TPSmax = min (TPSA,TPSC ,TPSL ,TPSP) (2)

where:
TPSL ,TPSS ,TPSr represents the throughput capacity

required by the lift, shuttle, and enterprise in the system.
The decision variable to be optimized is:

x = (nT nA , nC , nP) (3)

Assume TPSr is the maximum efficiency of the system
that the customer needs at least. Nr is the storage capacity
of the system required by the customer. Tr Picking cycle for
an order completed by the system required by the customer.

FIGURE 3. The operating time of shuttle and lift in CASBS/RS system.

Then make sure that

TPSmax > TPSr (4)

2 · nA · nT · nC > Nr (5)

T0 6 Tr (6)

where:
T0 represents the cycle time of picking an order.
In order to solve this problem easily, the multi-objective

problem is transformed into a single-objective problem:

Cmin =
(
CSA · nA + CSC

)
· nT

+CL ·nP + Cs · (2 · nT · nC · nA) (7)

S.T .



TPSL > TPSr
TPSC > TPSr
TPSA > TPSr
TPSP > TPSr
2 · nA · nT · nC > Nr
T0 6 Tr
nA, nT , nC , nP ∈ (1, 2, 3, . . . , n)

(8)

IV. ALGORITHMIC DESIGN
A. ANALYSIS OF SYSTE PERFORMANCE
The system’s performance is mainly reflected in the cycle
time of completing an order in the system. As shown in Fig.3,
the order picking cycle of the system is equal to the total
time of aisle shuttle, cross-aisle shuttle, lift, and waiting for
aisle shuttle, cross-aisle shuttle, and lift. Then this chapter
considers only the task of selecting the warehouse, and the
calculation of the order picking cycle T0 can be as follows:

T0 =
8∑
i=1

Ti, i = 1, 2, . . . , 8 (9)

T1, T3, T5, T7 in the model are respectively the time
for picking orders waiting for aisle shuttle, the time for
turnaround boxes waiting for the cross-aisle shuttle, the time
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FIGURE 4. The operating time of shuttle and lift in CASBS/RS system.

for turnaround boxes waiting for lift service, and the time
waiting for workers to pick in the buffer area, which is related
to the arrival rate of the picking task, the sorting efficiency of
the shuttle, lift and pickingworkstation and the capacity of the
buffer area. Assuming that the waiting time for response is tw
and the current service equipment requests the next service is
the n task, then the waiting time can be expressed as:

tw =

{
T (n− 1)− T ′(n), T ′(n) < T (n− 1)
0, T ′(n) > T (n− 1)

(10)

T2 is the running time of the aisle shuttle, which includes
the time from the outlet buffer zone to the target picking
position (t1), the time for the aisle shuttle to pick up the
tote (t2), the time for the aisle shuttle to transport the tote to
the outlet buffer zone (t3) and the time for the aisle shuttle
to unload the tote (t4). Where t2 and t4 are the same, both
equal to tp, referring to the time taken by the equipment (aisle
shuttle, cross-aisle shuttle, and lift) to pick up or unload the
turnaround box. Assume that the running distance of the aisle
shuttle is l(x) from the warehouse buffer to the target picking
location:

l (x) = nC (x) · ws (11)

According to the motion characteristics of shuttle and lift
are shown in Fig.4, the running time of aisle shuttle is:

t1 = t3 = t (x)

=


2 ·

vs,A
asA
+

l (x)− vs,A2

as,A

vs,A
, l (x) >

vs,A2

as,A

2

√
l (x)
as,A

, l (x) ≤
vs,A2

as,A

(12)

Since the time for an aisle shuttle to complete a picking task
is T2, the maximum picking quantity TPSA for aisle shuttle
per unit time is:

TPSA =
3600

t1 + t2 + t3 + t4
· nA · nT (13)

T4 is the running time of the cross-aisle shuttle, which
includes the travel time (t5) of the cross-aisle shuttle from

the current parking position to the target aisle, the time (t6) it
takes for the cross-aisle shuttle to retrieve the turnaround box
from the outlet buffer, the time (t7) it takes for the cross-aisle
shuttle to transport the turnaround box to the corresponding
lift and the time (t8) it takes for the cross-aisle shuttle to
unload the turnaround box. Similarly, t6 = t8 = tp; and
assume that the repository shuttle runs at a distance of l (y):

l (y) = nA (y) · (wA + 2ls) (14)

