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ABSTRACT Optimal allocation of virtual machines in a cloud computing environment for user-submitted
tasks is a challenging task. Finding an optimal task scheduling solution is considered as NP-hard problem
specifically for large task sizes in the cloud environment. The best solution involves scheduling the tasks
to virtual machines data centre while minimizing the essential, influential and cost effective parameters
such as energy usage, makespan and cost. In this direction, this work presents a metaheuristic framework
called MDVMA for dynamic virtual machine allocation with optimized task scheduling in a cloud com-
puting environment. The MDVMA focuses on developing a multi-objective scheduling method using non
dominated sorting genetic algorithm (NSGA)-II algorithm-basedmetaheuristic algorithm for optimizing task
scheduling with the aim of minimizing energy usage, makespan and cost simultaneously to provide trade-off
to the cloud service providers as per their requirements. To evaluate the performance of the MDVMA
approach, we compared the performances of two different scenarios of benchmark real-world workload data
sets using the existing approaches, namely, Artificial Bee Colony (ABC) algorithm, Whale Optimization
Algorithm (WOA) and Particle Swarm Optimization (PSO) algorithm. Simulation results demonstrate that
optimizing task scheduling leads to better overall results in terms of minimizing energy usage, makespan and
cost of the cloud data center. Finally, the paper concludes metaheuristic algorithms as a promising method
for task scheduling in a cloud computing environment.

INDEX TERMS Cloud computing, energy consumption, task scheduling, meta-heuristics algorithm,
optimization.

I. INTRODUCTION
In recent years, cloud computing has become an integral
part of Information Technology based organizations and indi-
vidual users. It provides on-demand computing resources
for executing multi-tier applications in the form of virtual
machines [1] equipped with different amount of computing
resources. It provides the computing resources to the users to
execute their application on suitable virtual machines at the
agreed quality of service on the basis of the pay-as-you-go
model. It has several advantages over traditional IT services,
including on-demand network services, remote and reliable
storage, rapid elasticity, enhanced security, multi-tenancy,
and measured services [2].
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Cloud computing service providers offer software and
hardware resources through cloud data centres. In order to
meet the increasing demands of cloud computing resources,
data centres are equipped with more powerful servers and
other related hardware resources [3]. It has been observed that
the significant portion of energy consumption is caused by
servers in the cloud data centre as depicted in Fig. 1. Increase
in energy consumption of cloud data servers has a direct
impact on cost, performance, return on investment and emis-
sion of carbon dioxide. Therefore, the research community in
the field has focused on minimizing the energy consumption
of cloud data centres using learning innovative ideas.

An efficient task schedulingmethod is considered as one of
themost critical methods to address the challenge ofminimiz-
ing energy usage in cloud data centres [4]. A task scheduling
method attempts to map user-submitted tasks to specific vir-
tual machines with the aim of optimizing the objectives of the
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FIGURE 1. Energy usage distribution in the cloud data centre [4].

cloud data centre such asmaintaining throughput, minimizing
energy consumption while ensuring service level agreement
and required quality of service [5]. However, considering a
large number of tasks and virtual machines in the cloud data
centre, solving the task scheduling problem is a challenge in
polynomial time. Thus, it is considered as non-deterministic
polynomial-time hard (NP hard) problem in the cloud com-
puting context [6].

Several methods have been developed to solve NP-hard
problems like task scheduling including heuristic methods
and metaheuristic methods. Heuristic methods are used to
design a specific kind of scheduling problems, whereas meta
heuristic methods are employed for finding near optimal
solutions. Meta heuristic methods can be used in three ways
to solve task scheduling problems as depicted in Fig. 2,
single objective (SO) scheduling, multi-objective as single
objective (MOSO) and multi-objective as multi-objective
(MOMO) scheduling methods [7], [8]. SO methods attempt
to optimize only one objective or a single objective from
a set of objectives at a time. MOSO methods attempt to

FIGURE 2. Meta-heuristic based task scheduling methods.

optimize multiple objective functions by combining them
into a single objective function. It requires in-depth domain
knowledge that enables an accurate combination of the objec-
tive functions [9]. MOMO methods treat multiple objectives
as separate objectives and attempt to optimize simultane-
ously. Such methods produce a set of non inferior solution
in the form of the Pareto front and offer trade off to the
cloud service provides. SO andMOSO have issues with solv-
ing multi-objective problems when concave shaped Pareto
front is involved. Therefore, many MOMO based optimiz-
ing methods like PAES [10], SPEA2 [11], PESA-II [12],
non dominated sorting genetic algorithm (NSGA)-II [13],
MOEA/D [14] has been proposed in recent years.

In this work, we mainly focused on formulating
task scheduling problem as pure multi objective prob-
lem (MOMO) as described in Section I and II. In literature,
prior work mainly focused on meta heuristic methods for
optimizing single objective or multiple objective as single
objectives in task scheduling context of cloud computing
environment. Most prior work attempted to obtain single task
scheduling solution that lacks in trade-offs for the cloud ser-
vice provider. Here, we formulated task scheduling problem
asmulti objective problemwhere each objective is considered
as a separate objective and multiple objectives are optimized
simultaneously using MOGA. In this work, we aim to obtain
a set of near optimal solutions that assure minimization
of energy usage, makespan and cost for executing given
set of cloud tasks on given virtual machines in the cloud
data center simultaneously. The obtained solutions exhibit
trade-offs for cloud service providers that was ignored in
prior work targeting to obtain single task scheduling solution.
We considered the most commonly used parameters used
by evaluating task scheduling approaches as per findings
of the survey paper by [3]. This combination of evaluating
factors is mostly ignored in prior work in the field. Moreover,
we highlighted the need of task scheduling, advantages of
using meta heuristic algorithms and explained working of
the proposed framework in the manuscript. The proposed
framework is validated using synthetic and realistic bench-
mark data set. Results are compared with state of art methods.
We demonstrated percentage improvement in results by using
the proposed framework in comparison to other methods.
Results are discussed to highlights the potential benefits of
the proposed framework in this work.

