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ABSTRACT Our article deals with the detection and model generation of complex objects with curvilinear
parts, like trees, with stochastic relaxation. The proposed algorithm can rely on any initial estimation of
object parts as a probability map (like those generated by Gaussian mixture models or neural networks) and
can model the relation of randomly sampled parts resulting in a structural representation of whole objects.
Semantic segmentation by convolutional neural networks or the pose estimation with deep learning of object
parts can predict the possible areas or positions of interest, but in many cases, a higher representation of
structures is needed for further (e.g., shape or connectivity) analysis. The model validation of such data
is straightforward for objects with known structure (like the human body or other rigid things) but tough
for such complex objects like trees in forest environments. In our approach, the possible configurations of
structures are generated by a marked point process while the optimal state is achieved by a solver based
on reversible jump Markov chain Monte Carlo dynamics. The model generator relaxation method itself is
unsupervised, no training is required, and our analyses show it has satisfactory stability, regarding detection
accuracy, against changing its parameters. Besides giving the theoretical background and algorithmic steps,
we present numerical evaluations on three datasets: synthetic trees, another of natural images with different
species of trees in various forest environments, and the third is of road maps. The analyzed examples show
that our approach, contrary to previous thin line detectors, can handle thin and thick objects.

INDEX TERMS Parts-based object detection, image segmentation, curvilinear objects, marked point
process, reversible jump Markov chain Monte Carlo dynamics.

I. INTRODUCTION
The detection, recognition, and pose estimation of objects
of the real world are elementary computer vision problems.
These three tasks can be solved independently, however,
on many occasions, they heavily rely on each other. For
example, in the case of non-rigid objects the possible pose of
the parts is strongly limited, serving valuable information for
detection. In several applications, we would like to generate
the structural description of the parts of objects; think of
aerial images of road networks, blood vessels of the liver
or other organs in medical images, or the analysis of plant
images. In all these cases, the structure can be described by
curvilinear or piecewise linear parts, but since they appear
in cluttered environments, occlusion, noise, and changes in
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scale, size, or pose can decrease the performance of the
available recognition methods.

Object recognition techniques can be categorized in many
ways, one popular grouping is as follows:

1) Learning-based recognition: It worksmostlywith train-
ing, far from explicit (shape, textural) models, and
has the ability to use semantic labeling. Typical rep-
resentations of this class are the deep neural net-
work (DNN) based methods [1], bag of words (BoW)
[2] approaches, and the cascade filters of Viola and
Jones [3].

2) Image invariance methods are based on matching a
set of image patterns (e.g., brightness levels), which
ideally uniquely determine the objects being searched
for [4]–[6].

3) Model-based recognition: explicit, high-level modeling
of objects, which may include parts and their relations,
f.e., [7]–[10], [11].
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In our paper, we concentrate on specific types of objects:
structures built-up from linear or close to linear parts like
trees are under investigation. Thus, we have a weak initial
assumption about the objects’ model structure but have no
clue for the location, orientation, size, and the number of
different parts of similar appearance. Component-based or
parts-based object detection techniques emphasize the detec-
tion of components, making it possible to process images of
non-rigid or occluded objects, handling significant changes
in viewpoint, or tackling the influence of noise.

Semantic segmentation or pose estimation by DNNs can
inherently code the inner structure of objects but to obtain
a high-level explicit representation, model validation is
required. For example, while in [12], a state-of-the-art pose
estimator, the most probable positions of object corners with
the vectors towards the centroid are estimated by a neural
network, the final validation of the pose is done through the
old PnP algorithm [13]. Unfortunately, for such objects as
thick and thin branches of trees, this validation is not straight-
forward since there is no specific model for the possible loca-
tions of trunks and branches. Our proposed approach differs
from those above and has the following main characteristics:

• We use no traditional templates; circles are placed to
different parts of the objects as markers.

• The position and size of circles are determined by the
underlying probability map showing the chance that the
location belongs to the object. Thus, large variability in
size is possible.

• The flexible relation of the parts is established by edges
connecting the circles.

• There are no explicit global rules to define the connec-
tions of circles, only local optimization is applied to
achieve a final representation.

• Optimization is carried out by a marked point process
(MPP) [14] driven by reversible jump Markov chain
Monte Carlo (RJMCMC) [15] dynamics followed by
some post-processing steps finalizing the models.

• Besides the graph representation of the objects, a coher-
ent pixel-wise segmentation map is also generated.

Our main contribution is a method that can build struc-
tural (graph) models of various curvilinear structures in clut-
tered environments based on probability assumptions. Its
advantage that it is not limited to thin lines, size variations are
handled by the MPP, and besides, the generated graphs code
the segmentation map of the image. As we will show, it is
robust to parameter settings and can be applied not only for
trees but to other piece-wise linear structures. In Figure 1 we
illustrate a road map from aerial view, its initial DeepLabv3+
[16] segmentation, and our model built upon it. In this exam-
ple, thin lines are modeled with vertices and edges. Our
experimental section will show how the proposed method
behaves on objects composed of not only thin but also thick
lines.

In the next section, we overview related works to under-
stand the motivation of our proposed model, then in

Section III we describe its details. In Section Framework
of Applications, we show how it can be utilized for the
generation of curvilinear object models, like trees in forest
environments; the discussion part is in Section V. Finally,
we conclude our findings in Section VI.

II. RELATED WORKS
Object detection and recognition are vast research areas in
computer vision; we can only highlight some papers related
to parts-based approaches and the detection of curvilinear
objects. The discussion of some articles of these two fields
is essential to understand our motivations and see how our
solution implements both areas’ functionality.

