IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 2, 2021, accepted May 1, 2021, date of publication May 6, 2021, date of current version May 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3077977

Metis: An Integrated Morphing Engine CPU
to Protect Against Side Channel Attacks

FRANCESCO ANTOGNAZZA™, ALESSANDRO BARENGHI

AND GERARDO PELOSI, (Member, IEEE)

14

Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy

Corresponding author: Gerardo Pelosi (gerardo.pelosi @polimi.it)

ABSTRACT Power consumption and electromagnetic emissions analyses are well established attack
avenues for secret values extraction in a large range of embedded devices. Countermeasures against
these attacks are approached at different levels, from modified logic styles, to changes in the software
implementations. In this work, we propose a microarchitectural modification to a compact RISC-V SoC,
the OpenTitan open source silicon root of trust, providing a code morphing countermeasure against power
and electromagnetic emissions side channel attacks. Our approach allows the countermeasure to be applied
transparently, without the need for any software modification to the cryptographic primitive running on
OpenTitan. Our microarchitecture integration of a morphing engine also allows us to provide transparent
protection to memory operations. We validate our approach through measurements on an actual FPGA
prototype on a Xilinx Artix-7. Our integrated morphing engine increases the FPGA resource consumption by
less than 8%, plus the resources required by an RNG of choice, with respect to the original OpenTitan SoC.
Our design shows a side channel attack resistance improvement of at least 250x in the Measurements-
To-Disclose metric with respect to the unprotected design. We benchmark the performance of our proposed
architecture on all the ISO/IEC standard symmetric block ciphers, including, among the other AES, reducing
the execution time overhead by 21 x to 141 x with respect to a continuously morphing software solution.

INDEX TERMS Applied cryptography, code morphing, computer security, side channel attacks, power

consumption attack countermeasures.

I. INTRODUCTION

Side channel attacks have long been proven to be a concrete
threat against the security of computing systems. Indeed, their
ability to rely on the accidental transmission of information
via environmental parameters of the working regime of a
computing device allows them to retrieve confidential infor-
mation from fully functional cryptographic implementations.
Since the work of Kocher [37], where the power consumption
of a smartcard was employed to derive the secret key of the
DES cipher running on it, side channel attacks were used
to breach the security of a large variety of devices, rang-
ing from inexpensive microcontrollers for IoT devices and
RFIDs [21], [46], [50] through mid-range system on chips [7],
[9] to full desktop and laptop grade CPUs [24], [25], [36],
[39], [45].

The associate editor coordinating the review of this manuscript and

approving it for publication was Ilsun You

Side channel attacks rely on modeling the behavior
(e.g., the power consumption, electro-magnetic emis-
sions or computing time) of a portion of a computing device
acting on a small amount of secret data, e.g., one byte, for
all the possible guesses of such a secret value. The device
behavior is then measured and compared against the guess-
dependent models, revealing which one is actually correct,
as it will be the only one fitting the measures. Traditionally,
side channel attacks are split in two categories, i.e., pro-
filed [14], [28] and non profiled attacks [12], [37]. The former
ones derive the device dependent model in a data-driven
fashion, from another instance of the device under attack
over which the attacker has full control. The attacker collects
a large amount of measurements from the said additional
instance of the device at hand for every possible value of the
secret to the end of building templates of the device behavior.
These templates are subsequently employed to match the
measurement taken on the attacked device. By contrast,
in non profiled attacks, the attacker devises a synthetic model

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

69210

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 9, 2021

https://orcid.org/0000-0003-3480-486X
https://orcid.org/0000-0003-0840-6358
https://orcid.org/0000-0002-3812-5429
https://orcid.org/0000-0002-0604-3445

F. Antognazza et al.: Metis: Integrated Morphing Engine CPU to Protect Against Side Channel Attacks

IEEE Access

of the behavior of the device from a closed-form model
instead of regressing it from the data.

In this work, we focus on counteracting non profiled side
channel attacks that exploit either the power consumption of
the computing device or its near-field electro-magnetic (EM)
emissions as the informative channel to be measured. We note
that the two side channels at hand provide closely related
information, unless analog power decoupling approaches
[51, [19] or EM signature reduction techniques [18] are used.

Countermeasures against non profiled side channel attacks
aim to reduce the signal-to-noise ratio of the side channel
to the point where the number of measurements an attacker
must make to derive the secret information goes beyond her
capability or the time required to perform the analysis goes
beyond the expected lifetime of either the device or the secret
information itself. This approach has a more limited effect
in case the attacker is employing profiled attacks, as she
will implicitly include the device noise within her template
and, provided that an arbitrarily long profiling activity is
feasible (as she controls the profiled device), she will succeed.
The topic of counteracting profiled side channel attacks was
recently tackled in [8], where a countermeasure which can be
paired to the ones for non profiled attacks is provided.

Countermeasures against power consumption based or EM
emissions based side channel attack are usually categorized
into hiding techniques, masking techniques and (code) mor-
phing techniques. Designers tend to apply one or more
countermeasures to the considered device, to exploit the
consequent synergy in signal-to-noise ratio reduction.

Hiding techniques aim at decreasing the informative con-
tent of each measurement sample via one or more of the
following: i) changing the physical design of the computing
device to reduce the emitted information [18], [38], ii) adding
noise to the side channel via an additional randomized power
consumption source [19], iii) randomizing the order in which
data independent operations are executed, in turn forcing the
attacker to cope with the lack of knowledge on when the
computation being modeled in the attack takes place [20].

Masking techniques exploit a randomized redundant
encoding of the data [34] that is processed in order to break
the link between the actual power consumption of the com-
puting device and the intermediate values of the computa-
tion [44]. Such an encoding is devised so that it is possible
to perform the entire computation on encoded data without
decoding it first; hence, the randomized encoding is removed
only on the computation results. The only way for an attacker
to circumvent the masking countermeasures is to exploit
simultaneously the information coming from multiple oper-
ations acting on different portions of the randomly encoded
data, and devise a way to recombine such information into a
value which does not depend on the added randomness.

Code morphing techniques [2] hinders the ability of the
attacker to model the side channel behavior of the device
through randomizing how the sensitive computation itself
is performed. The technique (awarded as one of the Top
Picks in Hardware and Embedded Security in the period

VOLUME 9, 2021

2012-2017 [3]) is highly effective, as it provides a contin-
uously moving target for the attacker trying to model the
side channel behavior of the device. This randomization is
achieved either by means of periodic dynamic recompilation
of the code being executed [2], [11], [15], [16], or by emitting
multiple (semantically) equivalent code segments and ran-
domly picking the executed one [4]. An approach relying on
dynamic code recompilation allows a larger amount of flex-
ibility in the differentiation of the generated code portions,
e.g., allowing the randomized rescheduling of the operations,
at the cost of requiring a writeable code segment (which may
not be available, e.g., on microcontrollers).

A. CONTRIBUTION

We propose the first, to the best of our knowledge, architec-
tural design providing transparent code morphing support to
thwart power consumption and EM emissions side channel
attacks. We integrate in our design also the memory opera-
tion protection strategy proposed in [4]. We implement our
integrated code morphing engine in the OpenTitan System on
Chip (SoC) [42], as it is a typical CPU design to be employed
in secure root-of-trust modules, which are usually constituted
of simple, in-order CPUs [10]. Considering the resource
overheads with respect to its simple 2-stages in-order design,
the OpenTitan CPU provides a reasonable worst-case sce-
nario for the relative area overhead to be expected when
adding our solution to any other existing CPU design. We will
refer to our solution as the Metis CPU and Metis SoC, from
the Greek name of the shape-shifting titan.

B. RELATED WORK

Providing side channel countermeasures transparently to soft-
ware developers, via a microarchitectural design has already
seen research efforts regarding the use of the hiding and
masking techniques. In particular, to the end of hindering the
attacker’s ability to find out the time instant where a sensitive
operation is being computed, the authors of [10] proposed
a generic custom hardware unit to randomize the execution
order of independent instructions. In [26] the authors pro-
pose a redesign of the datapath of the V-scale RISC-V core,
to transparently introduce masking countermeasures into the
computation. Their approach implements in hardware the
redundant randomized operand encoding mandated by the
masking technique as well as the corresponding redundant
computation logic, while preserving the CPU ISA. Their
approach tackles the portions of the RISC-V core comprising
the datapath, which were confirmed to be the ones providing
the most significant leakage in [6]. In Metis, we implement
our code morphing methodology so that the entire set of
actions of the datapath on the processed data are subject
to code morphing, effectively improving the attack surface
coverage with respect to the design proposal of [33], where
dedicated randomizers were prefixed to the execution stage.
A further approach to the transparent application of masking
and shuffling countermeasures at a microarchitecture level is
reported in [13], where the authors propose the masking of

69211

IEEE Access

F. Antognazza et al.: Metis: Integrated Morphing Engine CPU to Protect Against Side Channel Attacks

the CPU datapath together with the transparent introduction
of random delays inserting randomly pipeline stalls. Another
approach at transparently providing masking countermea-
sures at architectural level is the proposal of [35], which
devise an ISA extension for accelerating the redundant ran-
domized computations required in masking countermeasures,
through a bitsliced representation of the data and dedicated
instruction to encode and decode the bitsliced representa-
tion itself. A different approach to dynamically change the
power consumption of the functional units performing the
computation is presented in [51], where the authors propose
to employ a reconfigurable functional unit paired to a classic
ALU to perform the sensitive operations of cryptographic
algorithms. A noteworthy and successful application of the
principle of continuously randomizing information related to
the computation, albeit to a different security domain, is pre-
sented in [23]. The authors propose Morpheus, a CPU modi-
fied to continuously alter the value of system level metadata
(e.g., code pointers) to the end of presenting a moving tar-
get to an attacker exploiting software vulnerabilities arising
from the application of control flow redirection techniques
(e.g., buffer overflows, return-to-libc attacks, return oriented
programming). This application of the randomization princi-
ples falls in line of previous successful attempts at preventing
timing side channel attacks through code randomization as
reported in [17].

Il. BACKGROUND

In the following, we provide a background on power and
EM-emissions side channel attacks and focus on the code
morphing countermeasure. Finally, we introduce the main
features of the OpenTitan SoC [42], on which we built Metis.