The primary contribution of this work is a meta heuristic
framework called MDVMA for dynamic virtual machine
allocation with optimized task scheduling in a cloud com-
puting environment. This work focuses on developing
a multi-objective scheduling method based metaheuristic
framework for optimizing task scheduling with the aim
of minimizing energy usage, makespan and cost simulta-
neously. This paper mainly contributes in the following
ways.
• Formulated mathematical models for computing energy
usage, makespan and cost of the task scheduling prob-
lem in the cloud data centre.
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• Formulated task scheduling problem as amulti-objective
optimization problem having multiple conflicting objec-
tives like energy usage and makespan under user defined
constraints like the deadline of execution time.

• Performedmulti-objective optimization for task schedul-
ing problem using NSGA-II [13] to minimize energy
usage, makespan and cost simultaneously.

• Simulated the proposed MDVMA framework and other
approaches in CloudSim environment.

• Demonstrated the better performance of the pro-
posed MDVMA approach in comparison to three other
approaches, namely, Artificial Bee Colony (ABC) algo-
rithm, Whale optimization algorithm (WOA) and Par-
ticle Swarm Optimization PSO) algorithm using two
data sets, namelyHeterogeneous Computing Scheduling
Problem (HCSP) as benchmark dataset and synthetic
dataset in terms of energy usage, makespan and cost.

benchmark dataset and syn- thetic
The remainder of this paper is structured as fol-

lows. Section II describes the state of the art in con-
text to multi-objective metaheuristic methods for task
scheduling in a cloud computing environment. Section III
provides motivation for using multi-objective genetic algo-
rithm and presents a flow chart of NSGA-II algorithm.
Section IV describes the proposed framework and explain its
working. Section V describes the details of the experiment
and discusses the results. Finally, the paper is concluded at
the end of VI.

II. RELATED WORK
Cloud computing environment has enabled the execution of
a variety of applications that are more cost-effective for indi-
vidual users as well as for organizations. However, the energy
usage of a cloud data center has drastically increased with the
increased demands of cloud based services [15]. Therefore,
many research efforts have been made to minimize energy
consumption along with other factors like makespan, ROI,
cost etc.

Initially, many researchers focused on heuristic algorithms
for solving task scheduling problem in the cloud comput-
ing environment. The heuristic algorithms mainly focus on
finding an optimal or near optimal solution [16]. These algo-
rithms explore search space for finding the best solution by
using features of the problem. These algorithms are prob-
lem dependent [17]. Many heuristic algorithms have been
developed and applied in the cloud environment for schedul-
ing independent tasks. The most important developments in
heuristic algorithms include minimum completion time algo-
rithm, minimum execution time algorithm, First Come First
serve basis algorithm, Min-Max algorithm, Min-Min algo-
rithm and Suffrage algorithm, Greedy Scheduling, Shortest
Task First, Sequence Scheduling, Balance Scheduling (BS),
Opportunistic Load Balancing, Min-Min Opportunistic Load
Balancing [18]–[20].

These algorithms have been widely used in solving the
task scheduling problem, mainly the static task scheduling

problem [21]. However, these algorithms suffer from a sig-
nificant limitation of being trapped in local minima as task
scheduling problem is a multi-modal problem [22].

To avoid trapping of heuristic algorithms in local minima
issue, meta heuristic algorithms have been developed. Meta
heuristic algorithms have several benefits over heuristic algo-
rithms, including flexibility, simplicity and ergodicity [17].
These algorithms can be easily deployed and found to be
less complex. These algorithms have the flexibility to solve
many optimization problems. These algorithms also possess
the capability of ergodicity for finding multi-modal search
space with appropriate diversity by avoiding local minima
simultaneously. The recent developments in metaheuristic
algorithms indicate that these algorithms are more efficient
and effective in task scheduling over classic task scheduling
methods [23]–[26].

Keeping advantages of meta heuristic algorithms into con-
sideration, several researchers have focused on task schedul-
ing usingmeta heuristic methods, specificallymulti-objective
scheduling methods. Fig. 3 presents the general workflow of
multi-objective scheduling methods. These methods require
the user task along with constraints (if any), applies the opti-
mization process involving crossover and mutation operators,
passes through different generations to obtain Pareto front of
solutions. The pareto front represents a set of non-inferior
solutions as a result of optimizing multiple objectives simul-
taneously. The administrator of the cloud data centre can
manually select or automatically apply some the desired solu-
tion as per requirements of the cloud data centre to allocate
tasks to the virtual machines as per the selected solution.

FIGURE 3. General workflow of multi objective scheduling methods.

Jena et al. [27] suggested an Artificial Bee Colony (ABC)
based approach for optimizing energy usage, computing
resource utilization, cost and processing time in the cloud
computing environment. The authors proposed to assign a
timestamp touser-submitted jobs on their arrival and maintain
a queue to serve the jobs on First Come First Serve basis.
The jobs are allocated to suitable data centres by using the
multi-objective ABC algorithm. Here, the ABC algorithm
maintains an external archive to save non-dominated vectors
during the scheduling process. Initially, the external archive
uses the Random numbers, followed by multi-objective ABC
algorithm generated values. They simulated the proposed
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approach using cloudSim software. Zheng and Cai [28] sug-
gested that in order to dispatch energy-aware load that
minimizes the electricity consumption and cost for online
cloud service providers, this model helps to save a con-
siderable amount of electricity by considering its volatility
using energy-efficient methods in cloud data centres. Luo
and Zhou [29] proposed an optimization algorithm for min-
imizing the energy consumption by workflow scheduling as
per service level agreement. The proposed method demon-
strated a reduction of a considerable amount of energy while
fulfilling the performance constraints in terms of cost and
time.

Guoning et al. [30] proposed a task scheduling method
based upon genetic simulated annealing algorithm. The main
focus of their proposal was to optimize the execution time of
the tasks in cloud data centres. Priyanto and Adiwijaya [31]
attempted to find an optimal task schedule with mini-
mum fluctuations using ant colony optimization algorithm.
An Improvement over ant colony optimization was suggested
by Preve [32]. The improved algorithm demonstrated the
minimization of makespan and balance the workload of the
cloud system in the grid environment. Banerjee et al. [33]
also improved the basic ant colony optimization algorithm
for allocating and scheduling services with the name of min-
imizing throughput to serve all incoming request as per ser-
vice level agreement and resource allocators. Feller et al. [34]
proposed to solve the problem of workload placement as
multi-dimensional bin packing problem in the cloud comput-
ing environment. The proposed solution dynamically places
cover cloth as per current load.

