
Received April 19, 2021, accepted May 1, 2021, date of publication May 6, 2021, date of current version May 20, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3078113

A Deep-Learning Model for Estimating the Impact
of Social Events on Traffic Demand on a Cell Basis
JUAN L. BEJARANO-LUQUE , MATÍAS TORIL , MARIANO FERNÁNDEZ-NAVARRO ,
CAROLINA GIJÓN , AND SALVADOR LUNA-RAMÍREZ
Department of Communication Engineering, University of Málaga, 29010 Málaga, Spain

Corresponding author: Juan L. Bejarano-Luque (jlbl@ic.uma.es)

This work was supported in part by the Spanish Ministry of Science, Innovation and Universities under Grant RTI2018-099148-B-I00, and
in part by the Junta de Andalucía under Grant UMA18-FEDERJA-256.

ABSTRACT In cellular networks, a deep knowledge of the traffic demand pattern in each cell is essential
in network planning and optimization tasks. However, a precise forecast of the traffic time series per cell is
hard to achieve, due to the noise originated by abnormal local events. In particular, mass social events (e.g.,
concerts, conventions, sport events. . . ) have a strong impact on traffic demand. In this paper, a data-driven
model to estimate the impact of local events on cellular traffic is presented. The model is trained with a
large dataset of geotagged social events taken from public event databases and hourly traffic data from a
live Long Term Evolution (LTE) network. The resulting model is combined with a traffic forecast module
based on a multi-task deep-learning architecture to predict the hourly traffic series with scheduled mass
events. Model assessment is performed over a real dataset created with geolocated social event information
collected from public event directories and hourly cell traffic measurements during two months in a LTE
network. Results show that the addition of the proposed model significantly improves traffic forecasts in the
presence of massive events.

INDEX TERMS Deep-learning, multi task, social events, time series, cellular network, traffic forecast,
context.

I. INTRODUCTION
For many years, the introduction of new services and the
evolution of mobile devices have enlarged the traffic demand
in mobile networks, increasing their size and complexity [1].
Such a trend will continue in 5G systems, where services
of very different nature will coexist [2]. However, service
heterogeneity and network complexity make network man-
agement a very challenging task. This has stimulated the
development of automated network management solutions,
giving rise to Self-Organizing Networks (SON) [3].

In parallel, network management has changed from a
network-centric approach to a user-centric paradigm based
on customer experience (Quality of Experience, QoE) [4].
In this context, estimating the QoE perceived by end users
is critical. To this end, the latest SON platforms leverage
massive performance data in the Operation Support System
(OSS) by applying Big Data techniques to estimate QoE per
connection [5], [6]. Nonetheless, the large number of factors
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affecting user experience (e.g., human, system or context-
related factors) makes it difficult to establish the relationship
between network performance and user satisfaction [7].

One of the key factors affecting user QoE are capacity bot-
tlenecks occurring in the different network domains (radio,
transmission and core). To avoid them, a precise forecast of
the traffic demand is needed at different aggregation levels
(system, site, cell, etc.). For this purpose, many different
methods have been proposed (e.g., classical time series anal-
ysis [8], machine learning [9]. . . ). However, noise originated
by abnormal local events hampers a precise forecast. In par-
ticular, massive social events (e.g., concerts, conventions,
sport events. . . ) have a strong impact on traffic demand,
which depends on the type of event. In the past, these isolated
events have been excluded from the traffic analysis carried
out by operators to take long-term re-planning actions (e.g.,
bandwidth extension, new carrier, etc.). Thus, event informa-
tion has only been used for problem diagnosis in automatic
troubleshooting processes [10]. However, in 5G systems,
the introduction of network slicing will require a more agile
re-dimensioning process to allocate capacity to individual
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slices [11], which can only be done by considering future
local events.

In this paper, a methodology to estimate the impact of
social events on the daily traffic pattern of a cell is pre-
sented. The proposed model is trained with a large dataset
of geotagged social events taken from public event databases
and hourly traffic data from a live Long Term Evolution
(LTE) network. The resulting model is combined with a
classical traffic forecast algorithm to predict the hourly traffic
series with scheduled social events. The overall forecasting
system is evaluated with the same real dataset. When ana-
lyzing results, a preliminary analysis shows the impact of
different types of events on cellular traffic statistics, and,
then, the accuracy of the prediction system is evaluated. The
rest of the paper is structured as follows. Section II revises
related work to highlight the main contribution of this work.
Section III outlines different neural network architectures
compared in the study. Section IV describes the proposed
event-based traffic forecasting system. Section V presents the
performance assessment. Finally, section VI summarizes the
main conclusions of the work.

II. RELATED WORK
Traffic forecasting is part of anticipatory networking, whose
aim is to characterize human behavior and network dynam-
ics to optimize the assignment of network resources. Since
these resources has to be managed at different levels,
plenty of research has been done to forecast cellular traffic
with different space resolutions (e.g., cell area [12], [13],
city [14], province [15] or network [16]) and time horizons
(e.g., seconds [12], minutes [13], [17], hours [14], [18],
days [16] or months [15]). Long-term prediction aims to
find the general trend of the traffic time series for network
re-planning purposes, while short-term prediction tracks fast
fluctuations of traffic demand for dynamic radio resource
management.