A. POWER AND EM SIDE CHANNEL ATTACKS

Performing a non profiled side channel attack, relying on
either the power consumption of the device or its EM emis-
sions relies on a three phase process: i) select an intermediate
value of the computation involving a small amount of secret
information (e.g., one byte) and model the power consump-
tion of the execution of an operation involving it, for every
possible guess of the secret value; ii) measure the power
consumption of the device when it is performing the modeled
operation; iii) compare the key dependent model of the behav-
ior with the actual measure. Typical models for the power
consumption of the device include the Hamming weight of
the unknown secret dependent value (which assumes the
switching of a sequential element from an all-zero reset state
to the value being stored), or the Hamming distance of two
secret dependent values stored in consecutive clock cycles in
the same sequential element.

The said attack process operates under two idealizations
that need to be managed in practice. The first assumption
is that the measurements are noise-free, and that it is pos-
sible to measure the power consumption of the component
operating on the secret value alone. Since this is not the
practical case, the attacker copes with the intrinsic noise of

69212

the measurement taken through measuring the behavior of
the computing device for a statistically significant amount of
times and employs a statistical tool to determine the match
between the synthetic, key dependent models and the mea-
surements themselves. One of the most common statistical
tools in this context is the Pearson’s linear correlation coeffi-
cient [12], which was proven to be the optimal tool [27] under
the hypothesis that both the data related power consumption
of the device is proportional to the number of switching
components in the device itself, and the noise can be modeled
as a zero-mean additive Gaussian noise. Correlation Power
Analysis (CPA) [12] considers the set of power consumption
measurement samples as the realizations of a random vari-
able), and the values of the predicted power consumption as
the realizations of another random variable A%, with k being
a fixed value of the secret parameter to be found. The two
series of realizations are obtained by applying in the same
order the same known inputs to the target device and to an
algorithm computing the target intermediate value of choice,
respectively. Computing, for all the possible values of the
secret parameter k € K the sample estimate of the correlation
coefficient p(Xy,)), and determining the value k for which
p(Xg, V) is maximum allows the attacker to deduce that k is
the actual value of the secret parameter.

The second assumption is that the attacker knows the exact
moment when the modeled operation takes place. Since this
is not the case, the attacker samples the power consump-
tion of the device over a time interval which includes with
certainty the instruction being modeled, memorizing a time
series of the power consumption called power trace, or simply
trace, for each execution. After memorizing a set of power
traces, the statistical tool is applied to the set of samples
which correspond to the same instant in the power traces.
This approach requires that the samples in the same instant
of the traces actually correspond to the power consumption
of the same operation, i.e., the traces should be perfectly
aligned. This requirement is intentionally violated by the
hiding countermeasure known as shuffling, which consists in
a randomized rescheduling of the order of the independent
operations being computed at each execution, in turn break-
ing the aforementioned trace alignment.

B. CODE MORPHING

Realizing a code morphing countermeasure through dynamic
code recompilation [2] substitutes each instruction of the
original implementation of a program with a randomly cho-
sen instruction sequence which has the same semantics,
i.e., starting from the same input values, computes the same
output value(s) as the original instruction. To this end,
the main practical observation is that memorizing the equiv-
alent instruction sequences for all the possible instructions in
the ISA, also considering all the possible input/output register
combinations, requires an excessive amount of resources.
As a consequence, the code morphing approach, depicted
in Figure 1, is realized by a compile-time phase and a runtime
phase. The first phase, known as the tile generation process,

VOLUME 9, 2021

F. Antognazza et al.: Metis: Integrated Morphing Engine CPU to Protect Against Side Channel Attacks

IEEE Access

Instruction Morphed
to be morphed Concrete Instruction
Operands Sequence
Instruction st w0 |1 Second Phase:
Normalization - not 12:1”2 COde Morphing
Tile (Runtime)

Randomized
tile choice

Normalized
Instruction

not T,B
not U,A
xor C,T,U
not C,C

Tile denormalization

Instruction Equivalent tiles
to be morphed for Instruction
nop
nop
First Phase Instruction
: : izati not T,B
Tlle gel’leratlon Normalization N
(Compile-time) pom—— Equivalent xor C,T,0
Iortma é'ze Tile Generation not ¢,¢
nstruction
- not T,B
not c,C

FIGURE 1. Graphical representation of the two phases of the code morphing approach. The first offline phase (left) generates a set of equivalent tiles for
each instruction, which are employed in the online phase (right), where the code morphing takes place.

analyzes the instruction sequence to be morphed, and identi-
fies all the instruction opcodes present in the said sequence.
Subsequently, for each instruction opcode, a normalized rep-
resentation of the instructions containing it is computed. The
normalization process removes from an instruction both the
concrete ISA register names and immediate operand values
replacing them with symbolic labels.

The process yields a set of normalized instructions smaller
than the set of original instructions. Indeed, multiple instruc-
tions sharing the same opcode and having the same number
of distinct registers in the same operand order are replaced by
the same normalized instruction.

For each normalized instruction, multiple equivalent nor-
malized instruction sequences, called files, are created by
the designer instantiating the morphing countermeasure.
Each tile performs the same computation of the former
normalized instruction. Only a subset of the ISA instruc-
tions may require morphing, as they are involved in secret
information processing: the choice of which instruction
should be morphed is delegated to the side channel security
expert [2].

In particular, a tile may realize the computation of the
former normalized instruction by applying a masking strat-
egy or by shuffling the initial instruction with dummy ones.
Tiles are stored in a lookup table indexed by the former
normalized instruction.

The second phase, i.e., the actual code morphing at run-
time, employs the compile-time generated normalized tiles
to dynamically replace the instructions in the code. To this
end, in [2] a small just-in-time compiler is realized and
invoked before each execution of the function to be protected.
The just-in-time compiler iterates over all the instructions
to be morphed and normalizes them following the same
labelling criterion employed in the offline phase, memoriz-
ing the actual operands of the instruction to be morphed.
Following this, the just-in-time compiler randomly chooses
from the normalized tile table one of the tiles corresponding
to the instruction to morph, and de-normalizes it, i.e., per-
forms a local register allocation, taking care of the even-
tual clobbering and de-clobbering required by additional
registers. The product of the said de-normalization process
is a fully functional instruction sequence which has the
same computational effect of the original instruction to be
morphed.

VOLUME 9, 2021

The only instructions that cannot be replaced with a seman-
tically equivalent tile are the ones corresponding to 1oad and
store operations, bar for the addition of dummy instruc-
tions and the shuffling of the resulting sequence. To this
end, in [2] memory operations are protected via shuffling.
In particular, memory accesses amenable to a randomized
rescheduling are located in the compile-time phase of code
morphing, and their run-time execution order is randomized
with a vector of indices which is permuted at run-time.
An alternative approach is the one adopted in [4], where the
authors protect 1oad and store operations through mask-
ing of the loaded and stored values. The authors exploit the
presence of a code morphing countermeasure to strengthen
the load/store masking protection against the attack
proposed in [54].

C. THE OpenTitan SYSTEM ON CHIP

The OpenTitan SoC is designed to be an open source plat-
form for a silicon root-of-trust for a variety of systems
(e.g., acting as a smartcard or as a single-sign-on physical
token), therefore well representing the typical target of side
channel attacks [47]. OpenTitan is endowed with a reliable,
production grade development environment, and the SoC
includes basic peripherals such as UART and SPI interfaces
connected via a TileLink-Uncached Lite crossbar network,
and a complete JTAG network.

The OpenTitan SoC is based on the Ibex CPU, an in-order
32-bit RISC-V processor, designed to be deployed either
on FPGA or as an ASIC implementation. Its design fol-
lows a Harvard architecture, with a two stage pipeline,
depicted in Figure 2, composed by an Instruction Fetch (IF),
an Instruction Decode and Execute (ID-&-EX) stage and
neither instruction nor data caches [40]. Ibex is compli-
ant with the RISC-V ISAs I (base integer operations),
M (standard integer multiplication and division) and
C (16-bits compressed instruction encoding). Optionally,
it can be configured to replace the RISC-V ISA I (ak.a.
RV32I) with the E one (a.k.a. RV32E), implementing a
reduced Register File (RF) with only 16 registers, for resource
constrained designs.

1) INSTRUCTION FETCH STAGE
Instructions are retrieved from a three instruction deep pre-
fetch FIFO buffer filled with 32-bit of data on each clock

69213

IEEE Access

F. Antognazza et al.: Metis: Integrated Morphing Engine CPU to Protect Against Side Channel Attacks

debug_req_i

EX Block

IF Stage

ID Stage

M E '-
A N

LI L Controller ggf; glt\J/LT
A [- A > 1

Reg File §g§
0 W CSR LSU ©%
F 32,
LA A

FIGURE 2. The two-stage pipeline of the Ibex CPU powering the
OpenTitan SoC. The components in dark red can be configured at design
time to support the M and E RISC-V ISA extensions.

7

cycle, bar memory throughput bottlenecks. If the buffer is
empty, a pass-through logic forwards the instruction directly
to the pipeline registers. The IF stage of the pipeline decom-
presses 16-bit instructions into their 32-bit equivalent ones
to relieve the complexity from the decode unit. On the issue
of a new instruction, a single cycle pulse signal is generated,
allowing the sequential logic circuits of the ID-&-EX stage
to register and process the new data once.

2) INSTRUCTION DECODE AND EXECUTE STAGE

This stage contains a large part of the logic of the pro-
cessor, which parses the issued instruction and actuates the
required operations. A dedicated module checks the permis-
sions of memory accesses, while a controller is coordinating
the entire stage. Controller. The controller is managing the
Program Counter (PC), dealing with all the situations that
need particular care. On branch and jump operations, it sets
the destination address from the output of ALU. Upon inter-
rupts or exceptions, according to the actual configuration,
manages the change of context by setting the correct Control
Status Register (CSR) values as well as the startup and flush
of the pipeline, the handling of sleep, wake-up and debug
requests, and the setting and release of the instruction fetch
freeze. Register File. The RF is designed as a dual-port RAM,
with a single write port, and can be implemented by flip-
flops or latches; the former are used by simulators and the
latter by ASICs. FPGAs can use flip-flops and/or device-
specific distributed memory (LUTRAM). Provides access to
31 or 15 32-bit width registers, depending on the used ISA.
Register x0 is hardwired to the zero value. Decoder. The
fully combinatorial decoding logic is in charge of preparing
all the muxes connecting the RF ports, the operands fed into
the Arithmetic Logical Unit (ALU) and the destination of the
write back actions. A small sequential logic circuit is used
to keep the state of multi-cycle operations, such as mem-
ory accesses, multiplications, divisions and special control
instructions.

a: EXECUTE BLOCK

The ALU is designed to compute all RV32I instructions,
whilst an optional Multiplier/Divider block is provided to
comply with the RV32M instruction set. The adder circuit is

69214

employed also to compute target addresses of 1oad/store
and branch operations.

b: LOAD/STORE UNIT AND PHYSICAL MEMORY
PROTECTION UNIT

The Ibex Load/Store Unit (LSU) manages the data bus
connecting the external memory, requesting a read or write
operation at a word-aligned address. Differently from what
specified in the RISC-V documentation, it can also manage
a mis-aligned request by splitting it into two consecutive
aligned ones. Data coming from the external data bus is
directly routed to the RF write port. thus, the delay contribu-
tion due to pipelines in the Ibex core is kept at its minimum.
In FPGA implementations, the minimum overall cost of a
memory operation is 5 clock cycles.