Then the running time of the cross-aisle shuttle is:

t5 = t7 = t (y)

=


2 ·

vs,C
as,C
+

l (y)− vs,C 2

as,C

vs,C
, l (y) >

vs,C 2

as,C

2

√
l (y)
as,C

, l (y) ≤
vs,C 2

as,C

(15)

Since the cross-aisle shuttle takes T4 to complete a picking
task, the maximum reloads TPSC per unit time of the cross-
aisle shuttle is:

TPSC =
3600

t5 + t6 + t7 + t8
· nT (16)

T6 is the operating time of the lift. This time includes the
time (t9) taken by the lift from the first tier to the target tier,
the time (t10) taken by the lift to retrieve the tote from the
output buffer, the time (t11) taken by the lift to transport the
tote to the first tier and the time (t12) taken by the lift to unload
the tote. Where t10 = t12 = tp; and assuming the lift runs at
a distance of l (z): then,

l (z) = nT (z) · hT (17)

Then the lift runs for:

t9 = t11 = t (z)

=


2 ·

vl
al
+
l (z)− vl2

al

vl
, l (z) >

vl2

al

2

√
l (z)
al

, l (z) ≤
vl2

al

(18)

In this expression: tl refers to the time delay of lift due to
acceleration and deceleration during operation (s).

Since the lift takes T6 to complete a picking task, the max-
imum lift volume TPSL per unit time is:

TPSL =
3600

t9 + t10 + t11 + t12
· np (19)

T8 is the time for the picking station to carry out the picking
operation, including the running time (t13) of the turnaround
box on the conveyor line and the time (t14) required for the
workers to carry out the picking operation, and the turnaround
box is moving uniformly on the conveyor line. Then the
maximum picking quantity of the picking platform is:

TPSP = µp · np (20)

The sorting efficiency of the system refers to the sort-
ing quantity of the system in a unit of time. Because each
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service organization (aisle shuttle, cross-aisle shuttle, and
lift) operates relatively independently in the system and the
processing time is different, there will be waiting time, which
will interact. The equipment with the lowest efficiency will
limit the maximum sorting capacity of the system. Then
according to (13), (16), (19), (20), the maximum throughput
of the system is:

TPSmax = min (TPSA,TPSC ,TPSL ,TPSP) (21)

B. IMPROVED PARTICLE SWARM OPTIMIZATION
Particle Swarm Optimization (PSO) is a biomimetic algo-
rithm that simulates the foraging behavior of birds. It updates
the speed and position of particles by sharing information
between individual particles and groups. PSO algorithm
belongs to the evolutionary algorithm. It searches for the best
solution by iteration from random solution and evaluates the
quality of solution by fitness.

Compared with other algorithms, the PSO algorithm has
no crossover and mutation operations, relies on the particle
speed to complete the search, and only the best particles in
the iterative evolution transmit information to other particles,
so the search speed is faster. PSO algorithm has memory.
The best position in the history of particle swarm can be
memorized and passed to other particles. The PSO algorithm
needs to adjust fewer parameters, has a simple structure, and
is easy to implement in engineering. PSO algorithm adopts
real number coding, which is directly determined by the solu-
tion of the problem. The number of variables of the problem’s
solution is directly taken as the dimension of the particle.

Its algorithm rules are simpler. By following the best solu-
tion currently searched, this algorithm is easy to realize and
converges quickly with high accuracy.

PSO is initialized as a group of random particles and
the optimal solution is found by iteration. In each itera-
tion, the particle updates itself by tracking two ‘‘extreme’’
(pbest, gbest). After finding two extremes, the particle updates
its speed and position by using the following formula:

vi = vi + c1 r1 (pbest − xi)+ c2 r2 (gbest − xi) (22)

xi = xi + vi (23)

where vi is the velocity of the particle, xi is the current position
of the particle, r1 and r2 are random numbers between (0,1),
c1 and c2 are learning factors, and c1 = c2 = 2 is usually
used. The first part of (22) represents the influence of the
velocity and direction of the last particle; the second part
indicates that the action of the particle originates from its
own experience; and the third part is a vector pointing from
the current point to the best of the population, reflecting the
collaboration and knowledge sharing among the particles.
Particles are the ones who determine their next movement
through their own experience and the best of their peers.