Pandey et al. [35] suggested a particle SwarmOptimization
based forest method for task scheduling of data centered
applications. The proposed approach considered compu-
tational overhead and data transfer costs simultaneously.
Tawfeek et al. [36]Suggested the use of ant colony optimiza-
tion algorithm for minimizing the execution time of tasks
in the cloud computing environment. The authors demon-
strated that ACObased approach as outperformed the conven-
tional methods like Round Robin, and First Come First serve
method. The authors of [37] proposed an approach using
particle Swarm Optimization algorithm for task scheduling
to optimize task execution time and utilization of computing
resources in the cloud data centre. Some authors suggested
integrating PSO and simulated annealing algorithms for task
scheduling in the Cloud Computing environment [37]–[39].
It has been observed that the integrated approach enables
the reduction in execution time of tasks and enhance the
utilization of computing resources in the cloud data cen-
tre. A stochastic hill climbing algorithm based approach is
developed in [40] solving for task scheduling problem in a
cloud computing environment. The proposed approach was
simulated in a cloud analyst. The authors demonstrated the
superiority of the proposed approach over First Come First
serve basis and Round Robin algorithms.

The authors of [41] performed the comparative analysis
of metaheuristic algorithms, namely Artificial Bee Colony

algorithm, Ant Colony Optimization algorithm and Particle
Swarm Optimization algorithm for task scheduling prob-
lem. It has been concluded that meta heuristic algorithms
outperform the conventional algorithms such as First Come
First serve algorithm, largest ask first algorithm, and random
algorithm for minimizing the execution time of tasks in the
cloud data centre. They proved that artificial Bee colony
algorithm outperforms the remainingmetaheuristic algorithm
in their experiment. The authors of [42] suggested a symbiotic
organism search algorithm for task scheduling problem. They
demonstrated that their approach outperforms the conven-
tional Particle Swarm Optimization algorithm, particularly in
large search space.

Most of the above mentioned work focused on minimizing
execution time or energy consumption of the cloud data cen-
tre using meta heuristic algorithms. Only a few methods con-
centrated on minimizing energy consumption, makespan and
cost simultaneously. Since makespan and energy consump-
tion are inversely proportional, it is desired to obtain a set
of non inferior solutions by optimizing multiple conflicting
objectives.

In this direction, Suresh et al. [43] proposed a PSO
approach based on the stimulated social behaviour of bird
flocking to solve multi-objective optimization problem. They
called each solution as a particle and adjusted its position in
the search page as per its flying experience and experience
of neighbouring particles. Omkar et al. [44], [45] proposed
an integrated approach based on Quantum behaved Particle
Swarm Optimization and vector evaluated particle Swarm
Optimisation algorithms for solving multi-objective Opti-
mization problem as single objective problem. They found
appropriate weights to the objective functions to compute
fitness function value as a single objective function value.
But the proposed solution lacks in guaranteeing the global
convergence. The global convergence issue was solved using
quantum behaved particle swarm optimisation algorithm that
uses state of the particle with wave function instead of veloc-
ity and position of the particles. However, determining the
optimized values of the weight factor for each objective func-
tion is practically tricky for real life problems.

Chen et al. [46] suggested integrating the latest whale
optimization algorithm with a multi-objective optimization
model for obtaining an optimized task schedule in the
cloud computing environment. The authors mainly focused
on improving the performance of the cloud systems with
available resources. Simulation-based experimental results
demonstrate the improved performance in terms of con-
vergence speed and accuracy for finding an optimal task
scheduling solution in comparison to traditional methods.
The authors provided improved system resource utilization
for small and large scale task configuration in the cloud data
centre.

On similar lines, multi-objective Wale Optimization
algorithm is developed for task scheduling in a cloud com-
puting environment in [47]. The authors attempted to sched-
ule the tasks on the basis of fitness parameters, relying
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on three conditions, namely, quality of service, resource
utilization and energy. They demonstrated that by con-
sidering these three parameters, task execution time and
cost of the virtual machines could be minimized by using
multi-objective Whale Optimization algorithm. The effi-
ciency of their proposed algorithm depends upon fitness
parameters. Sreenu et al. [48] proposed an approach called
W-scheduler for solving task scheduling problem using an
integrated approach of multi-objective model and whale opti-
mization algorithm. W-scheduler involves the computation
of fitness value by computing the cost function of mem-
ory and the central processing unit. It also adds makespan
and budget cost function into fitness value. By using a
whale optimization algorithm, W-scheduler attempts to find
an optimal schedule for allocating tasks to a given number
of virtual machines with an aim of minimizing costs and
makespan. They evaluated the performance of W-scheduler
in comparison to the traditional methods, namely, PBACO,
SPSO-SA, and SLPSO-SA in terms of cost and makespan.
Sanaj et al. [49] proposed a framework for map reduce and
an integrated approach for efficient task scheduling based on
genetic algorithm and whale optimization algorithm. They
proposed to extract task related features in the beginning.
The extracted features are further reduced using MRQFLDA
algorithm. The pool of the tasks are divided into a number
of sub tasks using the map reduce framework. Sub tasks are
assigned to virtual machines as per schedule produced by
genetic algorithm and whale optimization algorithm. These
algorithms are simulated using the well known cloudSim
environment. Experimental results demonstrate better perfor-
mance of the proposed algorithms over traditional algorithms.

In this work, we focus to use amulti-objective optimization
algorithm, namely non dominated sorting genetic algorithm
(NSGA)-II. NSGA-II has been successfully implemented in
a variety of optimization problems to find non-inferior solu-
tions in the form of Pareto front having multiple conflicting
objectives.

III. MULTI OBJECTIVE OPTIMIZATION
This section highlights the motivation behind using MOGA
andworking of NSGA-II [13] as multi-objective optimization
algorithm.

A. MOTIVATION OF MOGA
Multi-objective genetic algorithms have been successfully
implemented in different applications related to industry,
science and engineering [50]. These algorithms have been
widely used for solving multi-objective optimization prob-
lems in different areas. Most of the researchers use genetic
algorithms in two different modes. Some researchers con-
verted a multi-objective problem into a single-objective prob-
lem and applied the genetic algorithm to find an optimal
solution [51]. In this mode, the genetic algorithm is capable
of obtaining a single solution that optimizes the single objec-
tive. Generally, researches incorporate domain knowledge for

converting multi-objective problem into a single objective
problem.