The Physical Memory Protection (PMP) unit enforces
read, write and execute permissions on a number of memory
regions up to 16. After a memory address is computed by the
ALU, it is checked against the defined rules and an access
error is asserted if an access violation will take place. This
module is instantiated for both the fetch and load/store units,
and the check result is used to gate the external data request
signal. It is possible to define up to 16 memory regions
making use of the configuration registers pmpcfg0-pmpcfg3
and pmpaddrO-pmpaddr15, specifiying either the beginning
and end of a region employing two registers, or, employing a
single register either a single 4-bytes region or a power-of-2
sized region, both 4-bytes aligned.

lll. A CODE MORPHING CPU

In this section, we describe our Metis micro-architectural
design to provide transparent code morphing to a designer-
chosen subset of the Ibex ISA, together with the random-
ized mask refresh technique, proposed in [4], for accessing
lookup tables. We describe the modifications to the IF and
ID-&-EX stages, together with the required additions to trans-
parently preserve the CPU state while morphing instructions.
Subsequently, we describe our modification to the LSU and
memory interface to support the randomized mask refreshing.
The details of the required Random Bit Generator (RBG),
which can be implemented as either a Cryptographically
Safe Pseudorandom Bit Generator (CS-PRBG) or a True
Random Bit Generator (TRBG) are outside the scope of
this work. Indeed, there is a significant corpus of literature
tailoring the optimal solution to a desired FPGA or ASIC
target.

A. THE METIS INTEGRATED MORPHING ENGINE

We realize code morphing at ISA level designing the Metis
CPU so that the second phase of the morphing approach
described in Section I is performed by the ID-&-EX stage of
the pipeline. Figure 3 shows the proposed design highlighting
in cyan the portions which have been modified, and in green
the modules which have been added.

VOLUME 9, 2021

F. Antognazza et al.: Metis: Integrated Morphing Engine CPU to Protect Against Side Channel Attacks

IEEE Access

IF stage

next_instr[>

{> next_valid

Morph
Reg File
{or_req - ~_ready[>

(a) Full Metis pipeline

A pmp_masked_region

ID Block

EX Block

csr_mstatus_morph

(b) Metis decode and execute stage.

FIGURE 3. Stages of the Metis pipeline with differences from the original Ibex pipeline higlighted. Green components are newly
added, blue components have been modified. Red buses are carrying random data being read from the integrated RNG.

1) CONTROLLER

The Metis pipeline, depicted in Fig. 3a is designed to manage
the pipeline stalls required for transparent code morphing.
The Controller receives three signals, the mask and morph
signals from the Decoder module, and the stall_rnd one
from the RNG. The two former signals determine when the IF
stage should be frozen due to the processing in the ID-&-EX
stage requiring more than a single clock cycle to manage
either the tile of an instruction to be morphed or a masked
load/store operation. The third signal allows the Controller
to stall the pipeline in case a fresh value from the RNG is
needed and not yet available. To manage debug requests,
the Controller signals to the Decoder, via the dec_halt
line, that a debug request was made. The Decoder module
completes the morphing of the current instruction, reverts
to the regular execution mode and leaves Metis ready to
execute the first debug instruction. Since the dec_halt line
is kept high during the entire debug session, the Controller
inhibits the start of further morphing or masking actions, thus
maintaining compatibility with external debuggers.

2) INSTRUCTION FETCH

The IF stage in Fig. 3a differs from the one of the original
Ibex CPU shown in Fig. 2 in the addition of combinatorial
path (named next_instr in Fig. 3a), which allows the
Decoder in the ID-&-EX stage to establish, at least one cycle
in advance, if the instruction currently in the IF stage is going
to be morphed or not. The signals on the said combinatorial
path are gated by a further valid signal, also starting from
the IF stage, to avoid the propagation of spurious data into the
Decoder when either the subsequent instructions in the pre-
fetch buffer are not going to be executed due to a modification
of the control flow or a debug interrupt request has to be
managed.

3) CONTROL STATUS REGISTER

To allow the code morphing actions to be selectively enabled,
the mstatus register in the CSR module (see Fig. 3b) is
modified as shown in Fig. 4. Specifically, the mstatus register

VOLUME 9, 2021

31 25 24 23 22 21 20 18 17 16
| IR) S

15 13 12 11 10 8 7 6 5 4 3 2 1 0

|MPIE|PMOR| | MIE |MOR| |

FIGURE 4. modified mstatus register, containing the morphing execution
bit at position 2, and its previous value at position 6, and the Shares
Refresh Probability at positions 23 and 24.

includes a MOR bit indicating when the Metis CPU is in
code MORphing mode. In particular, the MOR bit is reset
to zero on reboot and toggled at run-time via a set instruc-
tion. In case an exception or an interrupt request takes place
when Metis is operating in morphing mode, the MOR value
is stored into the PMOR bit of the same register and the
morphing logic is disabled. The return to the original status,
through the execution of an mret instruction, automatically
moves back the PMOR value into the MOR bit, restoring the
correct execution mode. In case the software toggling of the
morphing actions is not desired, as in the case of extremely
demanding security environments (e.g.,smart cards) the con-
trol bit can be simply tied to the enabled value at design
time.

4) MORPHING REGISTER FILE

The main challenge to support the execution of tiles employ-
ing a larger number of registers w.r.t. the instructions they
morph is to cope with possible register clobbering. To this
end, we include in Metis a Morphing Register File (MRF),
which provides temporary registers to de-normalize the tile
at hand. The MREF is designed with three-read ports and one
write port to include a maximum number of 16 registers,
which are enough even for the most demanding instruction
tiles. The first register of the MRF, MRO is hardwired to
the zero value. Two of the read ports are connected to the
general purpose registers in the MRF, while the third is con-
nected to a RNG. In our experimental evaluation of Metis,
we consider an RNG providing a 32-bit word of random
data every 2 clock cycles, as it is customary in commercial

69215

IEEE Access

F. Antognazza et al.: Metis: Integrated Morphing Engine CPU to Protect Against Side Channel Attacks

4 3 2 1 0

0 | MRF reg. address | } morphing register file addressing

1[0l 0]0] 1] }SRCIfield of original instruction
1]0]0]1]0] }SRC2field of original instruction
1]0]0] 1] 1] }DESTfield of original instruction
1{1]0]0] 0] }random value from MRF RNG

FIGURE 5. Encoding of the information in the register descriptor fields of
instructions in tiles. Symbolic labels for original operands, or a fresh
random, have encodings with a leading 1, while the ones of actual MRF
registers have a leading 0.

Tile memory

dataA > S i 0
S Lohy
) -

ast_of _tile|

FIGURE 6. Tile memory module within the Decoder module.

microcontrollers [53]; however, the Metis Controller is
designed to stall the execution for longer or shorter time
periods, depending on when the randomness is available for
readout. The MRF read and write ports are connected to the
input and output operand muxes of the functional units in
both the EX block and the LSU, providing the same access
latency as the main RF. The reason for dedicating a specific
read port to the RNG lies on the choice to read two operands,
plus the required fresh randomness, during the processing of a
load/store masking operation without performance penalties.

5) TILE MEMORY

The Decoder module contains a dedicated storage for the
instruction tiles, called tile memory, represented in Figure 6,
which is directly accessed by it to minimize latencies. Our
design does not constrain the tile memory as a read-only
memory; indeed, in a practical design, it can either be in
the form of a ROM or of an SRAM if a dynamic method
to update the tile set is desired. In FPGA targets, the tile
memory is implemented employing lookup tables (LUT), to
provide effective readout of a normalized instruction from a
tile in a single cycle. Each row of the tile memory contains a
single normalized instruction; the overall organization of the
tile memory exhibits n groups of rows, each of which corre-
sponds to a different tile that in turn is composed by at most
m RISC-V instructions. The designer may pick any choice of
n and m, independently, as powers of two: the rationale of this
restriction is to simplify the addressing logic. If a tile contains
less than m normalized instructions, the remaining tile mem-
ory rows are set to zero. This in turn allows the tile memory
module to detect whenever the last normalized instruction of
a tile is readout and concurrently assert a last_of_tile
output signal. We represent a single normalized instruction
in the canonical RISC-V instruction encoding in the tile
memory by replacing the main RF addresses with the binary
encoding of our symbolic labels as depicted in Figure 5.
In particular, all the encodings starting with a null bit employ

69216

the remaining 4 bits to indicate a register file address in the
MREF. This allows a complete normalization of the R-type
(register operand type) instructions of the RISC-V ISA. The
normalization of an immediate value in I-fype (immediate
operand type) instructions is done as follows: a null value in
the immediate field of a normalized instruction indicates that
it equals the original immediate value of the un-normalized
instruction. By contrast, any non-zero value in the immediate
field of a normalized instruction is employed to denote an
additional immediate value employed in the tile at hand,
which has no relations with the immediate value (if any) in
the original (un-normalized) instruction. This choice allows
full expressivity in the tiles is possible to employ the MRO
register in the MRF, hardwired to the constant value 0, if a
zero immediate value needs materialization during a tile com-
putation. The binary encodings of a normalized instruction
that starts with a set bit are mapped to symbolic labels for the
first and second inputs of the instruction to be morphed, to the
output of the instruction itself and to a fresh random value to
be read from the MRF RNG. To reduce the designer effort
in creating new tiles, the specification of the tiles themselves
is provided in an HISON structured format, from which the
translation in binary format is automated by means of the
gcc compiler equipped with the RISC-V backend, outputting
a Verilog VMEM formatted document to be included in the
design with a $readmemh Verilog statement.