The objective function in this section is to minimize the
total cost of the system while meeting the required through-
put and storage capacity. In the continuous iteration of the
particle swarm algorithm, the extremum of each particle and

the extremum of the particle swarm need to be replaced and
retained. Usually, we take the inverse of the objective func-
tion as the fitness function, while the value of our objective
function is relatively large. Therefore, to facilitate subsequent
observation and comparison, the inverse of the objective
function can be amplified 1000 times. The expression for
calculating the fitness function of the n-th particle in the
m-generation population is:

fm,n =
1000
Cm,n

(24)

In (24), n ∈ {1, 2, 3, . . . ,N }, N is the number of individuals
per generation, Cm,n is the minimum cost of the n-th particle
of the m-th population.

C. OPTIMIZE INITIAL PARTICLE SWARM
Particle initialization parameters have a certain impact on
the algorithm’s performance in terms of detection capabil-
ity, tracking accuracy and time complexity. We propose a
heuristic algorithm to make the algorithm model perform
more quickly and effectively for the problems raised in this
chapter. We propose a heuristic algorithm to determine the
initial particles based on the bottleneck of shuttle and lift in
CASBS/RS. The initial particle X0(nT ,0, nA,0, nC,0, nP,0) is
optimized below.

Step 1, one of the parameters nT is determined. According
to (1), it can be seen that in the system, aisle shuttle, cross-
aisle shuttle, and high-speed lift account for a large proportion
of costs, while aisle shuttle and cross-aisle shuttle are both
nT -related and proportional, so that nT is minimized on the
premise of satisfying the storage quantity Nr required by
customers:

nT ,min =

⌈
Nr

2 · nA,max · nC,max

⌉
(25)

nA,max =

⌊
Wshelf,max

wA + 2 ls

⌋
(26)

nC,max =

⌊
Lshelf,max

ws

⌋
(27)

According to the throughput capacity required by the cus-
tomer, the number of selector stations can be obtained:

nP =
⌈
TPSr
µp

⌉
(28)

Let nT ,0 = nT ,min at this time, so:

nA,0 =
⌈

Nr
2 · nT ,0 · nC,max

⌉
(29)

nC,0 =
⌈

Nr
2 · nT ,0 · nA,0

⌉
(30)

Obtain X0 =
(
nT ,0, nA,0, nC,0, nP,0

)
as the decision variable.

Step 2, Evaluate this decision variable. The maximum
picking quantity TPS0 in unit time of the system can be
obtained by (1). By comparing with the maximum pick-
ing quantity TPSr in unit time of customer’s demand,
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if TPS0 > TPSr at this time, it proves that the system con-
figuration can meet customer’s demand this time, then this
X0 can be used as the initial particle. If TPS0 < TPSr at this
time, there is a bottleneck of low sorting efficiency in some
parts of the system. Further analysis should be carried out in
the third step to improve the sorting efficiency of the system
and obtain better initial particles.

Step 3, equation (28) shows that the efficiency of the
sorting table has met the efficiency required by customers,
so only the throughput capacity of aisle shuttle, cross-aisle
shuttle, and lift needs to be analyzed here. Through (13), (16),
and (19), the throughput capacity of aisle shuttle, cross-aisle
shuttle, and lift can be calculated as TPSA,0, TPSC,0, TPSL,0,
respectively. If TPSmax,0 = min(TPSA,0, TPSC,0, TPSL,0,
TPSP0) = TPSA,0, Then the aisle shuttle is the bottleneck
at this time, so we can consider increasing the number of
tiers or increasing the number of aisles to improve the service
efficiency of the aisle shuttle. First consider increasing the
number of levels so that nT ,0 = nT ,0 + 1 is taken as the new
nT ,0, then the corresponding number of aisles and bays can
be obtained by (29), (30) as the new nA,0, nC,0.
If the number of tiers reaches the maximum limit, only

the selected quantity of aisle shuttle can be increased by
increasing the number of aisles without exceeding the limit
of warehouse size. i.e., nA,0 = nA,0 + 1 and the number of
shelves remains the same, then the latest number of bays nC,0
can be found by (30).

If the aisle shuttle is not a bottleneck limiting themaximum
throughput of the system, then consider whether the cross-
aisle shuttle is a bottleneck at this time. If the cross-aisle
shuttle is a bottleneck, i.e., TPSmax,0 = TPSC,0, the number
of tiers can be increased and the initial particles can be
obtained according to the (29) and (30).