The second mode uses genetic algorithms to solve
multi-objective problems by considering different objectives
separately. This mode produces a set of non-dominated
solutions. The obtained set of solutions provides trade off
between objectives for the users in the form of a Pareto
front [52]–[56]. The user can choose a solution from the set
of non-dominated solutions as per requirements. In this case,
there is no requirement of any specific knowledge to obtain
the set of non-dominated solutions. Multi-objective genetic
algorithms have been proposed in the recent past. It has been
concluded that NSGA-II is a fast and efficient algorithm in
the category of multi-objective genetic algorithms.

B. WORKING OF NSGA-II
Deb et al. (2000) [13] improved the NSGA proposed by
Srinivas & Deb (1994) [56] as NSGA-II. Figure 4 presents
the working model of NSGA-II. NSGA-II is also a
generation-based method wherein the working is based on
the dominance concept. It uses the concept of crowding dis-
tance for maintaining the diversity of individual solutions.
The parent chromosomes are selected using the tournament
approach. This algorithm involves sorting of the population

FIGURE 4. Flowchart of NSGA-II.
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as per non-dominant levels by comparing solutions for deter-
mining if other solutions dominate the solution. Solutions are
arranged in the form of Pareto front at different levels. Each
generation of the algorithm creates a new population from the
top level of Pareto front. If more solutions are required for
forming a new population, then solutions are taken from the
next front by considering their ranks. The rank of the solution
is determined by the number of solutions it dominates and
the number of solutions that dominates it [50]. The density
of the solutions is determined by using the average distance
between two points known as crowding distance. This algo-
rithm uses crowd comparison operation by considering the
non-dominance rank of the solutions. It does not use any
external memory. Due to these advantages, NSGA-II is con-
sidered as an efficient genetic algorithm in comparison to two
other variants of MOGA.

IV. THE PROPOSED FRAMEWORK
The proposed framework consists of four main modules as
depicted in Fig. 5. It involves the optimization of energy
consumption, makespan and cost of cloud services con-
sisting of allocating T = {T1,T2,T3, . . . ,Tm} tasks over
V = {V1,V2,V3, . . . ,Vn} virtual machines in cloud com-
puting environment. In this work, we assume that virtual
machine Vi works in the voltage range of {V_Mini,V_Maxi}.
Each Task Ti may consists of number of sub tasks
as {st1, st2, st3, . . . , stk}.
The detail of main modules is described below:

A. ENERGY USAGE COMPUTATION MODULE
This module employs dynamic voltage frequency scal-
ing (DVFS) system for computing energy usage of m virtual
machines in the cloud. DVFS system provides the energy
usage by each resource running at different voltage frequen-
cies. The energy usage of a virtual machine for running a sub
task is computed using Eq. (1).

EU = α × V 2
×Wfreq (1)

where V is the voltage level for operating the sub task Ti. α is
a constant factor, that is a multiple of flip frequency and load
capacitance. The value of α varies in the range of 0 to 1.
Wfreq represents the working frequency. The total energy
usage for completing a task is computed using Eq. (2).

EUTaski =
k∑
i=1

α × V 2
i ×Wfreqi × CTi (2)

where, CTi gives completion time for Task Ti on a given
virtual machine.

B. TASK ESTIMATION MODULE
The proposed framework involves developing a task schedul-
ing model based on evaluation factors employed in the
multi-objective scheduling approaches for optimizing multi-
ple objectives. As per survey conducted by [3], cost, energy
consumption, task completion time, task waiting time, flow

FIGURE 5. The proposed meta-heuristic framework.

time, failure rate, profit, carbon emission, makespan and
reliability are the most commonly used evaluation factors in
multi objective scheduling approaches.

In this work, we focused on the three most common met-
rics, energy usage, cost and makespan as evaluation factors
in the proposed framework using task estimation module.
Task estimation module computes energy usage for each task
using Eq. (2). Makespan refers to the time for the complete
execution of the last task. It is used as the most common
evaluation factor for multi-objective scheduling approaches.
It helps to reduce the execution time and meet the deadline
of the task [15]. The lower value of makespan metric indi-
cates the optimal schedule of virtual machines. It is com-
puted as the maximum completion time of all tasks by a
virtual machine among all possible schedules. In this work,
we express makespan as the completion time of final task by
a virtual machine to maintain simplicity using Eq. (3).

MS = MinSchedulej (MaxTaski ) (3)

Cost refers to the cost of computing resources required for
executing a task. We use Eq. (4) for computing cost [29].

Cost =
n∑
i=1

(ETi × RCi)+
n∑
i=1

(CTi × TTi) (4)
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where, ETj represents the execution time of the task Tj. RCj
gives the computing resource cost per unit time. CTi and
TTi denote completion time and task transfer time of task Ti,
respectively.

C. TASK SCHEDULING MODULE
This module enables the optimal scheduling of T =

T1,T2,T3, . . . ,Tm tasks over V = V1,V2,V3, . . . ,Vn virtual
machines in cloud data center by implementing NSGA-II.
The task scheduling develops a correspondence between T
and V to optimize the objective. In this work, we focus on
optimizing energy usage, makespan and cost represented by
Eqs.(3), and (4), respectively.

This module aims at scheduling tasks to virtual machines
for achieving minimum energy usage, makespan and cost
while meeting other constraints like availability of the
resources and capacity of the physical machines. The mod-
ule takes the input of estimation of evaluation factors,
namely, energy usage, makespan and the cost along with user
task requests. Further, the module applies a metaheuristic
approach for optimizing the evaluation factors by finding
a suitable schedule of tasks on the given virtual machines.
Mathematically, the task scheduling problem is described as
an optimization problem as per (5).

BestSchedule = minimize(EU ,MS,Cost) (5)

The main objective of the optimization process involves
identification of the best solution from the available solu-
tions. Therefore, it requires a set of evaluation criteria called
objective functions to compare all feasible solutions in the
search space. Cloud Computing environment may consist of
multiple objective functions that need to be optimized simul-
taneously like minimization of energy usage, minimization of
makespan and minimization of cost.

