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ABSTRACT Similarities between biological and digital communication systems have been investigated
since biology also uses a discrete alphabet to represent and transmit information. The genetic information
of an organism is encoded in DNA molecules by units called bases. However, there is no a definitive model
and the question as what error-correcting code underlies DNA sequences remains an open problem. Recent
works show that DNA sequences can be identified as codewords in a class of cyclic error-correcting codes
known as BCH codes. We propose improvements regarding the code construction process that resulted in a
novel algorithm for searching BCH codes whose codeword differ from a given DNA sequence (mapped to
finite field F4) in up to only one symbol. The most important improvement is to replace brute force decoding
with syndrome decoding. In this sense, based on a statistical analysis, we verify whether in a collection of
sequences with the same taxonomic rank there is a code that identifies most of these sequences, called
dominant code. Furthermore, we check whether the dominant code can provides a biological information
to DNA classification being an alignment-free method. Finally, we show that the probability of a DNA
sequences with odd-length n be identified by a BCH code tends to analytical probability of the same code
identifying a random vector.

INDEX TERMS BCH codes, DNA sequences, error-correcting codes, finite field, genetic coding, genomic

signal processing.

I. INTRODUCTION

The use of coding and information theory tools has been
proposed in bioinformatics. For example, DNA based data
storage systems [1], [2], hiding data in DNA [3], [4] and
find error-correcting code underlying DNA sequences [5],
[6]. The latter is the research focus of this paper, whose most
common questions are: is there an error-control mechanism
in biological sequences similar to the error-correcting codes
employed in digital communication systems? [7]-[10]; are
there codes which are able to identify and reproduce DNA
sequences? [11]-[15].

These similarities between biological and digital commu-
nication systems have been investigated since biology also
uses a digital code to represent and transmit information.
The genetic information is encoded in DNA molecules by
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a sequence of units called bases: adenine (A), cytosine (C),
guanine (G) and thymine (7'); these bases are the fundamental
elements of DNA strands which are translated to proteins that
carry out the functions of living cells [16].

Although relevant, such studies have not yet provided a
definitive answer or model. Liebovitch ef al. [11] were the
first ones to introduce a methodology to determine whether
a linear block error-correcting code is present in DNA, and
Rosen [12] continued this investigation presenting a method
to uncover an error-correcting code structure in the nucleotide
sequence and detect tandem repeats. Faria et al. [13] and
Rocha et al. [14] were more specific and proposed an algo-
rithm, known as DNA Sequence Generator Algorithm, which
verifies whether a given DNA sequence can be identified as
codewords of a BCH code of design distance d = 3 over
finite fields and rings of integers, respectively. In this context,
a DNA sequence is said to be identified whether it is a code-
word for a BCH code or whether it differs from the codeword
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up to one single nucleotide. In the biological context, this mis-
match is known as a single nucleotide polymorphism (SNP).

Despite the fact that the algorithms found in the liter-
ature still have limitations to be solved, these algorithms
have been used by the scientific community. For exam-
ple, the DNA Sequence Generator Algorithm was used by
Faria et al. [15] to show that a gene and even a plasmid
genome can be identified as codeword of BCH codes; by
Brandao et al. [17], as a tool to address the evolution-
ary pathway of the genetic code of some genes and to
investigate the biological meaning of the single mismatch
between the original DNA sequence and the sequence iden-
tified as the codeword; and by Duarte-Gonzélez et al. [10],
to represent protein sequences and explore evolutionary
relationships. In order to solve restrictions with respect to
the DNA sequence length and to reduce the computational
effort of this algorithm, Rodriguez-Sarmiento et al. [5] and
Hernddez et al. [6] proposed a novel algorithm to identify
odd-length biological sequences as codewords of BCH codes
over finite field and ring of integers, respectively.

However, the DNA Sequence Generation Algorithm runs
3n + 1 times, where 7 is the sequence length, since for each
sequence in the set of neighboring sequences (i.e., the set
of sequences whose Hamming distance between it and the
original is unitary) it is checked whether it is a codeword
of some BCH code. This paper investigates such limitation
and proposes a solution to this problem by replacing brute
force for a syndrome decoding approach. For the sake of
easiness, the Peterson—Gorenstein—Zierler (PGZ) decoding
algorithm [18] was used here, despite other more sophisti-
cated algorithms that could, in principle, be used with the
similar results.