6) DECODER MODULE

The Decoder module of Metis is responsible for the compu-
tations related to the run-time code morphing process and
for driving the PMP mechanisms. To this end, a sequential
logic component of the Decoder module tracks whether it
is operating in normal execution, morphing execution, or
memory masking mode. We note that the said modes of
operation are mutually exclusive. The mode of operation
determines whether the original Ibex combinatorial decod-
ing logic should process the output of the IF/ID interstage
register, the morphing tiles or a memory masking operation.
Since the Metis Decoder module is able to act as alternate
source of instruction to be issued, the instruction_new signal
was modified so that a pulse can be generated on it also by
the morphing and memory masking logic. To illustrate the
behavior of the module in morphing mode, we consider the
example shown in Fig. 7, where a sequence of instructions 2,
B, C, D are processed assuming that B and C require morphing,
while A and D do not.

The next_instr lines originating from the IF stage
provide the value of instruction B to the Decoder module
the cycle before the first de-normalized instruction of the
randomly chosen tile corresponding to B is issued (cycle —1
in Fig. 7). The Decoder module matches the opcode (and
the funct field(s)) of instruction B detecting if it is going
to be morphed, and signaling to the Controller to freeze the
IF from the next cycle. If the next_instr lines provides
an instruction that requires morphing, the Decoder module
also randomly selects the normalized tile to be executed

VOLUME 9, 2021

F. Antognazza et al.: Metis: Integrated Morphing Engine CPU to Protect Against Side Channel Attacks

IEEE Access

if_freeze / \ / \ W
if-id_reg_out A X B X c X_ D

next_instr B X C X W

morph_next \ m

addr _TileB-al X TileB-a2 X TileB-a3 X TileC-a1 X TileC-a2 X777 77/
last_of_tile / \ /W
tile_instr 77/}_TileB-1__TileB-i2_)_TileB-i3__TileC-1_{_TileC-i2 X777/

X_TileB-i1_ X TileB-i2_)_TileB-i38) TileC-i1) TileC-i2 X D

issued_instr A

FIGURE 7. Timing diagram of Metis morphing instructions 58 and c,
executed after 2, and before D which do not need morphing, with two
tiles composed respectively by 3 and 2 instructions.

and computes the address of the first normalized instruc-
tion in the tile memory. The random selection of the tile
is performed as follows: the Decoder module employs an
associative table storing the base address base_addr_TI of
the tile memory location where the sequence of n possible
alternative tiles resides, for any given normalized instruc-
tion I. We recall that each one of such alternatives is stored
in m rows of the tile memory. A tile is randomly selected
extracting a log, (n)-bit value r from a dedicated small RNG,
and composing the address of the first instruction in the tile
to be de-normalized and run as (base_addr_I + r) X m.
In Fig. 7, the first address of the first instruction of the ran-
domly chosen tile corresponding to instruction B, Ti1eB-al
is made ready on the addr signal at cycle —1. We assume
that the randomly selected tile for B is three instructions long.
In the following clock cycle, the decoding unit de-normalizes
on the fly and issues the instruction TileB-1i1 at the tile
memory address TileB-al. The register de-normalization
is performed through combinatorial blocks which employ
the symbolic labels in the normalized instruction in the tile
memory to connect the appropriate functional unit in the EX
block to either the MREF, the original RF or the RNG. The
decoding unit de-normalizes and issues all the normalized
instructions in the tile, until the last_of_tile signal is
raised. The rise of the last_of_tile signal also allows
the Controller module to unfreeze the IF stage, thus exposing
the value of the next instruction, C, on the output of the IF/ID
inter-stage register at the next cycle (cycle 3). Since C also
needs morphing, the Decoder module performs, at cycle 2,
the same procedure which was performed at cycle —1, i.e.
randomly selects a tile for C and computes the address of
the first normalized instruction of the tile TileC-al. The
de-normalization and issuing of the two instruction constitut-
ing the randomly chosen tile for C is done in cycle 3 and cycle
4. Atcycle 4, the Decoder module reads the instruction D from
the next_instr lines originating from the IF, detects that
no morphing is needed, and resumes the normal operation
mode, issuing instruction D unmodified at cycle 5.

B. PROTECTING MEMORY ACCESSES WITH

MASK REFRESHING

Transparently providing protection to the memory operations
is realized in Metis through automatically loading and storing

VOLUME 9, 2021

masked values for a set of sensitive memory locations.
To make the Metis CPU aware of which portions of the
memory are in need of masked loads and stores, we exploit
the existing PMP unit, extending its memory attributes (read,
write and execute) with a further masked attribute employ-
ing the bit 5 of the pmpxcfg register, which is reserved
for extensions. By default, the masked attribute is not set.
Similarly to [4], we rely on the software developer to tag in
the high level source code the sensitive memory locations
and on the compiler to emit the instructions to toggle the
memory protection attribute on the memory portions which
require masking. A signal line is connected from the PMP
unit to the Decoder module, to notify the latter of an attempt
to access a memory location which must be protected via
masking. Since the entire memory protection mechanism is
contained in the Metis PMP unit and LSU, the remaining
part of the pipeline is kept frozen while a protected load/store
operation is performed. The PMP unit prevents a memory
access from taking place as the request going from the LSU
to the main memory is gated with a grant signal provided
by the PMP (Figure 8a). The design of Metis supports a
so-called first order masking, i.e., each value v to be protected
is replaced by a pair of values, s1, s, known as shares,
(s1, s2) = (v r, r), where r is a random value. The design
can be easily extended to higher order masking techniques,
which employ the same principle, increasing the number
of shares and the required random values. Providing mask
refreshing in this context indicates that, each time a masked
value is accessed, a fresh random value should be added to
both of its shares. However, employing a deterministic mask
refreshing scheme was exploited in [54], which prompted for
arandom mask refreshing scheme to be integrated in the code
morphing approach described in [4]. We integrate in Metis
such a randomized mask refreshing approach. Integrating the
support for first order masking in the memory subsystem of
Metis requires to manage two needs: i) automate the loading
and storing of masked values; ii) avoid that the switching
activity of the memory bus or main memory depends on an
unmasked value. The first need is solved through a modifi-
cation of the Ibex LSU and Decoder module. To automate
the loading and storing of masked values, Metis assumes that
the memory layout of their shares is such that the shares
are stored contiguously in memory. This approach allows to
automate the readout (resp. storage) of the shares of a value
via two consecutive load (resp. store) operations. To this end,
the LSU in Metis, (Figure 8b) is endowed with a dedicated
adder to compute the address of the second share of a masked
value, given the address of the first share (addres_res)
and the data type. Executing a 1 oad instruction on a masked
value requires the recombination of the two shares, i.e., the
computation of their bitwise xor before the loaded value can
be employed in the computation. To this end, the LSU stores
the loaded shares in two MRF dedicated registers; the loaded
shares are xor-combined by the ALU and stored in the
destination register of the 1oad instruction in the main RF.
Symmetrically, the store operation loads the second share,

69217

IEEE Access

F. Antognazza et al.: Metis: Integrated Morphing Engine CPU to Protect Against Side Channel Attacks

pmp_masked_region

ID Block EX Block
Data ga opA
Reg File oPBalyu &
= Decoder Q
EX masked jmml
q mask P ol
H insn grant
> b3z, _address
o> LSU & " yrequest T
A
LA |

(a) Memory access protection mechanism structure
(new components in green, modified ones in cyan)

adder_res
data_type

(b) Metis LSU: signals with data_ prefix belong to the
data bus interface, others are directed to the ID-&-EX

FIGURE 8. Metis modules implementing masked load/store operations and randomized mask refreshing.

containing a random value alone in the MRF, xor-combines
it with the value to be stored, and stores the new first share at
the destination address of the store.

For each load-store operation, Metis performs a mask
refreshing depending on the outcome of the extraction of
an [-bit random number coming from a dedicated RNG.
In our design, we employ a / = 2 bits random number,
allowing the designer to select a refresh probability among
{0, 0.25, 0.5, 0.75}. To reduce the computational overhead
of masking, we perform the mask refreshing of the first
share during load operations in parallel with the second load
operation, exploiting the availability of the first share to hide
the latency of the required xor. Willing to avoid that the
switching activity of the bus or of the main memory leak
information on the unmasked value when the shares are being
loaded, it is important to observe that loading in a sequence
the two shares (s{, s2) = (v & r, r) of the masked value
leads to a switching activity proportional to the bitwise xor
of the two shares, that is r @ (v @ r) = v. Such a switching
activity would in turn allow an adversary to perform a side
channel attack, as the power consumption during the second
load operation is proportional to the unprotected value v.
In Metis we prevent such a fact from happening, employing
an approach which does not depend on the implementation
of the main memory, nor on it having a single buffer for
read and write operations or two separate buffers. In our
approach, we insert, between the two loads of two shares
of the same protected value, a store operation and a load
operation, both operating on the address of the first share,
employing the constant word 0. This, in turn, results in a
switching activity proportional to (v @ r) during the further
store operation, and to r during the loading of the second
share, in turn preventing an attack on the unprotected value
v from succeeding. To ensure that the switching activity of
the memory bus matches our expectations we added two
registers on the (write-to-memory) data_wdata and (read-
from-memory) rdata_ex ports.

IV. EXPERIMENTAL EVALUATION
In this section we report the results of experimental eval-
uation of the performance and security of our integrated

69218

morphing engine in Metis. We developed Metis starting
from the OpenTitan SoC revision available at [43], com-
mit b6b1¢783, and the revision available at [41], commit
7e22830, of the Ibex Core. We chose as the target platform
the Digilent Arty A7 board equipped with a Xilinx Artix-
7 XC7A100TCSG324-1. We chose this target device thanks
to the OpenTitan project supporting natively Artix-7 FPGA
targets, with a board support package for the Artix-7 based
Diligent Nexys Video board. To adapt the OpenTitan design
to the Arty A7 board, we reduced the RAM in the SoC
down to 128 kiB and modified the XDC pin constraint file
to fit the pinout of the Artix-7 XC7A100T. The reduction in
available RAM did not have any impact on our benchmark
campaign, indeed leaving enough RAM to run the entire
CoreMark benchmark binary [22]. From now on, we refer to
this minimally adapted SoC design as the unmodified SoC.
The synthesis, mapping, placing and routing was accom-
plished with the Xilinx Vivado Suite ver. 2018.3, targeting
a 48 MHz clock frequency for the unmodified SoC.