We start with some classical parts-based techniques: in
early methods the parts of the human face were modeled
[7]–[9], then more loose connections were expected for
the parts of pedestrians [10], or even more general struc-
tural (periodical) patterns were assumed when aerial views
of tree crowns were processed [17]. We also discuss methods
for the detection of curvilinear objects applied in the medical
field [18]–[21], [22].

Part-based detection approaches can be categorized by
several aspects:

• What kind of deformable templates or filters are used:
while the templates are limited in variability, some dis-
tortions of features can be handled during matching.

• How the relation of parts is handled: from BoW
approaches, where there is a very weak spatial relation
of the parts, through constellation [23], star-shape [24],
tree [25], k-fan [26], hierarchical [27] to sparse flexible
models [17], [28].

The general ideas for parts-based recognition appeared
very early. In [7] face detection was achieved with global
templates, which consisted of the fitness of local features and
spring forces between some of the candidate parts. The aim
is to minimize the overall cost by finding the correct parts
resulting in weak spring forces and a good appearance fit.
They solved the problem via dynamic programming with the
so-called linear embedding algorithm. The approach is rela-
tively simple and can be generalized with some limitations.
Its weakness is that the parameters are very scale-specific,
and the used local features cannot cope with a large variety
of possible forms.

The proposed system of Shams and Spoelstra [8] uses a
neural network to generate confidences for possible left and
right eye regions, which are paired together to form all possi-
ble combinations. These pairings’ confidences are weighted
by their topographic suitability, which are then thresholded to
classify the pattern.

Yow and Cipolla [9] have also developed a component-
based approach to detect faces. Their system categorizes
potential features into candidate groups based on topographic
evidence and assigns probabilities (that they are faces) to
these groups. The probabilities are updated using a Bayesian
network. If the final probability measure of a group is above a
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FIGURE 1. Illustrating the applicability of our graph model generation on an image of a road network. (a): input (aerial view of roads), (b): image
generated from probability map of DeepLabv3+, (c): graph model generated by the proposed MPP method, and (d): segmentation reconstructed from our
graph model.

certain threshold, a ‘‘detection’’ is declared. The features are
initially identified by using an image invariance scheme.

There are less strict requirements for the relation of parts
in people detection since the larger objects can be more easily
occluded, can easily vary their shape, and often appear in scat-
tered outdoor environments. In [10] the performance of per-
son detection systems on frontal and rear views was increased
by a parts-based approach, which was also capable of solv-
ing occlusions. The parts of a body (face, legs, arms) were
recognized by detectors processing the candidate regions by
applying the Haar wavelet transform and then classifying the
resultant data vector. Data classification is handled by several
support vector machines (SVM) classifiers arranged in two
layers. The component classifiers are quadratic SVMs, which
were trained before use in the detection process. The raw
output of these SVMs is a rough measure of how well a
classified data point fits its designated class. The combination
classifier (a linear SVM) processes scores received from the
component classifiers to determine if the pattern is a person.

More concentrating on curvilinear or line-like structures,
we can find approaches for hand-drawn sketch vectorization,
blood vessel detection, or road map localization. Now, look
closer at some of these, where typically thin structures are
to be discovered in various applications. In [29] we find
a correlation-filter-based approach for the vectorization of
hand-drawn fashion sketches. Here the crucial step is the pre-
cise extraction of thin lines from sketches that are potentially
very diverse. For this step, Pearson’s correlation coefficient
withmultiple Gaussian kernels is applied, granting invariance
to image contrast and lighting, making the extracted lines
more reliable for vectorization. Although the method was
tested with artificially added noise, the whole approach is
applicable to almost binary drawings but not textured, col-
orful photos.

A highly referenced paper for curvilinear structure detec-
tion in medical images is [18], where a 3D line enhance-
ment filter is developed to discriminate line structures
from others. The filter uses the eigenvalues of the 3D
Hessian matrix. Multi-scale integration is carried out by
taking the maximum among single-scale filter responses.
The application is illustrated by the segmentation and visu-
alization of several modalities of medical images. This

technique’s robustness is over-fulfilled by the method pro-
posed in [19], where a new curvilinear structure detector,
called optimally oriented flux (OOF) is introduced. Unfortu-
nately, in [19] only preliminary detection results are shown
on phase-contrast magnetic resonance angiographic image
volumes.

More applications and extension of the OOF detector can
be found in [20], where the tree structure reconstruction
is achieved by enforcing time consistency. Here curvilinear
tree structures were evolving, such as road networks in 2D
aerial images or neural structures in 3D microscopy stacks
acquired in vivo. When processing the neural images, they
use a local scale-space tubularity measure computed for every
pixel applying the oriented flux cross section trace measure
[19]. This way, it can be characterized how likely it is that a
given spatial position lies on a centerline of a tubular struc-
ture of a given radius. The tubularity map was thresholded,
and the highest tubularity points were selected iteratively,
applying a non-maximum suppressionmechanism. A number
of tree roots are manually selected by a human operator.
To enforce temporal consistency, all images of a sequence
were processed simultaneously. They formulated the problem
as a quadratic mixed integer program and demonstrated the
additional robustness that comes from using all available
visual clues at once instead of working frame by frame.
Unfortunately, manual selection of object points cannot be
applied in many cases in the above manner. In several appli-
cations, we can face many thick structures, so in our proposal,
we will use neural networks to produce probability maps
for the possible positioning of the object parts during an
MPP-RJMCMC optimization technique (without any manual
interaction).

Image noise, low contrast, or the identification of connec-
tivity when one component bifurcates or two or more cross
each other, raise interesting questions. A possible solution can
be found in [21], where a novel curvilinear structural simi-
larity measure, to guide a dominant-set clustering approach,
is introduced. It considers both intensity and geometric prop-
erties in the representation of curvilinear structures locally
and globally, and it groups curvilinear objects at crossover
points into various connected branches by dominant-set
clustering.