In this sense, new questions may emerge, such as: if there
is an error-correcting code underlying a DNA sequence, does
it reveal similarities among DNA sequences of neighbor-
ing organisms on a phylogenetic tree? If so, since numeri-
cal and graphical representations of DNA sequences (these
operations are also referred to as mapping) have been used
to propose alignment-free classification methods of DNA
sequences [19]-[21], can the BCH codes be used as an
alignment-free classification method? In order to answer
these questions, we analyzed the statistical significance of
finding such codes. The idea was to compare the probability
of a BCH code identifying a random vector with the proba-
bility of identifying a true DNA sequence.

Therefore, in this paper, besides proposing improvements
in the DNA Sequence Generation Algorithm that resulted in
anovel algorithm, we investigate if it is effective to determine
the BCH code that identifies most of DNA sequences in
a collection, where the sequences stem from neighboring
organisms in a phylogenetic tree. We refer to this code as
the dominant code. The goal is to verify whether the dom-
inant code can provide a biological classification being an
alignment-free method. Finally, the statistical analysis reveals
that a dominant code can be designed only according to the
length of sequences and without biological classification.
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The algorithm was implemented in SageMath, a free
open-source mathematics software that uses a syntax resem-
bling Python.

This paper is organized as follows: Section II provides
notations and definitions. In Section III, we derive the main
result, that is, we detail the proposed algorithm and discusses
its most important features. The results are then presented in
Section IV, and the conclusions are elaborated in Section V.

II. PRELIMINARIES

In this section, we describe some notations and definitions
that are essentially important to coding theory analysis in this
paper, for more details we recommend [18].

Let F, be a finite field of order g, where g is a power of a
prime, and for any positive integer m, let Fym be an extension
field of IF,. The set of all vectors of length n over I, is
denoted by IFy. A vector u € Fy is denoted by bold letter.
Two finite fields with the same number of elements are said
to be isomorphic. Let o be a primitive element of the field
Fym, where o € Fym and 0 < s < ¢, then the cyclotomic
coset of a* is given by {a*, a*?, asqz, el asqul} whose
elements are the conjugates of a®. The prime polynomial of
the smallest degree over F, with f(a®) = 0 is called the
minimal polynomial of «® whose degree is a divisor of m and
its roots are o* and its conjugates.

A linear code C is a subspace of Fy referred to as an
(n, k, d) code where n is the length, k is the dimension and d
is the minimum Hamming distance. The Hamming distance
between two vectors u and v is the number of places in which
u and v differ, that is, |{i | ; # v;}|. These codes can always
decode uniquely if the number of errors is up to t = Ld%lj
errors. The BCH codes form a class of linear codes. In this
paper, we denote a BCH code denoted by Cpcy over Fy; as a
(n, k, d) code, where n is a positive integer, n divide g — 1
and « is an element of multiplicative order n in [Fym, defined
by the following generator polynomial,

8(x) = lem(fp(x), . . .., for@—2)e(x)), ey

where b, d and £ are positive integers such that 0 < b < n,
1 <d < mnandgcd(¢, n) = 1;in addition, f;(x) is the minimal
polynomial of o’.

Suppose that gj(x) and go(x) are generator polynomials
for two codes, C; and C;, of the same blocklength over F,
if all roots of g1(x) are also roots of g»(x), which implies that
g1(x) divides ga(x), then C; is a subcode of Cy. Once in our
applications we are interested in Cpcy over F4 with design
distance d > 3, notice that, for fixed » and ¢, codes where
d > 3 are subcodes of codes where d = 3. So, from now on
Cpcy is an (n, k, 3) code.

Given a code, the decoding is the process of error detec-
tion and correction; thus, decoding a received vector means
translating it into a codeword. Notice that each codeword has
a decoding sphere of radius t = Ld%lj drawn around it,
in which there are all words that will be decoded into that
codeword. Fig. 1 illustrates the three regions in vector space,
into which a vector can fall. The first region is when the vector
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Codewords

FIGURE 1. Decoding regions.

is a codeword; the second one is the shaded region, that is,
when the vector is in any sphere; and the third region is the
white region, in which lie words that are not within distance
t of any codeword.

The PGZ decoder [18] for these codes can, therefore,
correct up to 1 error. It means that, given a Cpcy, if the PGZ
decoder translates a received vector, r, into valid codeword,
¢, the Hamming distance between r and c¢ is 1. The first
step of the PGZ decoder is to calculate the syndromes: r is
considered as a polynomial and evaluating it at roots of g(x).
The decoding problem is then reduced to solve the following
system of nonlinear equations:

sp = eal

@

spre = et = sa,
where s; = r(a/) for j = b, b + £ is the syndrome for a given
vector r; in addition, the unknown variables are the location
of the error i (the first position of a vector corresponds to
i = 0) and its magnitude €. If the syndromes are all zero, then
there is no error and the decoding is done. Otherwise, once the
error location is known by solving the second equation of the
nonlinear system (2), the error magnitudes must be computed
by the first equation. The decoder, therefore, returns a valid
codeword (whose Hamming distance from the codeword is
less than or equal to one) whether 0 < i < nand € € [F,.
If only one syndrome is zero, then the number of errors
will exceed the error correction capability of a Cpcy code;
translation would fail and an empty word would be returned.

