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ABSTRACT The localization system has been extensively studied because of its diverse applicability, for
example, in the Internet of Things, automatic management, and unmanned aerial vehicle services. There have
been numerous studies on localization in two-dimensional (2D) environments, but those in three-dimensional
(3D) environments are scarce. In this paper, we propose a novel localization method that utilizes the gated
recurrent unit (GRU) and ultra-wideband (UWB) signals. For the purpose of this study, we considered that the
UWB transmitter (Tx) and many UWB receivers (Rx) were placed inside a confined space. The input of the
proposedmodel was generated from the UWB signals that are sent from the Tx to the Rxs, and the output was
the location of the Tx. The proposed GRU-based model converts the localization problem into a regression
problem by combining the ranging and positioning phase. Thus, the proposed model can directly estimate the
location of the Tx. Our proposed GRU-based method achieves 15 and four times shorter execution times for
the training and testing, respectively, compared to the existing convolutional neural network (CNN)-based
localization methods. The input data can also be easily generated with low complexity. The rows of the input
matrix are the downsampled version of the UWB received signal. Throughout numerous simulation results,
our novel localization method can achieve a lower root-mean-squared error up to 0.8 meters compared to
the recently proposed existing CNN-based method. Furthermore, the proposed method operates well inside
a confined space with fixed volume but varying width, height, and depth.

INDEX TERMS 3D localization, deep learning, gated recurrent unit (GRU), recurrent neural network
(RNN), ultra-wideband (UWB) system.

I. INTRODUCTION
The rise of the Internet of Things (IoT) has led to an
increase in the need for accurate indoor localization systems.
A few applications of the location tracking system include
robotics [1], location-based services [1], automatic ware-
house management system [2], location-based authentication
algorithms [3], and surveillance [4]. The information associ-
ated with the location of the device is important for indoor
as well as outdoor navigation systems in both small-scale
and large-scale areas. Indoor localization systems usually rely
on wireless technologies, such as wireless-Fidelity (WiFi)
[5], [6], Bluetooth, ultra-wideband (UWB), and radio
frequency identification device (RFID) [7]. The WiFi
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technology is relatively easy to implement, possesses high
accuracy, and can be implemented at low costs. However,
WiFi systems can be remarkably affected by noise. To over-
come this problem, it is necessary to implement complex
algorithms in WiFi-based localization systems. Bluetooth
technology is widely used to connect devices within a speci-
fied personal space. It provides large throughput with a wide
signal reception range while incurring low energy consump-
tion. However, real-time localization for Bluetooth is difficult
owing to the significant delay and noise in the received signal.
RFID systems are similar to Bluetooth devices in terms of
wide signal reception range, low power consumption, and
low localization accuracy. The UWB signal has possesses
a few exceptional capabilities including its ability to pene-
trate various materials and robustness against multipath effect
and interference from other devices. Thus, UWB technology
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TABLE 1. Related work on localization systems.

is preferred in many localization systems. However, a few
drawbacks are associated with UWB, such as high cost, short
range, and complex hardware installation.

A. RELATED WORK
The related work for localization systems is summa-
rized in Table 1. Most studies on localization are
based on two-dimensional (2D) environments, and only
a few are based on three-dimensional (3D) localization
systems [8]–[16]. The UWB technology is widely used in
indoor localization systems because of characteristics such

as high definition, robustness against multipath effect and can
penetrate various obstacles. Thus far, most UWB-based local-
ization systems have been for 2D environments [17]–[22].
There is a paucity of studies concerning UWB-based local-
ization systems for 3D environments [23], [24]. A few local-
ization systems used convolutional neural networks (CNNs)
to estimate the location of the device from the input image
that is generated from the received signal. While CNNs are
popular in computer vision applications, recurrent neural
network (RNN) is a more reasonable model for processing
sequential data [25] such as natural language processing [26],
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sentiment analysis [27], and speech recognition [28]. Because
UWB signal is a type of sequential data, RNN is pre-
ferred for processing UWB signals. Long short-termmemory
(LSTM) [29] and gated recurrent unit (GRU) [30] are two
widely used RNN architectures because they can efficiently
capture long term dependencies, as well as mitigate vanishing
or exploding gradients in training [31]. Several RNN-based
localization methods have been developed [32]–[35]. Com-
pared with GRU, LSTM structure operates well with com-
plicated time series data where multiple time steps must be
considered, because it contains three gates (input, output
and forget) with a cell state [31], [36]. In contrast, the GRU
structure only has two gates (update and reset) and a hidden
state, which is simpler than that of the LSTM; therefore,
the GRU training progress converges faster, especially with
low-complexity time-series input data. Given that the UWB
signal is a simple sequence data type, GRU is preferred over
LSTM for processing UWB signals.

B. OUR CONTRIBUTION
In this paper, we propose a novel GRU-based localization
method that utilizes the UWB technology.

• The proposed model uses UWB signal from different
receivers (Rxs) as input. Because the environment is
dense and large, the signals are prone to noise interfer-
ences. This can be addressed by implementing a specific
procedure that extracts important information from the
signals and uses it to mitigate the noise. To generate
input, the signal received from each receiving antenna
is downsampled. The number of input features is deter-
mined by the number of received signals. Furthermore,
downsampling helps decrease the computational com-
plexity of the proposed model.

• A deep GRU-based 3D indoor localization method,
which utilizes the UWB signals, is proposed herein.
After extracting the crucial information from the data
to reduce the noise and obtaining a robust representa-
tion of the received signal, the deep GRU-based model
is operated to encode temporal information and learn
complex representation of the data, which improves the
performance of the 3D localization.

• The proposed model estimates the location directly,
as opposed to previous methods such as time of arrival
(ToA)-based and CNN-based distance estimation [21],
which require an additional positioning phase to find the
location. Furthermore, the proposed method is robust in
an asymmetrical space, which is traditionally problem-
atic for the positioning phase.

