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ABSTRACT Language is an integral part of human interpersonal communication, which is conveyed through
multiple sensory channels. This multisensory communication skill has motivated an extensive number
of studies on multimodal information processing, which are trying to develop a system that mimics this
natural behaviour. For example, automatic speech recognition (ASR) represents listening activity, text-to-
speech (TTS) represents speaking, and various image processing models to represent visual perception.
Most are trained and tuned independently using parallel examples from the source to the target modality.
However, this is not the case in real-life situations, where a lot of paired data are unavailable. Inspired by
this self-supervision of the human auditory and visual perception system, we proposed a multimodal chain
mechanismwith a weakly-supervised chain training strategy that is trained and tuned jointly. In our proposed
framework, when the amount of paired training data are insufficient, collaboration among ASR and TTS,
image captioning (IC), and image production models can improve their performance through single or dual-
loop chain mechanisms. Our experiment result showed that by using such a closed-loop chain mechanism,
we can improve amodel with both unpaired and unrelated data from different modalities in a semi-supervised
manner. Through the collaboration of speech and visual chains, we improve an ASRmodel performance with
an image-only dataset while maintaining the performance of other models.

INDEX TERMS Semi-supervised learning, multimodal machine chain, automatic speech recognition,
speech chain.

I. INTRODUCTION
Humans perceive the world through different modalities
which they process with their senses. Such multiple infor-
mation from multiple modalities is processed altogether into
a general concept and understanding. In a work on human
listening and speaking activities, Denes et al. described how
closely related they are to each other, even though these
activities are done by different organs with different purposes.
They called this mechanism a speech chain [1], where spoken
messages are propagated from the speaker’s mind to the
listener’s mind (Figure 1, left). During the speech produc-
tion process, the hearing process is not only needed by the
interlocutor but also by the speaker. Through simultaneous
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speaking and listening, the speaker can monitor her speech
quality with self-supervision from her brain.

Inspired by this speech chain mechanism (Figure 1),
we previously proposed a machine speech chain [2]–[5] by
exploiting the relation between human speech perception and
production. This approach enables the training of ASR and
text-to-speech synthesis (TTS) with speech-only or text-only
data. First, both the ASR and TTS models are trained on a
small amount of paired speech-text data. Then both models
generate pseudo-pairs of the unpaired data in an online man-
ner. In this step, the chain mechanism relies on reconstruction
loss, where the only supervision comes from comparing the
chain hypothesis with the original unpaired data.

Although this speech chain approach involves ASR and
TTS tasks, its improvement still comes from the data whose
modality is related to the task. We can only use speech and
text data to improve ASR and TTS, which are the source
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FIGURE 1. Human speech chain [1] in comparison with machine speech chain [2].

and target modalities of each task. From the perspective of
the human cognitive process, human communication is multi-
modal, where each modality shares complementary behavior
to ensure flexible learning. When it is impossible to infer
from auditory channels, a visual portion can complement the
missing information [6]. In addition to serving as a backup,
both modalities can also be perceived together, reflected in
evidence of cross-modal processing in the brain [7]. Byrne
(2010) argued that vision supplies information about color,
texture, and other visual aspects of viewed objects, and the
other senses supply different features to help us perceive what
we see [8].

Inspired by this idea, we should be able to improve our
speaking ability (i.e., speech processing models) with dif-
ferent kinds of stimuli (data), such as visual stimuli (i.e.,
image data). In this study, we focus on this generalization of
the speech chain into a multimodal chain by improving the
speech processing models by leveraging visual data. More-
over, using such visual data as images is beneficial because
unlabeled images are available in practically unlimited quan-
tities [9]. Inside the multimodal chain, the ASR and TTS
models in the speech chain collaborate with IC and image
production models (image retrieval (IR) or image generation
(IG)) from the visual chain. In this way, we can leverage
cross-modal augmentation inside a chain of models, espe-
cially when the paired training data are insufficient.

Our contributions in this study are four-fold.1 First,
we define a general framework for the universal chain prob-
lem and formalize the definition of the semi-supervised chain
mechanism, making it applicable to any set of modalities.
Second, by implementing the general framework, we refor-
mulate the previously published speech chain into a multi-
modal machine chain. Unlike speech chain that is limited
to the related modality (i.e., speech and text for ASR and
TTS), we can use unrelated modality data (i.e., image data
for speech processing) with our dual-chain mechanism. With
this idea, we significantly reduce the need for parallel data

1Parts of this work were presented in previous work [10], [11]. This
manuscript contains a general framework for the universal chain problem
that has not been defined before. Furthermore, we also include additional
experiments and detailed analysis.

for training a speech processing model because the models
inside our chain mechanism support each other through a
joint training mechanism.

Then, we improve the robustness of our multimodal chain.
We experimented with an adversarial-based image generation
model for generating unseen images. From speech processing
aspects, we added a speaker recognition model to our chain
mechanism, which enables the use of a multi-speaker dataset
through a one-shot speaker adaptation. We also investigated
the performance of our chain mechanism on synthetic speech
and on a natural speech dataset.

Finally, we propose an alternative single-loop multimodal
chain with an ImgSp2Txt model that receives image and
speech input altogether when both are available and then
decodes the text transcription. This enables sharing between
ASR and IC tasks, which is commonly investigated in the
audiovisual ASR field. We want to determine whether our
multimodal chain training mechanism can also be applied for
such a multi-source multimodal model.

II. GENERAL FRAMEWORK FOR THE CHAIN MECHANISM
In a cross-modal X → Y mapping task, we define the source
modality as X , target modality as Y , and unrelated modality
as Z . Suppose there are three kinds of data based on its
availability:
• Pxyz is paired {X ,Y ,Z } trimodal data,
• Ux,y,z is unpaired data, where there is no mapping
between each row of x and each row of y or z,

• and Sz is single modality data, whose modality Z has no
relation with the task modality (i.e. X and Y ).

In this section, we describe how to train this cross-modal
modelMX→Y based on the data availability.