lll. ALGORITHM DESIGN
A. DNA SEQUENCE GENERATION ALGORITHM
OVERVIEW
The DNA Sequence Generation Algorithm checks whether a
given DNA sequence can be identified by an error-correction
code, specifically by a BCH code of design distance d = 3,
considering the simplicity of its encoding and decoding pro-
cesses. A DNA sequence is said to be identified whether it is
a codeword for a BCH code or it differs from the codeword
up to one single nucleotide.

In order to evaluate it, several attributes of DNA sequences
are associated with code parameters. Firstly, the BCH
codes have an associated algebraic structure for which the
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nucleotides must be mapped. The algebraic structures used
in the DNA Sequence Generation Algorithm were finite field
[13] and ring of integers [14], in which they both have four
elements. There are twenty-four possible bijection labeling
maps from {A, C, G, T} to F4; however, according to [13],
any of these labels arise with equal identification results when
using BCH codes over Fj4.

For a fixed length rn, there is more than one BCH code
defined by different generator polynomials. The authors pro-
pose that each code is unique in an extension field; there-
fore, for each existing primitive polynomial, the elements of
extension field is calculated and a generator polynomial is
defined (this procedure has an expensive memory cost, since
isomorphic extension fields are repeatedly constructed for
each primitive polynomial).

Next, for a given DNA sequence, the following verification
is repeated: the parity-check matrix of a code is used to
decide whether a given DNA sequence is a codeword, so brute
force is used to analyze the sequences with only one differ-
ent nucleotide (the other three nucleotide possibilities were
considered at each symbol position of the DNA sequence,
and, then, using the parity-check matrix, it is decided whether
each edited sequence is a codeword, more specifically, this
process is repeated 3n 4 1 times). Notice that this yields a
large number of tests to be fulfilled.

Whereas this algorithm checks if a sequence is the code-
word of a BCH code by using the parity-check matrix,
the novel algorithm proposed by Rodriguez-Sarmiento et al.
[5] uses a root finding or factorization method. However,
the brute force is still an open problem with respect to com-
putational efforts.

B. PROPOSED ALGORITHM

The algorithm starts by associating attributes (like alphabet
and length) of DNA sequences with code parameters. The
alphabet of genetic code (given by the set V' = {A, C, G, T})
and the alphabet of Cpcy (given by the set Fy = {0, 8, B2, 1)
must be linked by a bijective mapping. Although there are
twenty-four bijective maps from N to Fy, it is well-known
that finite fields with the same cardinality are isomorphic;
therefore, we have considered just one of those maps along
the proofs [13].

From now on, let Cgcy be a BCH code over F4. Bases
of a DNA sequence will be mapped onto F4 as shown
in Fig. 2. For instance, suppose that a given DNA sequence
is CTGATCCTTCAAGCG, then, this is mapped to the vector
r=(8,1,p2%0,1,8 8,1,1,5,0,0, 2 B, B2). Notice that
the BCH codes are defined under formal definition, in which
different generator polynomials are specified by b and ¢;
therefore, it is not necessary to use different primitive polyno-
mials to construct isomorphic extension fields, finding only
one correspondent generator polynomial.

The codeword length n must match the length of the
DNA sequence; consequently, we will consider only those
sequences whose length can be written as a divisor of 4™ — 1,
where m is a positive integer. Thus, n is always odd and
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FIGURE 2. Bijective mapping of alphabets. Each element of the genetic
code in the set A/, is mapped to exactly one element of the finite field
with order four denoted by F,. This will result in a bijective mapping as
follows: N’ > F4 : A0, C— B, G B2, T > 1.

satisfies,
n|4"—1 3)

where m € N. The Cpcy will be completely specified whether
there is any b and £ such that the decoder, summarized by
the nonlinear system of equations (2), has as solution a valid
codeword.