• Several simulations were performed in many different
3D environments, across a wide range of signal-to-noise
ratio (SNR) values and space volumes. The proposed
method improves the localization accuracy as compared
to previous methods.

The remainder of this paper is organized as follows.
In Section II the system model, UWB model, channel

FIGURE 1. Model of 3D localization environment with one
transmitter (Tx) and P receivers (Rxs), i.e., P = 8, where the position of Tx
is estimated based on the signals received at the eight Rxs.

models (CMs), operating space, and the antenna setup are
demonstrated. In Section III, the novel GRU-based local-
ization method is detailed. In Section IV, several conven-
tional localization methods are described. In Section V, two
positioning phase methods are explained. In Section VI,
the localization performance of the conventional localiza-
tion methods and the proposed localization method are ana-
lyzed with respect to various parameters. Finally, Section VII
presents the conclusions as well as future works.

II. SYSTEM AND SIGNAL MODELS
In this section, we explain the system model, signal model,
and the environments for 3D localization.

A. LOCALIZATION SYSTEM MODEL
In this study, the localization system was operated inside a
cubic space as illustrated in Fig. 1. The space has a vol-
ume D1 × D2 × D3, where D1, D2, and D3 represent the
width, depth, and height of the space, respectively. The ori-
gin point (0, 0, 0) is positioned at the far left bottom in the
confined space, as shown in Fig. 1. There are P number
of receivers (Rxs) fixed around this space. The coordinates
of the transmitter (Tx) and Rxp are (x, y, z) and (xp, yp, zp)
respectively, where p ∈ {1, 2, . . . ,P}. The location of Tx
is a random point inside this space, that is, x ∼ U[0,D1],
y ∼ U[0,D2], and z ∼ U[0,D3], where U[a, b] denotes
the uniform distribution inside the interval [a, b]. The dis-
tance between Tx and Rxp is denoted as dp, where dp =√
(x − xp)2 + (y− yp)2 + (z− zp)2.
The aim of the localization system is to estimate the

unknown position of the Tx based on the measurements gath-
ered from all Rxs. The localization process is performed in the
following two phases: the ranging phase, where the distances
between Tx and Rxs are estimated from the measurements;
and the positioning phase, where the actual location of the
Tx is calculated from the estimated distances.

In the ranging phase, each Rx estimates the distance from
the Tx by using themeasurements extracted from the received
signals, such as angle of arrival (AoA), ToA, and time
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difference of arrival (TDoA). In a UWB-based localization
system, time-based measurements, such as ToA or TDoA, are
usually deployed for ranging because of the ability of UWB
signals to resolve the multipath effects and penetrate various
obstacles [37]. However, in practice, the time resolution of Rx
is inefficient, and it cannot resolve all multipath components.
Furthermore, the strongest signal is often not the first com-
ponent that arrives in cluttered environments such as indoor
locations. The effect of dense multipath components is more
apparent in UWB systems owing to the strongly dispersive
nature of UWB channels [38]. Besides the multipath effect,
the complex statistical characteristics of UWB channels make
the mathematical analysis for UWB localization systems
significantly complicated. A statistical model of small-scale
fading is constructed based on the environments where the
UWB system operates. Therefore, alternative amplitude dis-
tributions can be considered [39], indicating that advanced
signal processing techniques, according to the CMs, would
be required.

For the positioning phase, the 3D trilateration is the pre-
ferred solution. However, the positioning phase may prop-
agate the error that emerges from the estimated distances.
In contrast, machine learning algorithms do not require a
positioning phase, as they utilize complex statistical charac-
teristics of UWB signals and CMs. Amachine learning-based
localization system was trained in this study to estimate the
location of Tx directly, rather than estimating the distance
between the Tx and Rx; therefore, the positioning phase
becomes redundant.

B. SIGNAL AND CHANNEL MODELS
In this study, the IEEE 802.15.4a standard [40] was con-
sidered for the 3D localization system. Assuming that the
Tx sends an UWB signal to Rxp, the received signal rp(t)
captured at Rxp is modeled as follows [40]:

rp(t) = hp(t) ∗ s(t)+ np(t), ∀p ∈ {1, 2, . . . ,P}, (1)

where hp(t) represents the impulse response of the channel
between Tx and Rxp, s(t) is the transmitted signal at time t ,
np(t) represents an additive white Gaussian noise at Rxp, and
∗ denotes the convolution operation. Here, the channels are
modeled as follows [40]:

hp(t) =
Lp−1∑
l=0

Kl−1∑
k=0

ak,l exp(jφk,l)δ(t − Tl − τk,l), (2)

where Lp is the total number of clusters that conforms to
Poisson distribution; Kl is the total number of multipath
components of the lth cluster that is determined by the power
delay profile of the channels; ak,l is the tap weight of the kth
multipath component of the lth cluster; φk,l is the uniformly
distributed phase of the kth multipath component of the lth
cluster; δ(·) denotes the delta function; Tl denotes the delay
for the lth cluster; and τk,l is the intra-cluster delay for the kth
multipath component of the lth cluster. The channel impulse
response hp(t) is modeled based on the environment of the

TABLE 2. Channel model (CM) notation and environments [40].

FIGURE 2. GRU-LE model architecture. The input is generated from P
received UWB signals, and the output is the 3D location of Tx.

localization. In [40], the description for each CM is specified,
wherein the residential, office, suburban, industrial, and the
open outdoor channels are considered with the case of line-
of-sight (LoS) and non-line-of-sight (NLoS). The CMs used
in this study are classified in Table 2. Here, a mean value of
the total number of clusters (denoted by Lp) and the average
value of the total number of multipath components (denoted
by Kl), which are obtained from the considered channel mod-
els, are shown. The signal obtained after matched filtering at
Rxp, denoted by yp(t), is represented as [41]:

yp(t) = s(Td − t) ∗ rp(t), (3)

where Td is the delay for causality of the signals.