Traditionally, traffic demand forecasting has been treated
as a time series analysis problem. Earlier works propose
linear models, such as Holt-Winters exponential smooth-
ing or seasonal Auto-Regressive Integrated Moving Average
(ARIMA), to forecast cellular traffic. These models define
time-dependent variables as a combination of trend, seasonal
and noise components. In [16], a SARIMA model is used to
forecast daily traffic on a GSM network for the next 28 days.
In [15], such an approach is extended to predict busy hour
traffic on a monthly basis in a province. In [18], a Holt-
Winters model is presented to forecast traffic carried per cell
for 7 days on an hourly basis. In [13], the time series are
first decomposed into regularity and randomness components
via principal component analysis and then ARIMA is applied
to predict traffic carried in 9,000 cellular towers. In [12],
an ARIMA/GARCH model is proposed to predict Transmis-
sion Control Protocol (TCP) traffic at different time steps
(1, 10 and 100 seconds). In [19], the evolution of achievable
data rate per second for specificmobile users is predictedwith
ARIMA. These approaches can be extendedwithGeneralized

AutoRegressive Conditional Heteroskedasticity (GARCH)
non-linear models for non-stationary series whose error vari-
ance changes with time [18]. Likewise, activity-based models
built from call detail records capture commuting patterns in
metropolitan areas, which can be used to predict daily traf-
fic fluctuations on an hourly basis [20], [21]. Alternatively,
traffic prediction can rely on signal processing to capture
short-term variations (e.g., Kalman filtering [22] or temporal
compressive sensing [23]).

With recent advances and increasing interest in compu-
tational intelligence, modern traffic forecasting is based on
machine learning algorithms, e.g., support vector regres-
sion [24] or artificial neural networks (ANN) [9], [25]).
Amongst ANN, Recurrent Neural Networks (RNN) are espe-
cially suitable for processing data sequences, since they
feed the output from a layer to the neurons of a previous
layer to form directed cycles that provide memory. In [26],
cellular traffic is predicted by clustering groups of similar
cells, removing redundant information by wavelet decom-
position and capturing temporal dependencies with Elman
neural networks. The latter dependencies can be derived
more precisely with Long Short-Term Memory (LSTM)
networks, which retain information for longer periods of
time [27]. With LSTM, cellular traffic can be forecasted
on a cell basis at different time scales [28]–[30]. Alter-
natively, unsupervised Deep Belief Networks can be used
to capture long-range dependence in network traffic when
predicting with higher time resolutions [31]. All the above
schemes focused on temporal variations can be extended
by adding spatial dependencies between adjacent regions,
derived with autoencoders [24] or Convolutional Neural Net-
works (CNN) [32], [33]. For this purpose, the scenario is
often divided into a regular grid of regions by aggregating
the traffic demand per region. More complex dependencies
at a cell level can be modeled more effectively by feature
extraction based on traffic correlation [34] or Graph Neural
Networks (GNN) [17], [35].

User context has a strong influence on the mobile appli-
cations and services requested by persons [36]. As a result,
daily traffic fluctuations at a cell level strongly depend on
time of day (e.g., working hours, commuting hours, night)
and the kind of human activity in the area (e.g., home, trans-
port hub, nighttime hot spot. . . ) [37]–[39]. User context can
be derived from active measurements collected by sensors
in the end user device. For instance, in [40], an on-body
wireless sensors system is used for activity recognition with
ensemble learning. However, those measurements are seldom
available for operators. Alternatively, context information can
be inferred from network measurements collected in the OSS
by applying Big Data techniques [5]. In [41], a method based
on signal measurements from smartphone sensors is proposed
to detect indoor/outdoor locations. Likewise, in [42], a data-
driven algorithm is proposed to compute the probability that
a certain connection is indoors from traffic descriptors in
connection traces. To improve estimation accuracy, loca-
tion information provided by the network can be enriched
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with external data. For instance, some social networks (e.g.,
Twitter) share crowdsourced data with the location of text
messages, which can be used to infer the spatial user distribu-
tion [43], [44]. Once context information is obtained, it may
be applied to enhance SON algorithms for self-planning [45],
self-optimization [46], [47] and self-healing [48]. A survey
of prediction and optimization methods exploiting context
information to forecast the evolution of network conditions
and assign network resources proactively is presented in [49].

Massive social events attracting many people to the same
location and time are an example of how user context influ-
ences network performance. For this reason, there is a grow-
ing interest in anticipating and characterizing this kind of
events. In [50], a big data mining platform is proposed to
detect geolocated social events from geotagged posts in social
networks. Other studies consider social network connections
to predict participation on a specific social event [51], [52].
Fortunately, many social events are scheduled in advance,
which might be used to anticipate traffic peaks requiring
corrective actions [53]. Yet, these isolated events are excluded
from the analysis carried out by operators for network
re-planning, since the latter is focused on a much longer time
horizon (i.e., 3-6 months).