VOLUME 9, 2021 69145



K. Ben Alaya, L. Czúni: Stochastic Modeling of Trees in Forest Environments

While for image segmentation, Markov random field [30]
and conditional random field [31] techniques were widely
used for a long time, their performance was overtaken by
CNNs, and in general, they were not about graph-like rep-
resentations of curvilinear structures. MPP approaches look
more suited to fit spatial object models to observations. Either
2D or 3D data are used, models for man-built structures, cars,
trees, or people can fit energy optimization methods. [32]
describes two similar techniques where line segments are
used for modeling line networks. While these models’ appli-
cation is limited to relatively thin objects, it is unclear how the
proposed techniques behave on cluttered real-life data since
no real-world examples are given, just a few simulations with
various parameters. In [33] point clouds, obtained from lidars,
are processed, and simple rectangle models are fit to cars.
In [34] also plain rectangles are used as models for buildings
and cars, but their alignment is considered hierarchically.
Some hierarchy is already considered in another relevant
paper [17], where an MPP-RJMCMC dynamics framework
solves the problem of tree crown detection from remotely
sensed data. The tree crowns are determined by their top posi-
tions and diameters using stochastic geometry. They are mod-
eled by ellipses, represented by a Bayesian energy formula,
containing both prior energy, incorporating prior knowledge
of the plantation geometric properties, and a likelihood that
fits the objects to the observed data. We can consider this
approach an implicit part-based method where the tree plan-
tation is the ‘‘whole object’’ and the individual crowns are
the parts. However, since a global energy term (the Fourier
transform of the image) is also involved, the MPP does not
rely on only local interactions. Moreover, this approach, like
most of the others, use an explicit shape-model (ellipse).

A more recent MPP model is described in [35] where
the task was related to the analysis of fiber-reinforced com-
posite materials: the detection of short and long fibers in
microscopy images. Fibers had varying sizes, so short ones
weremodeledwith ellipses, long oneswith connected ellipses
(called tubes). The tubemodel had a connection prior, to favor
certain connections between the tubes, based on their mutual
positional relationship. This MPP model could also be used
for roads but may easily fail for composite objects of greatly
varying sizes.

A 3D extension of this 2D tube model is in [36] where
fibers are detected in X-ray tomography images. Due to the
lack of labeled data, deep learning methods cannot be directly
applied to this task, but theMPPmodel performswell.We can
somehow consider this as a parts-based approach where
longer fibers are associated with connected cylinders in the
framework: the cylinder model has two spherical areas at its
ends (the joint areas), each is used to define connection priors
that encourage the connection of tubes that belong to the same
fiber. The MPP detection process is accelerated through a
growth kernel: an optimization that allows more birth of new
tubes near the ends of tubes.

A difficult problem for the detection and quantification
of properties of individual, nanometer-sized stress granules

from intact tissues is introduced in [22]. The challenge comes
from their varying size, shape, intensity, low signal-to-noise
ratio, and often out-of-focus images. TheMPP behind fits sets
of shapes on the image plane and selects the ones matching
best with the predefined object characteristics. While this
model cannot handle complex and larger objects, it performs
well to detect poorly contrasted ones of heterogeneous size
and intensities.

Our first attempt to tree segmentation with an MPP is
in [11] where our initial models were formulated. We have
significantly improved our model definitions, and besides
changing cost functions, we added post-processing steps to
improve results. Our approach’s advantage is its generality
and that it can use any detector to generate probability maps
to rely on. As output, it can generate the graph representation
of the structures consisting of flexible parts, and consequently
pixel-wise segmentation maps.

III. THE PROPOSED METHOD
From a given probability map as an input, which can be
obtained through various ways, like Gaussian mixture mod-
els (GMM) [11] or convolutional neural networks (CNN)
[16], [37], we seek to achieve a higher-level representation
of tree-like structures by using an MPP formulation. Our
approach is based on the idea, that due to the cylindrical
shapes of the different parts of the studied objects, a set of
connected circles (nodes) and their connections (edges) can
be used to efficiently model each of those structures.

To keep the model formulation relatively simple and avoid
a combinatorial, stochastic variational explosion, we initially
decide to enforce only one connection for each node. More-
over, restricting the search space to the four nearest circles
(in addition to the previously connected structural element),
while investigating possible connections of each node, largely
contributes to the acceleration of the already computationally
expensive modeling scheme.

We propose a custom solver based on RJMCMCdynamics,
which, by testing different MPP configurations and compar-
ing their respective energies, will lead, through the process of
energy minimization, to an energy minimum.

Finally, we define three post-solver steps, in which we
investigate additional joints that failed to occur due to the
limitations of our initial simplistic mathematical modeling.
Adding those missing connections, we can connect different
object parts.

A. MPP FORMULATION AND LOCAL ENERGY TERMS
A marked point process is defined as a point process, with
a density function following the Poisson distribution [14].
In our work, the N points of the process are the centers
xn ∈ [0, xmax] and yn ∈ [0, ymax] of the circles cn whereas
the marks are the different attributes (radius rn ∈ [rmin, rmax],
connections to other circles). Each configuration Xi is there-
fore uniquely defined by the point distribution of it’s centers
of circles and the attributes carried by each of those objects.
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Starting from the Bayes theorem and given an input
image I , we express the density of each possible configura-
tion as follows:

f (Xi) = f (Xi|I ) =
fp(Xi)L(I |Xi)

f (I )
∝ fp(Xi)L(I |Xi) (1)

where fp(Xi) stands for the prior density and L(I |Xi) repre-
sents the likelihood of the data given in terms of a probability
map [38].