The proposed algorithm starts with a given DNA sequence
mapped to the vector r and a default Cpcy (we picked out

usual parameters » = 0 and £ = 1). Remember that the
generator polynomial is
g(x) = lem(fp(x), fore(x)) 4)

where the conditions about the range of b and £ are 0 <
b,f < n and gcd(n,¢) = 1. Then, r is mapped to the
vector n-dimensional with elements in F4 and is considered
as a polynomial. Next, the algorithm checks if the decoder
returns a valid codeword to the default Cpcy, and if so, it saves
the generator polynomial in a set R. The algorithm stops
when the entire range of b and ¢ is checked, and returns
the set R of all generator polynomials that identify the input
DNA sequence. The pseudocode is shown in Algorithm 1.
In addition, the SageMath implementation is available in a
GitHub repository [22].

However, two restrictions about £ can improve its range.
First, take into account only one value for £ in each set
{s,sq, ..., sq’"‘l} mod n where 0 < s < n. Second, con-
sider either £ or —¢ mod n. To understand the reason for
these restrictions remember that «¢" = o and consider the
codes defined by the following generator polynomials,

g1(x) = lem(fp(x), fp45(x)),

§2(x) = lem(fyy (x), fiy 54(x)),
: &)

gj(x) = lem(fiy (x), fyyr 4 gqm-1(x)).

The equality g{(x) = ga(x) occurs if b’ = bq. Similarly,
the equality g1(x) = gj(x) occurs if b” = bg"™~!. Of course,
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Algorithm 1 Proposed Algorithm

Input: DNA sequence
Output: BCH codes
Initialize r to DNA sequence
Initialize m according to (3)
Initialize range_b
Initialize range_¢
for each b in range_b do
for each ¢ in range_£ do
if b and ¢ solve (2) then
Add g(x) = lem(fp(x), fp+e(x)) to R
end if
end for
: end for
: return R

A A A S T

_— =
M2 e

since the range of b is 0 to n — 1, it is redundant to take
more than one £ in each set {s, sq, . . ., sq’”_l} mod 7. Thus,
the first restriction was proved and the second follows the
same argument. For example, for a Cpcy of length 15, the set
in which ged(¢, n) = 1is {1, 2,4,7, 8, 11, 13, 14}. However,
it can be seen that by the first restriction £ € {1,2,7, 11} and
by the second ¢ € {1, 2}.

Once the BCH code for a given DNA sequence is
known, the dominant code is found as follows. Let A =
{ri,r2, ..., ry} be a collection of N DNA sequences and
Ri, Rz, ..., Ry be the sets of Cpcy that identify each one,
respectively. The dominant code is a Cgcy such that it iden-
tifies most of the DNA sequences in .A. This code lies in the
intersection between M sets of Ri, Ro, ..., Ry where M
is the largest integer such that this intersection is nonzero.
Finally, /v is the fraction of the DNA sequences identified
by the same Cpcy, the dominant code.

IV. RESULTS

A. EXPERIMENTAL DATA

The data is available at nucleotide database from National
Center for Biotechnology Information (NCBI) that provides
open access to biomedical and genomic information [23]. All
sequences have an identifier, the GI number, a simple series
of digits processed by NCBI. When we analyze an individual
DNA sequence, we refer to it by its GI number. When we ana-
lyze collections of N sequences the following search is done
in NCBI: txidX[Organism] AND “cds” [Feature key] AND
Y [Sequence Length] NOT hypothetical protein NOT pre-
dicted NOT partial, where txidX is replaced by the taxonomic
identifier of specific organism and Y is replaced by desired
sequence length. The taxonomic identifiers of Bacteria, Fungi
and Plantae are txid2, txid4751 and txid33090, respectively.
Next, the analysis is performed drawing N sequences at
random. Furthermore, whenever there were any degenerate
bases in a DNA sequence, this was discarded (for example,
W is a degenerate base because it can represent A or T').
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B. ALGORITHM DETAILS

With some effort, the steps of the algorithm can be made by
hand in a simple example as for the short DNA sequence
33079225 given by CTGATCCTTCAAGCG. Notice that this
sequence has 15 bases that can be written as 42 — 1; thus,
the codeword length is » = 15 and the extension degree
ism=2.

The algorithm checks which BCH codes over F4 with
length 15 and design distance 3 can decode this sequence.
Following the steps of our algorithm, this sequence is mapped
to the vectorr = (B8, 1, 82,0, 1,8, 8, 1,1, 8,0, 0, B2, B, B?)
whose polynomial is:

() = B2+ a3 4+ B2x12 4 B 4 8
+xT+ B+ B +x P+ B+ x4+ B (6)