In this work, a novel context-aware approach for medium-
term (i.e., hourly) traffic forecasting in cellular networks is
presented. The proposed model aims to predict traffic peaks
on a cell basis due to an unusual spatiotemporal aggregation
of users caused by group events. The model relies on a Mul-
titask Convolutional-LSTM network to model normal traffic
fluctuations during a day in a cell. However, unlike previous
works, the proposed method not only considers network mea-
surements as inputs, but also user-context information related
to social events. Method assessment is performed over a real
dataset created with geolocated social event information col-
lected from different public event directories and hourly cell
traffic measurements during two months in a LTE network.

It is well known that deep-learning architectures outper-
form classical time series analysis models for cellular traffic
forecasting, especially when available measurements present
a fine temporal and spatial granularity [30], [54]. However,
all the above-mentioned works exclusively consider network
information or simple time-independent location-based fac-
tors (e.g., points of interests in [34]) as inputs to their models.
It is still to be checked if prediction accuracy can be improved
by adding information related to external factors, such as
social events. Social event information is usually publicly
available for future events, so that it can be easily collected
by mobile operators for traffic prediction purposes. However,
once the event has taken place, such information is normally
deleted, hampering the creation of a large dataset to train
a deep-learning model. Such a difficulty may explain why
social event information has not yet been considered in state-
of-the-art traffic forecasting models. To the authors’ knowl-
edge, no method has been proposed for traffic forecasting in
mobile networks based on deep learning considering social
events as an input. Hence, the main contributions of this work

are: a) the preliminary analysis quantifying the impact of
different types of events on cellular traffic, and b) a method
for cellular traffic forecasting at a cell level on an hourly basis
that takes into account social events.

III. NEURAL NETWORKS OVERVIEW
This section provides a brief overview on the different ANN
architectures used in this work.

A. MULTILAYER PERCEPTRON
The most common ANN structure to approach regression
problems is the Multilayer Perceptron (MLP) [55]. MLP is a
feed-forward network of perceptrons, consisting of an input
layer, an output layer and, optionally, one or more hidden
layers. Each perceptron provides an output by processing a
biased weighted sum of inputs with an activation function
(e.g., Regularized Linear Unit (ReLU), sigmoid. . . ) to cap-
ture non-linear dependencies. The MLP is trained with a
back-propagation method [56] that optimizes a selected loss
function (e.g., mean absolute error) using a gradient descent
algorithm.

B. LONG SHORT-TERM MEMORY
LSTM networks are a type of RNN used to tackle time
series problems. Unlike feed-forward networks, RNNs allow
previous outputs to be considered as inputs by means of a
neuron hidden state.

The operation of the LSTM neuron is controlled by three
gates [27]. A forget gate defines the importance of the pre-
vious cell state, which models the long-term memory of the
neuron. Then, an input gate computes the new cell state from
the input and the previous hidden state, representing the short-
term memory of the neuron. For this purpose, a candidate
cell state is first computed, which is later combined with the
previous cell state. The output gate computes the new hidden
state from the input, the previous hidden state and the new
cell state. The final output is computed by processing the new
hidden state.

The basic LSTM network consists of a single hidden
layer, with several LSTM neurons to model multiple hidden
states, and an output layer, consisting of a fully connected
layer of perceptrons to derive the forecasted value(s). Addi-
tionally, multiple hidden layers may be stacked in a deep
structure where each layer provides a new sequence to the
next layer [57]. These additional layers can be used to repre-
sent the problem at different times scales [58].

C. CONVOLUTIONAL NEURAL NETWORK
CNNs [59] are feed-forward networks with an input layer,
one or more hidden convolutional layers with convolutional
neurons and a regression layer of perceptrons. Convolutional
layers perform filtering operations to extract high-level fea-
tures of input data with convolutional neurons. Unlike the
perceptron, a convolutional neuron trains a kernel, to perform
a convolution operation over a certain dimension (e.g., time
in a time series or space in an image). The output of the
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FIGURE 1. Block diagram of the proposed deep-learning traffic forecast model.

neuron is an array with the relevant information compressed.
For large inputs, an intermediate pooling layer [60] is added
between convolutional layers to compress data, which helps
to extract prominent features while reducing computational
and overfitting issues [61]. For small inputs, convolution
operations are enough to compress data. Then, the resulting
features are the input to the final regression layer, which is a
fully connected layer of perceptrons.

D. AUTOENCODER
An autoencoder (AE) is a feed-forward network that learns
an efficient coding of its input [62]. In particular, deep AEs
exploit non-linear operations to learn low-dimensional rep-
resentations with smaller error than linear feature reduction
schemes (e.g., principal component analysis) [63]. To this
end, most AEs have a symmetric structure, consisting of a
contractive and expansive path (a.k.a. encoder and decoder).
In undercomplete AEs, the encoder performs dimensionality
reduction by pooling or down-sampling operations to obtain
essential features of the input (latent space representation).
Alternatively, regularized AEs use latent spaces larger than
the input to favor other properties (e.g., sparsity, noise robust-
ness or small derivatives).