By applying the logarithm on (1), we can bring the problem
of maximizing configuration probabilities to the simpler task
of local energy minimization of individual parts:

E(Xi) = − log(f (Xi)) =
N∑
n=1

E(cn) (2)

with E(Xi) as the energy of a particular configuration and
E(cn) is the local energy of a part (node n). It follows that
E(cn) has twomain terms, the first is the data term (likelihood
of observation O, L(I |Xi) in (1)), the second is the prior
(P, fp(Xi) in (1) ):

E(cn) = EO(cn)+ EP(cn) (3)

where

EO(cn) = wlEl(cn)+ wcnEcn(cn) (4)

and

EP(cn) = Eno(cn)+ wsEs(cn)

+wdcnEdcn(cn)+ wdnEdn(cn)+ wrsErs(cn) (5)

The individual energy terms (equipped with weighting
constants), in the order of appearance, correspond to the
following probabilities:
• El(cn): energy term based on the location of the circle;
represents the likelihood probability calculated by aver-
aging the values of the input probability map covered by
the circle cn.

• Ecn(cn): connection energy term expressing the prob-
ability of an edge originating from cn; calculated by
averaging the values of the probability map under the
beam (a trapezoid-like structure) between the connected
nodes (see Figure III-A).

• Eno(cn): non-overlap probability of the circle n.

Eno(cn) =

{
0, in the absence of an overlap
∞, otherwise

The absence of overlap for a given circle cn is deter-
mined if for all circles n′ such as n′ ∈ [1,N ] \ {n},
the percentages of intersection for both n and n′ are all
below a fixed threshold Thno ∈ [0, 1].

• Es(cn): represents size probability. Using a Gaussian
distribution function to model the size of the expected
objects (the width of the tubular parts), we set the mean
of the distribution to the mean radius ( rmin+rmax2 ) while

FIGURE 2. High-energy (a) and low-energy (b): 2 different configurations
with 2 circles: the colored trapezoid-like structure represents the
connection probability, and can be decomposed to green (high
probability pixels) and red (low probability pixels) areas.

considering the standard deviation as another possible
tuning parameter.

• Edcn(cn): represents ‘‘length-of-connection’’ probabil-
ity. As with size probability, we use a Gaussian function
to model the distance distribution between the centers
of each circle and its connection. We define

√
x2max+y2max

2
as the mean of the distribution with a tunable standard
deviation.

• Edn(cn): represents ‘‘distance-to-nearby’’ probability.
It is defined similarly to the length-of-connection prob-
ability, except that it represents distances between each
circle and the nearest circle to it, regardless of connec-
tivity between these nodes.

• Ers(cn): represents ‘‘radius similarity’’ probability.
A Gaussian distribution function models the differences
in radius between each circle and its connection. The
mean is set to 0, and the standard deviation is left as a
tunable parameter.

B. RJMCMC SOLVER IMPLEMENTATION
In order to optimize the configurations of the previously
detailed MPP modeling, we use RJMCMC dynamics as base
reference for our custom solver. We incorporate essential
optimization steps that can tackle our modeling’s limitations
while ensuring the exclusion of certain configurations that
are, by design, incompatible with the solver.

Our usage of a dynamic set of circles makes the solu-
tion resilient to substantial variations in quantity and shape
of objects to be modeled while at the same time ensuring
the desired level of accuracy for the reproduced pixel-wise
results.

Here we describe the main parts of the algorithm: first,
the RJMCMC core block with local random walks is given,
then in III-B2 thewholemain loop is defined. Post-processing
steps will be given in Subsection III-C.

1) RJMCMC CORE BLOCK
This part of the solver is implemented by directly applying
our MPP model description and the standard definition of the
RJMCMC algorithm [14], [15], using simulated annealing
[39] and applying modified Metropolis dynamics [40] to
reach better configurations.
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From an initial configuration Xi, with an energy level Ei,
each iteration of the core block algorithm follows the steps
below:
1 Choose a movement kernel Q, according to a uniform

probability.
2 Propose a new configuration Xi+1, with a global energy
Ei+1, based on Q.

3 Compute α = min(1,
E

1
Tk
i

E
1
Tk
i+1

), the acceptance ratio of the

move, with Tk , a slowly decreasing temperature over the
solver’s iterations.

4 Accept or reject the move, through a comparison of α to
αmin: {

accept Q, if α ≥ αmin
deny Q, otherwise

With the acceptance ofQ, the model jumps from config-
uration Xi to Xi+1, whereas a denial forces the solver to
remain on the previous configuration Xi.

We define the proposition kernel Q as the sum of two
sub-kernels Q1 and Q2, each with its own set of movements.
Any proposal of Q is therefore a combination of one element
from Q1 then another from Q2, with respect to the stated
order.

We implement the movements of Q1 as follows:
- Death and birth: corresponds to the override, of a ran-
domly selected circle n ∈ [1,N ], to its center coordi-
nates xn ∈ [0, xmax], yn ∈ [0, ymax], and to all of its
attributes (radius rn ∈ [rmin, rmax], connection to other
circle).
The newly drawn coordinates are set according to the
Poisson distribution function, whereas the radius of the
object follows the radius probability model previously
mentioned in III-A.

- Translation: similar to the death and birth process,
except the radius remains the same, while the coordi-
nates of the center are reset as follows:{

xnnew = xnold + xtr
ynnew = ynold + ytr

with xtr and ytr , 2 randomly chosen variables but con-
strained to the circle’s size and to the boundaries result-
ing from the local nature of the movement.

- Dilatation/erosion: in contrast to the previous proposal,
the coordinates of the center are unchanged, whereas the
radius is reset according to the radius probability model
mentioned in III-A.