A. STEP 1: SUPERVISED TRAINING USING PAIRED DATA
Given enough data pairs of {(xP0 , y

P
0 ), (x

P
1 , y

P
1 ), . . . , (s

P
n , t

P
n )}

∈ Pxy, cross-modal model MX→Y can be trained in a super-
vised manner by minimizing the loss between predicted
ŷPi = MX→Y (xPi ) and ground truth yPi ∈ Pxy so that:

`MX→Y = LMX→Y (y
P
i , ŷ

P
i ; θMX→Y ), (1)

θMX→Y = Optim(θMX→Y ,∇θMX→Y
`). (2)
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FIGURE 2. Illustration of chain path CYXY = {Y → X , X → Y } with |D| = 2,
where MX→Y is backpropagated by the reconstruction loss LMX→Y

.

B. STEP 2: SEMI-SUPERVISED TRAINING USING
UNPAIRED DATA
Since in some cases, there are insufficient data pair in Pxy so
that {(xP0 , y

P
0 ), (x

P
1 , y

P
1 ), . . . , (x

P
m, y

P
m)} ∈ Pxy,m < n, cross-

modal model MX→Y cannot be optimally trained to get sat-
isfiable quality. Given unpaired data {xU0 , x

U
1 , . . . , x

U
n } ∈ Ux

and {yU0 , y
U
1 , . . . , y

U
n } ∈ Uy, cross-modal modelMX→Y train-

ing can continue to use the chain mechanism by leveraging its
inverse modelMY→X .
In this condition, we can construct chain path CYXY (See

Figure 2) to continue training modelMX→Y :

CYXY = {Y → X ,X → Y }, (3)

by generating hypothesis x̂Ui from inverse modelMY→X :

x̂Ui = MY→X (yUi ), (4)

so that the hypothesis of ŷUi can be generated:

ŷUi = MX→Y (x̂Ui ), (5)

which enables the calculation of reconstruction loss `MX→Y :

`MX→Y = LMX→Y (y
U
i , ŷ

U
i ; θMX→Y ). (6)

In an end-to-end condition,MX→Y can be backpropagated:

θMX→Y = Optim(θMX→Y ,MY→X ,∇θMX→Y ,MY→X
`), (7)

while in a non end-to-end condition, Eq. 2 is sufficient.
Given the mechanism, the improvement of MX→Y is

dependent on the quality of x̂Ui which functions as a bridge
between Y → X and X → Y . Therefore, reciprocally
training inverse model MX→Y with inverse chain operation
CXYX is also encouraged.

C. STEP 3: SEMI-SUPERVISED TRAINING USING SINGLE
MODALITY DATA
When all paired Pxy data and unpaired Uxy data have been
used, modelMX→Y can still be improved by generalizing the
chain mechanism explained in Sec. II-B. This generalization
enables the use of unrelated modality Z to improve model
MX→Y which was previously only trained within {X ,Y }
modalities.

First, let us assume now that we have three kind of modal-
ities D = X ,Y ,Z , and paired data {(xP0 , y

P
0 , z

P
0 ), (x

P
1 , y

P
1 , z

P
1 ),

. . . , (xPm, y
P
m, z

P
m)} ∈ Pxyz,m < n, which are inade-

quate to satisfiably train MX→Y as in Sec. II-A. Similar
to Sec. II-B, single-modality data {xS0 , x

S
1 , . . . , x

S
n } ∈ Sx ,

{yS0 , y
S
1 , . . . , y

S
n} ∈ Sy, and {z

S
0 , z

S
1 , . . . , z

S
n} ∈ Sz are available.

In this condition, we can construct chain path CZYXY that
leverages SZ single-modality data:

CZYXY = {Z → Y ,Y → X ,X → Y }, (8)

by generating hypothesis ŷSi with modelMZ→Y :

ŷSi = MZ→Y (zSi ), (9)

x̂Si = MY→X (ŷSi ), (10)
ˆ̂ySi = MX→Y (x̂Si ), (11)

which enables the calculation of reconstruction loss `MX→Y :

`MX→Y = LMX→Y (ŷ
S
i ,
ˆ̂ySi ; θMX→Y ). (12)

In an end-to-end condition,MX→Y can be backpropagated:

θMX→Y = Optim(θMX→Y ,MY→X ,MZ→Y ,

∇θMX→Y ,MY→X ,MZ→Y
`), (13)

while in a non end-to-end condition, Eq. 2 is sufficient.
Figure 3 illustrates this chain path.

As we can see from the process flow, Eq. 10-13 are similar
with Eq. 4-7 because the chain path CYXY are inside the path
of CZYXY . Therefore, we can develop an extension from the
chain with |D| = 2 to |D| = 3, which further shows the
generalization of the chain framework.

III. BASIC MACHINE SPEECH CHAIN
This section describes the machine speech chain [2]–[5] as a
chain implementation with two modalities (|D| = 2). In this
framework, ASR and TTS models are trained in a closed-
loop mechanism that allows semi-supervised training using
both paired and unpaired speech and text data. We use the
definition in Section II to describe the machine speech chain:
• X source modality is speech, Y target modality is text,
• MX→Y model is ASR,MY→X inverse model is TTS,
• both ASR and TTS models are trained with a small
amount of Pxy paired speech-text data,

• CYXY is an unsupervised step to improve the ASR model
using Uy unpaired text data,

• CXYX is an unsupervised step to improve the TTS model
using Ux unpaired speech data.

In this study, we demonstrate the generalization of this
chain mechanism for any number of modalities of |D| > 2
by developing a multimodal machine chain with |D| = 3.

IV. MULTIMODAL MACHINE CHAIN
We realize the generalization of a semi-supervised chain
mechanism when |D| = 3 with three kinds of modalities,
X ,Y ,Z for speech, texts, and images.

A. DUAL-LOOP MULTIMODAL CHAIN (MMC1-IR/IG)
To connect each of these modalities in this multimodal chain,
we defined five kinds of models and our proposed chain path
to improve them in a semi-supervised manner with single-
modality data:
• MX→Y is an automatic speech recognition (ASR) model
that transcribes speech (X ) into text (Y ).