This module formulates a task scheduling problem as
a multi-objective optimization problem that optimizes the
energy usage, makespan and cost simultaneously. In order to
find an optimal solution for multi-objective task scheduling
problem, this module applies a constrained non-dominated
sorting genetic algorithm (NSGA-II) [13]. Mathematically,
task scheduling problem is described below.
Objective functions:
• Minimize (energy usage) =

∑
EU ji, Where, EUij gives

the energy usage for executing task Ti on virtual
machine Vj.

• Minimize (makespan) =Min
Schedule

(MaxTaski)
j

• Minimize (cost) =
∑n

i=1(ETi × RCi)+
∑n

i=1(CTi × TTi)

Design constraints:
• Each task T to be assigned to only one virtual machine.
• Completion time of each task must fulfill its deadline.
• Resource requirements of all tasks on a given virtual
machine must not exceed the maximum capacity of the
virtual machine.

• There is no dependence of tasks and virtual machines.

Since, fitness function is a function for measuring quality of
solutions, we proposed to use three objective functions for
minimizing energy usage, makespan and cost directly and
simultaneously as fitness functions for evaluating quality of
the solution in this work.

1) CHROMOSOME
A chromosome represents a task schedule as a feasible solu-
tion in thismodule, which gives a sequence of task assigned to
virtual machines as depicted in Table 1. Table 1 presents that
Task1, Task4, Task5, and Task10 are assigned to VM2, Task2,
Task6 and Task8 are assigned to VM3, Task3 is scheduled for
VM1 and Task7 is scheduled for VM4.

TABLE 1. Chromosome representation.

2) POPULATION INITIALIZATION
The module initializes the population using randomly as
expected solutions in search space. It computes the required
evaluation metrics for the randomly selected solutions corre-
sponding to each chromosome in the population.

3) PARENT SELECTION
In order to further explore the search space for finding an opti-
mal solution, this module applies the tournament selection
strategy for selection of individual solutions. The selected
individual solutions are used to obtain new solutions using
crossover and mutation operators.

4) CROSSOVER AND MUTATION OPERATORS
This module uses a single point crossover operator for the
selected chromosomes to explore the search space further.
The mutation operator is applied by flipping random bits
of the selected chromosome for exploiting the solution and
generating a new population for the next iteration.

5) DIVERSITY PRESERVATION
This module maintains a good spread of solutions in the
obtained set of solutions by using crowding function as the
default function of NSGA-II [13]. NSGA-II algorithm sorts
a population of assigned size according to the level of non-
domination; each solution must be compared with every other
solution in the population to find if it is dominated. Solutions
of the first non-dominated front are stored in the first Pareto
front, solutions of the second front on the second Pareto front
and so on. Solutions on the first Pareto front constitute the
new population if they are less than the initial population
size: solutions from the next front are taken according to their
ranks.
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In NSGA-II [13], for each solution, one has to determine
how many solutions dominate it and the set of solutions
to which it dominates. The NSGA-II estimates the density
of solutions surrounding a particular solution in the pop-
ulation by computing the average distance of two points
on either side of this point along each of the objectives of
the problem. This value is the so-called crowding distance.
During selection, NSGA-II uses a crowded-comparison oper-
ator which takes into consideration both the non-domination
rank of an individual in the population and its crowding
distance (i.e., non-dominated solutions are preferred over
dominated solutions, but between two solutions with the same
non-domination rank, the one that resides in the less crowded
region is preferred).

This module uses NSGA-II algorithm with above men-
tioned characteristics to find a set of non-inferior solutions as
an optimal set of task schedules in the form of Pareto front.
The set of non-inferior solutions provides a classification
trade-off for cloud service providers.

D. TASK ALLOCATING MODULE
Task allocating module assigns the selected non-inferior
schedule for optimized values of evolution factors to virtual
machines. The task of the selected non-inferior task sched-
ule can be selected by domain experts manually, or it can
be selected automatically based on some criteria as per the
requirement of cloud service providers.

V. EXPERIMENTS AND RESULTS
This section describes the experimental setup, including the
hardware and software platform for conducting a compre-
hensive set of experiments in this work. It also describes
evaluation data sets, synthetic data set and benchmark HCSP
data set. Experiment results are presented and discussed in
terms of evaluation factors, namely, energy usage, makespan
and cost in the following subsections.

A. EXPERIMENTAL SETUP
It is a very challenging task to evaluate scheduling methods
and other resource allocation strategies in a real Cloud Com-
puting environment. As the real cloud computing environ-
ment is based upon the pay-as-you-go model, it is monetarily
infeasible to conduct a repeatable experiment in a real cloud
computing environment with a varying degree of uniformity.

In order to address this issue, the researchers in the field
prefer to evaluate their scheduling methods using a simulated
environment that is based upon benchmark data sets. In this
work, we used the most commonly used cloud simulation
software called CloudSim (version 5.0) [57].

CloudSim simulation software is the most commonly used
simulation software for evaluating optimization techniques.
It simulates cloud system elements including data centres,
tasks and virtual machines. It also offers support for task
scheduling strategies and different kinds of energy usage
models for simulating different kinds of workloads. In this
work, we simulate a cloud model like Infrastructure as a

Service (IaaS) based on a single data centre. The suggested
data centre offers eight physical hosts of two different cate-
gories. Each machine consists of four virtual machines with
three different structures.

Table 2 presents the configuration of the simulated cloud
data centre. Table 3 presents settings for virtual machines as
per classification proposed by Amazon EC2. Table 4 presents
settings for physical hosts. We performed experiments on a
machine equipped with Intel (R) Core (TM) i5-4210 CPU @
1.70 GHz, 8GBs RAM, 1TB HDD under Windows 10 64-bit
operating system.

TABLE 2. Configuration of cloud simulated data centre.

TABLE 3. Setting of the simulated virtual machines.

TABLE 4. Setting of the simulated physical hosts.

B. BENCHMARK DATASET
In order to demonstrate the applicability of the proposed
task scheduling method and comprehensive comparison with
the existing approaches, we reused benchmark data sets,
namely, synthetic data set and HCSP data set developed by
Braun et al. [58].
In this work, we consider a benchmark data set having

different types of virtual machine instances and tasks for eval-
uating the proposed scheduling framework. Identified bench-
mark data sets in Worlds data pertaining to the execution
time of task ok on different virtual machines. We followed a
uniform distributed strategy for generating different instances
of the data set. We represented the attributes of the data
instances in terms of consistency, heterogeneity of task and
heterogeneity of resource.