We define sub-kernel Q2 as a sequence of small movements
and call it ‘‘shaking’’. This particularmovement is a combina-
tion of translations, and dilatations/erosions, embedded into
an RJMCMC-like algorithm and aimed at theminimization of
an energy function, which in contrast to Eq. (3), is based only
on the attributes size Es(cn) and observation El(cn). As such,
we are able to achieve locally optimal object positioning

in each RJMCMC core block iteration, largely reducing the
number of steps required by the solver to converge. Detailed
implementation of this movement is given in Algorithm 1.

Algorithm 1 Shaking: Q2 (Part of Core Block)
Result: Optimal xn, yn, rn of circle n.
i = 1;
compute energy:

ESh(cn) = wShl El(cn)+ w
Sh
s Es(cn)

while i < Smax do
choose Q′: x ′n, y

′
n, r
′
n with uniform probability;

compute energy E ′Sh(cn);

compute α′ = min(1, ESh(cn)
1
TSh

E ′Sh(cn)
1
TSh

);

if α′ ≥ α′min
then

accept Q′;
else

deny Q′;
i = i+ 1; decrease temperature TSh;

2) RJMCMC CUSTOM SOLVER
Using the previously definedMPPmodel and RJMCMC core
block reveals two significant issues. The first question is
related to the number of nodes, the other to the relatively sim-
plified MPP modeling limitations. While the custom solver
(the main loop) handles the first problem, the second will be
dealt with post-solver steps described in Section III-C.

The massive variety from one image to another in the
number, size, and shape of objects to be modeled makes
it impossible to have a consistent structural quality using
the same number of circles with each input data. As shown
in Figure 3, if the number of circles exceeds the needs,
generated graph structures may come-out with a significant
number of ‘‘unnecessary’’ nodes. This problem becomes even
worse if the number of circles is insufficient, ultimately
leading to the non-discoverability of many tree-parts. The
death-birth mechanism cannot estimate the correct number
of circles since if larger areas remain uncovered, it does not
result in higher energy states. Thus we aim to place and
connect a given number of circles (N ) in optimal positions
then, after making some refinement steps, we increase N
and rerun the RJMCMC core block. The number of such
cycles and thus N is limited by a stopping criteria defined
below.

We propose the custom solver (detailed in Algorithm 2)
based on the previously defined RJMCMC core block and
coupled with the following new definitions:

- Minimization procedure: following the execution of the
RJMCMC core block, we remove some nodes from the
representation to achieve ‘‘simplifications’’ in the graph
structures of the modeled objects. At first, we look for
regular, linear structures, made of several aligned circles
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FIGURE 3. Demonstrating the importance of providing an adequate
number of circles: (a) shows several undiscovered tree-parts, whereas
(b) exposes excessive number of nodes for the modeling of relatively
uniform vertical trunks.

FIGURE 4. Illustrating the necessity of the minimization procedure:
(a) shows tree-parts at the end of run of the RJMCMC core block,
(b) is after a structure minimization procedure.

with roughly the same radius, in a connected chain. Such
structures have the potential to be simplified by eliminat-
ing internal nodes, resulting in a configuration of fewer
structural elements (with negligible pixel-wise precision
loss). Thenwe evaluate the possibility of a simplification
involving two separate sets of chains of linear structures.
A good example is given in Figure 4, where on one
tree branch we merge two separate sets of connected
components, while on the other trunk we simplify the
modeling of two distinct tree-part structures.

- Locking function L(cn): it allows further control over
which node may be subject to a movement proposal,
and which is ‘‘locked’’ and can only be updated in the
minimization procedure.

L(n) =

{
1, if the node is ‘‘locked’’
0, otherwise (default value)

The locking of some nodes depends on two ‘‘quality
conditions’’:

1) El(n) ≤ Thl
2) Ecn(n) ≤ Thcn

with Thl , Thcn, the two ‘‘quality thresholds’’ ensur-
ing that the given node is in good energy condi-
tion, locking prevents the core block from further
investigations.

- Stopping criteria: since the custom solver follows an
indefinite loop, a crucial step is needed to decide when to
stop the model generation process. Therefore, we decide
to enforce the stop if the RJMCMC core block could not
find satisfying positions and connections to some nodes:
not all nodes could be locked. Finally, we removed the
latter from the representation.

Algorithm 2 Custom Solver (Main Loop)
Result: Configuration of N circles
N = Ninit ;
run Q | Q = Q1 + Q2 ∀ nodes cn;
while true do

run core block;
run minimization procedure: N = Nopt ;
∀n ∈ [1,N ]:
if El(n) ≤ Thl and Ecn(n) ≤ Thcn then

L(n) = 1;
add new circles;
update N ;

else
remove failing nodes and their connections;
update N ;
break;

C. POST-SOLVER CONNECTIONS
Due to our initial incline towards the model of tree-like struc-
tures with a relatively simple MPP formulation, it becomes
clear that such a minimalist approach will not be able to
output complete models of trees. Limiting the number of
connections per node helps to keep the complexity relatively
low, but for many structures, we will most likely end up
with fragmented representations of objects that will make the
desired results if correctly linked together.
Thus, we define three separate post-solver steps, which are
performed after Algorithm 2, and all can add new connections
to reduce fragmentation.

1) POST-SOLVER PHASE 1
The proposed joints during this first post-solver phase are
all based on the assumption of increased connectivity like-
lihood between close nodes, where the new additional areas,
covered by the connections, have high likelihood. As such,
we propose the cost function based on relative distance
and ‘‘additional connection likelihood’’ (for illustration see
Figure 5), as a reliable benchmark for the evaluation of
the fitness of proposals through Algorithm 3 described
below:
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FIGURE 5. Comparing the additional connection probabilities of
post-solver phase 1. (a): initial MPP configuration, (b): possible new
connections, (c): implied areas highlighted, and (d): one connection
rejected (in red) due to its low probability. The area in red in (d) has high
cost since it has low probability Eladd

= − log(Pladd
) expressing the

likelihood of the newly covered area.