We considered two variants of the Metis SoC, endowed
with different morphing tiles modifying the computation of
the xor, and and s11i instructions. These instructions
were experimentally found to be the ones with the most
significant side channel leakage, following the approach in
[2], [4], in addition to the 1oad-store instructions, which
are protected by default in our approach. We benchmarked
our approach on two set of tiles: the Shuffling Tiles (ST) set,
and the Morphing Tiles (MT) set. The ST set contains two
variants for each of the aforementioned instructions consti-
tuted by the original instruction itself and up to 3 dummy
operations. The aim of the evaluation on the ST set is to
quantify separately the amount of protection provided by the
intrinsic hiding component of the code morphing counter-
measure. The MT set contains 8§ alternative tiles for each of
the three instructions, xor, and and s111i. Each alternative
tile contains from 0 to 4 dummy normalized instructions. The
xor tiles compute the result of the operation r <— a @ b as
either r < (@ @ b), or r < (@Ab)V(aAb), or the instruction
itself. The and tiles compute the result of the operation r <«—
aAbaseitherr <— anborr < (@ V b)filling the destination
register with fresh randomness. The s111 tiles interleave the

VOLUME 9, 2021

F. Antognazza et al.: Metis: Integrated Morphing Engine CPU to Protect Against Side Channel Attacks

IEEE Access

TABLE 1. FPGA Resource utilization post P&R of Metis compared to the OpenTitan SoC and Ibex CPU. The usage DSPs, 10s, BUFGs, and PLLs is unchanged
between the SoCs, while no change in the use of BRAMS occurs between the CPUs.

(a) Resource occupation for the CPU

configuration \ LUT aslogic = LUTRAM FF

Ibex | 6,356 48 1,862
Metis-ST 7,605 96 2,283
Metis-MT 7,725 96 2,298

(b) Resource occupation for the entire Metis SoC

configuration \ LUT aslogic = LUTRAM FF BRAM
Available 63,400 19,000 126,300 135
OpenTitan 20,952 4,140 8,454 83.5
Metis-ST 25,864 12,380 8,910 67.5
Metis-MT 25,925 12,380 8,925 67.5

(c) Registers and LUT of the Metis SoC modules. The LUT utilization does not include the ones used as distributed memory

Microarchitecture decoder LSU morphing RF data FIFO memory controller Total
Component LUTs FFs | LUTs FFs | LUTs FFs | LUTs FFs | LUTs FFs LUTs FFs
CPU logic 478 66 259 138 101 34 122 10 989 33 1,949 281
PRNG 5 160 32 1,024 512 32 1,024 32 1,024 117 3,744
Total | 483 226 | 291 L162 | 117 546 | 154 1,034 | 1,021 1,057 | 2,066 4,025

s111i with dummy operations and fill the destination register
with fresh randomness. As RNG, we employed 32-bit LFSRs,
one per bit to be generated, employing primitive connection
polynomials over Z[x] to ensure a maximum period of 232
for the generators themselves. While such generators are not
CSPRNGs, they provide a statistically sound output that is
sufficient to evaluate the security of Metis. Designing com-
pact and secure RNGs is out of scope for this work.

A. HARDWARE RESOURCES AND TIMING

We synthesized Metis employing the Flow_Alternate
Routability and Congestion_SpreadLogic_
high strategies targeting a 40 MHz system clock, whereas
the OpenTitan can sustain a 48 MHz clock under default
Vivado strategies. We chose to employ the said strategies due
to a 70% congestion on horizontal routing lines in parts of the
design, which caused a slack drop of about 4.5 ns between
signaled critical paths in synthesis and implementation. The
most likely cause of the congestion is the relatively large
area of the PRNG we chose, which can be reduced in pro-
duction environments by more aggressively optimized RNG
designs [48].

To obtain a fair resource analysis, we also implemented all
the compared SoCs using a flattened hierarchy, a 40 MHz
clock and the same congestion strategies, allowing us to
provide meaningful data in a per-module granularity. We note
that the only change in the post P&R results when moving
from the original target frequency of 48 MHz to the one
of 40 MHz is a single extra LUT employed as logic.

Table 1a shows that the Metis CPU increments the use of
FPGA resources w.r.t. the Ibex CPU by 1, 212 LUT (419%)
and 436 FF (+23%). The increase in the use of LUT for
implementing RAM (LUTRAM) in Tab. la is due to the
introduction of the MRF. The tile memory is occupying
respectively 37 and 164 LUT for the ST and MT variants.
Framing the resource required by the Metis CPU w.r.t. the
overall resources required by the OpenTitan SoC, we have a
6% increment for LUTs and 5% for FFs, as a result of the
significantly compact design of both Metis and Ibex.

VOLUME 9, 2021

Table 1b allows to compare the overall SoC resource con-
sumption, showing a 24% increase in resource usage for
logic resources and a 6% increase for registers. We note
that the most significant part of the increase of the LUTSs
(+8, 192 LUTRAMSs, +990 LUTs) is determined by the deci-
sion of the Vivado Suite to synthesize the main memory to
LUTRAMs instead of the original 16 BRAMs. This decision
taken by Vivado is also a likely reason for the increased con-
gestion. As a consequence of the congestion, the comparison
of the entire SoC targeting this Artix-7 FPGA is somehow a
less meaningful portrait of the actual resource usage. Indeed,
we have observed a significant increment of logic resource
utilization, ranging from +20% to 4+45%, in some unmod-
ified modules common to both the OpenTitan SoC and the
Metis variants. This inconsistency is likely to be the product
of the optimization choices actuated during the place-and-
route phases.

Although congestion levels are preventing an unbiased
timing analysis for the CPU design alone, we highlight a
common critical path that, starting from the registers holding
the tile instruction to be decoded, is produced by memory-
related instructions. The path includes the computation of
the memory address by the ALU, which passes through the
introduced adder in LSU, to be then checked by the PMP
module eventually triggering an access exception by means
of the controller logic. This described path is responsible
for a 24 ns delay, explaining the CPU frequency limitation.
We note this path that can be considered a false one as no
memory instructions are contained in the tile memory in the
first place.

Data reported in Tab. 1a and Tab. 1b omit the RNG’s con-
tribution, which is instead detailed in Tab. 1c on a per-module
basis, for the sake of completeness. To put the resource use of
Metis in perspective, the highly area efficient EM suppression
technique in [18], targeting ASIC devices, reports a conserva-
tive +22% area increment. The work in [26], which provides
architectural support for masking, reports an increment of
59% for logic and 85% for registers, when it is protecting
against first-order attacks, and the said figures grow almost

69219

IEEE Access

F. Antognazza et al.: Metis: Integrated Morphing Engine CPU to Protect Against Side Channel Attacks

S 0.80 0.10 0.10
= 0.08 0.08
= 0.60
S 0.06 0.06
2 040
5 0.04 0.04 \‘\vm_’_‘—_‘
&
o 020 0.02 0.02
£
g 0.00 0.00 0.00 -
0 400 800 1,200 1,600 2,000 0 50 100 150 200 0 200 400 600 800 1,000

number of traces

(a) Ibex (Unprotected)

number of traces x 103

(b) Metis-ST (Protected)

number of traces x 103

(c) Metis-MT (Protected)

FIGURE 9. Results of performing a CPA against AES-128, targeting the computation of the SubBytes primitive on both the unprotected Ibex and on
Metis. The sample correlation of the correct key hypothesis depicted in red, while the sample correlation of all the other key guesses is reported in
grey. We note how the correlation of the correct key hypothesis does not rise above the incorrect key guesses in Metis, indicating that the CPA does

not succeed.

linearly up to 255% and 358%, respectively, when it is
defending against fourth-order attacks.

B. SIDE CHANNEL SECURITY EVALUATION

To evaluate improvement of the security margin provided by
Metis, we chose to employ the Measurements-To-Disclose
(MTD) metric, i.e., the number of power traces required to
be able to extract a secret value via side channel attack,
as in [2], [4], [11]. We employed as target cipher the AES
cipher [29], with a 128-bit key, and performed a correlation
power analysis targeting the computation of the SubBytes
primitive of a standard compliant S-Box based implementa-
tion. We experimentally validated that the best fitting power
consumption model, i.e., the one allowing to retrieve the
secret key with the least MTD on the unprotected SoC was the
Hamming weight of an output byte of the SubBytes primitive.
We report that such a model matches both the computation of
the SubBytes primitive, and the ShiftRows primitive, as the
latter performs byte-wise permutations of the output of the
former.

To measure the side channel leakage of our solution, we
employed a Picoscope 5203 digital sampling oscilloscope,
sampling at 500 Msamples/s the output of an Agilent INA-
10386 wideband amplifier (26 dB gain up to 1.5 GHz) con-
nected to a TekBox EMC near field probe H10 (TBPSO1 kit).
The probe was placed on the top of the Artix-7 package, locat-
ing manually the place were the most significant emissions
were present. We set the probability of performing a mask
refreshing to 0.25. Figure 9 reports the results of conduct-
ing the correlation power analysis against the unprotected
OpenTitan SoC (Fig. 9a) and two version of Metis employing
respectively the ST tiles (Fig. 9b) and MT tiles (Fig. 9c). The
correlation power analysis succeeds in obtaining the correct
AES key value starting from 800 measurements, as the con-
fidence intervals for « = 0.1 of the correlation of the cor-
rect key guess (red) and the highest-correlating wrong guess
(black) are disjoint for the first time at the said number of
measurements. We note that the fact of the OpenTitan SoC
being attackable does not represent a design issue of the SoC
itself, as it is not designed for side channel attack resistance of

69220

its main CPU. Metis protected solutions successfully prevent
the recovery of the correct key value when 200k and 1M
traces are employed for the ST and MT tile-sets, respectively.
This represents an >250x and a >1, 250x improvement in
the MTD metric w.r.t. a correlation power analysis targeting
an unprotected design. We also note that the correlation of
incorrect key values is higher than the one of the correct key
guess, as a result of the code morphing distortion of the power
consumption leakage, coherently with [4].