III. PROPOSED LOCALIZATION METHODS
In this section, a novel GRU-based method for 3D local-
ization (referred to as the GRU-LE method hereinafter) is
introduced.

The architecture of the GRU-LE model is illustrated
in Fig. 2. The model consists of an input layer, two GRU
layers, three fully connected layers, and a regression layer.
The output of the model is the estimated 3D location of Tx.
The input data, which is generated from the received UWB
signals, is a matrix Uq ∈ RP×(N/rd ), where P represents
the number of data features, which is the same number of
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Rxs, and N/rd represents the number of time steps for each
training sample.

A. GRU-LE INPUT GENERATION
To generate Q samples for training the GRU-LE model,
the received signal yp,q(t) is recorded at Rxp, with p ∈
{1, . . . ,P} and q ∈ {1, . . . ,Q}. The signal is then sampled
with a frequency fs into a complex valued sequence yp,q[n]
with N elements, n ∈ {1, . . . ,N }. Here, N is set to be 3,600.
Further, a standardized real-value vector vp,q is generated as
follows:

vp,q[n] =

∣∣yp,q[n]∣∣− µp,q
σp,q

, (4)

µp,q =
1
N

N∑
n=1

∣∣yp,q[n]∣∣ , (5)

σp,q =

√√√√ 1
N − 1

N∑
n=1

(∣∣yp,q[n]∣∣− µp,q)2, (6)

where µp,q and σp,q are the mean and standard deviation of
the real-valued sequence

∣∣yp,q[n]∣∣. The result of (4) is shown
in Fig. 3(a). In the next step, the vector will be downsampled.
This process not only helps eliminate the noise and capture
the essence of the signal but also reduces the GRU-LE model
complexity by decreasing the input size. A new vector up,q is
generated based on the downsampling rate rd , as follows:

up,q[nr ] = max
n∈{(nr−1)rd+1,...,nr rd }

vp,q[n], (7)

with nr ∈ {1, . . . ,N/rd }. The result of (7) with rd = 30 is
illustrated Fig. 3(b). Comparing up,q to vp,q, it is clear that the
important values and shape of the signal are retained, while
the noise and length of the vector are reduced significantly.
Finally, the input matrix Uq is generated from all of up,q
recorded in P Rxs:

Uq =


u1,q
...

uP,q

 ∈ RP×(N/rd ). (8)

The result of (8) is used as the input for the GRU-LE
model illustrated in Fig. 2. The visualization of Uq is shown
in Fig. 3(c). Each row represents the signal received from
the corresponding Rx. The bright spots indicate the high
values while the dark areas indicate low values. Evidently,
the pattern of the high values in every row is related to the
distance between Tx and the corresponding Rx; therefore,
the pattern of matrix Uq is dependent on the location of Tx.
Thus, the GRU-LE model can learn from the input data and
estimate the Tx location. The input matrix can be divided
into many column vectors based on the time steps, that is,
Uq =

[
i1,q · · · iN/rd ,q

]
, where inr ,q ∈ RP×1 denotes the input

vector at time step nr , as shown in Fig. 2.

FIGURE 3. GRU-LE input generation. (a) The standardized vector vp,q
generated from the received signal. (b) The vector up,q downsampled
from vp,q. (c) The input matrix Uq for GRU-LE model.

B. GRU-LE ARCHITECTURE
We consider a GRU cell in lth GRU layer operating at a time
step t whose structure is shown in Fig. 4. The vector gl,t ∈
RIg×1 is the input vector of the GRU cell at time step t . The
vector cl,t ∈ RCg×1 is the output vector of this cell at time
step t . The length of the output vector, Cg, is considered as
the number of units for the GRU cell. The operation inside
the cell is described as follows:

fl,t = σ
(
Wf gl,t + Rf cl,t−1 + bf

)
, (9)

ml,t = σ
(
Wmgl,t + Rmcl,t−1 + bm

)
, (10)

c̃l,t = tanh
(
Wc̃gl,t + Rc̃

(
ml,t � cl,t−1

)
+ bc̃

)
, (11)

cl,t =
(
1− fl,t

)
� cl,t−1 + fl,t � c̃l,t , (12)

where fl,t ,ml,t , c̃l,t ∈ RCg×1 indicate the update gate, reset
gate and candidate activation of GRU cell in lth GRU layer at
time step t; Wf ,Wm,Wc̃ ∈ RCg×Ig denote the input weights
for fl,t ,ml,t , and c̃l,t respectively; Rf ,Rm,Rc̃ ∈ RCg×Cg

denote the recurrent weights for fl,t ,ml,t , and c̃l,t respec-
tively; bf , bm, bc̃ ∈ RCg×1 indicate the biases for fl,t ,ml,t ,
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FIGURE 4. Structure of a GRU cell in the l th GRU layer at time step t .

FIGURE 5. Deep GRU-based network structure. gl,t and cl,t denote the
input and output for GRU cell in GRU layer l at time step t , respectively.

and c̃l,t respectively; σ (·) and tanh(·) denote the sigma func-
tion and the tanh function, respectively; and � denotes the
element-wise multiplication operation.

A GRU cell can encode the non-temporal structure of the
input in a single time step, and summarize the output from
previous time steps. It is assumed that the GRU network is
a ‘‘deep network’’ if it processes data with large number of
time steps. This network can also extend the depth differently
by stacking multiple GRU layers on top of each other. Fig. 5
illustrates the structure of a deep GRU network. The output of
the previous GRU layer is the input of the next GRU layer at
the same time step. Similar to RNN networks, stacking GRU
layers helps the model learn data representation at different
timescales [43]. For the GRU-LE model, the two GRU layers
form the most crucial part because they are designed to learn
the time series input. By stacking two GRU layers on top of
each other, the levels of abstraction of input over time are
added. As a result, the final cell of the last GRU layer learns
all of the complex information not just from the previous
cells but also from the previous layer. Thus, it is appropri-
ate to use the output of this cell as the input for the next
layer.