The default Cpcy has generator polynomial specified by
b = 0and ¢ = 1. Thus, from (2) and using the arith-
metic of Fig, the syndromes are: so = 1 and s1 =
«!'2. Then, we find that the error occurred in the twelfth
component (! = j—(l) = «'?) and that the error mag-
nitude is € = 1. So, the decoder returns the following
codeword whose Hamming distance from r is one: ¢ =
(8,1,p%,0,1,8,8,1,1,B,0,0, B, B, B?). It corresponds to
the sequence CTGATCCTTCAACCG. This generator poly-
nomial is saved in R. Next, the remaining codes specified by
0 < b < nand £ € {1,2} are checked, and so on. When
the algorithm stops, there are twelve codes in R. These codes
have generator polynomials as listed in Table 1. Furthermore,
for each one of these, the position, the old symbol and the
new symbol in this position are listed. Remember that in
algebraic arithmetic the first position of a vector corresponds
to i = 0. The old symbol is the nucleotide in position i
of the original DNA sequence and the new symbol is the
nucleotide in position i of the codeword whose distance from
DNA sequence is one.

TABLE 1. Generator polynomials of Cgcy with n = 15 that identify the
sequence CTGATCCTTCAAGCG.

b |/l Generator polynomial Position i | Old | New
011 3+ B2z + 4 12 G| C
301 zt + B3 + 8 2 G| A
411 3 + B2x2 + 52 2 G| A
7 (1| z* 4 8223 + B222 + B2z + 1 10 A| G
101 2 +z+ 8 3 A| C
141 3 + B2 4 B2 13 c| G
02 3 + Bz + 2 0 c| G
3102 23+ 4B G| A
512 3+ x + B2 0 Cc| A
8 |2 3+ Bx2 + 6 10 A| G
102 a3 + B2z 4 B2 7 T | C
13]2 3 + 222 + 8 5 c| G
68556

C. BIOLOGICAL ANALYSIS

For the example above (DNA sequence 33079225), there
is always a difference of a single nucleotide between the
original DNA sequence and the one returned by the algorithm.
In the biological context, it can mean a SNP or an ancestral
sequence (since the BCH code is an error-correcting code,
so it may be acting to protect against mutations). Observe
that for the code whose generator polynomial is g(x) =
x3 4 B%x + B, this mismatch occurred at position 12 resulting
in a transversion mutation. Furthermore, five other codes
identify the DNA sequence by a transversion mutation. For
the remaining codes, the SNP causes a transition mutation.
Transversions are a point mutation that changes a purine base
(A or G) to a pyrimidine (C or T'), and transitions refer to
changes from a purine base to another purine, or a pyrimidine
base to another pyrimidine. Although the SNP represents a
mutation, it can be silent during protein translation.

This is what happens for the DNA sequence whose GI
number is 1852346641 (a genome shotgun sequence of Strep-
tomyces coelicolor of length 255 whose molecule type is
genomic DNA and product is MFS protein transporter, one
of the two largest families of membrane transporters found on
Earth [24]). This sequence of nucleotides is translated to the
protein WP_173944011.1 by using the bacterial, archaeal and
plant plastid code and making the codon start at position 3.
There are 128 codes that identify this sequence, including the
codes with the following generator polynomials:

g (x) =x° 4+ Bt + A 2 41,
@) = x° +x* + 3 + B. (7

Table 2 shows this sequence and the codewords returned
by the algorithm for g;(x) and g>(x). In this table, the first
column refers to the index position of the first base of
each DNA sequence in the second column. Each of these is
labeled with an abbreviation as follows: Ont is the original
nucleotide, Gntl is the codeword nucleotide given by g1(x)
and Gnt2 is the codeword nucleotide given by g»(x). The
mismatches with respect to the original sequence given by
both codes are highlighted in red whose respective codons are
underlined.

Notice that between Ont and Gntl, the SNP results in
a transition mutation (G — A in position 155); however,
the codon where the mismatch occurred is translated to the
same amino acid, an aspartic acid whose abbreviation is Asp
or D. In the biological context, this mismatch represents a
silent mutation. In contrast, although between Ont and Gnt2,
there is also a transition mutation (A — G in position 204),
the respective codon is translated to different amino acids,
change from a Leucine (Leu or L) to a Proline (Pro or P).
Remember that the original sequence is a molecule of DNA;
therefore, this sequence must be converted into its reverse
complement before translating the codons. For this sequence,
the algorithm returns 128 codes that identify it, among which,
47 result in a silent mutation.
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TABLE 2. Streptomyces coelicolor genome shotgun sequence with Gl
number 1852346641.