In this work, a convolutional AE is tested to predict a time
series (daily cell traffic) from past values of the same series
and a second time series (event occurrence series). Dimen-
sionality reduction is achieved by convolution operations and
reconstruction is done only for one of the input series (cell
traffic).

IV. TRAFFIC FORECASTING METHOD
The proposed method aims to increase accuracy in cell traffic
forecasting, correcting a classical deep-learning time series
model with spatio-temporal information of scheduled events.
For this purpose, a thorough understanding of the following
factors is needed:

a) The usual daily traffic pattern of each cell in the
network.

b) The spatio-temporal distribution of events in the sce-
nario (i.e., where, when and for how long an event takes
place).

c) The impact of each type of event (e.g., sport match,
music concert. . . ) on cell traffic.

Fig. 1 shows a block diagram of the proposed forecasting
method. The inputs to the method are: a) the past hourly
cell traffic measurements, b) the cellular network layout,
including site coordinates and antenna azimuths in the area,
and c) the information of scheduled social events taking place
in the scenario (i.e., location, date, duration and type of
event). All these inputs provide valuable information about
traffic carried in the network. On the one hand, past traffic
measurements give a notion of the usual traffic carried in
each cell. On the other hand, network layout and location
of social events determine the cells serving people attending
such events. Finally, the scheduled time, duration and type
of event help to model the impact of specific events on cell
traffic. The output of the model is the predicted time series of
cell traffic on an hourly basis.

The method consists of three stages. The first stage aims
to collect and pre-process input data. The second stage aims
to predict the traffic carried per cell in normal conditions,
i.e., without social events. Finally, the third stage aims to
estimate the corrected traffic series including the impact of
social events. A more detailed explanation of each stage is
provided next.

A. STAGE 1: DATA COLLECTION AND PRE-PROCESSING
In cellular networks, cell traffic measurements are period-
ically gathered in the OSS for network management pur-
poses. In this work, traffic measurements are aggregated on
an hourly basis, since most social events last for a couple
of hours. Note that a higher time resolution is not needed,
since the exact start/end time of events is not registered in
event databases. Moreover, the data collection period and
geographical areamust be large to have enough events to train
a deep-learning model. It is shown later that a nationwide
measurement dataset of a couple of months is enough to
obtain reliable results. Network layout is provided by the
network operator. Finally, information on past social events
is collected in this work by combining different sources:

1. Event discovery platforms, on-line calendars and ticket-
ing applications. These on-line platforms offer information
of upcoming events in each city. Some of them, such as
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FIGURE 2. Multi-task convolutional long short-term memory model for normal traffic forecasting.

Eventful [64] or Yelp [65], keep all this information in a
database, which is easily accessible via an Application Pro-
gramming Interface (API).

2. Websites of city councils, local newspapers and
specialized magazines. The websites of city councils of main
cities, as well as some online newspapers and specialized
magazines, contain a calendar with events held in cities. This
information can be collected by web-scraping techniques.
In some cases, these sources do not provide the latitude
and longitude of the event location explicitly, so they must
be obtained from the postal address by using geocoding
techniques.

3. Organizations and business online sites. Organizations
dedicated to orchestrate public events (e.g., sport federations)
and business hosting them (e.g., concert halls or theaters)
usually publish scheduled events in their online sites. In some
cases, information about past events is also publicly available,
so that it can be collected by web scraping.

4. Open data platforms. In the last years, the considerable
interest in big data and machine learning techniques has
fomented the access to public data. This fact has led public
administrations (e.g., city councils, state governments, etc.) to
create open platforms providing data of diverse nature easily
accessible to developers. Some of these platforms include a
database with information on social events.

Traffic measurements are used to build a traffic time series
per cell c, and hour t , T (t, c), measured in bits per second.
To avoid that cells with higher traffic bias the error term in
the training stage, all the time series is normalized by the cell
busy hour traffic. Then, each event is assigned to a serving cell
based on its coordinates. To this end, the dominance area of
each cell is computed by Voronoi tessellation and sectoriza-
tion based on site coordinates and azimuth angle [66]. Next,
event date/time information is used to construct an event time
series per cell and type of event, E(t, c, e), with the same time
resolution as T (t, c). Specifically, E(t0, c, e) equals 1 if an

event of type e takes place in the area served by cell c, and
0 otherwise.

B. STAGE 2: NORMAL TRAFFIC FORECASTING
The traffic forecasting stage aims to predict the daily traffic
pattern carried in each cell in normal conditions, i.e., without
social events. For this purpose, a Multi-task Convolutional-
LSTM network (MT-ConvLSTM) is selected, due to its
better performance compared with other state-of-the-art
alternatives.