• MY→X is a text-to-speech synthesis (TTS) model that
synthesizes speech (X ) from text (Y ),
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FIGURE 3. Illustration of chain path CYXY into CZYXY = {Z → Y , Y → X , X → Y } with |D| = 3
for enabling the semi-supervised chain training from single modality data zi ∈ Sz .

FIGURE 4. Structure of: (a) proposed dual-loop multimodal chain with image retrieval (IR) or image
generation (IG) (MMC1-IR/IG), (b) proposed single-loop multimodal chain (MMC2). (Dashed arrow denotes a
comparison, and k denotes a speaker vector).

• MZ→Y is an image captioning (IC) that generates text
captions (Y ) from input images (Z ),

• and MY→Z can be implemented as an image
retrieval (IR) model that retrieves image (Z ) given a text
caption (Y ) query or an image generation (IG) model
that generates an image (Z ) given a text caption (Y )
input.

This chain implementation generalizes the chain mecha-
nism when |D| = 3 by combining two chain implementations
when |D| = 2. As illustrated in Figure 4(a), two loops
are concatenated with text modality. The left-side loop is
Tjandra et al.’s speech chain [2]–[5], which is connected with
our proposed visual chain (IC and IR/IG) by text modality.
We call this multimodal chain MMC1-IR, when the visual
chain is using an IR model, andMMC1-IG, when the visual
chain is using an IG model.

We designed the following training steps for MMC1-IR
and MMC1-IG:

• Step 1: supervised training with paired data
Each model is trained with a small amount of paired
image-speech-text Pxyz data in a supervised manner.
(Sec. II-A)

• Step 2: semi-supervised training using unpaired data
The training can be continued in a semi-supervised
manner using unpaired image-speech-text data Ux,y,z,
as described in Sec. II-B. In the speech chain, CYXY is
the unsupervised step to train the MX→Y ASR model
using the reconstruction loss from theUx data, and CXYX
is the unsupervised step to train the MY→X TTS model
using the reconstruction loss from the UY data. In the
visual chain, CZYZ and CYZY are the unsupervised steps to
improve theMY→Z IR/IG model andMZ→Y IC models.

• Step 3: semi-supervised training using single modal-
ity data

Given speech only data Sx , we canmake two chain paths:
CXYX and CXYZY . The first chain path (CXYX ) can be used
to train the TTS model using reconstruction loss LMY→X .
In chain path CXYZY , the ŷ transcription hypothesis is
generated by the MX→Y ASR model. Then this caption
hypothesis is used by theMY→Z IR/IGmodel to produce
image hypothesis ẑ, which can be used to generate a
caption hypothesis ˆ̂y byMZ→Y IC model. LMZ→Y recon-
struction loss can be calculated by comparing ŷ and ˆ̂y,
which then can be used to backpropagate the MZ→Y IC
model.
On the other hand, given image only data Sz, we can
make two kinds of chain paths: CZYZ and CZYXY . Path
CZYZ trains the IR/IG model through the image’s recon-
struction loss. We emphasize path CZYXY that trains
the MX→Y ASR model, which generates transcription
hypothesis ˆ̂y that is transcribed from the x̂ speech
hypothesis generated by the MY→X TTS model. Then
reconstruction loss LMX→Y can be calculated by compar-
ing the transcription hypothesis ˆ̂y with caption hypoth-
esis ŷ generated from the MZ→Y IC model from image
input z. Our main interest is determining whether the
ASR model can be improved even with the image-only
dataset, which has unrelated modality (text-speech) with
ASR.

B. SINGLE-LOOP MULTIMODAL CHAIN (MMC2)
Next, we proposed a single-loop multimodal chain (MMC2)
to show the implementation of our proposed chain framework
in a multi-source multimodal model environment. In this
multimodal chain, we combined ASR and IC to promote
sharing between these two models. Therefore, the loop mech-
anism resembles a chain implementation when |D| = 2
(Section II-B), although it can still process data with three
kinds of modalities (|D| = 3):

VOLUME 9, 2021 70289



J. Effendi et al.: Multimodal Chain: Cross-Modal Collaboration Through Listening, Speaking, and Visualizing

• M{X ,Z }→Y is implemented as the ImgSp2Txt model that
transcribes speech or caption images when given speech
(X ), images (Z ), or both (XZ ),

• MY→X is a TTS model that synthesizes speech (X ) from
text (Y ),

• and MY→Z is an IG model that generates an image (Z )
given a text caption (Y ) input.

As illustrated in Figure 4(b), there is only one loop as the
result of introducing ImgSp2Txt. This ImgSp2Txt model can
be trained with image-speech, image only, or speech only
data.

• Step 1: cross-modal model supervised training
When paired image-speech-text data Pxyz are available,
ImgSp2Txt can be trained in supervised manner.

• Steps 2& 3: semi-supervised training using unpaired
and single modality data
TheMMC2 has a different semi-supervised step because
it operates in a single-loop mechanism. To adapt it into
the chain path notation, let us assume G = {X ,Z ,XZ }.
Then the IG or TTS model is MY→G, depending on
the desired output. Therefore, we can define two chain
paths: CGYG and CYGY , resembling chain paths when
|D| = 2.
The first path CGYG is used when MMC2 is given either
unpaired image-speech-text dataset Ux,y,z, speech-only
dataset Sx , or image-only dataset Sz. The ImgSp2Txt
model generates text hypothesis ŷ so that either
IG or TTS can generate an image or speech depending
on the input. If the input is an image, the IG can be back-
propagated by the reconstruction loss from the image
hypothesis generated by IG. When the input is speech-
only, the ImgSp2Txt model generates text hypothesis ŷ,
which is used by TTS to generate speech x̂. By compar-
ing the generated and original speech in the TTS recon-
struction loss, we can backpropagate the TTS model.
Then for the second chain path CYGY , both TTS and IG
produce speech and image from the text input. These
speech and images then can be used to backpropagate
the MG→Y ImgSp2Txt model using the reconstruction
loss LMG→Y by comparing the original text y and text
hypothesis ŷ.