Algorithm 1 GRU-LE Localization Algorithm
1: Collect the received UWB signals y1(t), y2(t),. . ., and
yP(t) in (3) from Rx1, Rx2,. . ., and RxP respectively.

2: Generate the standardized real-valued sequences of the
received signals, i.e., v1[n], v2[n],. . ., and vP[n] in (4).

3: Generate the downsampled sequences, i.e., u1[nr ],
u2[nr ],. . ., and uP[nr ] in (7).

4: Generate the input matrix of GRU-LE, i.e., U ∈

RP×(N/rd ) in (8).
5: Provide U to GRU-LE shown in Fig. 2.
6: Obtain the estimation

(
x̂, ŷ, ẑ

)
of the location (x, y, z)

from the GRU-LE output.

As illustrated in Fig. 2, the GRU-LE model is designed
with two GRU layers, and each layer contains the same
number of GRU cells as the number of time steps in the input
matrix Uq, that is, N/rd . In time step nr , the input vector of
the cell in the first GRU layer is inr ,q. As regards the numerical
results, the number of units for each cell in the first and second
GRU layers is 64 and 32, respectively. Similarly, the number
of units for the first two fully connected layers is selected
to be 256 and 32, as they afford ideal results. Furthermore,
stacking two fully connected layers on top of each other
helps the model learn complex function more efficiently than
having only one fully connected layer with the same number
of units. The input for the first fully connected layer is the
output of the GRU cell in the last time step in the second GRU
layer. The final fully connected layer requires three units to
represent the 3D coordinate of the Tx location. The output
is the estimated location of the Tx. The regression layer is
placed at the end of the model to calculate the loss between
the output of the last fully connected layer and the ground
truth of location, where the loss is the half mean squared error
(MSE), as follows [42]:

LTx =
1
2Q

Q∑
q=1

[(
xq−x̂q

)2
+
(
yq−ŷq

)2
+
(
zq − ẑq

)2]
, (13)

where
(
xq, yq, zq

)
and

(
x̂q, ŷq, ẑq

)
are the ground truth and

the estimation of Tx position for the qth training sample,
respectively. The model training process aims to minimize
the loss LTx in (13) with Q training samples.

In summary, Algorithm 1 describes the localization proce-
dure after the GRU-based model is trained, and the training
index q is omitted.

IV. CONVENTIONAL LOCALIZATION METHODS
In this section, we briefly introduce three conventional local-
ization methods:

i) ToA-based method [44].
ii) CNN-based distance estimation (CNN-DE)

method [21].
iii) CNN-based location estimation (CNN-LE)

method [22].

VOLUME 9, 2021 68803



D. T. A. Nguyen et al.: Deep Gated Recurrent Unit-Based 3D Localization for UWB Systems

A. CONVENTIONAL ToA-BASED METHOD
The threshold-based ToA estimation method was proposed
in [44]. From yp(t), which is calculated in (3), the Rxp
estimates the ToA when the energy of the received signal
is higher than the predetermined threshold. To increase the
accuracy of ToA estimation method, a typical threshold value
is decided such that it is inversely proportional to the average
of the received SNR. As a result, in the ranging phase of this
method, the Rxp can find the estimated distance d̂p from the
Tx by multiplying the estimated ToA with the speed of light,
that is, d̂p = 1̂p × c, where 1̂p is the estimated ToA at Rxp
and c denotes the speed of light. After the ranging phase,
the estimated distances are used to calculate the actual Tx
location in the positioning phase.

B. CONVENTIONAL CNN-DE METHOD
Similar to threshold-based ToA estimation method, the
CNN-DEmethod based on [21] has a ranging and positioning
phase. In the ranging phase, this method uses a CNN model
to estimate the distance between the Tx and Rxp from a
one-channel image that is generated from the received signal.
As a result, P CNN models are required for P Rxs. This
is a major drawback of CNN-DE method. Given that the
GRU-LEmethod only needs one deep learningmodel to oper-
ate for all of Rxs, it is more beneficial. Because all of the Rxs
perform the same function, we will demonstrate the CNN-DE
method inside one Rxp, without the loss of generality.
The CNN-DE model is illustrated in Fig. 6. The model

consists of an input layer, four main groups of hidden layers,
a fully connected layer with one unit, and a regression layer
at the end. The input signal is a one-channel image that is
generated from the received signal at Rxp. Each hidden layer
group contains a convolutional layer with filters size 3 × 3
and stride one, a batch normalization layer, and a rectified
linear unit (ReLU) layer. The first three groups are connected
to a max-pooling layer with filter size 2 × 2 and stride two.
The output represents the estimated distance between the
Tx and Rxp.
The CNN model is trained on Q training samples that are

generated from the received signal yp,q(t),∀q ∈ {1, . . . ,Q}.
At the Rxp, the received signal is sampled with a frequency
fs into a complex valued sequence yp,q[n] with N elements
(n ∈ {1, . . . ,N }). In this method,N is set to be 3,600. Further,
a real-valued vector vp,q is generated as follows:

vp,q[n] =

∣∣yp,q[n]∣∣
max

m∈{1,...,N }

∣∣yp,q[m]∣∣ . (14)

The vector vp,q is shown is Fig. 7(a). This vector is reshaped
into a M × (N/M ) matrix Vp,q:

Vp,q = mat[vp,q]M ∈ RM×(N/M ), (15)

where mat[·]M denotes the matricization function of a
column-major order and dimension M . In this method, M is
set to 60 so that the CNN model input is a square image with

FIGURE 6. CNN-DE model architecture. Each Rx requires a model to
estimate the distance, thus P CNN-DE models are necessary for the
CNN-DE method.

FIGURE 7. CNN-DE input generation. (a) The normalized vector vp,q
generated from the received signal. (b) The input image Vp,q for the
CNN-DE model.

the size of 60 × 60. The Vp,q is a one-channel image, and is
used as an input for the CNN model.