Index

Sequence

1

Ont:
Gntl:
Gnt2:

GCTGGGAGAC
GCTGGGAGAC
GCTGGGAGAC

GGCGATGCCG
GGCGATGCCG
GGCGATGCCG

ATGACGATCG
ATGACGATCG
ATGACGATCG

31

Ont:
Gntl:
Gnt2:

CGGCCTGCTG
CGGCCTGCTG
CGGCCTGCTG

GAAGGAACCG
GAAGGAACCG
GAAGGAACCG

AGCCGGCCGC
AGCCGGCCGC
AGCCGGCCGC

61

Ont:
Gntl:
Gnt2:

GGTAGGCGGG
GGTAGGCGGG
GGTAGGCGGG

CGGGGACACC
CGGGGACACC
CGGGGACACC

TCGGCGATGT
TCGGCGATGT
TCGGCGATGT

91

Ont:
Gntl:
Gnt2:

AGGCGGGGCC
AGGCGGGGCC
AGGCGGGGCC

GATCACCGAG
GATCACCGAG
GATCACCGAG

GCCATGCCGA
GCCATGCCGA
GCCATGCCGA

121

Ont:
Gntl:
Gnt2:

TCGCGAAACC
TCGCGAAACC
TCGCGAAACC

GCCGATGATC
GCCGATGATC
GCCGATGATC

CGCCACATGG
CGCCACATGG
CGCCACATGG

151

Ont:
Gntl:
Gnt2:

CCAGGTCCCA
CCAGATCCCA
CCAGGTCCCA

CAGCGCGAAG
CAGCGCGAAG
CAGCGCGAAG

GGCAGCGCGG
GGCAGCGCGG
GGCAGCGCGG

181

Ont:
Gntl:
Gnt2:

AGCCGACGGC
AGCCGACGGC
AGCCGACGGC

GCTCACCGTG
GCTCACCGTG
GCTCACCGTG

AACAGGACCG
AACAGGACCG
AACGGGACCG

211

Ont:
Gntl:
Gnt2:

CGGCGATCTG
CGGCGATCTG
CGGCGATCTG

CATGCAGCGG
CATGCAGCGG
CATGCAGCGG

ATACGGCCGA
ATACGGCCGA
ATACGGCCGA

241

Ont:
Gntl:
Gnt2:

TACGGTCCGC
TACGGTCCGC
TACGGTCCGC

GATAC
GATAC
GATAC

D. PERFORMANCE COMPARISON

For the purpose of comparison, we consider almost the
same set of DNA sequences as in [13] (some records have
already been removed from database). In general, our algo-
rithm returns more BCH codes near the DNA sequence. For
instance, for the DNA sequences 78096542 and 45368559,
instead of only one BCH code, our algorithm returns 34
and 92 codes, respectively. For the sequences 51093376 and
832917, instead of two BCH codes, our algorithm returns 32
codes for both. As expected, the BCH codes found by [13]
were also found by us; however, our algorithm returns more
codes for each DNA sequence.

Compared with the algorithm proposed by [5], the result
could not be different: our algorithm returns the same codes
for the following DNA sequences HP283558.1, HP425961.1,
HP347514.1, HP253977.1, HP296666.1, HP320974.1,
HP352962.1, HP278326.1, EZ071796.1 and EZ111718.1.
For the remaining sequences (AK280992.1, HP466062.1,
HP933108.1, HP823668.1), the algorithm in [5] returns BCH
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codes with d > 3 (remember that they are subcodes of codes
with d = 3 and, therefore, there are common codewords
between them). Thus, whether a given sequence is identified
by a code C; with d > 3 and g;(x), it is also identified by a
code C; with d = 3 and g»(x), in which, g|(x) divides g2 (x).
In this case, both codes translated the original sequence to the
same codeword.

For instance, when the DNA sequence AK280992.1 is the
input of Algorithm 1, the cardinality of R is 18. Whether,
in this set, there is a code whose translated codeword has
more than two consecutive roots, so, there is a subcode with
d > 3 completely defined by the number of consecutive
roots according to (1). In this particular case, all codes in
‘R translated the original sequence to the same codeword.
This codeword has up to 18 consecutive roots, therefore, this
sequence is also identified by the code (95, 5, 19) with the
following generator polynomial,

o(x) = x90 4 (85 4 (80 4 75 4 (70 L (65 60
I e e o 2
+x20 x4 x10 xS 4, ®)

where b = 1 and ¢ = 1.

The algorithms proposed by [5] and [13] repeat the fol-
lowing methods 3n + 1 times in a brute force decoding: root
finding process and matrix-check verification, respectively.
These methods can become very complex, mainly when the
extension field degree increases. Notice that knowing which
codes with d = 3 identifying a given DNA sequence will be
enough to find subcodes with d > 3, if necessary. Improve-
ments in the decoding process, replacing brute force with
the PGZ decoder, result in fewer operations performed. As a
consequence, the execution time of the algorithm proposed in
this paper is shorter.