To model the impact of social events on cell traffic before,
after and during the event, it is first necessary to infer the
typical traffic pattern in a day without event. Fig. 2 details
the structure of the MT-ConvLSTM model used to charac-
terize the normal daily traffic fluctuation on a cell basis. For
clarity, the figure not only depicts the building blocks, but
also the size of data structures exchanged between layers.
The MT-ConvLSTM architecture consists of 2 stages. In a
first stage, multiple independent ConvLSTMmodels are used
to process past traffic measurements from the cell under
analysis and its co-located neighbor cells (hence the name
multi-task). In the example, a tri-sectorized site is assumed,
consisting of a serving cell and two neighbors. In a second
stage, a fourth model is used to predict daily traffic in the
analyzed cell by merging the output of models in the previous
stage. Input size in each of themodels in the first stage is given
by the observation window, which should be large enough
to capture several daily and weekly repetition cycles. Since
traffic correlation degrades after a few weeks [67], a 3-week
observation window is selected. Specifically, the input mod-
els comprise 4 hidden layers (2 convolutional and 2 LSTM),
each of 24 neurons, to derive features at different time scales.
The output model comprises 2 LSTM hidden layers and an
output layer, each of 24 neurons, generating 24 outputs (1 per
hour of day) to avoid the need for recursively iterating the
model to cover the 24-hour horizon.
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It should be pointed out that time series models are con-
ceived to build a model per time series (i.e., per cell).
However, the short length of the data series collected per cell
(e.g., 1,440 samples for a 60-day period) limits the number
of datapoints (time lapses) that can be used to train the
model on a cell basis. To circumvent this problem, in this
work, a single MT-ConvLSTMmodel is trained for the entire
network, as in [68]. To this end, the whole network is con-
sidered as a single time series, as if the time series from the
different cells were concatenated into a single time series.
This process is implemented by generating 3 artificial time
series: a first one made by concatenating the time series of all
cells serving venues where events take place, and other two
series corresponding to the co-located neighbors in the same
frequency band of the tri-sectorized site. Then, the datasets
used to train the MT-ConvLSTM are generated with all the
time lapses from every cell time series in each group, avoiding
those observation windows in the joint of two cell time series.
Thus, the input to train the MT-ConvLSTM model are 3 time
series with the values of the traffic time series T (t, c) of
each cell c in the site during the observation window tobs,
i.e., ∀t ∈ [t − tobs + 1, t]. To avoid the impact of events,
the day-hours when social events took place in the past are
discarded inside the MT-ConvLSTM network by a masking
layer. Note that, even if the model is trained network wide,
the model is later executed on a cell basis to forecast traffic
in individual cells. Thus, the output of the model is the time
series for the next 24 hours in normal conditions predicted
per serving cell, i.e., {T̂f (t+1, c), · · · , T̂f (t+24, c)}∀c (f for
filtered).

C. STAGE 3: MODELING THE IMPACT OF EVENTS
Unlike traffic forecasting, the estimation of the impact of
social events is solved as a regression problem. For simplicity,
it is assumed that the impact of an event is restricted to a single
cell (the one serving the central location of the event) and a
limited time window (11 hours centered at the central hour of
the event). This assumption is derived from the fact that social
events tend to take place in a single venue with a specific
schedule. Thus, the traffic peak generated by attendees is
often limited to the cell serving the venue while the event
takes place and, maybe, in the preceding and following hours,
when people arrive or leave the event. Hence, the model only
needs to update the daily traffic forecast in the selected time
window around the event in the serving cell.

To that end, a time-windowed version of the (predicted)
normal traffic, (scheduled) event occurrence and (measured)
real traffic time series is constructed, denoted as T̂f w(t, c),
Ew(t, c, e) and Tw(t, c), respectively (w for windowed). As a
result, 2 + Net time series of 11 samples are generated per
cell with an event, where Net is the number of event types.
With these short time series, a deep-learning model is trained
to predict the real traffic in the cell during the considered
time window, T̂w(t, c). In the training phase, each datapoint
corresponds to an event occurring in the network, charac-
terized by the values of the inputs, T̂f w(t, c) and Ew(t, c, e),

and the output, Tw(t, c). For simplicity, a separate model is
trained per event type for the whole network. In the exploita-
tion phase, the predicted traffic values, T̂w(t, c), are used to
replace the normal traffic values in the 11 hours around the
event, T̂f (t, c), to obtain the daily traffic pattern of the next
24 hours, {T̂ (t + 1, c), · · · , T̂ (t + 24, c)} ∀ c.
Fig. 3 shows the three different architectures tested for

modeling the impact of events. The first architecture, shown
in Fig. 3(a), is a MLP. The input is a bi-dimensional matrix,
consisting of the traffic forecast, T̂f w(t, c), and the event
occurrence vector, Ew(t, c, e), in the event time window.
A flatten layer turns the 2 × 11 input matrix into a 1 × 22
one-dimensional array. The output layer consists of a fully
connected layer of 11 perceptrons to model the different time
lags in the event window.

The second architecture, shown in Fig. 3(b), is a CNN of
two hidden layers. The first convolutional layer merges traffic
and event occurrence information, while the second convolu-
tional layer compresses the information further. To this end,
a kernel of different size is used in each layer. The regression
layer consists of flatten layer and a fully connected layer
of 11 perceptrons. The third architecture, shown in Fig. 3(c),
is a convolutional AE. In this architecture, the predicted
traffic in a cell in a certain time window (e.g., a day) is
compressed into its relevant information through the contract-
ing path, and then such a time series is upsampled again in
the expansive path according to the impact of events taking
place in the cell. In the latter two architectures, intermediate
dropout layers are inserted between hidden layers. These
layers help to neglect randomly selected neurons during the
training stage to reduce the sensitivity to the weight of spe-
cific neurons. Thus, overfitting is avoided, improving the
generalization capability of the network.