Algorithm 3 Post-Solver Phase 1
Result: Updated configuration
for ∀ (ci, cj), i6=j do

Compute cost of possible new connection:

CPh1(ci, cj) = wrd

√(
xi − xj

)2
+
(
yi − yj

)2
ri + rj

+ wladdEladd )

if CPh1(ci, cj) ≤ ThPh1 and connection does not
interact with others then

add connection between (ci, cj);

2) POST-SOLVER PHASE 2
Contrary to the first joint proposals, our second phase aims
to create links between separated connected components
(Sn, Sm). The proposed algorithm systematically investigates
possible new connections with low energy and large area
coverage. We use a cost function targeted towards the max-
imization of the area added by new links, by selecting the
best join proposal among a given ‘‘additional connection
likelihood’’ interval, within a steadily increasing acceptance
threshold.

Detailed implementation of this step is given in
Algorithm 4.

3) POST-SOLVER PHASE 3
Our final joint proposal, phase 3, is defined similarly to
phase 2, with a cost function using the relative distance,
absolute differences between the radius of the circles, and
angle β ∈ [0, π] describing the difference in orientation of
the last edge of the connected parts.

As described in detail in Algorithm 5, we do not use data
from the input probability map during this step, which in turn,
makes our model description resilient to false negative noise
(often persistent in CNN’s prediction output due to heavy
occlusion).

IV. FRAMEWORK OF APPLICATIONS
In order to probe the robustness of our model and ascertain
the replicability of the achieved results, we run several tests

Algorithm 4 Post-Solver Phase 2
Result: Updated configuration
ThPh2 = 0;
while ThPh2 ≤ ThPh2max do

CPh2min = ∞;
for ∀ (ci, cj) s.t (ci, cj) ∈ (Sn, Sm), n 6= m, and their
connection does not interact with others do

compute Eladd (ci, cj);
if Eladd (ci, cj) ≤ ThPh2 then

compute cost of possible connection:

CPh2(ci, cj) =
1

Aadd (ci, cj)

where Aadd (ci, cj) represents the area
covered by the additional connection;
if CPh2(ci, cj) < CPh2min then

CPh2min = CPh2(ci, cj);
memorize connection of (ci, cj);

if CPh2min 6= ∞ then
accept memorized connection of (ci, cj);

else
ThPh2 = ThPh2 + ThPh2inc ;

on three different datasets. Two datasets are of trees in forest
environments: first is synthetic, produced through rendering
with Autodesk 3DS Max 2020, while the second is real,
made from images taken by a forest engineer on various
woodland sites. We chose the Massachusetts Roads Dataset
as the third dataset to demonstrate our solution’s extendability
to similarly challenging problems.

The upcoming results are all based on using a probability
map generated from DeepLabv3+ [16]. Although, as we
mentioned earlier, other probability maps can be used, either
from CNN [41] or GMM models.

We use the implementation publicly available at:
https://github.com/tensorflow/models/tree/master/
research/deeplab on anUbuntu systemwith anNvidiaQuadro
P6000 GPU and the following off-the-shelf settings:

- Backbone: Xception-65, with pretrained PASCAL VOC
2012 weights

- Atrous rates: 6, 12 and 18
- Output stride: 16
- Decoder output stride: 4

Finally, we ensure the same values on the previously men-
tioned tunable solver parameters while investigating, within
each dataset, the structures of different objects.

The evaluation of our representation is done by the
pixel-wise coverage. If the estimated structures well follow
the objects and the radius of circles is also appropriately set,
we assume that the generated binary masks fit the objects’
area. The binary masks are formed by drawing filled trape-
zoids between two connected circles, defined by the con-
necting edge and the two perpendicular diagonals giving
their bases. (In Section V we will show that this does not
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TABLE 1. Statistical results of our MPP modeling on the synthetic trees dataset (with comparison to neural network output). For each of the 5 following
benchmarks, the columns from left to right correspond to achieved performance after phase (Ph.) 1, 2, and 3 of the post-solver operations.

TABLE 2. MPP modeling performance on the real forest images dataset (with comparison to CNN prediction outputs). For each of the 5 following
benchmarks, the columns from left to right correspond to achieved performance after phase (Ph.) 1, 2, and 3 of the post-solver operations.

Algorithm 5 Post-Solver Phase 3
Result: Updated configuration
while CPh3min ≤ ThPh3 do

CPh3min = ∞;
for ∀ (ci, cj) s.t (ci, cj) ∈ (Sn, Sm), n 6= m, and their
connection does not interact with others do

compute cost of possible connection:

CPh3(ci, cj) = wrd

√(
xi − xj

)2
+
(
yi − yj

)2
ri + rj

+ wrad | ri − rj |

+ waf tan(β)

with wrd ,wrad and waf : coefficients for the
relative distance, radius difference and angle
flatness respectively;
if CPh3(ci, cj) < CPh3min then

CPh3min = CPh3(ci, cj);
memorize connection of (ci, cj);

if CPh3min ≤ ThPh3 then
accept memorized connection (ci, cj);

always end in precise representation.) We compute accuracy,
precision, recall, Cohen’s kappa and F1 score to compare the
binary masks of the ground truth maps to those generated
by our graph models. Please note that the conventional accu-
racy is not always satisfactory to evaluate the results since
often the background covers much larger areas than the trees
themselves. Cohen’s kappa correctly handles this problem of
unbalanced classes.

A. APPLICATION ON THE SYNTHETIC TREES DATASET
In our first, synthetic-image dataset, we investigate the seg-
mentation of a limited number of trees in forest environments.
For this, we typically consider one, two, or three objects as
foreground with a forest image showing other distant trees,
the ground, leaves, and the sky as the background. We use
50 different images, split into a ratio of 70%/10%/20%
for training, validation, and testing on DeepLabv3+. The
CNN-generated 10 probability maps are run through our

modeler to retrieve the graph-like description, including the
parts’ width (coded by the radius of circles).