This section optimizes the initial particle swarm by intro-
ducing some heuristic rules. As shown in Fig.5, the basic
steps of the improved algorithm are as follows:

Step 1: set the initialization parameters, particle swarm
size, initialization speed, and the maximum number of iter-
ations of the algorithm;

Step 2: optimizes the initialization particles to generate a
specified number of initialization particle swarms;

Step 4: which replaces the individual extremes of the
particles and updates the global optimum according to the
fitness values of the particles;

Step 5: replacing the speed position of particles with adap-
tive weight coefficient and learning factor;

Step 6: if the maximum number of iterations is satisfied,
then the optimal result is output. otherwise, go to step 3.

V. SIMULATION AND EXAMPLE
A. SIMULATION ANALYSIS
In order to verify the validity of the model and algorithm pro-
posed in this section, simulation tests are carried out accord-
ing to the characteristics and parameters of the mechanical
structure of the system in actual projects. All the experiments
were performed on the computer with 8.00G memory of

FIGURE 5. The solving process of Improved Particle Swarm Optimization.

Inter (R) Core (TM) i5-3210M CPU @2.50GHz dual-
core processor, and the algorithm was completed on
MATLAB 2019b.

In this paper, CASBS/RS is taken as the research object,
and three simulation experiments are carried out. The
first experiment is the comparison before and after the
improvement of the particle swarm optimization algorithm.
The second experiment uses the improved particle swarm
optimization algorithm to solve different objective functions
to get feasible solutions. The third test is the optimal config-
uration of the system in 70 different situations.

1) THE FIRST EXPERIMENT
The CASBS/RS system is selected as the test object. The
maximum number of iterations that the improved particle
swarm algorithm and the standard particle swarm algorithm
satisfy the termination conditions is 200 times. The particle
number N of each generation is 30. The maximum speed
of the particles is 0.01 times the product of tiers nT , aisles
nA and bays nC in the system. The mean values of learn-
ing factors c1 and c2 equal 1. Assuming Nr = 10000,
TPSr = 1500, the values of other parameters are shown in
Table 1 and Table 2.

The particle swarm optimization algorithm before and after
the improvement is run 50 times. The results of searching for
the best solution by the two algorithms are counted in Table 3.
And, the iterative process of the two algorithms is shown
in Figure 6.
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TABLE 1. The value of system parameters.

TABLE 2. Price of equipment.

TABLE 3. Comparison of optimization results.

To make a more comprehensive comparison between the
two improved algorithms. Run 50 times in 10 different sit-
uations without restricting the number of iterations, and the

FIGURE 6. The Comparison of PSO and IPSO in optimization process.

TABLE 4. Comparison of algorithm iterations in different cases.

termination condition is the convergence of the result. The
purpose of running 50 times in each case is to ensure the
accuracy of the results. We then averaged the number of iter-
ations over the 50 runs. By counting the results of 1000 times
experiments, we compare iteration times in 10 different cases,
as shown in Table 4.

2) THE SECOND EXPERIMENT
The setting of the main parameters of the system is shown
in Table 1. Other assumptions of the system are consistent
with the model; that is, the random storage strategy follows
POSC and FCFS. To study the optimal configuration of the
system and further verify the accuracy of the theoretical
model, we set up the second experiment from the following
three cases. They are (Nr = 1000,TPSr = 1500), (Nr =
1000,TPSr = 2500), and (Nr = 3000,TPSr = 2500).

The throughput of the system considered in this test, i.e.
(1500h−1, 2500h−1, 2500h−1), then the output of the cor-
responding picking station is 1500, 2500 and 2500, Then

according to np =
⌈
TPSr
µp

⌉
i.e., the number of picking stations

corresponds to 5, 7, and 7 respectively, the decision variable
is transformed into X (nT , nA, nC ).
The feasible solution set of the current function under

different conditions as shown in Fig.7 is obtained by simu-
lation for three cases. Since in the case of Nr = 3000 and
TPSr = 2500, when the number of lifts equals to the number
of picking tables equals 7, there is no feasible solution for
the objective function, Then the number of sorting tables
is optimized to 8 through the optimization steps for initial
particles, so the optimal solutions for the system in these three
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FIGURE 7. Set of feasible solutions for objective function under different
conditions.

cases are x = (11 2 23, 5), x = (12 2 21, 7), x = (17 4 23, 8)
by the final solution.

3) THE THIRD EXPERIMENT
To further explore the relationship between system through-
put capacity, storage capacity, and cost in CASBS/RS system.
Set the system capacity required by the customer to Nr ∈
(1000, 2000, 3000, . . . , 10 000) below, The throughput per
unit time of the system needed by the customer is TPSr ∈
(500, 1000, 1500, . . . , 3500).