E. STATISTICAL ANALYSIS

The probability of a Cgcy identifying a DNA sequence can
be interpreted as the probability of a DNA sequence lying in
sphere decoding of the Cpcy (see Fig. 1). However, in gen-
eral, the probability of these events is not trivial, but a satisfac-
tory analytical probability can be computed for some special
cases [18].

The DNA sequence decoding problem is analogous to
considering linear codes being used on channels that make
symbol errors independently. A decoder will decode every
word to the closest codeword, provided that it is within
distance ¢ of the codeword. We can analyze the decoder per-
formance when a vector whose symbols are independent and
identically distributed (iid) is picked out from n-dimensional
vector space over 4. The probability of this vector being
identified by a Cpcp is the probability of correct decoding
(remember that d = 3, then, t = 1). That is, the ratio of the
sum of ¢* codewords and n(g — 1) words whose Hamming
distance from the codeword is unitary to total of words in a
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n-dimensional vector space ¢”, so,

_d tg'ng -1

P " ©
or, an alternative and more appropriate way is
1 n(g—1)
P= (qu—_k + qn—_k> . (10)

Notice that this probability is higher when the Cpcy has the
largest dimension k. In this case, the generator polynomial
has minimum degree. Thus, for m fixed, the probability P
in (10) is maximized when

n-k = min deg g(x). (11
Cpen

Equation (11) returns the minimum degree of a generator
polynomial given all BCH codes over a vector space Fy
whose length is n and degree extension is m. For some specific
codes, these values are summarized in the third column of
Table 3. Furthermore, the probability that a n-dimensional
random vector over [F4 will be identified by a Cpcy with
generator polynomial of minimum degree is a function of
n, and it is summarized in the fourth column of Table 3 for
some codes. Since a perfect code is one for which there are
spheres of equal radius about the codewords that are disjoint
and that completely fill the space [18], from Table 3 the codes
(341, 336, 3) and (5461, 5454, 3) are perfect codes.

TABLE 3. Probability that a n-dimensional vector over F, whose symbols
are iid will be identified by a Cg¢py in which the generator polynomial has
minimum degree.

m| n | min degg(z)| P
CBcoH

4 | 255 5 0.75

5 | 341 5 1

6 | 273 7 0.05

7 | 5461 7 1

12| 7735 10 0.022

The probability of a given Cpcy identifying a DNA
sequence will be estimated by performing computer simu-
lations. In this sense, we must observe, in a collection of
N sequences with the same taxonomic rank, whether the
fraction /v tends to P. If so, we can conclude that the DNA
sequences are distributed almost uniformly, under Hamming
metric, in a n-dimensional vector space. Therefore, a clas-
sification would be possible whether /v does not converge
to P and there are different dominant codes for different
collections. In this case, we are able to distinguish two or
more collections.

In Table 4, we present the dominant codes for collections
of N DNA sequences (coding sequences) according to the
three kingdom classification. Notice that, in a general sense,
the percent of sequences identified by a code (the ratio of
M to N) tends to the analytical probability of the same code
identifying a random vector. This is especially observed when
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TABLE 4. Dominant codes for different codewords lengths and for both
collections.

n | Kingdom| N % g(x) P
500 | 77,15 % 20+t + B2 a4+ 8
700 | 75,86 % 2% + Bad + B +z + B
255| Fungi | 500 |78,74 % %+ Bx? +1 75%
Plantae | 500 | 83,99 % 25 + Bzt + [3:1:3 + 2+ /32:1: +1
Bacteria | 500
Fungi | 479
Plantae | 500
500 | 845% |z7 + B8 + B%2® + Bt + 23 + 22 + B + 1
3 2000 | 6,37 % 27+ 28 + 2t 4+ B22% + B+ 1 s
Fungi | 1800| 7.91 % 2T+ Ba® +at 422+ 8
Plantae | 990 | 10,04 % 27+ B228 + 2t + BB + B2 + 52

Bacteria

341 100% x5 + B22% + Ba? + Bz + 1 100%

Bacteria

we compare the first two lines (or lines eighth and nine) of
Table 4, in which the cardinality of collections grows and the
M/y tends to P.

The first important observation is that, as expected,
a perfect code with parameters (n, k, d) can identify any
n-dimensional vector, and, consequently, any DNA sequence.
In Table 4, the perfect code is the (341, 336, 3). Another
relevant observation is that all dominant codes have mini-
mum degree. Furthermore, codes, whose generator polyno-
mials have the same degree, identify DNA sequences with
approximately the same probability. Although the probabil-
ities of classification to Plantae are slightly different from
P, the same effect occurs when we analyze the generator
polynomials with the same degree.