As shown in Figure 6 and the statistical data given
in Table 1, ourmethod could successfully achieve a high-level
representation of the tree-structures.

B. APPLICATION ON THE REAL FOREST IMAGES DATASET
Our second dataset is made of 16 manually annotated images
of trees in different forest environments, representing the
following species: beech, turkey oak, sessile oak, hornbeam,
black alder, and black locust. We use 9 of those images,
as basis for the training of the neural network, while the
remaining 7 are left for testing.

It is important to mention that despite the apparently lim-
ited training sample, each individual image contains at least a
dozen trees, bringing the total number of objects in the hun-
dreds. Nevertheless, we extend the training set to 40 images
by using transformations like flipping, rotation, and cropping.

A sample image, demonstrating the achieved result,
is given in Figure 7 with detailed statistics in Table 2.

C. APPLICATION ON THE MASSACHUSETTS ROADS
DATASET
For the third dataset, we explore the possibility of the gen-
eralization of our modeling technique by applying the same
concept among other equally challenging computer vision
task.

One of such similar problems can be the extraction (seg-
mentation) of roads from satellite images. Thus, we decide to
opt for the Massachusetts Roads Dataset, publicly available
at https://www.cs.toronto.edu/ vmnih/data/, as a third appli-
cation to model line-like structures.

We use the same split of data asmentioned by the authors of
the link for training, validation, and testing on DeepLabv3+.
Then the resulting probability maps are fed to our custom
solver to retrieve the structures of different roadmaps.

As with tree datasets, our method could now produce
structural information of detected road parts, still giving good
segmentation results via the trapezoid filling between nodes.
Figure 1 shows examples of achieved results on a particularly
challenging network of roads, demonstrating the ability of our
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FIGURE 6. Structural modeling of a tree in a forest environment: notice the additional post-solver joints (magenta in (d)), which by successfully
reconnecting individual tree-parts, are able to reconstruct the structure of the whole object. Nevertheless, statistical evaluation criteria are typically
below the performance achieved by neural network’s prediction outputs. The reasons for this are discussed in Section V.

approach to tackling ambiguous situations. Statistical details
are given in Table 3.

V. DISCUSSION
Achieved experimental results suggest that, on each of the
previously applied datasets, our stochastic method was able
to identify the structures of complex objects coherently. Com-
paring subfigures c and e in Figure 6 and Figure 7 clearly
illustrate that the graph models could nicely represent the
thin and thick branches and could connect, in many cases,
the loose parts. As Tables 1 and 2 show, the tree models’
average accuracy range from 91.93% to 94.81%, while these
values for Cohen’s kappa and F1 score are 0.79-0.82 and
0.84-0.85 respectively.

While our research objects are trees, we were curious
how the algorithm performs on other types of structures
specifically roads. A large difference is that roads are much

thinner objects and DeepLabv3+, with off-the-shelf settings,
tends to underestimate road pixels thus, accuracy is higher
than for trees, but class-weighted Cohen’s kappa is lower
(Table 3). Despite the patchy and less accurate probability
maps, our stochastic modeling solution still managed to out-
put reasonable results (even slightly better than the raw data
of DeepLabv3+).

One could note that on many occasions, detailed statistical
figures of our retrieved segmentation fell slightly short in
comparison to their CNN pixel-wise prediction map coun-
terparts. This tendency can be explained by a multitude of
factors, of which the four most important are:

- Precision loss due to the usage of regular shapes for the
generation of segmentation maps: Object structure mod-
eling is about to find a geometrical representation, that
can describe some of the objects’ properties while able
to reproduce its shape decently. In our modeling of tree
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FIGURE 7. Structural modeling of trees in a forest environment: note how the additional, post-solver connections (magenta in (d)), are able to link
between several pairs of tree-parts, previously disconnected by low probability map areas. The latter commonly occurs due to heavy occlusion and
change in illumination conditions.

TABLE 3. Statistical performance of our MPP solution on the Massachusetts Roads Dataset (and in comparison to initial neural network output). For each
of the 5 benchmarks below, the rows from left to right correspond to results after phase (Ph.) 1, 2 and 3 of the post-solver operations.

structures, we assume that individual parts’ shapes are
somewhat similar to 2D projections of standard cylin-
ders. However, for most case scenarios with real-life
trees, the irregular and typically non-linear variation
among the width of trunks and branches leads to a state
of a trade-off between the accuracy of the shape of
the built models and the number of structural elements
involved. Figure 8 graphically demonstrates this issue,
while Figure 9 accounts for pixels lost due to this partic-
ular problem.

- Missing connections: Our formulation of the MPP
model and the post-processing additional joints steps
can more easily reflect star models than object struc-
tures with many loops. In both post-solver phase 2
and phase 3, we evaluate and attempt to set joints
between two different sets of connected components.
Furthermore, while this reconstruction of graph model
structures performs well with disjoint and unoccluded
tree-like objects, it becomes less optimal when those
conditions are not satisfied, such as the case of
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FIGURE 8. 2 configurations with different number of circles, and their
respective pixel-wise coverage comparison to the ground truth (grey
standing for false positives and red for false negatives).