V. MULTIMODAL CHAIN COMPONENTS
In this section we listed all the components of multimodal
chain.

A. SEQUENCE-TO-SEQUENCE ASR
We build the sequence-to-sequence ASR model that resem-
bles the Listen, Attend, and Spell (LAS) framework, which
uses location-aware attention [12]. As illustrated in Figure 5,
this model encodes a speech feature x = [x0, . . . , xs] with
bidirectional long-short term memory (LSTM) layers into a
speech embedded representation eASR = [eASR0 , . . . , eASRs ]
which is a high-level feature representation used for decoder.

FIGURE 5. ASR model.

FIGURE 6. TTS model.

Then, the decoder uses teacher-forcing against text
sequence y = [y0, . . . , yt ] with length t to generate a
sequence of text hypothesis ŷ = [ŷ0, . . . , ŷt ]. To condition
this generation process against speech features, we used an
attention mechanism [13] to produce alignment probability
at = Align(eASR, dASRt ), given encoded representation eASR

and decoder hidden state dASRt . Then the alignment probabil-
ity are used to weight the encoded representation producing
a context vector ct , so that the hypothesis probability can be
produced by an output layer pt = out([ct , dASRt ]).

B. SEQUENCE-TO-SEQUENCE TTS
A sequence-to-sequence TTS receives a text utterance
y = [y0, . . . , ys] and learn to generate a speech feature
x = [x0, . . . , xt ] by optimizing its parameters. We build our
model based on a sequence-to-sequence TTS with a one-shot
speaker adaptation [3], which was adapted from the basic
structure of the Tacotron TTS [14] and DeepSpeaker [15]
models (Figure 6).

In this model, the speech feature generation in the
decoder part is conditioned not only on text utterance y but
also on speaker embedding k . These speaker embeddings
are randomly sampled from the pool of speaker embed-
dings extracted from the paired speech-text data using a
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FIGURE 7. IC model.

DeepSpeaker model that was trained on the same data.
We used an end-of-speech (EOS) prediction module [3] to
predict the duration of the generated speech.

C. IMAGE CAPTIONING
An attention-based image captioning model encodes image
z into high-level features [eIC0 , . . . , e

IC
s ] (Figure 7). These

features are then used as the context for an attentional text
decoder to generate hypothesis captions. To get this two-
dimensional high-level features, a partial image classification
model is usually used by taking the hidden representation
before the pooling operation. Then these features are attended
by a multilayer perceptron attention module which produces
alignment probability at = Align(eICs , d

IC
t ) given encoded

representation eICs and decoder hidden state d ICt . Then the
alignment probability is used to weight the encoded rep-
resentation producing context vector ct . By the hypoth-
esis probability of each timestep pt = out([ct , d ICt ]),
the decoder then decodes a sequence of caption hypothe-
ses using teacher-forcing against the original text sequence.
In this study, we use ResNet [16] as image encoder, and
LSTM decoder to decode text, resembling similar architec-
ture with Xu et al. (2015) who proposed the ‘‘Show, Attend,
and Tell’’ model [17].

D. IMAGE RETRIEVAL
An image retrieval model encodes image z and text caption
y into embedding vectors vz and vy (Figure 8). The image
encoder is usually constructed by a series of pretrained con-
volutional neural networks, followed by pooling and linear
transformation at the end to produce image embedding vz.
Recurrent neural network is used to encode the text sequence
into an embedding vy. To combine both the image and text
embeddings into a unique multimodal embedding space,
we use a ranking loss with distance d that defines the distanc-
ing between positive (vy, vz) and negative samples (v̂y, v̂z).
In this study, we use pairwise rank loss as the loss for image
retrieval LIR as follows:

LIR =
∑
|vy|

∑
|v̂z|

max{0,M + d(vy, vz)− d(vy, v̂z)}

+

∑
|vz|

∑
|v̂y|

max{0,M + d(vz, vy)− d(vz, v̂y)} (14)

FIGURE 8. IR model.

FIGURE 9. AttnGAN [18].

E. IMAGE GENERATION
AttnGAN [18] model generates images from a caption in
a multistage manner, given a deep attentional multimodal
similarity model (DAMSM). This multistage generating and
discriminating strategy can successfully synthesize image in
detailed clarity that are accurate to the given caption.

As illustrated in Figure 9, a bidirectional LSTM text
encoder encodes the given image caption. Then its sentence
vector is used as a condition to generate the image in the
first stage using the G0 generator model given the sentence
vector and vector r that is sampled from a standard normal
distribution. Then the generated image is evaluated using
discriminator D0. This process is repeated with DAMSM
attention over the caption so that [G1, . . . ,Gn] generates
images and [D1, . . . ,Dn] iteratively evaluates them until step
n when the target image size has been reached.

F. TWOFOLD IMAGE-SPEECH TO TEXT MODEL
An image contains the information being spoken in its speech
captions. We designed a single model that does both tasks
to exploit this relation in the ASR and IC tasks. In addition,
the model should be able to separately process speech and
images if one of them is not available. When the input is
only speech, this model will produce the transcription of the
speech. An image caption is generated when only an image is
provided. Finally, the model produces a speech transcription
with the help of the input image when both image and speech
are provided.

We designed output layer probability sharing between
ASR and IC in a sequence-to-sequence ImgSp2Txt with a
dual-decoder model (Figure 10). In this model, the image
is encoded by a residual network that produces high-level
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FIGURE 10. Dual text decoder with audio and visual decoding
combination.

feature representation ez = [ez0, . . . , e
z
n] of the image. Bidi-

rectional LSTM encodes the speech features into embedded
representation ex = [ex0, . . . , e

x
m]. Then the dual text decoder

attends both ex and ez. In training, softmax cross entropy loss
LImgSp2Txt is calculated by previously averaging both the pyt
and pzt output layer probability for the image and speech input.
If only one is available, the output layer probability of the
respective modality is used.