Similar results were obtained even for other collections
with more specific taxonomic rank. That is, when we restrict
the analysis to Streptomyces (txid1883), the largest genus of
Actinobacteria. In this case, two collections A and B were
analyzed whose sequence lengths are n = 255 and n = 341,
respectively. The dominant codes returned by our algorithm
are

gA(x)=x5+,32x4+ﬂ2x3+x2+1,
g5(x) = x° + g2 + B2 + x4+ 1, (12)

where g 4(x) identifies about 78.27% of the collection A,
and gp(x) identifies 100% of the collection B. Once again,
the dominant codes have minimum degree and the perfect
code identifies any DNA sequence.

Given a collection of DNA sequences, for example a
collection with the following sequences {ri,r»,...,ry},
the set of BCH codes that identify each one is denoted
by R1, Ra, ..., Ry, respectively. For different collections,
the cardinality dispersion of these sets R;, where i =
1,2, ..., N is checked by analysis of the boxplot. The box-
plot is a statistical representation of data that displays infor-
mation about the distribution of data through their quartiles
for one or more categories of data.

The Fig. 3 illustrates the boxplot for the cardinality of sets
R; to the collections A and B from the previous analysis to
Streptomyces. One box is assigned for each data category
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FIGURE 3. Box plot of cardinality of the sets R;, wherei =1,2,...,N,
from collections .A and 1 of Streptomyces (txid1883). In each collection

there are N DNA sequences and the respective R, R,,..., Ry is the
set of Cgcyy that identify each sequence.

(that is, for A and B) and for each one is measured the
minimum, first quartile, median, third quartile, and maximum
value of the cardinality of R;. In these cases, the sets R; have
134.85 codes in average with standard deviation of 79.70 for
the collection A, and 77.14 codes in average with standard
deviation of 9.37 for the collection B.

Although the standard deviation of the data of collection
A is greater than that of B, the boxplot shape shows that its
median is in the middle of the box, and the whiskers are about
the same on both sides of the box. Then the cardinality of
R; is normally distributed and stretched. Whereas for data
collection 3, the median is closer to the top of the box; then
the data is skewed and squeezed. Notice that there are 60
perfect codes in the vector space where the DNA sequences
of collection B are mapped. For this reason, the cardinality
of R; for sequences in collection B is at least the number of
perfect codes with n = 341, that is, 60.

As we said earlier, in general, our algorithm returns R; with
cardinality more than one. This represents a differential in
relation to algorithm in [13]. Furthermore, although the same
cardinality is expected as the result of the algorithm in [5],
the execution time of our algorithm is shorter.

For all previous cases, the codes, whose generator polyno-
mial has minimum degree, do identify the collections with
approximately the same probability; in which case, it is
approximately P. Therefore, the dominant codes cannot pro-
vide biological classification.

V. CONCLUSION

The algorithm proposed in this paper for identifying DNA
sequences as codewords of BCH codes over the finite field
F4 was implemented in SageMath, a free open-source math-
ematics software system Python-based language. Being a
mathematics software, the cost of performing finite field
operations is reduced. Our algorithm uses both information
theory and abstract algebra approaches to improve several
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observed computational limitations in [5], [13]. The most
important development was replacing the brute force decod-
ing for a PGZ decoder, resulting in a significant reduction in
the number of operations.

In previous algorithms, a root finding process [5] or a
matrix-check verification [13] was performed 3n + 1 times
(the other three possible nucleotides at each position in
the sequence was considered to get the set of neighboring
sequences). However, for each run of algorithms, we either
count the number of consecutive roots or determine the code
using a primitive polynomial. Since our algorithm is restricted
to solving (2) within delimited ranges of b and ¢, the number
of operations is reduced and the execution time is shorter.
The same idea can be implemented to improve the algorithm
whose algebraic structure is the ring of integers Zy4 [6], [14].

Furthermore, we have shown that the probability of a DNA
sequence (with odd-length n according to (3)) being identi-
fied by a BCH code tends towards the analytical probability
of the same code to identify a random vector. Therefore,
the dominant codes cannot provide biological information for
collections of DNA sequences to allow for alignment-free
classification. That is, the DNA sequences mapped to code-
words cannot be classified only by these polynomials.

Although this is not a definitive answer to the question
of whether or not there is a BCH code underlying DNA
sequences, we have checked, by using supervised learning
methods, that the SNP in the position pointed out by the
code does not influence the classification. We have checked
by means of simulations that there is no loss of biological
information when we map a DNA sequence to a codeword
of some Cpcy and classify it using, for instance, the Kameris
method [20].
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