Comparing security margins, the software code morphing
solution in [11] targets a protection exhibiting an MTD
exceeding 1M traces and shows a morphing strategy that is
effective up to SM measurements, starting from an unpro-
tected design having leakage at 290 measurements. The soft-
ware code morphing solution in [4] evaluated on the MTD
metric reports a MTD increase of 1, 000x for the EM emis-
sion analysis. While it is not possible to directly compare
different side channel countermeasure techniques, we report
the resistance figures of other approaches to integrate them
at architectural level to provide a more inclusive overview.
The solution integrating masking countermeasures proposed
in [26] obtains a boost in MTD metric of at least 50x (from
2M to no leakage appearing at 100M traces). The solution
integrating hiding countermeasures in [10], instead achieves
a 366x increase in the number of required measurements
derived from the decrease in the Pearson correlation coeftfi-
cient. Finally, the EM emission reduction technique proposed
in [18] provides a > 166 x improvement on the MTD metric,
showing that no leakage takes place at 1M measurements.

Willing to provide a deeper analysis of the security of the
solution proposed by Metis, we report also the results of
computing two other side channel security metrics, namely
the success rate and the guessing entropy [52]. The success
rate is computed performing multiple side channel attacks
on independently collected measurements, with an attack
methodology which outputs a ranking of the key hypothesis,
from the one most likely to be correct to the least one accord-
ing to the extracted information. For any given value of the
order o between 1 and the number of key hypotheses made in
the side channel attack, the success-rate of order o is defined

VOLUME 9, 2021

F. Antognazza et al.: Metis: Integrated Morphing Engine CPU to Protect Against Side Channel Attacks

IEEE Access

, Lo0 1.00 T T T 1.00 T T T T

2 0.80 - 0.80 - . 0.80 |- .
§ 0.60 i 0.60 |- 4 060 .
_Q‘E 0.40 N 0.40 |- = 0.40 - =
£ 020 | 0.20 | 4 020 W .
S

= 0.00 | | | | 0.00 b . . . 0.00 : ’_IMN—_\ . .

0 400 800 1,200 1,600 2,000 0 50 100 150 200 0 200 400 600 800 1,000

number of traces

(a) Ibex (Unprotected)

number of traces x 103

(b) Metis-ST (Protected)

number of traces x 103

(¢) Metis-MT (Protected)

FIGURE 10. Results of computing the success rate of the CPA attacks against AES-128, targeting the computation of the SubBytes primitive on both the
unprotected Ibex and on Metis. All the success rates were obtained averaging the success rate on 30 independent experiments, each one performed

with a different secret key.

150 [-] 150 150 - n
=
oy
2
2 100 . 100 100 |- n
(5]
on
.=
§ 50 |- - 50 |- - 50 N
=
O {\\/_’_—,“,‘—

0 ‘ ‘ ‘ 0 I I I 0 [I | I
0 400 800 1,200 1,600 2,000 0 50 100 150 200 0 200 400 600 800 1,000

number of traces

(a) Ibex (Unprotected)

number of traces x 103

(b) Metis-ST (Protected)

number of traces x 103

(c) Metis-MT (Protected)

FIGURE 11. Results of computing the guessing entropy, employing as a ranking the outcome of a CPA attack against AES-128, targeting the
computation of the SubBytes primitive on both the unprotected Ibex and on Metis. All the guessing entropies were computed on 30 independent

experiments, each one performed with a different secret key.

as the fraction of the times the correct key guess is ranked by
the attack methodology among the first o positions, over the
number of attacks.

Figure 10 reports the results of the success rate over
30 attacks, performed employing the CPA ranking of the key
candidates. The figure reports the trend of the fifth order
success rate (0 = 5), as a function of the number of traces
employed to perform the attacks. As it can be seen, the fifth
order success rate against the unprotected Ibex reaches 1,
indicating that the correct key is always among the first five
guesses, after 400 traces. By contrast, the attacks against
both Metis implementations have a success rate which drops
down to zero when more traces are added, indicating that a
larger amount of information will not be useful to breach the
security of the approach.

The guessing entropy metric was proposed in order to
concretely estimate the number of remaining key guesses an
attacker should perform, assuming that he is employing the
information coming from a side channel attack as a support
to the exhaustive search for the correct cipher key. The com-
putation of the guessing entropy assumes that the attacker
will employ the output of a ranking side channel attack of the
same kind as the one considered by the success rate metric,
as a prompt to start guessing the possible values of the key
portions. As a consequence, the guessing entropy considers

VOLUME 9, 2021

what is the average position of the correct key in the ranking
provided by the side channel attack employed to compute it.
Indeed, if an attacker conduces the exhaustive key search,
enumerating each portion of the key according to the results
of the side channel attack which he has lead, having the
correct key ranked far from the first place will slow him down
in his exhaustive search.

Figure 11 reports the results of computing the guessing
entropy considering 30 ranking obtained from 30 independent
CPA attacks. As it can be seen, the rank of the correct key
in the unprotected Ibex SoC drops to 1, i.e., the correct
key is ranked as the first to be guessed, after ~380 traces.
By contrast, the guessing entropy of the Metis protected
implementation never drops to 1, indicating a persistent
remaining guesswork to be made by the attacker. In particular,
we recall that, since the side channel attack performed is
attempting at extracting 8 key bits out of 128, %8 = 16
independent guessing attempts are required to derive the
entire AES key. This in turn implies that a guessing entropy
score of 32 results in 32!¢ = 230 possible key guesses.

C. COMPUTATION PERFORMANCE EVALUATION

To provide a fair evaluation of the integrated code morphing
overhead on a practically relevant workload, we evaluated
Metis on all the available ISO/IEC standard symmetric block

69221

IEEE Access

F. Antognazza et al.: Metis: Integrated Morphing Engine CPU to Protect Against Side Channel Attacks

3001 mmm STNR mEm MT-NR = Cycles masking = STNR mmm MT-NR
250 ST-ER == MT-ER 20000 Cycles morphing 200 ST-ER mmm MT-ER
] 4]
£200 S 15000 2150
- > e
C F==@=g3=8=========== e} < | .
$ 150 ~] F==f=g§==-77===== T
5 §10000 5 100
2 100] o o
5000
p IIIIIIHI I " O
0 T T 0 0 . T
ONOVWOOVONONME—AONWNWOOOWN WY ONOWOOWONONME—EHONWMNWOWN O ONOWOOWONONMEAONWNWOWN WO
NONTONNIOAINUNWNTI >0 NN O LN NONTONNIAINUNNI >0 NN WN NONTONNIOAINUNWNI >0 LN NOLWN
uuus<sn 2o IZo"238322% gy B ee IS 0"338222K w2 L2e IZ0'Q3R22R
<<<0582%%% "¢ SonSAas <<<302%%% " "°§ S88NAN <<<382%%% - SSS8qN
O500 <4 (RN O500 <4 (I 500 o [N Y]
oo A cccocXxyv QOO A CcCccocMXy [CRCRS) A cccXxyx
222339 229599 222399
EEEaca EEESGS EEEcaa
nununununun nunnununun nnhnununun
(a) Overhead measured on execution time (b) Number of clock cycles spent in morphing and (c) Overhead measured on wall clock

masking

FIGURE 12. Performance evaluation of the Metis SoC, comparing the results obtained on the ST and MT tiles, NR and ER refreshing strategies to the
performance of the Ibex SoC. All dashed lines represent the geometric means of the results in the corresponding plot. Subfigure (a) reports the overheads
in execution time taking into account the difference in the clock rate of the two SoCs: OpenTitan (48 MHz), Metis (40 MHz). Subfigure (b) reports the
number of clock cycles spent in the morphing and masking computations by Metis. Subfigure (c) measures the overhead of Metis with respect to the

plain OpenTitan when considering the wall clock.

ciphers, namely: ISO/IEC 18033-3 [29] wide-block ciphers
AES and SEED, and narrow-block ciphers: Triple DES-
EDE, CAST, HIGHT and Mistyl; ISO/IEC 29192-2 [32]
lightweight ciphers: Clefia and Present; ISO/IEC 29167-21
Speck [31] and ISO/IEC 29167-22 Simon [30] lightweight
ciphers. We adapted the existing code bases for the execution
on Metis enlarging the size of the variables requiring mask-
ing. While we performed the operation manually, we note
that this modification was easily integrated in the compiler
backend [1], as all the required information are available at
compile time. We also annotated code to unroll the cipher
round loops, as it is customary, given the small code size
of block ciphers [2], [11]. We enable the code morphing in
Metis through setting the morphing enable bit in the mstatus
status register, before the start of the cipher execution and
we measured performance with two different mask refresh-
ing probabilities: 0.25 for Normal Refreshing (NR), and
0.75 for Extended Refreshing (ER). While Metis provides
already a significant security margin on the MTD metric with
NR, we provide its performance figures with ER to quantify
the small additional overhead of ER.

Performance measurements are obtained adding Hardware
Performance Monitor (HPM) counters to report the overall
amount of instructions substituted, and the cycles spent in
morphing or masking execution mode. Given the variable
length of the executed tiles, the average performance over
1, 000 cipher executions is reported.

Figure 12 reports the results of the benchmark cam-
paign in terms of execution time overhead of the symmetric
ciphers with respect to an unmodified SoC. The overhead is
reported both with respect to a comparison on the time taken
(Figure 12a) taking into account the difference in clock
frequency between Metis and Ibex, and the wall clock
time taken (Figure 12c). Figure 12b reports the amount of
overhead clock cycles, split by their task: executing mor-
phed code or performing masked load-store operations with
refreshing. The obtained results show how Metis achieves

69222

an overhead of 0.7x when employing ST, and of 1.15x
when employing MT tiles and a refreshing probability of
0.25 (Normal Refreshing, NR). Boosting the mask refresh
probability to 0.75 (Extended Refreshing, ER) only increases
the overhead by an additional 5%, showing the advantage of
performing integrated mask refreshing. The overall execution
times of the ISO standard cipher suite have an overhead of
1.05x when considering ST, and 1.61x when considering
MT, and a mask refresh probability of 0.25, retaining the
similarly small extra overhead (= 6%) for a mask refreshing
with probability 0.75.