Amonochrome image of the input is illustrated in Fig. 7(b).
The bright and dark pixels indicate high and low values,
respectively. Evidently, the bright stripe location in the image
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FIGURE 8. CNN-LE model architecture. The input is generated from P received UWB signals, and the output is the Tx 3D location.

is closely related to the location of the high values in vp,q.
Thus, the largest multipath component (MPC) and the num-
ber of local peaks before the global peak correspond to the
bright and moderately light pixels in the image, and they are
related to the distance between the Tx and Rxp. As a result,
the CNN model can provide accurate results through this
pattern.

The output is the estimated distance d̂p,q between the Tx
andRxp. The regression layer is placed at the end of themodel
to calculate the loss between the output of the fully connected
layer and the ground truth of distance, where the loss is the
half MSE as follows [42]:

Ld =
1
2Q

Q∑
q=1

[(
dp,q − d̂p,q

)2]
, (16)

where dp,q is the ground truth of the distance between the Tx
and Rxp. The model training process is aimed at minimizing
the loss Ld in (16) withQ training samples. The ranging phase
of the CNN-DE method is completed once the estimated
distances from all Rxs are gathered. Further, the positioning
phase is implemented to calculate the location of Tx based on
the estimated distances, similar to the threshold-based ToA
method. The separation of the ranging and positioning phase
is another disadvantage of the CNN-DE method, which is
contrary to the GRU-LE method wherein the deep learning
model includes both phases.

C. CONVENTIONAL CNN-LE METHOD
This method, which is mentioned in [22], uses a CNN model
to estimate the location of the Tx from the P-channel input
image that is generated from P UWB received signals. Thus,
the CNN model combines both the ranging and positioning
phase, and the operation needs to be performed only once
for all Rxs. As a result, the CNN-LE method outperforms the
CNN-DE method, and it is also robust against asymmetrical
environment, which is contrary to the CNN-DE method.

The CNN-LE model is described in Fig. 8. This model
contains an input layer, five main groups of hidden lay-
ers, two fully connected layers with 256 and three units
respectively, and a regression layer, which is connected at

the end. The input is a P-channel image that is generated
from the signals received at all Rxs. Each hidden layer group
contains two convolutional layers with filters size 3 × 3
and stride one, a batch normalization layer, and two ReLU
layers, one between the two convolutional layers and one
after the batch normalization layer. Each of the first two
groups is connected to a max-pooling layer with filter size
2 × 2 and stride two, and each of the following two groups
is connected to a max-pooling layer with filter size 3× 3 and
stride three. The output is the estimated location of Tx. Com-
pared to the deep learning model of the proposed method,
the deep learning model of the CNN-LE method is much
more complicated, which causes the training time to increase
immensely.

The input generation is described in Fig. 9. Based on the
signal received at Rxp, this method also extracts the same
vector vp,q with the same elements as in (14). Further, a new
vector up,q, shown in Fig. 9(a), is generated by over-sampling
vp,q four times, and thus, up,q has four times the number
of elements compared to vp,q while both vectors have the
same shape. The vector up,q is reshaped into a matrix Up,q
as follows:

Up,q = mat[up,q]2M ∈ R2M×(2N/M ). (17)

Similar to the input image in CNN-DE, the positions of the
bright values in the matrix Up,q are closely related to the
distance between the Tx and Rxp. The same procedure is
carried out across all Rxs, thus resulting in P matrices from
U1,q to UP,q. Finally, all of these matrices are stacked on top
of each other, as shown in Fig. 9(b), to create a P-channel
image that is used as an input for the CNN model. As each
channel represents the relation to the distance between Tx
and the corresponding Rx, it is expected a whole P-channel
image carries the information of the true location of Tx,
which helps the CNN model estimate the Tx position accu-
rately. Compared to the GRU-LE input, the CNN-LE input
is 120 times larger, which is a major disadvantage for the
CNN-LE method. Finally, the regression layer is aimed at
calculating the same loss as the one in (13) between the
output of the last fully connected layer and the ground truth of
Tx location.
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FIGURE 9. CNN-LE input generation. (a) The over-sampled normalized
vector up,q generated from the received signal. (b) The input for the
CNN-LE model by stacking all the matrices from U1,q
to UP,q.

V. POSITIONING METHODS
The positioning phase is important for estimating the loca-
tion of the Tx in the conventional threshold-based ToA and
CNN-DEmethods,. In this section we introduce two position-
ing methods:

i) 3D trilateration method.
ii) Complexity-reduced trilateration approach (COLA)

method [9].

A. CONVENTIONAL TRILATERATION METHOD
The trilateration is a simple positioningmethod that is applied
after all distances from P Rxs are estimated. Here, we aim
to estimate Tx location in 3D, and thus, this method will be
referred to as 3D trilateration (3DT). We assume that the Tx
is at the coordinate (x, y, z), the Rxp is located at (xp, yp, zp),
and the estimated distance between Tx and Rxp is d̂p. Thus,
we have:

d̂2p = (xp−x)
2
+(yp−y)2+(zp−z)2, ∀p∈{1, . . . ,P}. (18)

The system of quadratic equations in (18) can be converted
into a system of linear equations as follows:

2xp,Px+2yp,Py+2zp,Pz=bp, ∀p ∈ {1, . . . ,P− 1}, (19)

where xp,P = (xp − xP), yp,P = (yp − yP), zp,P = (zp − zP),
and bp = (x2p + y

2
p + z

2
p)− (x2P + y

2
P + z

2
P)− (d̂2p − d̂

2
P). The

FIGURE 10. Model of 3D localization environment with one Tx and P Rx’s
following COLA method, i.e., P = 8. (a) The side view of the space. (b) The
top view of the space.

system of equations in (19) can be expressed in matrix form
as follows:

A
[
x y z

]T
= b, (20)

A = 2


x1,P y1,P z1,P
...