In this data set, the attribute of the data instance is
represented as u_x_yyzz [58]. Here, u represents uniform
distribution. x represents consistency type. Three Types of
consistencies have been considered in this work as fully
consistent, partially consistent and inconsistent. yy represents
the heterogeneity of the task. zz represents the heterogeneity
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FIGURE 6. Attributes of data instances.

of the resource. Heterogeneity of task and resource can take
values of high and low. Fig. 6 summarizes the values of
the attributes of data instances. In this work, we focused on
uniformly generated data instances.

In this set of experiments, we followed a methodology for
evaluating the proposed task scheduling framework consist-
ing of 1) selecting a benchmark instance 2) executing the
task using proposed top scheduling method; 3) computing
evaluation factors, namely, energy usage, makespan and cost.

The performance of the proposed fast scheduling method
is compared with state-of-the-art in the field to demonstrate
the superiority of the proposed method.

1) HETEROGENEOUS COMPUTING SCHEDULING
PROBLEM (HCSP) DATASET
The benchmark data set HCSP data set is developed on the
basis of execution time for a computing matrix n number
of virtual machines and m number of tasks. HCSP data set
considers all heterogeneity and consistency for both tasks and
machines The HCSP model is based on the expected time
to compute (ETC) matrix having m number of tasks and n
number of VMs. This dataset considers three key properties
of ETC model (machine heterogeneity, task heterogeneity
and consistency). Here, uniformity denotes the instances that
are generated by uniform distribution. In this paper, all task
instances of HCSP dataset are assumed to be generated from
by uniform distribution.

Consistency indicates the characteristics of realistic sce-
narios and can take three values as fully partially consis-
tent and inconsistent. In a fully consistent model, whenever
a given machine mj executes any task ti faster than other
machine mk , then machine mj executes all tasks faster than
machine mk . This situation corresponds to an ideal case of
high machine heterogeneity and very low task heterogeneity
(or even identical tasks complexity), where the execution
time of each task is mainly determined for the computational
power of each machine, since tasks are supposed to per-
form at the same rate in all machines (and without requiring

large amount of remote data or communications). Although
such structured scenario seems to be unrealistic for general
purpose applications, it captures the reality of many SPMD
(single program, multiple data) applications executing with
local input data. An inconsistent model lacks of any structure
among the tasks computational requirements and machines
computational power, and this absence of relationships means
that a given machine mj may be faster than machinemk when
executing some tasks and slower for others. This category
comprises the most general scenario for a distributed infras-
tructure composed of highly heterogeneous resources which
receive any kind of tasks, from easy-to-solve programs to
very complex parallel models. In addition, a third category of
partially consistent models is included, to define those incon-
sistent systems that include a consistent subsystem. In this last
category, even though there is not a predefined structure on
the whole sets of tasks and machines, some of them behave
like a consistent system.

Resource or Machine heterogeneity evaluates the vari-
ation of execution times for a given task across the
resources in the computing system. An environment com-
prised of similar computing resources (i.e. parallel sys-
tems and almost-homogeneous clusters of workstations)
will be represented by low machine heterogeneity values,
while machine high heterogeneity values will represent
generic HC systems, composed by many computational
resources of different types and power (e.g. worksta-
tions, supercomputers, distributed environments and grid
systems).

Task or cloudlets heterogeneity represents the degree
of variation among the tasks execution times for a given
machine. High task heterogeneity values models those sce-
narios in which tasks of different types are submitted to
execute in the computing system, from simple programs
which demands very little computational effort, to large and
complex tasks which require high CPU times to perform.
On the other side, when the complexity and so the com-
putation requirements of the tasks are quite similar, those
tasks can be performed in rather similar execution times for a
given machine, a situation modeled by low task heterogeneity
values.

The structure of the data set instances is denoted as
u_xx_yyzz, where u denotes the instances that are gen-
erated by uniform distribution, xx denotes the type of
consistency [i.e., fully consistent (fc), inconsistent (ic)
or partially consistent (pc)], yy represents the task het-
erogeneity [i.e., high (hi) or low (lo)] and zz repre-
sents the resource heterogeneity [i.e., high (hi) or low
(lo)]. Each data set consists of 12 different instances
(i.e., u_fc_hihi, u_fc_hilo, u_fc_lohi, u_fc_lolo, u_ic_hihi,
u_i_hilo, u_ic_lohi, u_ic_lolo, u_pc_hihi, u_pc_hilo,
u_pc_lohi and u_pc_lolo).

The HCSP dataset used in this research is comprised of
four types of instances (i.e., c-hilo, c-lohi, i-hilo, i-lohi) hav-
ing a different level of task and resource heterogeneity is
given below:
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TABLE 5. Workload characteristics of HCSP data set.

• hilo: High heterogeneity of Cloudlet with low hetero-
geneity of VMs.

• lohi: Low heterogeneity of Cloudlets and high hetero-
geneity of VMs.

This data set contains with different structures like
(512×16), (1024×32), (2048×64), (128×4096), and
(256×8192). Here, the first number represents the number
of tasks, and the second number represents the number
of virtual machines. For example, 512×16 indicates that
512 tasks need to be scheduled on 16 virtual machines.
In the HCSP data set, there are a different number of
instances corresponding to each data set. For example,
there are four instances of 512×16 data set, eight instances
of 1024×32 data set and eight instances of 2048×64 data
set. The workload of the HCSP based data set is presented
in Table 5. The selected data set instances of HCSP data
set have been widely used for evaluating task scheduling
problems [59]–[61].

2) SYNTHETIC DATA SET
In this set of experiments, we used synthetic data set for
evaluating the proposed approach in comparison to the other
existing approaches. The synthetic data set is generated
using a pseudo random generation number. In this data
set, we generated 512, 1024, 2048, 128, and 256 hetero-
geneous tasks randomly. We followed general structure as
per HCSP data set like (512×16), (1024×32), (2048×64),
(128×4096), and (256×8192). Here, 512, 1024, 2048, 128,
and 256 represent the number of tasks to be mapped
to 16, 32, 64, 4096, 8192 number of virtual machines
respectively.