We now analyze the differences in the computational over-
heads of the ciphers, highlighting which block cipher design
criteria are the most efficient when considering morphing-
friendly block ciphers. Block ciphers relying on integer arith-
metics as a means to achieve Boolean nonlinear functions,
such as the ISO/IEC and Canadian standard CAST, and the
South Korean standard SEED, report the lowest overhead
among all ISO standard ciphers. This fact is a consequence
of the lack of LUT-based S-Boxes, which in turn remove
the need to perform LUT masking during the morphing
of load operations. A particular point sets apart Speck and
Simon, which, despite the use of non-LUT based nonlin-
ear components, are characterized by a significant amount
of bitwise rotations, for which dedicated tiless are present
in the Metis morphing engine. The morphing of the rota-
tions, together with the one of the bitwise xor makes the
overwhelming majority of the Speck and Simon operations
subject to morphing. Nonetheless the overall overhead expe-
rienced by Speck and Simon is at most ~2.25x, which
still compares favourably with the one-order-of-magnitude
of pure masking overheads [49]. A similarly high overhead
affects HIGHT, originating by the use of the same set of ISA
operations, another South Korean standard cipher present in
the ISO standard block cipher suite. Block ciphers employing
tabulated LUTs to compute their nonlinear S-Box functions,
i.e. AES, Clefia, Mistyl and Present, exhibit overheads in

VOLUME 9, 2021

F. Antognazza et al.: Metis: Integrated Morphing Engine CPU to Protect Against Side Channel Attacks

IEEE Access

line with the geometric mean of the figures, albeit half of
the overhead or more is indeed caused by the additional
load-store operations, as reported in Figure 12b. The perfor-
mance figures obtained on AES, arguably the most widely
employed block cipher, match closely the geometric mean
of the benchmark, thus providing a good representative for
cross-evaluation with other morphing solutions.

TABLE 2. Comparison among code morphing approaches.

Technique Runs w/o Execution time (geo. mean) Code
morphing | AES-SBox ISO-STD [11] size
Metis ST-NR 1 2.14x 2.10x 2.21x 1.00x
Metis ST-ER 1 2.21x 2.16x 2.28x | 1.00x
Metis MT-NR 1 2.72% 2.67x 2.93x | 1.00x
Metis MT-ER 1 2.79x 2.73x 3.00x | 1.00x
[2] 1 396 % - - -
MEET [4] 1 - 6.7x - 5.18x
Odo High [11] 1 - - 175% 3.66x
Odo Low [11] 1 - - 67.4%x 1.65x
[2] 100 5.33x - - -
Odo High [11] 100 - - 6.7x 3.66x
Odo Low [11] 100 - - 4.2x 1.65x%

A comparison of the performance of Metis with the
one achieved by the existing code morphing approaches is
reported in Table 2. The software code morphing approaches
in [2], [11] propose to perform a periodic dynamic recom-
pilation of the block cipher code once every r full block
cipher executions. This allows to amortize the cost of code
morphing over multiple executions of the cipher, at the cost of
a decreased protection effectiveness. In particular, executing
the cipher a number of times equal to the MTD without
morphing the code maskes it vulnerable to a vanilla CPA
attack [2]. The alternative approach employed in [4] reduces
the cost of dynamic recompilation, compiling ahead of time
multiple code variants. While this removes the cost of online
recompilation, it limits the flexibility of the approach and is
characterized by a code size blowup of about 5 x. We note that
our approach continuously performs code morphing, without
any code size overhead.

We compare the execution time of Metis against the soft-
ware based code morphing approaches on the set of block
ciphers employed by each of the approaches (AES only
for [2], the set of ISO/IEC standard ciphers save for Simon
and Speck for [4] and the subset of ISO/IEC standard ciphers
tackled in [11]). Comparing Metis with MT-ER morphing
against continuously morphing approaches yields a 141x
improvement w.r.t the original [2] morphing approach, a 21 x
to 58x improvement against [11], depending on the set
of code morphing techniques selected in [11], and a 2.4x
improvement on [4], paired with a null overhead on the
code size w.r.t. the quintuplication operated by [4]. Finally,
comparing Metis against the code-morphing approaches of
[2], [11], considering the case of a code morphing action
every 100 block cipher executions (i.e., a recompilation every
~10° instructions) we report a still significant improvement,
namely 1.91x for [2] and 1.4x-2.23 x with respect to [11].

VOLUME 9, 2021

To put the obtained overheads in perspective, it is useful to
compare them with the ones of protections relying on mask-
ing schemes: a typical first-order masking countermeasure,
with a two share encoding, is responsible for an increased
clock cycles requirements of 10x on average, and also as
much as 129x in case of the AES cipher [49].

V. CONCLUSION

We proposed Metis, a compact CPU design integrating a
code morphing engine and transparent support for masking
of memory operations and randomized mask refreshing. Our
solution provides security improvements in the MTD metric
up to 1250%, while keeping the increase in logic resources
down to 25% of the compact CPU (roughly in the ARM
Cortex-M3 class) we built on, and down to ~5% of the orig-
inal OpenTitan SoC. The computing performance overhead
of Metis improves on software based solutions doing contin-
uous runtime code morphing by 21 x to 141x, and by 2.4 x
with respect to a solution performing static morphing and
randomized execution, with an additional 5x code overhead
reduction with respect to the latter.

REFERENCES

[1]1 G. Agosta, A. Barenghi, M. Maggi, and G. Pelosi, “Compiler-based side
channel vulnerability analysis and optimized countermeasures applica-
tion,” in Proc. 50th Annu. Design Autom. Conf. (DAC), Austin, TX, USA,
May/Jun. 2013, pp. 81:1-81:6, doi: 10.1145/2463209.2488833.

G. Agosta, A. Barenghi, and G. Pelosi, “A code morphing methodology

to automate power analysis countermeasures,” in Proc. 49th Annu. Design

Autom. Conf. (DAC), San Francisco, CA, USA, Jun. 2012, pp. 77-82, doi:

10.1145/2228360.2228376.

[3] G. Agosta, A. Barenghi, and G. Pelosi, “Compiler-based techniques to
secure cryptographic embedded software against side-channel attacks,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 8,
pp. 1550-1554, Aug. 2020, doi: 10.1109/TCAD.2019.2912924.

[4] G. Agosta, A. Barenghi, G. Pelosi, and M. Scandale, “The MEET

approach: Securing cryptographic embedded software against side channel

attacks,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 34,

no. 8, pp. 1320-1333, Aug. 2015, doi: 10.1109/TCAD.2015.2430320.

A. Althoff, J. McMahan, L. Vega, S. Davidson, T. Sherwood, M. B. Taylor,

and R. Kastner, “Hiding intermittent information leakage with architec-

tural support for blinking,” in Proc. 45th ACM/IEEE Annu. Int. Symp.

Comput. Archit. (ISCA), Los Angeles, CA, USA, Jun. 2018, pp. 638-649,

doi: 10.1109/ISCA.2018.00059.

[6] M. K. F. Arsath, V. Ganesan, R. Bodduna, and C. Rebeiro, “PARAM:

A microprocessor hardened for power side-channel attack resistance,”

in Proc. IEEE Int. Symp. Hardw. Oriented Secur. Trust (HOST), San

Jose, CA, USA, Dec. 2020, pp. 23-34, doi: 10.1109/HOST45689.2020.

9300263.

J. Balasch, B. Gierlichs, O. Reparaz, and I. Verbauwhede, “DPA, bitslic-

ing and masking at 1 GHz,” in Cryptographic Hardware and Embed-

ded Systems—CHES (Lecture Notes in Computer Science), vol. 9293,

T. Giineysu and H. Handschuh, Eds. Berlin, Germany: Springer, Sep. 2015,

pp. 599-619, doi: 10.1007/978-3-662-48324-4_30.

A. Barenghi, W. Fornaciari, G. Pelosi, and D. Zoni, “Scramble suit:

A profile differentiation countermeasure to prevent template attacks,”

IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 9,

pp. 1778-1791, Sep. 2020, doi: 10.1109/TCAD.2019.2926389.

A. Barenghi and G. Pelosi, “Side-channel security of superscalar CPUs:

Evaluating the impact of micro-architectural features,” in Proc. 55th

Annu. Design Autom. Conf., San Francisco, CA, USA, Jun. 2018,

pp. 120:1-120:6, doi: 10.1145/3195970.3196112.

[10] A. G. Bayrak, N. Velickovic, P. Ienne, and W. P. Burleson, “An
architecture-independent instruction shuffler to protect against side-
channel attacks,” ACM Trans. Archit. Code Optim., vol. 8, no. 4,
pp. 20:1-20:19, 2012, doi: 10.1145/2086696.2086699.

2

—

[5

—

[7

—

[8

—

[9

—

69223

http://dx.doi.org/10.1145/2463209.2488833
http://dx.doi.org/10.1145/2228360.2228376
http://dx.doi.org/10.1109/TCAD.2019.2912924
http://dx.doi.org/10.1109/TCAD.2015.2430320
http://dx.doi.org/10.1109/ISCA.2018.00059
http://dx.doi.org/10.1109/HOST45689.2020.9300263
http://dx.doi.org/10.1109/HOST45689.2020.9300263
http://dx.doi.org/10.1007/978-3-662-48324-4_30
http://dx.doi.org/10.1109/TCAD.2019.2926389
http://dx.doi.org/10.1145/3195970.3196112
http://dx.doi.org/10.1145/2086696.2086699

IEEE Access

F. Antognazza et al.: Metis:

Integrated Morphing Engine CPU to Protect Against Side Channel Attacks

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

N. Belleville, D. Couroussé, K. Heydemann, and H. Charles, ““Automated
software protection for the masses against side-channel attacks,” ACM
Trans. Archit. Code Optim., vol. 15, no. 4, p.47:1-47:27, 2019, doi:
10.1145/3281662.

E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a
leakage model,” in Cryptographic Hardware and Embedded Systems—
CHES (Lecture Notes in Computer Science), vol. 3156, M. Joye and
J. Quisquater, Eds. Berlin, Germany: Springer, Aug. 2004, pp. 16-29, doi:
10.1007/978-3-540-28632-5_2.

F. Bruguier, P. Benoit, L. Torres, L. Barthe, M. Bourree, and V. Lomne,
“Cost-effective design strategies for securing embedded processors,”
IEEE Trans. Emerg. Topics Comput., vol. 4, no. 1, pp. 60-72, Jan. 2016,
doi: 10.1109/TETC.2015.2407832.