V. MODEL ASSESSMENT
The proposed model is evaluated with a real dataset cre-
ated with geolocated event information collected from public
event directories and hourly cell traffic measurements from a
LTE network for two months. For clarity, the dataset is first
described, the analysis setup is then explained and results are
presented later. Finally, computational aspects are discussed.

A. DATASET
Traffic data is collected in a live LTE network covering a
geographical area of more than 500,000 km2 with 50 million
inhabitants. The network comprises 17,775 cells placed
in 4,869 sites. Traffic measurements are gathered per cell
and hour for 2 months (February and March 2019) in both
downlink (DL) and uplink (UL). Only 323 cells that served at
least one social event are considered. As a result, 2*323 time
series are obtained (1 per cell and link) with 60× 24 = 1440
measurements of hourly traffic volume.

By combining the sources listed in IV-A, a total
of 1,367 categorized social events were collected for the con-
sidered area and period. Cell footprints obtained by Voronoi
tessellation indicate that these events were served by only
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FIGURE 3. Deep-learning models for estimating the impact of social events.

TABLE 1. Event categories.

323 cells, showing that some cells served multiple events.
To reduce the number of models, events are grouped into
8 classes, described in Table 1. Such an event categorization
is conditioned by the classes provided by event directories.

Fig. 4 (a)-(b) show 2 pie charts with the event count per type
in working days and weekends. It is observed that the most
common category in the dataset is music (441 events).

B. ANALYSIS SET-UP
A preliminary analysis shows the influence of events on
cellular traffic by approximating the additional traffic in a
day generated by events. To this end, the typical daily traffic
pattern per cell is derived by averaging the daily traffic series
in days without events. Then, the additional average daily
traffic intensity caused by an event in a cell is estimated by
aggregating the excess traffic in the hours of the event and
redistributing it along the 24 hours of the day, as

1Te,s =

∑
c
∑

t∈[1,24]
(
Tc,e(t)− Tc,s(t)

)
24

[bps], (1)

where 1Te,s is the additional average traffic intensity of the
type of event e and type of day s (i.e., working/weekend),
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FIGURE 4. Share of events.

Tc,s(t) stands for the typical daily traffic pattern per cell c and
type of day s, and Tc,e(t) is the traffic in the hours of the day
where an event of the type e happened in cell c.

Later, a more detailed analysis of the hourly traffic pattern
associated to events is performed with the proposed fore-
casting system. For this purpose, a single MT-ConvLSTM
model trained with the time series of the 323 cells in the sce-
nario is used to forecast normal traffic fluctuations on a cell
basis. To justify the choice of the MT-ConvLSTM network,
the model is compared with 2 classical time series analy-
sis schemes, namely Holt-Winters [16] and SARIMA [18].
As the latter fail to capture long-term periodicity, only for
these two methods, a separate model is generated per cell
to predict normal traffic in working days and weekends,
respectively. For this purpose, two artificial time series with
working days or weekends are created to train the models
separately. In both cases, the observation window is 7 weeks
and the algorithms are applied recursively to predict the
traffic in the 24 hours of the next day (i.e., 24-hour horizon).
The proposed method is also compared with more modern
approaches, such as a the basic LSTM, a Convolutional-
LSTM (ConvLSTM) [69], a Dilated Convolutional network
(D-Conv) [70] and a Multitask LSTM (MT-LSTM) [71].

The improvement from adding the impact of events is
quantified by comparing the basic MT-ConvLSTM network,
providing the normal traffic forecast, against the system that
extends the MT-ConvLSTM with a MLP, CNN or AE to
model the impact of events. Since different events have a
different impact, a separate model is derived per event class.
For simplicity, the analysis is focused on two of the most

TABLE 2. Hyperparameter settings for traffic forecasting stage.

common events, namely sport andmusic events. In both mod-
els, each datapoint consists of an input vector of 2*11 values
with normal traffic and event occurrence values and an output
vector of 11 values with the corrected traffic.

All the models are implemented with scikit-learn,
statsmodels and Keras libraries. Hyperparameter tuning is
performed by a grid search in the parameter space [72].
Tables 2 and 3 present the final hyperparameter settings
selected for the algorithms in the normal traffic forecasting
and event modeling stages, respectively.

As a common practice, 80% of the available datapoints are
randomly selected for training and 20% for testing. In the
latter, the overall prediction accuracy is measured by the
Mean Absolute Error (MAE), computed as

MAE =
1

NcNt

∑
c

∑
t

|T̂ (t, c)− T (t, c)| , (2)
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TABLE 3. Hyperparameter settings for event correction stage.

where T̂ (t, c) and T (t, c) are the predicted and measured
traffic in hour t in cell c and Nc and Nt are the amount of
cells and hours measured in each cell in the dataset.