The generated tasks are represented as notation u_xx_yyzz,
described in Section V-B. We considered three levels of
cloud consistency as fully consistent, partially consistent, and
inconsistent.We also considered two level of heterogeneity as
high and low for tasks and cloud as described in Section V-B1
for HCSP benchmark data set.

C. RESULTS AND DISCUSSION
This section explains the experimental evaluation of the pro-
posed task scheduling method using benchmark data sets
in terms of energy usage, makespan and cost. The work-
load of distribution is computed and compared with each
virtual machine in the simulated environment of cloudSim
software. We evaluated the performance of the proposed
approach (MDVMA) in comparison to three well knownmeta
heuristic algorithms, namely, Artificial Bee Colony (ABC)
algorithm, Whale Optimisation Algorithm (WOA) and Par-
ticle Swarm Optmisation (PSO) algorithm. We conducted
10 independent executions of our experiments for each
dataset and presented average values the obtained results in
the following sections. Experimental results are described as
benchmark data set wise below.

1) EXPERIMENTAL RESULTS BASED
ON SYNTHETIC DATA SET
This section describes performance results of MDVMA in
comparison to the identified meta heuristic algorithms, ABC,
WOA and PSO in terms of energy usage, makespan and cost
based on synthetic data set as described in Section V-B2.
The evaluation parameters are computed using Equations 2, 3
and 4 as mentioned in Section IV-A and IV-B.

Table 6 presents the energy usage of cloud data center
for the given workload using synthetic dataset with differ-
ent number of virtual machines. It can be seen from the
results reported in Table 6 that energy usage using MDVMA
approach corresponding to various setting of virtual machines
is comparatively lower than other simulated algorithms in
this work. The total energy usage in cloud data center
using MDVMA approach is reduced by 55.80%, 34.92%
and 19.23% over ABC algorithm, WOA algorithm and PSO
algorithm respectively.

Figure 7 depicts the Comparative analysis of the perfor-
mance of MDVMA approach with other simulated meta
heuristic algorithms in terms of energy usage of the cloud
data center. The reporting results indicate that energy usage
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TABLE 6. Comparative summary results in terms of energy usage using
the synthetic dataset.

FIGURE 7. Comparative energy usage analysis of MDVMA approach with
other simulated algorithms using synthetic data set.

of MDVMA approach at each level of the number of virtual
machines is comparatively lower that of the state of art meth-
ods for task scheduling. MDVMA approach demonstrates
a better solution for task scheduling problem using meta
heuristic algorithmwith a lower value of energy consumption
at the cloud data center.

Table 7 presents the makespan metric values in seconds
for the given workload using synthetic dataset with differ-
ent number of task ranging from 100 to 600 recorded at
an interval of 50. It can be seen from the results reported
in Table 7 that makespan using MDVMA approach corre-
sponding to various setting of tasks is comparatively lower
than other simulated algorithms in this work. The total
makespan in cloud data center using MDVMA approach is
reduced by 12.22%, 7.78% and 5.56% over ABC algorithm,
WOA algorithm and PSO algorithm respectively.

Figure 8 depicts the comparative analysis of the perfor-
mance of MDVMA approach with other simulated meta
heuristic algorithms in terms of makespan with varying load
of number of tasks. The reporting results indicates that
makespan of MDVMA approach at each level of number of
tasks is comparatively lower that of the state of art methods

TABLE 7. Comparative summary results in terms of makespan using the
synthetic dataset.

FIGURE 8. Comparative makespan analysis of MDVMA approach, ABC
algorithm, WOA algorithm and PSO algorithm using synthetic data set.

for task scheduling.MDVMA approach demonstrates a better
solution for task scheduling problem using NSGA-II algo-
rithm with lower value of makespan at cloud data center at
all levels of number of tasks in cloud data center.

We have also evaluated MDVMA algorithm in terms of
cost and compared its performance with that of ABC algo-
rithm,WOA algorithm and PSO algorithm using the synthetic
data set. Table 8 presents the cost of the data center using
MDVMA algorithm, ABC algorithm, WOA algorithm and
PSO algorithm using synthetic data set for a given workload.
The workload used in the synthetic dataset contains a dif-
ferent number of task ranging from 100 to 600 recorded at
an interval of 50. It can be seen from the results reported
in Table 3 that total cost using MDVMA approach corre-
sponding to the various setting of tasks is comparatively lower
than other simulated algorithms in this work. The total cost
in the cloud data center using MDVMA approach is reduced
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TABLE 8. Comparative summary of results in terms of cost using the
synthetic dataset.

FIGURE 9. Comparative cost value analysis of MDVMA approach, ABC
algorithm, WOA algorithm and PSO algorithm using synthetic data set.

by 15.60 %, 9.34 % and 5.85 % over ABC algorithm, WOA
algorithm and PSO algorithm respectively.

Figure 9 presents the comparative analysis of the per-
formance of MDVMA approach with other simulated meta
heuristic algorithms in terms of total cost with varying load
of number of tasks using synthetic data set. The reporting
results indicates that cost of MDVMA approach at each level
of number of tasks is comparatively lower that of the state of
art methods for task scheduling. MDVMA approach demon-
strates a better solution for task scheduling problem using
NSGA-II algorithm with lower value of cost at cloud data
center at all levels of number of tasks in cloud data center.

2) EXPERIMENTAL RESULTS BASED ON HCSP DATA SET
This section describes performance results of MDVMA in
comparison to the identified meta heuristic algorithms, ABC,

FIGURE 10. Performance analysis of MDVMA algorithm, ABC algorithm,
PSO algorithm and WOA algorithm using HCSP dataset in terms of energy
usage (kwh).

WOA and PSO based on benchmark HCSP data set as
described in Section V-B1.

We presently used different data instances of HCSP data
set. For the sake of simplicity and clarity, we presented
and compared the results of one data instance denoted as
2048×64 consisting of 2048 tasks to be allocated to 64 virtual
machines in terms of three evaluation parameters, namely,
energy usage, makespan and cost. These evaluation param-
eters are computed using Equations 2, 3 and 4 as mentioned
in Section IV-A and IV-B. Figure 10 presents comparative
analysis of the performance of MDVMA approach, ABC
algorithm, PSO algorithm and WOA algorithm in terms of
energy usage based on a selected data instance (2048×64) of
HCSP data set. It can be observed from the reported results
that MDVMA approach out performs the other simulated
algorithms by reducing the energy usage by an considerable
amount of energy usage at all level of consistencies (fully
consistent / partially consistent / inconsistent) and hetero-
geneity of tasks and computing resources (high / low) over
ABC algorithm, PSO algorithm and WOA algorithm as pre-
sented in Table 9. The obtained results indicate that MDVMA
approach has reduced more energy usage in case of fully
consistent settings (u_fc_∗) than corresponding inconsistent
(u_ic_∗) and partially consistent settings (u_pc_∗).