VI. EXPERIMENT SET-UP
A. DATASET
1) Flickr 30k

Flickr30k [19] is an image-captioning dataset which
images from Flickr consist of everyday activities,
scenes, and events. There are about 150k crowd-sourced
captions with 30k images in this dataset, which makes
every image has 5 captions. Since this dataset only has
text as a caption, we generated speech captions based on
them using the Google TTS.

2) Flickr 8k
Similar to Flickr30k, Flickr8k [20] contains 8k images
from Flickr. Each image has five captions annotated
using the crowd-sourcing method. In addition, to enable
the use of this corpus in the speech processing field,
it was extended with natural speech recording using
the Amazon Mechanical Turk crowd-sourcing platform.
This dataset has 183 unique speakers.

B. DATASET COMPOSITION
We used the default dataset split for Flickr30k (29k train, 1k
dev, and 1k test) and Flickr8k (6k train, 1k dev, and 1k test).
However, because we proposed a semi-supervised strategy
where a model quality can still be improved with just a single
modality dataset, we designed a scenario that enables it. For
Flickr8k, we used all the five captions from an image, while in
Flickr30k, we follow the same settings as the previous work
[10] to balance the image production side.

Table 1 lists each possible data modality type that we used
in this study. Each modality type corresponds to a different
training step depending on the scenario to be examined. The
first type is all-paired modality type Pxyz, which contains

TABLE 1. Modality type with three conditions: (1) available paired data
denoted as©, (2) available but unpaired data denoted as N, and
unavailable data denoted as ×.

triplets of speech, text, and image. This type of data typically
has the lowest number of data compared with other types in
the dataset, because in this study we want to minimize the
need for paired data as much as possible. Modality typeUx,y,z
means that all three modalities (speech, image and text) are
available, but they are unpaired. Finally, modality type Sx
and Sy are single-modality data that contain only speech and
image modality respectively.

We partition the data into several subsets based on the
modality type. Depending on the task, the number of data in
each subset is different, as shown in Table 2. Before parti-
tioning the data, we randomly shuffle the order of the keys in
the dataset initially. For measuring the topline performance
such as in Sec. VII-A, we assume that all data are paired.
In this way, we can compare each of our model performance
in supervised mode with other previously published studies.

To prove our hypothesis that improving ASR with image
data is possible with a multimodal chain, we composed the
following data partition on Flickr8k and Flickr30k. Paired
data Pxyz has the smallest amount of data, followed by
unpaired data Ux,y,z and Sx , Sz, which comprises the largest
portion. First, we trained the ASR, TTS, IC, IR, and IG
models with this data partition, following Steps 1-3 from
Section IV.With these trainedmodels, we can comparewhich
image production method is better for the multimodal chain:
IR or IG. As listed in Table 2, we use the Flickr30k dataset
with 2000 Pxyz data, 7000 Ux,y,z data, and 10000 Sx , Sz data.

We used Flickr8k with 800 Pxyz data, 1500 Ux,y,z data,
and 1850 Sx , Sz data to show that our proposed multimodal
chain can also work in a multi-speaker natural speech dataset.
We tested MMC2 with the same data partition to compare
it with a label propagation method (Section VI-D). We also
tested what happens when all the remaining data (other than
the paired Pxyz data) are unpaired or single modality.
We designed the data partition to verify the effect of the

amount of single modality data on the final performance.
Using a model supervisedly trained with 800 Pxyz data,
we continued the training in a semi-supervised manner based
on Step 3 (Section II-C). The remaining data (other than
the paired data) were regarded as single modality, which we
divided into 2600 Sx speech-only data and 2600 Sz image-
only data. We ran the experiment with a variable amount of
single modality data to identify the correlation between the
data amount and the final speech processing model perfor-
mance.

Finally, to see the initial data amount effect of the
final speech processing model’s improvement, we vari-
ably changed the amount of paired Pxyz data. After that,
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TABLE 2. Data partitioning for each subset (in #Image). n = {0, 1, 2, 3, 4, 5}, m = {0, 1, 2, 3, 4, 5, 6, 7}.

we continued the training using a fixed amount of 1850 Sx
and 1850 Sz single modality data. The interesting point here
is how much the initial model performance improved.

The image-only dataset cannot be used in all scenarios
without our proposed multimodal chain training strategy,
which implies that no further improvement to the existing
speech chain can be done. Therefore, our main interest here
is to determine whether ASR improvement remains possible
even when only image data are available.

C. MODEL DETAILS AND EVALUATION METRICS
We used all the models described in Sec. V. We used an
80-dimensional mel-spectrogram for the speech features in
the ASR and TTS models. We used word-level text gran-
ularity for the IC and IG tasks, and the ASR, TTS, and
ImgSp2Txt used character-level granularity. To handle the
unseen speakers in the unpaired and single modality data,
we performed one-shot speaker adaptation [3] with a mod-
ified speaker embedding size from 128 to 64. We decoded
all the hypotheses during the chain connection and in testing
using a beam size of three. We used Adam optimizer for all
the models except IR; with 1e-3 for the ASR, 1e-4 for the
ImgSp2Txt, and IC models, 2.5e-4 for the TTS model, and
2e-4 for the IGmodels. For the IRmodel, we used a stochastic
gradient descent with a 0.1 learning rate. Although techni-
cally training each element in the chain path is possible with
an end-to-end style [4], we discovered that the gradient for
the early components of the chain became too small for a long
chain path. Therefore, in this study, we just backpropagated
the last model of the chain path.

For the ASR and TTS models, we used a similar model
parameter as Tjandra et al. (2017) [3]. For IC model,
we removed the last two layers of the ResNet [16], which
yielded a grid of high-level representation to each image
region it represents. We used an LSTM decoder with a
512 hidden size to decode the hypothesis captions. For the
IR model, we removed the last layer of ResNet, a step that
yielded a vector of the image itself. These representations
were linearly transformed to 300-dimensional image embed-
dings. We generated sentence embeddings with a bidirec-
tional LSTMwith 256 hidden sizes in each direction.We used
the same parameters as Xu et al. (2018) for the AttnGAN.