C. RESULTS
1) PRELIMINARY ANALYSIS OF IMPACT OF EVENTS
Fig. 5(a) and Fig. 5(b) present violin plots of the distribution
of additional traffic intensity per cell and day produced by
different events, segregated for working days/weekends and
downlink/uplink. For clarity, traffic values are represented in
a logarithmic scale and values below 1 kbps are substituted by
1 kbps. In both figures, it is observed that most classes have a
wide base, which points out that a significant number of the
collected events have negligible influence on network traffic.
However, some classes have extreme values above 10 Mbps,
confirming that some events have a strong impact on network
traffic. Likewise, some classes (e.g., Others, Entertainment)
have a wide plot for the whole y-axis. Such a diversity makes
it difficult to estimate the impact of each of these events.
In contrast, a few classes (e.g., Sport) show two clearly
differentiated intervals in the distribution, with most samples
concentrated around a median value higher than 1 Mbps.
These classes are the ideal candidates for traffic prediction,
since they consistently have a large impact.

By comparing Fig. 5(a) and Fig.5(b), it is observed that the
median value in DL is higher in most classes. Thus, the influ-
ence of events in absolute terms is larger in DL, which was

FIGURE 5. Distribution of additional traffic intensity per event type.

expected as DL traffic is higher. However, the comparison of
Fig. 5(a) and Fig.5(b) shows that, even if traffic on weekends
tends to be lower, the impact of events is larger on weekends
due to a larger audience. The exception is the Tourism class,
whose events on weekends have a lower impact on the DL
and a higher impact on the UL. This result might indicate that
attendees to these events on weekends tend to upload (rather
than download) content. The rest of the analysis is focused on
Sport and Music event classes.

2) FORECASTING MODEL ASSESSMENT
Table 4 breaks down MAE statistics for all tested models
when forecasting the traffic in the considered 323 cells with-
out considering the impact of events. As previously advanced,
the MT-ConvLSTM model achieves the lowest MAE in both
DL and UL, even if a single model is derived for the whole
network. Note that higher values in DL are due to the higher
traffic in DL.

Table 5 presents the overall MAE achieved by the different
event correction models for cells/days with sport and music
events, respectively. Recall that the analysis is restricted to
the hours around the event. It is observed that the three
models considering the impact of models outperform the
basic MT-ConvLSTM model in both types of events. In DL,
a 3-fold MAE reduction is observed for sport events with
any of the three event correction models (specifically, MAE
reduction is 36.7% for MLP, 37.5% for CNN and 34.1%
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TABLE 4. Overall mean absolute error for normal traffic
forecasting [kbps].

TABLE 5. Overall mean absolute error after correcting event
impact [kbps].

for AE). This result clearly indicates that sport events in the
selected databases have a large influence on cell traffic and
their impact is predictable. In particular, MT-ConvLSTM +
CNNachieves the lowestMAE,with 3005.0 kbps. In contrast,
for music events, MAE reduction is much smaller (4.7%,
4.5% and 1.6% for MLP, CNN and AE). This result is due to
the smaller audience and larger heterogeneity of music events
stored in event databases. Similar results are obtained in UL,
detailed in Table 5, where MAE reduction for sport events
varies from 22 (AE) to 31.2% (MLP), and from 2.6 (AE) to
4.1% (MLP) for music events. For UL, MT-ConvLSTM +
MLP shows the best MAE performance in both types of
events, with a MAE of 1272.9 and 430.9 kbps, respectively.
However, MT-ConvLSTM+ CNN shows a smoother pattern
in both events, which should be closer to reality, even ifMAE
is larger (1301.7 and 431.0 kbps). In all cases, AE shows the
worst performance in UL, proving that, with the available
data, AE is not able to model the impact of events as well
as other structures.

To check differences amongst events, Fig. 6 (a)-(d) show
a boxplot of the distribution of MAE per event with the
different models, broken down for sport and music events
in DL and UL. The lower/upper limit of boxes reflect the
25th/75th percentiles, while the solid/dashed lines in the
middle represent the mean/median values, respectively. Cir-
cles represent outliers. The mean/median values confirm the
above–mentioned MAE reduction in DL and UL. Equally
important, the maximum deviation is significantly reduced in
all cases by considering the impact of events. For instance,
the error experienced in the worst sport event in the DL
decreases almost to 1/2 with any of the proposed event
correction model. In the UL, a lower reduction is observed

in all sport events. As seen in Table 5, the method with
the largest reduction of extreme deviations in most cases
is MT-ConvLSTM + MLP, while MT-ConvLSTM + CNN
performs similarly.

To check the impact of events on an hourly basis,
Fig. 7 (a)-(d) compares the typical hourly traffic pattern for
sport and music events in DL and UL derived with the
different models. Such a pattern is defined as the median
traffic value across event instances per class and link. For
comparison purposes, the typical event duration interval,
extracted from the event occurrence vector, is shaded in gray.
In Fig.7 (a), it is shown that the real DL traffic pattern during
sport events greatly differs from the normal traffic predicted
by MT-ConvLSTM. In contrast, all the event correction mod-
els approximate the real traffic pattern accurately. In Fig.7(b),
it is observed that the same holds for concerts, even if the
normal traffic predicted by MT-ConvLSTM is closer to the
real values as the impact of music events is weaker.