Makespan represents overall execution time. It is consid-
ered as one of the most important evaluation factor in mea-
suring cloud services. Lower value of Makespan show better
performance and vice versa. Figure 11 presents comparative
analysis of the performance of MDVMA approach, ABC
algorithm, PSO algorithm and WOA algorithm in terms of
makespan based on a selected data instance (2048×64) of
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TABLE 9. Energy usage and reduction (% age) using MDVMA approach
over ABC algorithm, PSO algorithm and WOA algorithm using HCSP
dataset.

FIGURE 11. Performance analysis of MDVMA algorithm, ABC algorithm,
PSO algorithm and WOA algorithm using HCSP dataset in terms of
makespan (seconds).

HCSP data set. It can be observed from the Figure 11 that
MDVMA approach out performs the other simulated algo-
rithms by reducing the makespan considerably at all level of
consistencies (fully consistent / partially consistent / incon-
sistent) and heterogeneity of tasks and computing resources
(high / low) over ABC algorithm, PSO algorithm and WOA
algorithm as presented in Table 10.

It can be noticed fromTable 10 thatMDVMAapproach can
reduce makespan up to 15% ( in case of PSO for u_fc_hihi
data instance. However, in this setting MDVMA approach
and WOA algorithm behave similarly. Similar to the energy
usage results, MDVMA approach has resulted more reduc-
tion in makespan for fully consistent settings (u_fc_∗) than
corresponding inconsistent (u_ic_∗) and partially consistent
settings(u_pc_∗).

TABLE 10. Makespan and reduction ( %age) using MDVMA approach over
ABC algorithm, PSO algorithm and WOA algorithm using HCSP dataset.

FIGURE 12. Performance analysis of MDVMA algorithm, ABC algorithm,
PSO algorithm and WOA algorithm using HCSP dataset in terms of cost.

Figure 12 presents comparative analysis of the perfor-
mance of MDVMA approach, ABC algorithm, PSO algo-
rithm andWOA algorithm in terms of cost based on a selected
data instance (2048×64) of HCSP data set. It can be observed
from the Figure 6 that MDVMA approach out performs
the other simulated algorithms by reducing the makespan
considerably at all level of consistencies (fully consistent /
partially consistent / inconsistent) and heterogeneity of tasks
and computing resources (high / low) over ABC algorithm,
PSO algorithm andWOA algorithm as presented in Table 11.
Consequently, it can be observed from the above-reported
results that MDVMA approach outperforms ABC algorithm,
PSO algorithm andWOA algorithm in terms of energy usage,
makespan and cost based on synthetic dataset as well as a
selected data instance (2048 × 64) of HCSP data set.
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TABLE 11. Cost and reduction ( %age) using MDVMA approach over ABC
algorithm, PSO algorithm and WOA algorithm using HCSP dataset.

FIGURE 13. Comparative analysis of confidence interval for PSO, ABC,
WOA and MDVMA methods using synthetic dataset.

The reduction in makespan (execution time) leads to more
cloud customer satisfaction.Whereas, reduction in energy use
and cost leads to increase revenue of cloud service providers
by optimized task scheduling using MDVMA approach.

To prove the validity of MDVMA approach, we computed
and plotted confidence interval for synthetic and benchmark
datasets for cost in Figures 13 and 14 respectively. Confi-
dence Intervals are used to quantify the uncertainty by provid-
ing a lower limit and upper limit to represent a range of values
of the actual population parameter with a specified level
of confidence. We assumed 95% of the confidence interval
in our experiments. The comparative analysis of confidence
intervals for PSO, ABC, WOA and MDVMA methods indi-
cate that MDVMA outperforms existing methods.

Therefore, it can be concluded that MDVMA approach is
a practical and useful solution for obtaining optimized task

FIGURE 14. Comparative analysis of confidence interval for PSO, ABC,
WOA and MDVMA methods using benchmark dataset.

scheduling with reduced energy usage, makespan and cost in
comparison to other state of art optimization methods used
for cloud task scheduling.

VI. CONCLUSION
This paper presents a metaheuristic framework called
MDVMA for dynamic virtual machine allocation with opti-
mized task scheduling in a cloud computing environment
using NSGA-II algorithm. TheMDVMA framework simulta-
neously optimizes multiple conflicting objectives like energy
usage, makespan and cost and provides trade off to the Cloud
Service Provider as per their requirements by offering a set
of non inferior solutions to the task scheduling problem.
Experimental results demonstrate the superior performance
of MDVMA approach over the existing approaches, namely,
Artificial Bee Colony (ABC) algorithm, Whale Optimization
Algorithm (WOA) and Particle Swarm Optimization (PSO)
algorithm using two data sets, namely HCSP as benchmark
dataset and synthetic dataset in terms energy usage, makespan
and cost. The proposedMDVMA framework outperforms the
existing approaches by reducing energy usage by 35.82 %,
25.88 % and 16.13 %; makespan by 16.89 %, 10.64 % and
7.15 %; and cost by 15.60 %, 9.34 % and 5.85 % over
ABC algorithm, WOA algorithm and PSO algorithm, respec-
tively using synthetic data set. A considerable reduction in
energy usage, makespan and cost has also been achieved for
benchmark data instance 2048×64 of HCSP data set. In this
paper, we mainly focused on dynamic task scheduling prob-
lem. The proposed framework is designed for deployment
in cloud computing environment. We simulated cloud data
center environment in CloudSim Simulator. The proposed
framework is validated using realistic benchmark dataset of
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cloud tasks of different requirements like uniformity, con-
sistency, task heterogeneity and resource heterogeneity. The
obtained results demonstrated that proposed framework is
practical for deployment in cloud data centers. Our future
work will focus on developing optimal workflow scheduling
strategies for virtual machine selection and placement in the
cloud computing environment.
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