...
...

xP−1,P yP−1,P zP−1,P

∈R(P−1)×3, (21)

b =


b1
...

bP−1

 ∈ R(P−1)×1. (22)

Thus, the estimated 3D coordinate of the Tx is calculated as
follows: [

x̂ ŷ ẑ
]T
= (ATA)−1AT b. (23)

Because there are three unknowns in the Tx coordinate,
the minimum number P − 1 should be three, i.e., P ≥ 4,
provided the Rxs are not coplanar.

B. CONVENTIONAL COLA METHOD
COLA is a positioning method proposed in [9]. The aim of
this method is to reduce the complexity in the trilateration
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methodmentioned above, and obtain higher accuracy. To suc-
cessfully implement this method, the number P of Rxs must
be even. The Rxs are setup according to Fig. 10. Without
the loss of generality, we assume that Rxp and Rxp+P/2 have
the same horizontal coordinates but different vertical coor-
dinates, that is, Rxp is positioned at (xp, yp, zp) and Rxp+P/2
is at (xp, yp, zp+P/2), with zp 6= zp+P/2, p ∈ {1, . . . ,P/2}.
After all distances d̂p from Tx to all the Rxs are estimated,
the vertical coordinate of Tx is calculated as follows:

ẑ =
2
P

P/2∑
p=1

(
zp + d̂p cos θ̂p

)
, (24)

cos θ̂p =

(
zp+P/2 − zp

)2
+ d̂2p − d̂

2
p+P/2

2
(
zp+P/2 − zp

)
d̂p

. (25)

We consider that Rx′p is a virtual Rx that has the same hori-
zontal coordinates as Rxp and the same vertical coordinates
as Tx, as shown in Fig. 10(a). Thus, the Rx′p is positioned
at (xp, yp, z). From (25), the distance d̂ ′p from Rx′p to Tx is
estimated as follows:

d̂ ′p = d̂p sin θ̂p = d̂p

√
1−

(
cos θ̂p

)2
. (26)

The distance d̂ ′p is shown in Fig. 10(b). Further, the horizontal
coordinates of Tx will be estimated following the 2D trilater-
ation. We have:

d̂ ′
2
p = (xp − x)2 + (yp − y)2,∀p ∈ {1, . . . ,P/2}. (27)

The system of quadratic equations in (27) can be transformed
into a system of linear equations as follows:

2(xp−xP/2)x+2(yp−yP/2)y = b′p, ∀p ∈ {1, . . . ,P/2−1},

(28)

where b′p = (x2p + y
2
p) − (x2P/2 + y

2
P/2) − (d̂ ′

2
p − d̂ ′

2
P/2). The

system of equations in (28) can be expressed in matrix form
as follows:

H
[
x y
]T
= b′, (29)

H = 2


x1 − xP/2 y1 − yP/2

...
...

xP/2−1 − xP/2 yP/2−1 − yP/2


∈ R(P/2−1)×2, (30)

b′ =


b′1
...

b′P/2−1

 ∈ R(P/2−1)×1. (31)

Thus, the estimated horizontal coordinate of the Tx is calcu-
lated as follows:[

x̂ ŷ
]T
= (HTH )−1HT b′. (32)

Because there are two unknowns in the horizontal coordinates
of Tx, the minimum number P/2 − 1 should be two, that is,
P ≥ 6, provided the horizontal positions of the Rxs from Rx1
to RxP/2 are not co-linear.

TABLE 3. Locations of receiver antennas.

TABLE 4. Training options, training time, testing time and model size for
each deep learning model.

VI. SIMULATION RESULTS
In this section, we present the simulated localization per-
formances of the conventional methods and the proposed
method. The simulated methods include the threshold-based
ToA method with 3DT and COLA for positioning phase,
CNN-DE method with 3DT and COLA for positioning
phase, CNN-LE method, and the proposed GRU-LE method.
Although the UWB localization system is more fitting for
indoor environment, we simulate the localization system on
all of the CMs in Table 2 to examine performance of the
proposed model in different environments. For convenience,
theGRU-LEmodel trainedwith the CM# datawill be referred
to as CM#-NET, with # ∈ {1, . . . , 9}. The environment setup
is similar to Fig. 1, and the number of Rxs is set as P = 8. The
location of each Rx is shown in Table 3. The simulation is per-
formed in MATLAB 2020b. For each CM, 40,000 samples
are generated for training, and an additional 4,000 samples
are generated for testing. The sampling frequency is fixed at
fs = 24 GHz. The numbers N ,M and rd are set as 3,600, 60,
and 30 respectively, indicating that the input size for CNN-
DE, CNN-LE, and the GRU-LEmodel is 60×60, 120×120×
8, and 8× 120, respectively.
The training options for each model are presented

in Table 4. The solver is the algorithm that is used to
train the deep learning model. Throughout the rigorous
numerical verifications, it is observed the CNN-based mod-
els achieve better performance with a stochastic gradient
descent withmomentum (SGDM) optimizer. TheGRU-based
model, however, performs well with an adaptive moment
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FIGURE 11. RMSEs of the CNN-LE and GRU-LE models with SGDM and
ADAM optimizers.

estimation (ADAM) optimizer. For example, under the office
environment with LoS, when the space size is 20 × 20 ×
20 cubic meters and SNR = 30 dB, the simulation results
in Fig. 11 verify that root MSE (RMSE) of the CNN-LE
increases 0.2 m compared to that with SGDM. On the
other hand, the RMSE of GRU-LE decreases 0.1 m when
it is trained with ADAM. Each instance when the entire
dataset passes through the network training is considered an
epoch. To optimally train the network, the number of epochs
must be much larger than one, which is set for the max epochs
option. In each epoch, the data is divided into many mini
batches, while the mini batch size is the number of samples
used for training each iteration. The validation frequency
determines the number of iterations for one network vali-
dation. The training data are shuffled after every epoch to
avoid bias and ensure that the training converges quicker. The
initial learn rate determines the size of the first training step.
To avoid unstable training where the training loss jumps back
and forth over a minimum, the learning rate drops to 90 per-
cent of the prior rate after a certain number of epochs, as set
for the learning rate drop period. To prevent the exploding of
the gradient, a predefined threshold value is set so that the
gradient is clipped if it exceeds the threshold. Throughout
the simulations, the number of training samples and training
options parameters are selected to ensure the optimal result.
The localization RMSE is used as a performance metric, and
it is calculated as follows:

RMSE=

√√√√ 1
T

T∑
t=1

[(
xt−x̂t

)2
+
(
yt−ŷt

)2
+
(
zt−ẑt

)2]
, (33)

where T is the number of samples, (x̂t , ŷt , ẑt ) is the estimated
Tx location, and (xt , yt , zt ) is the ground truth of Tx location
of tth sample. The training time, retraining time, testing time,
and model sizes in the bottom of Table 4 are recorded by
monitoring the training and testing process. The number of
epochs required to converge is determined when the valida-
tion RMSE does not drop by an amount larger than 0.01 m.

Two minor experiments are carried out for the proposed
GRU-LE model to find the optimal number of Rxs and
the downsampling rate rd . However, the main experiments
compare the performances of various localization methods
in terms of SNR, space size, and asymmetry of the operated
space. As a result, we examine the performances of the

FIGURE 12. RMSE of the GRU-LE model across various number of Rxs.

FIGURE 13. RMSE of the GRU-LE model across various number of time
steps.

GRU-LE model that was trained on a different CM compared
to the testing CM to find the possibility of transfer learning
and subsequently decrease training time.

A. PERFORMANCE WITH RESPECT TO NUMBER OF
RECEIVERS
This is a small experiment which examines the performance
of the proposed GRU-LE model across different number of
Rxs. The SNR is fixed at 30 dB, the space size is fixed at
D1 = D2 = D3 = 20 m, and the downsampling rates rd is
set as 30. As illustrated in Fig. 12, the RMSE decreases as
the number of Rx’s increases. However, the RMSE evens out
after eight Rxs. Thus, the reasonable number of Rxs required
for the operation of the GRU-LE model is eight.

B. PERFORMANCE WITH RESPECT TO DOWN-SAMPLING
RATE
This experiment compares the RMSE of the proposed
GRU-LE model across different downsampling rates rd . The
SNR is fixed at 30 dB, the space size is set at D1 = D2 =

D3 = 20 m, and the number of Rxs is set as P = 8. The
simulation result is shown Fig. 13. Although the RMSE is
within 0.1 m across different rates, the rate rd = 30 results
in the lowest RMSE, and thus rd = 30 is chosen for this
study.

C. PERFORMANCE WITH RESPECT TO SNR
In the first major experiment, the space size is fixed with
D1 = D2 = D3 = 20 m. Fig. 14 shows the localization
accuracy of all methods across different SNRs. The proposed
GRU-LE method outperforms all other methods across all
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FIGURE 14. RMSE performance of the proposed GRU-LE (y-axis) of
various schemes across SNRs (x-axis). Training and testing data are
generated from the same CM. (a) CM1. (b) CM2. (c) CM3. (d) CM4.
(e) CM5. (f) CM6. (g) CM7. (h) CM8. (i) CM9.

SNRs and CMs. Generally, the RMSE decreases with the
increase in SNR for all channels andmethods. This is because
a high SNR signal is more robust against multipath effect and
noise, which results in a clearer input pattern, thus resulting
in a high accuracy. For indoor environments, the model works
much better in the LoS CMs as compared to the NLoS CMs.
The GRU-LE model operates the best in CM3 and CM7,
and yields a RMSE below 1 m as the SNR increases over
10 dB. The performance of the proposed model in residential
environments is the worst among all indoor CMs, which is
caused by the number of local peaks in the UWB signal for
the residential environment. It is worth being emphasized
again that the proposed GRU-LE method outperforms other
methods as shown in Table 5. Here, the average values of the
RMSEs in Fig. 14 are summarized.

Fig. 15 shows the difference between the input generated
in CM1 and CM3. The large number of bright spots per
feature in CM1 input corresponding to the number of local
peaks in the UWB signal results in a complex input pattern.
In contrast, the pattern of the CM3 input is clearer which helps
the deep learning model train efficiently. In outdoor cases,
the performance of the model degrades significantly when
operating in NLoS environment as compared to LoS one.
By comparing the two positioning methods, it is observed the
COLA operates slightly better than the 3DT when they are
used in the CNN-DE method.

Fig. 16 illustrates the RMSE of the proposed GRU-LEwith
the CM#-NET when it is operating on various CMs test data
across different SNRs. The RMSEs in Fig. 16 are averaged
over SNR and shown in Table 6. As expected, for the test
data CM#, the CM#-NET operates best (see the underlined

TABLE 5. RMSE (meters) of the proposed GRULE averaged over SNRs
in Fig. 14.

FIGURE 15. The difference between CM1 input and CM3 input for GRU-LE
model. (a) CM1 input. (b) CM3 input.

RMSE value which is the smallest in each column.). On the
other hand, a GRU-LE model trained for a specific indoor
CM can perform well in other indoor CMs, and the same
can be said for outdoor CMs. The CM1-NET and CM2-
NET models show similar performances when they operate
in each other’s environment, contrary to the performances
in respective environments. In other words, the CM1-NET
and CM2-NET are a pair of interchangeable models. The
same can be said for the pair of CM4-NET and CM8-NET.
In summary, the GRU-LE performs the best when the training
and testing data are from the same CM. From these results,
we can surmise that transfer learning can be employed to
reduce the learning time.