Some important differences are observed in the traffic
pattern associated to each event. In sport events, a clear peak
of traffic is observed at the end of the match, with a short tail
only after the match, originated by people staying around the
venue. In contrast, in concerts, traffic is scattered in a longer
period around the event, possibly due to attendees arriving
earlier and leaving later from the event. Similar trends are
observed in the UL, shown in Fig. 7 (c)-(d). This fact justifies
modeling each type of event with a different model.

A closer inspection of the hourly traffic patterns from the
three event correction models reveals that MT-ConvLSTM+
CNN provides smoother patterns due to the convolution oper-
ation in the time axis. The shape of the resulting pattern is
closer to the real one, especially in music events, presented
in Fig. 7(b) and (d). In contrast, note the fluctuations in theUL
pattern obtained by MT-ConvLSTM + MLP. It is still to be
checked if, with a larger event dataset or a more sophisticated
CNN architecture, MT-ConvLSTM + CNN could outper-
form MT-ConvLSTM +MLP. For this purpose, it should be
confirmed that the real traffic pattern is also smooth on an
event-by-event basis (and not only the median traffic pattern).

D. COMPUTATIONAL ISSUES
The proposed method needs to collect and pre-process cell
traffic measurements and event data. The execution time of
pre-processing traffic measurements grows linear with the
number of cells and hours per cell. Similarly, the execution
time of pre-processing events grows linear with the number
of events in the considered geographical area.

For the full model, the worst-case time complexity of the
training algorithm is given by the MT-ConvLSTM network
used to predict the normal hourly traffic pattern. The compu-
tational complexity of convolutional layers is O(k · n · d · f ),
where k is the kernel size of convolutions, n is the sequence
(window) length, d is the representation dimension and f
is the number of filters in the layer [73]. Then, a simple
LSTM is local in space (i.e., network size does not influence
the update complexity of the network per time step and
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FIGURE 6. Forecasting accuracy for different models per event.

FIGURE 7. Predicted hourly traffic pattern around event.

weight) and time (i.e., the input sequence length does not
influence the method storage requirements), so its compu-
tational complexity is O(Nw), where Nw is the number of
weights [74].

For instance, Table 6 presents the training times only in
one link (DL) with a dataset of 226,176 3-week windows of
hourly cell traffic, and a set of events comprising 142 sport

matches and 160 concerts with a 11-hour time window, in a
laptop with an Intel quad-core processor, clock frequency
of 1.8 GHz and 16 GB of RAM. It is seen that the convolu-
tional layers added in the more complex structures (CNN and
AE) slightly increase training times. Nonetheless, execution
times are negligible for re-planning tasks, where traffic fore-
casts must be obtained with several days in advance to plan
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TABLE 6. Training times in DL [seconds].

corrective actions for the capacity problems from scheduled
events.

VI. CONCLUSION
Accurate traffic forecasting will be key for managing future
5G networks, since predictions will have to be done more
frequently and with a higher granularity due to smaller cell
size and virtualization features, such as network slicing.
Unfortunately, cell traffic on a cell basis is strongly affected
by social events. In this paper, a new context-aware method
has been presented to improve traffic forecasting with infor-
mation from scheduled events. The proposed deep-learning
architecture uses public social event information to correct
hourly traffic forecasts per cell by considering unusual peaks
of traffic generated by the spatiotemporal concentration of
users. Model assessment has been performed over a real
2-month dataset of traffic measurements and events in a live
LTE network.

A preliminary analysis has shown that social events have a
significant impact on traffic carried in cells both in downlink
and uplink. It has also been confirmed that a Convolutional
LSTM Multitask network is the best technique to capture
normal fluctuations along a day, even if a single model is
shared by all cells in the network. Three different archi-
tectures have been tested to model traffic peaks generated
by sport and music events: a multilayer perceptron, a basic
convolutional network and an autoencoder. The multilayer
perceptron has obtained the minimum prediction error, but
the convolutional network has achieved similar results with
less parameters, showing great potential for small training
datasets. Once the model is trained, the low computational
load of the underlying operations allows easy integration in
radio planning tools.

The proposed method can predict the local traffic pat-
tern generated by social events 24 hours in advance, which
is needed to plan mobile network infrastructures (e.g., cell
on wheels). The legacy approach relies on event schedules
shared by local authorities or past operator experience. Such
an approach does not scale well in 5G systems, where smaller
cell size will reduce the size of events to be considered. In this
context, daily traffic predictions can be used to automatically
reconfigure the amount of radio resources assigned to net-
work slices on a cell and daily basis.

A major drawback of the method is the need for a large
event database. Such information can only be achieved by
combining multiple sources, some of which require web
scraping skills. Yet, only a few event classes (e.g., sport and

music) have enough events to train deep learning models.
To improve prediction accuracy, future work will include
new inputs in the event correction module, such as the
expected number of attendees per event, estimated by the
venue size, or the land use of the place housing the event (e.g.,
indoor/outdoor). Likewise, the model can easily be extended
to predict other performance indicators, such as average cell
load or user throughput.
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