In practice, to reduce the memory usage, IC, IR, and IG
models used only a 128× 128 pixels image size.
We evaluated each model with the test set of the dataset

with which it was trained. We measured the ASR perfor-
mance with the character error rate or the word error rate
(CER/WER) and a bilingual evaluation understudy (BLEU)
[21] for the IC to compare the n-gram between the hypothesis
and the reference captions. We used 1-gram and 4-grams for
BLEU, denoted as B1 and B4. In addition, to measure the
TTS performance, we used L2-norm2 metrics (denoted as
L2) to measure the error between the reference and generated
mel-spectrogram sequences. Finally, IG was measured by
inception score (IS) [22] to determine how realistic the IG
output was.

D. LABEL PROPAGATION
Label propagation [23] is a common semi-supervised training
strategy that generates pseudo labels from partially unlabeled
data. In its deep neural network implementation, this kind of
approach is also known as pseudo labels [24].We adapted this
algorithm to follow our use cases. First, a model is trained
with the labeled portion of the data. Then the trained model
generates a pseudo label for the unlabeled data. To use this as
a baseline in our task, we modified the algorithm to use it for
the cross-modal tasks.

Assume that an ASR model is trained using the speech
and text parts of the Px data subset. Then the text part of
the Ux,y,z subset is generated using the trained model. These
text hypotheses are used to retrain the model. This process is
repeated for the data in the Ux type subset. The same process
can be used for the ICmodel with the Sz type subset. However,
for IG and TTS, the last step using the Sx and Sz type subsets
cannot be used because the data modality is on the target side.
To solve this problem, we generate source side data using the
corresponding model. For example, to use the speech only Sx
type subset for TTS, we generate a text hypothesis using the
ASR model on that same step.

VII. EXPERIMENT RESULTS
A. TOPLINE SCENARIO
In this section, we simulated a condition where much
paired data are available (Table 2: Topline). Our experiment
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TABLE 3. Comparison of our model performances with existing published
results: ↓ means lower is better; ↑ means higher is better.

measured our model performance and compared it to pre-
viously published studies. When no previously published
result was available for the Flickr8k or Flickr30k datasets,
we trained our model with the same dataset that was used
in the reported result. Therefore, since each model result
reported in each section (i.e., ASR, TTS) was trained with
the same dataset, they are comparable.

We listed all the scores of our topline model in Table 3.
In the WSJ corpus [25], our ASR model outperformed better
than Kim et al. [26], and both ASR and TTS work as well
as the previously published results of Tjandra et al. [4], [27].
Our IC model performed better than Xu et al. [17] in BLEU4.
We also observed similar performance in our IR model in the
Flickr30k dataset, the IG model in the CUB dataset, and the
ImgSp2Txt model in Flickr8k.

B. PROPOSED: FROM IR TO IG
First, we need to decide whether the IR or the IG model
is better for the multimodal chain. The benefit of using IR
is that the retrieved image is of good quality because no
synthesis is needed. However, because the image is retrieved,
it is difficult to return unseen images, especially when the
dataset is not parallel. On the other hand, generating images
using the IG model produced better unseen images because
they are synthesized. Even so, the image quality is not ideal,
especially for the open-domain dataset in this study.

For this, we used MMC1 and replaced the image pro-
duction model using IR or IG. We labeled each of them
as MMC1-IR and MMC1-IG. We partitioned the data for
Steps 1, 2, and 3 following the steps in Section IV. For the
size of each subset, refer to Table 2: ‘‘IR vs IG’’. We trained
all initial model in a supervised manner with paired Pxyz
type data subset and semi-supervisedly trained the model
inside the speech and visual chains using Ux,y,z type sub-
set. As shown in Table 4, although both the ASR and TTS
models are unaffected because there is no influence from the

image production model yet, the IC performance between
IR and IG in the visual chain can already be compared. The
MMC1-IR improvement in Step 2 is more focused on B1 than
B4, compared with MMC1-IG, which consistently improves
both. For the image production models, both IR and IG show
improvement in their own evaluation metrics.

Next, we connected the speech and visual chains using
text modality in Step 3. All the speech processing models in
MMC1-IG outperformed MMC1-IR, showing that a visual
chain using IG can generate a better text hypothesis to be
fed into a speech chain than with IR. This result can be
quantitatively compared in the IC score, where MMC1-IR
shows a performance decrease, although in MMC1-IG both
the B1 and B4 scores increased. We also observed a decrease
in the IR model performance. In this step, the IR model
receives text hypotheses generated by the ASR model from
the Sx speech-only data subset. Unfortunately, when the IR
model needs to retrieve images for these text hypotheses,
it can only get images from the Uz and Sz type data subsets.
These data don’t have exact matches for such transcribed
Sx type data (Sx and Sz are not parallel), which lead us
to infer that the MMC1-IR is struggling to retrieve unseen
images. Although it is possible to use Hybrid IR + IG (i.e.,
IR for Step 2 and IG for Step 3), we decided that this step
is inefficient because we need to train both the IR and IG
models. Due to these considerations, we decided to use the
IG model for our next experiments.

C. BASELINE: LABEL PROPAGATION
In this section, we did label propagation to learn how much
improvement we can get with identical data composition.
We call this experiment Label Propagation I, whose results
are shown in Table 5. By using the same amount of ini-
tial data, the ASR, IC, and ImgSp2txt models cannot be
improved, although some improvement was reported in the
TTS and IG task.

To investigate whether more data can raise the improve-
ment, we added more paired data to the initial step by taking
600 images from the unpaired multimodal data in Step 2 and
called this experiment Label Propagation II. By using this
new composition, the ASR performance can be maintained,
and we found improvement in the other models. Compared
with our proposed multimodal chain, even with less paired
data, such as in Label Propagation I, all of the models can still
be improved. This result shows that our proposed multimodal
chain is more effective than the label propagation method.