FIGURE 8. The trend in total cost of the system.

Through 50 tests and averaging each of the above
70 cases in the model, the optimal solution is shown in
Table 5 and Fig. 8.

B. DISCUSSION ON SIMULATION RESULTS
As shown in Table 3, it can be seen that the standard par-
ticle swarm algorithm only finds global optimum solutions
685.48 13 times in the process of searching for the best solu-
tion in 200 iterations. In comparison, the improved particle
swarm algorithm finds global solutions 685.48 44 times to
search for the best solution in 200 iterations. There is no doubt
that the improved particle swarm algorithm can search for the
optimal solution globally and better stability than the standard
particle swarm algorithm.

By comparing the process of searching the optimal solution
between the PSO algorithm and IPSO algorithm in Fig. 6,
it can be seen that compared with the PSO algorithm,
the IPSO algorithm improves the quality of the initial par-
ticle swarm and approaches the optimal global solution more
quickly in the process of iteration, and converges to the
minimum value when the number of iterations reaches the
84th generation. In contrast, the PSO algorithm converges to
the minimum value only in the 136th generation.

And Table 4 also shows that under ten different customer
demand conditions, the number of iterations of the IPSO algo-
rithm is less than that of the PSO algorithm. So, through the
first experiment, it can be concluded that the initial particle
swarm optimizationmethod canmake the algorithm converge
faster and has higher stability than the traditional particle
swarm optimization method, which makes the results of the
algorithm more accurate.

The results of Experiment 2 are shown in Fig. 7. From
the position of the optimal solution in the feasible solution,
it can be seen that the situation of small system cost needs to
satisfy two conditions: a large number of bays and the small
number of aisles at the same time. In designing the system,
bay and aisle layouts can be considered preferentially without
exceeding the limits of warehouse size and with maximum
throughput capacity to meet customer requirements.

In the last experiment, it can be seen from Table 5 and
Fig. 8 that the construction cost of the system will increase
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TABLE 5. Optimal allocation of system.

with the continuous improvement of the number of cargos
and the requirement of the system’s picking ability per unit
time. When designing a system, it is necessary to thoroughly
study the throughput capacity required by the customer and
properly configure the system’s structure and shuttle and lift,
thus never reducing the input cost.

C. EXAMPLE
This part of the data is from the actual situation, mainly from a
well-known B2C e-commerce company in China. Its regional
distribution center adopts CASBS/RS that shuttles can cross
aisles. It is designed by a renowned domestic listed com-
pany focusing on the development of logistics automation
facilities.

By analyzing one year’s actual orders of e-commerce com-
panies, we find that the customer orders of e-commerce com-
panies are characterized by many varieties, small batches,
and many frequencies. And the daily average picking vol-
ume is more significant than other companies. The analysis
shows that the E-commerce company requires the sorting
capacity of the system in unit time of 2000/h, and the size

of the warehouse limits the length, width, and height of
the storage shelf to 100m, 30m, and 10m. Based on the
size of the turnaround box, the sizes of the designed shelf
are hT = 0.8m, ls = 0.8m, ws = 0.8m, Depending on
the warehouse constraints, the parameters of the system can
be configured in accordance with the following conditions:
nT 6 12, nA 6 10, nC 6 125.
Due to the limitation of warehouse size, the level height

can’t exceed 12 tiers. only the number of aisles and the
number of lifts can be increased to ensure the maximum
throughput capacity of the system. Through the feasible solu-
tion obtained in Table 5, it can be concluded that the best
configuration scheme of the E-Commerce company’s system
is 8 tiers, 7 aisles, 90 bays, 7 selection platforms, and 7 lifts.
The actual operation shows that the results are in accordance
with the actual design.

VI. CONCLUSION
This paper introduces the composition and layout of the sys-
tem. Combined with the single instruction operation process,
we analyze the operation time of the leading equipment in
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the system. And an improved particle swarm optimization
algorithm is proposed tominimize the construction cost of the
system under specific sorting and storage capacity conditions.
In solving, the initial particles are optimized. The relationship
between the system cost and the system configuration and the
relationship between the system cost and the system storage
capacity, and the system throughput capacity is obtained by
simulation. However, this paper does not study other aspects
of the algorithm, such as improving fitness function. It is
worth further research to solve the system design problems
of different algorithms.
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