FIGURE 9. Comparing the pixel-wise coverage of a previously given MPP
modeling sample to its respective DeepLabv3+ prediction map output:
grey pixels represent false positives while red pixels are for false
negatives. Notice the framed (in blue) and enlarged parts, incorporating
precision loss pixels, and how they’re easily distinguishable by a thin
layer formed around external boundaries of modeled objects.

crisscrossing and inter-connecting tree branches (see
highlights in yellow, in Figures 6 and 7). On the other
hand, dropping this high-level constraint to connect
nodes from two separate parts and opting to investigate
additional connections among any two nodes cannot
lead to good, yet consistent results, regardless of any
combination of settings for the cost functions involved.
An illustration is given in Figure 10, where we removed
the ‘‘belonging to different sets’’ condition on previ-
ously achieved MPP results.

- False positives: Despite our tuning of different coeffi-
cients and parameters to better fit the specificity of each
dataset (see Table 4 for these settings), false positives do
still exist, as shown in orange in Figures 6 and 7.

- Performance of phase 3: The reader might question the
necessity of phase 3, since in some cases (Table 1 and
Table 2) accuracy decreases slightly (0.1%) compared to
phase 2. Phase 3 adds new connections between object
segments. Creating these new connections is relatively
simple, does not consider likelihood; only spatial prop-
erties are considered as given in Algorithm 5. Also,
consider that adding these new edges does not mean
adding new nodes, i.e., the shape of branches are not
precisely followed. All these facts increase the recall
value but not necessarily increase precision. Recall and
precision values of Tables 1-3 support this reasoning.

As per the definition and implementation details of
Section III, and the previous explanations, our modeling

FIGURE 10. Resulting graph model structure, when both phase 2 and
phase 3 were ran without consideration to the constraint on nodes, being
part of different sets of connected components.

technique is not about the finding of an optimal segmentation
for a fixed number of structural elements involved. Instead,
the latter is an output, a consequence of the choice of a certain
‘‘quality’’ level, while describing the shapes of represented
objects.

Nevertheless, the previously wrong assumption can still be
used to illustrate the complexity of the encountered problem.
As a simple example, considering an image of VGA size
and 200, non-overlapping, one-pixel size ‘‘circles’’, the total
number of all possible configurations accounting in this par-
ticular case is:

ncfs =
(640 · 480)!

((640 · 480)− 200)!
≈ 2.85 · 101097 (6)

At this point, even by using a fictionally efficient system,
able to perform our structural modeling solution at a 5 GHz
speed while investigating one configuration per clock cycle,
the amount of time needed to check all of the configurations
involved would therefore be:

tcfs =
ncfs

(5 · 109) · (3.154 · 107)
≈ 1.81 · 101080 years! (7)

Unfortunately, the problem gets even more significant with
each of previously disclosed modeling options, as images are
of a size of up to 800 × 600 pixels, circles have a varying
radius, and possible connections and overlapping are permis-
sible to a certain point.

As a result, we ditch the quest of a global optimum solution
in favor of a local minimum, reaching a satisfactory model
configuration in only a matter of few hours, with the exact
processing time depending upon the number of iterations of
the RJMCMC core block, the settings of the minimization
procedure, and the quality thresholds.

While the introduction of the shakingmovement helped the
positioning ability, behind the drastic increase in convergence
speed, led to a huge reduction in the search space of possible
configurations. As demonstrated in Figure 11, the Q2 part
of the movement proposals acts within a given probability
map area by constraining initially proposed circles’ attributes.
In turn, it infers robustness to our modeling approach by
raising its tolerance toward a reasonable variation of the
various parameters involved.

To monitor the sensitivity of different parameter settings,
we introduced a 20% standard deviation Gaussian noise
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FIGURE 11. Illustration of the inner working of shaking movements:
4 different circles are drawn before and after their second movement
proposal part.

TABLE 4. Listing of the main RJMCMC custom solver settings, defined in
Eq. 5 in Section III, and used in experiments for optimal experimental
results.

function, on each of the major RJMCMC custom solver
parameters (listed in Table 4), while we reran our MPP
structural modeling solution on the synthetic trees dataset, for
another 100 sample results. The statistical performance was
very similar, illustrated by a standard deviation of 0.14% for
different pixel-wise accuracy and as low as 0.005 for both
Cohen’s kappa and F1 score.

VI. CONCLUSION
Semantic segmentation or pose estimation by DNNs can
inherently code the inner structure of objects, but obtaining a
high-level explicit representation requires model validation.
For many types of objects (e.g. trees), the validation can be
difficult due to cluttered background, various lighting effects,
size changes, and branches’ complicated structures. We pre-
sented a framework suitable for the detection, structural rep-
resentation, and segmentation of curvilinear or piecewise
linear objects. The proposed pipeline starts with a probability
estimation of object locations then applies stochastic opti-
mization via MPP, RJMCMC dynamics, and post-processing
steps to create the graph representations. The model’s advan-
tages are that it can handle a mixture of thin and thick flexible
curvilinear objects and connect separate parts. Besides intro-
ducing the technique’s details as possible applications of the
model, we analyzed its performance on two tree datasets, and
a roadmap dataset. We found that the generated graph-like
structural representations can also reproduce the ground truth
pixel-wise segments with high fidelity. There are limitations
of our study. First, there are always improved CNN archi-
tectures, so we could try some, aimed toward the specific
segmentation of curvilinear and line-like structures exhibiting
minimal output deterioration for when it comes to thin object
parts (see RoadNet in [42]). Second, the possible extension
of the real tree images dataset would support the analysis of
robustness, but now, it was beyond our potential (instead we
used the road map dataset). Third, the number of nodes is

automatically determined. It would be reasonable to include
a mechanism to balance between accuracy and complexity
of graph-description by explicitly specifying the number of
nodes.

In the future, we plan to extend our technique to intro-
duce the ideas of [21] to handle the parts’ crossing. Further
improvement of our modeling solution could be the usage of
two probability maps: one for the pixel-wise estimation of
tree-parts, while the other would reflect locations specifically
belonging to graph nodes. A base structure for such node
detection could be a DNN similar to [43].
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