D. PROPOSED: COMPARING MMC1-IG AND MMC2
After choosing between IR and IG and comparing with
the label propagation baseline, in this section we evaluate
the performance of a dual-loop (MMC1-IG) vs. a single-
loop multimodal chain (MMC2). For the data partitioning
in this experiment, we refer to the subset partitioning based
in Table 2: MMC1 vs MMC2. Initially, we separately trained
all the models using Pxyz data in a supervised manner.
As shown in Table 5, both MMC1-IG and MMC2 have
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TABLE 4. Comparison of performance of proposed MMC1-IR with MMC1-IG on Flickr30k.

TABLE 5. Comparison of proposed MMC1 and MMC2 performances with label propagation method in Flickr8k dataset.

identical TTS and IG scores because they are using the same
initial model. ImgSp2Txt has a better CER score than ASR
for this initial step because ImgSp2Txt combines image and
speech information using a multi-source model.

We continued the training of these initial models using the
Ux,y,z data subset, and both MMC1-IG and MMC2 showed
improvement for all models. We separated the use of data
based on the modality of Step 3 to understand how specific
modality contributes to the improvement of each chain com-
ponent. First, we started training with image-only data Sz and
continued with speech-only data Sx (img → sp). For com-
parison, we also trained with speech-only data Sx first and
continued with image-only data Sz (sp → img). As shown
in Table 5, in terms of ASR performance, the sp→ img com-
bination is more effective. By training with image-only data,
we observed improvement not only in the image-processing
related task but also in the speech processing model. This
shows that the cross-modal augmentation inside the chain
is effective, either in a dual-loop MMC1 or in a single-loop
MMC2.

Next, we measured the actual effectiveness of the cross-
modal augmentation inside the chain by separately train-
ing each speech and visual chain. We assume that except
for the 800 paired data Pxyz, all the other 5200 data
(Ux,y,z) are unpaired. Therefore, each chain gets a hypoth-
esis from its related modalities, unlike our proposed

multimodal chain. For MMC1-IG, this approach yield
10.48% CER which is 1.58 points better than the best
approach of 12.06% when some data have only single
modality (See Table 5: Separated(Semi-supervised)). In a
single-loop MMC2, however, our proposed method remains
superior. With our proposed multimodal chain, we can
improve the ASR performance with unrelated modality
data (image) to a decent level through cross-modal augmenta-
tion, even when the speech and image datasets are disjointed.

We also listed the result when we assumed that all the
data are paired. This result shows the distance between
our proposed semi-supervised approach and the supervised
approach. Finally, we compared our best semi-supervised
ASR performance (12.06% CER/17.84% WER), which is
comparable to Sun et al.’s supervised ASR, which has a
13.81% WER on the same Flickr8k dataset [29]. Although
our proposed approach is semi-supervised, we can still
achieve a comparable error rate to a fully-supervised ASR
system.

E. SINGLE MODALITY DATA AMOUNT EFFECT TO THE
FINAL SPEECH PROCESSING MODEL PERFORMANCE
Our proposed multimodal chain emphasizes its ability to
produce additional improvement in speech processingmodels
even when no more speech or text data are available. There-
fore, we investigated whether speech processing models
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TABLE 6. ASR performance improvement given various initial data amount in Flickr8k natural speech dataset.

FIGURE 11. Single modality data amount effect to final ASR performance
compared with initial model baseline in Flickr8k natural speech dataset.
Vertical axis: character error rate (CER). Horizontal axis: number of single
modality data added.

improve consistently as the amount of single modality data
increases. For this additional experiment, we refer to the data
partitioning shown in Table 2: Var. Single Modality.

Figure 11 compares the ASR improvement using multi-
modal chains with the initial model performance in terms
of CER. The horizontal axis shows the number of single
modality data types (Sx,z) added in 520-image increments.
These increments generated five trained models, whose per-
formances relatively decrease, given more data to the multi-
modal chain. The best CER score (23.07%)was reached using
all of the single modality data of 2600 images.

In addition, Figure 12 compares the TTS improvement
using multimodal chains with the label propagation method
and the initial model performance in terms of L22 loss.
Compared with ASR, the TTS performance is consistently
better, given more single modality data. The best TTS per-
formance was reached with the most single modality data
of 2600 images, which yields 0.20 L22 loss improvement
compared with the initial baseline. These results suggest that
the improvement frommultimodal chains is positively related
to how many more data are used in the semi-supervised step
by leveraging the cross-modal augmentation.

F. INITIAL DATA AMOUNT EFFECT TO FINAL SPEECH
PROCESSING MODEL PERFORMANCE
In this section, we experimentally changed the amount of ini-
tial data used to supervisedly train the initial model with the

FIGURE 12. Single modality data amount effect to final TTS performance
compared with initial model baseline in Flickr8k natural speech dataset.
Vertical axis: L22 Loss. Horizontal axis: number of single modality data
added.

data partitioning shown in Table 2: Var. Paired. We used data
subset Pxyz variably to test the training with various initial
data amounts. We continued the training with single modal-
ity data Sx,z. To measure the effectiveness of multimodal
chains to improve the performance in semi-supervised steps,
we measured the score differences between the initial model
and the model after the multimodal chain semi-supervised
step.

TheASR performance improvement can be seen in Table 6.
Using all the training sets as initial data (6000 images), we got
a 5.76% CER for the ASR performance. We reduced the
amount of initial data and reserved the remaining data for
the multimodal chain semi-supervised step. In this scenario,
a larger amount of initial data denotes a better performance
in the initial model. We used the same number of speech
and image-only data for all the possible initial data. When
the number of initial data was reduced to 1700 images, our
proposed multimodal chain started to show its effectiveness
in improving the ASR model performance, manifested by
positive 4CER scores. The highest performance increases
were achieved with the initial data pair of 500 images.

However, that is not the case with the TTS model per-
formance improvement (Table 7). The 4L22 score remained
positive when the initial data sizes exceed 500, suggest-
ing that our proposed multimodal chain improved the TTS
performance even when the initial TTS model was already
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TABLE 7. TTS performance improvement given various initial data amount in Flickr8k natural speech dataset.

relatively good. The experiment with an initial data amount
of 200 images showed no improvement in terms of 4L22.
Since the performance of the initial ASR and TTS models is
too low, they cannot effectively assist each other inside the
chain.