D. PERFORMANCE WITH RESPECT TO VOLUME SIZE
Assuming that the localization methods for the UWB system
mainly operate in indoor environments, SNR = 30 dB is
ideal for the second major experiment. Fig. 17 demonstrates
the RMSE of the conventional methods with the proposed
GRU-LE method. Generally, the RMSE increases with the
space size for all methods and CMs. The increase in the
RMSE is expected because a longer distance between Tx
and each Rx causes a larger path loss. Similar to the pre-
vious experiment, the COLA performs much better than
3DT when the distance estimation method is fairly accurate,
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FIGURE 16. RMSE performances (y-axis) across SNRs (x-axis). The
CM#-NET trained by CM# is tested with (a) CM1, (b) CM2, (c) CM3,
(d) CM4, (e) CM5, (f) CM6, (g) CM7, (h) CM8, (i) CM9.

TABLE 6. RMSE (meters) of CM#-NET averaged over SNRs in Fig. 16 when
they are tested with CM# test data.

TABLE 7. RMSE (meters) averaged over space sizes of every CM in Fig. 17.

i.e., the CNN-DE method. Again, it is worth being empha-
sized that the proposed GRU-LE outperforms other exist-
ing methods irrespective of the space sizes. This is clearly
shown in Table 7. Here, the RMSE values in Fig. 17 are
averaged over space sizes. Indeed, the proposed GRU-LE

FIGURE 17. RMSE performances (y-axis) across different space sizes
(x-axis: D1 = D2 = D3). Training and testing data are generated from the
same CM. (a) CM1. (b) CM2. (c) CM3. (d) CM4. (e) CM5. (f) CM6. (g) CM7.
(h) CM8. (i) CM9.

FIGURE 18. RMSE performances (y-axis) across different space sizes
(x-axis: D1 = D2 = D3). The CM#-NET trained by CM# is tested with
(a) CM1, (b) CM2, (c) CM3, (d) CM4, (e) CM5, (f) CM6, (g) CM7, (h) CM8,
(i) CM9.

outperforms other methods irrespective of the type of CMs as
well.

Fig. 18 illustrates the RMSE of each GRU-LE CM#-NET
when it operates each CM test data with respect to the
area. Similar to the results above, the CM#-NETs trained
in indoor and outdoor CMs work well in corresponding
environments. Thus, these pairs of CM#-NETs can operate
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TABLE 8. RMSE (meters) of CM#-NET averaged over space sizes in Fig. 18
when they are tested with CM# test data.

FIGURE 19. RMSE performances (y-axis) across different asymmetry
factors (x-axis: γ ) for space with the same volume. Training and testing
data are generated from the same CM. (a) CM1. (b) CM2. (c) CM3.
(d) CM4. (e) CM5. (f) CM6. (g) CM7. (h) CM8. (i) CM9.

in each other’s environments. The pairs of interchangeable
CM#-NETs include: CM1-NET and CM2-NET, CM4-NET
and CM8-NET, and CM6-NET and CM9-NET. As also sum-
marized in Table 8, for the test data CM#, CM#-NET operates
best.

E. PERFORMANCE WITH RESPECT TO ASYMMETRY OF
THE SPACE
In Fig. 19, the performances of various localization methods
are evaluated across different values of asymmetry factor
γ = D3/D1. The SNR is fixed at 30 dB and the space size
is unchanged at 153 = 3,375 m3, with D2 = 15 m. The
GRU-LE method outperforms all of the conventional meth-
ods, and it is unaffected by the asymmetry of the operating
space. The ToA and CNN-DE methods are not robust against
the space asymmetry. For positioning methods, the COLA

TABLE 9. RMSE (meters) averaged over asymmetry factor γ of every CM
in Fig. 19.

FIGURE 20. RMSE performances (y-axis) across different asymmetry
factors (x-axis: γ ) for space with the same volume. The CM#-NET trained
by CM# is tested with (a) CM1, (b) CM2, (c) CM3, (d) CM4, (e) CM5,
(f) CM6, (g) CM7, (h) CM8, (i) CM9.

TABLE 10. RMSE (meters) of CM#-NET averaged over asymmetry factor γ
in Fig. 20 when they are tested with CM# test data.

suffers due to the asymmetry of the space, contrary to the
3DT method. Again, it is worth being emphasized that the
proposed GRU-LE outperforms other existing methods irre-
spective of the asymmetry of the operating space. This is
clearly shown in Table 9. Here, the RMSE values in Fig. 19

VOLUME 9, 2021 68811



D. T. A. Nguyen et al.: Deep Gated Recurrent Unit-Based 3D Localization for UWB Systems

are averaged over different γ . Indeed, the proposed GRU-LE
outperforms other methods irrespective of γ and the type of
CMs as well.

Fig. 20 shows the RMSE of the CM#-NET when operating
on the test data of various CMs. Similar to other experiments,
the GRU-LE performs the best when the CMs for the training
and testing data are the same. The CM6-NET and CM9-NET
models perform better with CM6 and 9 test data than with
other CMs. The CM1-NET and CM2-NET are interchange-
able, as along with the pair of CM4-NET and CM8-NET. The
RMSEs in Fig. 20 are averaged over γ and shown in Table 10.
As expected, for the test data CM#, the CM#-NET operates
best (see the underlined RMSE value which is the smallest in
each column.).

VII. CONCLUSION
In this study, we developed a GRU-based model to estimate
the Tx location in a 3D environment. This method integrates
the ranging and positioning processes within a single model.
The time series data generated from the received signals
from all of the Rxs and the three coordinates of the Tx
location are the input and output of this model, respectively.
The localization performance was evaluated according to
the RMSE values. As demonstrated by a numerical com-
parison, the GRU-LE model outperforms all other methods,
and the proposed methods is also robust against asymmetri-
cal 3D space, compared with the ToA and CNN-DE meth-
ods. Moreover, compared to the exiting CNN-LE method,
our proposed GRU-LE method achieves 15 and four times
shorter execution time in training and testing, respectively,
and provides smaller RMSE up to 0.8 meters. In the future,
we intend to apply the proposed localization method in
real-time applications.
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