We also investigated the feasibility of using the existing
pretrained model with the ASR and TTS model previously
trained in the WSJ-SI284 dataset [25]. We continued the
training of this pretrained model in a semi-supervised manner
with the Sx,z dataset in the same manner with the experiment
in this section. We then tested it with the Flickr8k test set
and found an 0.5% CER improvement from the 90.72%
CER scores for the initial model. We conclude that although
improvement exists, the domain similarity between the initial
and single-modality datasets must be considered. The WSJ
dataset consists of news domain utterances, and Flickr8k is an
image caption dataset that contains declarative caption sen-
tences that describe what is happening in the images. There-
fore, these two datasets have very few contents overlaps.

From these experiments, we conclude that the accuracy of
the initial model, which was trained in the first step, affects
the final semi-supervised chain performance. We also found
that our proposed multimodal chain is more effective in a
low-data condition when the initial model can still provide
a meaningful hypothesis to assist each other in the semi-
supervised chain training process. Finally, focusing on ASR
performance, we found that the initial paired data amount
of 500 images gave the most improvement, and the one with
800 images gave a relatively better final CER.

VIII. RELATED WORKS
Many studies have integrated audio and visual informa-
tion to improve speech recognition performance, including
deep learning approaches. The first end-to-end approach
for audiovisual speech recognition was proposed by
Petridis et al. [30]. A popular extension of the LAS frame-
work [12], called ‘‘Watch, Listen, Attend, and Spell
(WLAS),’’ was proposed by Chung et al. [31]. This frame-
work introduced a dual-attention mechanism to enable the
processing of speech and/or images together depending on
the data availability. Afouras et al. [32] also proposed a
deep audio-visual speech recognition system to recognize
phrases and sentences from a talking face. Recently, Wu et al.
proposed a Dual Attention Matching (DAM) for audio-visual

event localization [33]. However, most of these approaches
are used in conditions where the video or face data are
highly parallel to the speech or audio data, a context that
creates a monotonic alignment between the visual and speech
modalities.

Sun et al. [29] proposed a ‘‘Look, Listen, and Decode’’
model that uses photos to improve the ASR process in the
Flickr8k dataset. This task is more challenging than lip-
reading tasks because the audiovisual model needs to decide
which part of the image is useful for the transcription task.
However, by addingmoremodalities, such as images, collect-
ing a dataset for this supervised task is complicated because
a parallel triplet is needed: speech, text, and image.

Although adding more modality creates a more robust and
flexible system, all these approaches need parallel data for
supervised training. Herein lurks the difficulty; if a model is
translating from one modality to another, it needs a paired
tuplet of data so that it can be trained in a supervised manner.
If we add another modality to the process, then we need a
triplet of data, and so on. This phenomenon contributes to the
difficulty of building a multimodal system.

To alleviate this limited parallel data problem by enabling
training from singleton data, some methods have been pro-
posed under the name of dual learning or cycle consistency.
Dual learning in machine translation was proposed using the
back-translation hypothesis of the dual model to generate
pseudo labels to train a primal model [34]. In the speech-to-
speech domain, a study converted synthetic to natural speech
by cycle consistency [35]. Extensive studies are also available
in the image to image domain, such as DiscoGAN [36],
CycleGAN [37], and DualGAN [38].

The speech chain framework [2]–[5] might be the
first framework constructed on different modality domains
(speech versus text). In the image to text domain, Turbo
Learning combined image captioning and generation in
a joint training framework [39]. Recently, a multimodal
machine chain [10] accommodated triangle modality and the
loop feedback mechanism.

Research interest has been growing in the field of self-
supervised learning. A self-supervised system solves a
task by generating some kind of supervisory signals by
itself. From the data perspective, the training data for self-
supervised learning can be either automatically or approxi-
mately labeled. Several studies incorporated a self-supervised
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approach with a semi-supervised learning task. Zhai et al.
(2019) described how it is beneficial to introduce self-
supervised loss in a semi-supervised task [40]. Si et al.
(2020) proposed adversarial self-supervised learning for
semi-supervised 3D action recognition [41]. On the other
hand, Chen et al. (2020) showed that self-supervised models
trained on a large amount of data can be further adapted for
semi-supervised tasks. In this study, we regard reconstruction
loss as a kind of self-supervision, where we can use the
unlabeled data as they are. However, to reach that stage,
the models inside our proposed chain must be weakly super-
vised beforehand using a small amount of labeled data. For
these reasons, we classify our multimodal chain approach as a
semi-supervised learning strategy with some self-supervision
from leveraging cycle consistency.

IX. CONCLUSION AND FUTURE WORK
In this study, we defined a general framework for the uni-
versal chain problem. We developed a cross-modal model
collaboration in the form of a closely-knitted chain that
enables the use of unrelated modality data through weak
supervision. We investigated the use of an adversarial image
generation model to enable the generation of unseen images
during the chain process. To enable multispeaker speech pro-
cessing, we also implemented one-shot speaker adaptation.
Then, we trained and tested our multimodal chain in a mul-
tispeaker natural speech dataset. Our chain mechanism can
be implemented on an audiovisual model through a single-
loop multimodal chain, without any significant performance
decrease.

Our proposed approach outperforms the label propagation
method. Speech processing components can be improved
even when using the image-only dataset, which is enabled by
our proposed multimodal chain mechanism. We also ran an
experiment that determined the effectiveness of our proposed
approach in accordance with the amount of data in the initial
and semi-supervised steps. We found that our proposed mul-
timodal chain is more effective in a low-resource scenario,
when the initial paired data are insufficient to satisfiably train
the cross-modal model.

For future work, we will investigate the possibility of infor-
mation sharing between each chain components to further
reduce the amount of required paired data. We also want
to develop better filtering or quality estimation during the
passing of the hypothesis between the model inside the chain
to improve the self-supervision within the chain. We are also
interested in investigating domain adaptation strategies to
enable cross-modal augmentation with data from different
domains (i.e., news, travel, etc).
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