S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Cryptographic
Hardware and Embedded Systems—CHES (Lecture Notes in Computer
Science), vol. 2523, B. S. K. Jr, C. K. Kog, and C. Paar, Eds. Berlin,
Germany: Springer, Aug. 2002, pp. 13-28, doi: 10.1007/3-540-36400-5_3.
D. Couroussé, T. Barry, B. Robisson, N. Belleville, P. Jaillon, O. Potin,
H. L. Bouder, J. Lanet, and K. Heydemann, “All paths lead to Rome:
Polymorphic runtime code generation for embedded systems,” in Proc. 5th
Workshop Cryptogr. Secur. Comput. Syst. (CS2) 2018, Manchester, U.K.,
Jan. 2018, pp. 17-18, doi: 10.1145/3178291.3178296.

D. Couroussé, T. Barry, B. Robisson, P. Jaillon, O. Potin, and J. Lanet,
“Runtime code polymorphism as a protection against side channel
attacks,” in Information Security Theory and Practice, (Lecture Notes
in Computer Science), vol. 9895, S. Foresti and J. Lépez, Eds. Cham,
Switzerland: Springer, Sep. 2016, pp. 136-152, doi: 10.1007/978-3-319-
45931-8_9.

S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz,
“Thwarting cache side-channel attacks through dynamic software
diversity,” in Proc. 22nd Annu. Netw. Distrib. Syst. Secur. Symp. (NDSS),
San Diego, CA, USA, Feb. 2015. [Online]. Available: https://www.ndss-
symposium.org/ndss2015/ndss-2015-programme/thwarting-cache-side-
channel- attacks-through-dynamic-software-diversity/

D. Das, J. Danial, A. Golder, N. Modak, S. Maity, B. Chatterjee,
D. Seo, M. Chang, A. Varna, H. Krishnamurthy, S. Mathew, S. Ghosh,
A. Raychowdhury, and S. Sen, “27.3 EM and power SCA-resilient
AES-256 in 65 nm CMOS through 350x current-domain signature
attenuation,” in [EEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, San Francisco, CA, USA, Feb. 2020, pp. 424-426, doi:
10.1109/ISSCC19947.2020.9062997.

D. Das, S. Maity, S. B. Nasir, S. Ghosh, A. Raychowdhury, and S. Sen,
“High efficiency power side-channel attack immunity using noise injection
in attenuated signature domain,” in Proc. IEEE Int. Symp. Hardw. Oriented
Secur. Trust (HOST), McLean, VA, USA, May 2017. pp. 62-67, doi:
10.1109/HST.2017.7951799.

F. De Santis, T. Bauer, and G. Sigl, “Hiding higher-order univariate leak-
ages by shuffling polynomial masking schemes: A more efficient, shuffled,
and higher-order masked AES S-box,” in Proc. ACM Workshop Theory
Implement. Secur. (TISCCS), Vienna, Austria, Oct. 2016, pp. 17-26, doi:
10.1145/2996366.2996370.

T. Eisenbarth, T. Kasper, A. Moradi, C. Paar, M. Salmasizadeh, and
M. T. M. Shalmani, “On the power of power analysis in the real world:
A complete break of the KeeLoq code hopping scheme,” in Advances in
Cryptology—CRYPTO (Lecture Notes in Computer Science), vol. 5157,
D. A. Wagner, Ed. Berlin, Germany: Springer, Aug. 2008, pp. 203-220,
doi: 10.1007/978-3-540-85174-5_12.

Embedded Microprocessor ~ Benchmark Consortium. (2020).
Coremark Benchmark Suite. [Online]. Available: https://www.eembc.
org/coremark/download.php

M. Gallagher, L. Biernacki, S. Chen, Z. B. Aweke, S. F. Yitbarek,
M. T. Aga, A. Harris, Z. Xu, B. Kasikci, V. Bertacco, S. Malik, M. Tiwari,
and T. M. Austin, “Morpheus: A vulnerability-tolerant secure archi-
tecture based on ensembles of moving target defenses with churn,” in
Proc. 24th Int. Conf. Architectural Support Program. Lang. Operating
Syst. (ASPLOS), Providence, RI, USA, Apr. 2019, pp. 469-484, doi:
10.1145/3297858.3304037.

D. Genkin, L. Pachmanov, I. Pipman, A. Shamir, and E. Tromer, “‘Physical
key extraction attacks on PCs,” Commun. ACM, vol. 59, no. 6, pp. 70-79,
May 2016, doi: 10.1145/2851486.

D. Genkin, A. Shamir, and E. Tromer, “Acoustic cryptanalysis,” J. Cryp-
tol., vol. 30, no. 2, pp. 392-443, Apr. 2017, doi: 10.1007/s00145-015-
9224-2.

69224

(26]

(27]

(28]

(29]

[30]

(31]

(32]

(33]

(34]

[35]

(36]

(371

(38]

(39]

(40]
(41]

[42]
(43]

[44]

H. GroB3, M. Jelinek, S. Mangard, T. Unterluggauer, and M. Werner,
“Concealing secrets in embedded processors designs,” in Smart Card
Research and Advanced Applications (Lecture Notes in Computer
Science), vol. 10146, K. Lemke-Rust and M. Tunstall, Eds. Cham,
Switzerland: Springer, Nov. 2016, pp. 89-104, doi: 10.1007/978-3-319-
54669-8_6.

A. Heuser, O. Rioul, and S. Guilley, “Good is not good enough—Deriving
optimal distinguishers from communication theory,” in Cryptographic
Hardware and Embedded Systems—CHES (Lecture Notes in Computer
Science), vol. 8731, L. Batina and M. Robshaw, Eds. Springer, Sep. 2014,
pp. 55-74, doi: 10.1007/978-3-662-44709-3_4.

G. Hospodar, B. Gierlichs, E. De Mulder, I. Verbauwhede, and
J. Vandewalle, ‘““Machine learning in side-channel analysis: A first study,”
J. Cryptograph. Eng., vol. 1, no. 4, pp.293-302, Dec. 2011, doi:
10.1007/513389-011-0023-x.

Information Technology—Security Techniques—Encryption Algorithms—
Part 3: Block Ciphers, Standard ISO/IEC 18033-3:2010, 2010. [Online].
Available: https://www.iso.org/standard/51582.html

Information Technology—Automatic Identification and Data Capture
Techniques—Part 21: Crypto Suite SIMON Security Services for Air Inter-
face Communications, Standard ISO/IEC 29167-21:2018, 2018. [Online].
Available: https://www.iso.org/standard/70388.html

Information Technology—Automatic Identification and Data Capture
Techniques—~Part 22: Crypto Suite SPECK Security Services for Air Inter-
face Communications, Standard ISO/IEC 29167-22:2018, 2018. [Online].
Available: https://www.iso.org/standard/70389.html

Information Security—Lightweight Cryptography—Part 2: Block
Ciphers, Standard ISO/IEC 29192-2:2019, 2019. [Online]. Available:
https://www.iso.org/standard/78477 .html

J. Irwin, D. Page, and N. P. Smart, “Instruction Stream Mutation for
Non-Deterministic Processors,” in Proc. 13th IEEE Int. Conf. Appl.-
Specific Syst., Archit., Processors (ASAP), San Jose, CA, USA, Jul. 2002,
pp. 286-295, doi: 10.1109/ASAP.2002.1030727.

Y. Ishai, A. Sahai, and D. A. Wagner, ‘“Private circuits: Securing hard-
ware against probing attacks,” in Advances in Cryptology—CRYPTO
(Lecture Notes in Computer Science), vol. 2729, D. Boneh, Ed. Berlin,
Germany: Springer, Aug. 2003, pp. 463—481, doi: 10.1007/978-3-540-
45146-4_27.

P. Kiaei, D. Mercadier, P.-E. Dagand, K. Heydemann, and P. Schaumont,
“Custom instruction support for modular defense against side-channel
and fault attacks,” in Proc. Cryptol. ePrint Arch., Rep., 2020, pp. 1-34.
[Online]. Available: https://eprint.iacr.org/2020/466

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, ““Spec-
tre attacks: Exploiting speculative execution,” in Proc. IEEE Symp.
Secur. Privacy (SP), San Francisco, CA, USA, May 2019, pp. 1-19, doi:
10.1109/SP.2019.00002.

P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology—CRYPTO (Lecture Notes in Computer Science),
vol. 1666, M. J. Wiener, Ed. Berlin, Germany: Springer, Aug. 1999,
pp. 388-397, doi: 10.1007/3-540-48405-1_25.

E. Laohavaleeson and C. Patel, “Current flattening circuit for DPA
countermeasure,” in Proc. IEEE Int. Symp. Hardw.-Oriented Secur.
Trust (HOST), Anaheim, CA, USA, Jun. 2010, pp.118-123, doi:
10.1109/HST.2010.5513104.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg, “Meltdown: Reading kernel memory from user
space,” in Proc. 27th USENIX Secur. Symp. Secur. (USENIX),
Baltimore, MD, USA, Aug. 2018, pp. 973-990. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity 18/presentation/lipp
Ibex Documentation, lowRISC, Cambridge, U.K., Jan. 2020.

lowRISC Community Interest Company. (Jan. 2020). Ibex RISC-V Core.
[Online]. Available: https://github.com/lowRISC/ibex

lowRISC Community Interest Company. (Jan. 2020). OpenTitan Docu-
mentation. [Online]. Available: https://docs.opentitan.org/

lowRISC Community Interest Company. (Jan. 2020). OpenTitan Github
Repository. [Online]. Available: https://github.com/lowRISC/opentitan

T. S. Messerges, “Using second-order power analysis to attack DPA
resistant software,” in Cryptographic Hardware and Embedded Systems—
CHES (Lecture Notes in Computer Science), vol. 1965, C. K. Ko¢ and
C. Paar, Eds. Berlin, Germany: Springer, Aug. 2000, pp. 238-251, doi:
10.1007/3-540-44499-8_19.

VOLUME 9, 2021

http://dx.doi.org/10.1145/3281662
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1109/TETC.2015.2407832
http://dx.doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1145/3178291.3178296
http://dx.doi.org/10.1007/978-3-319-45931-8_9
http://dx.doi.org/10.1007/978-3-319-45931-8_9
http://dx.doi.org/10.1109/ISSCC19947.2020.9062997
http://dx.doi.org/10.1109/HST.2017.7951799
http://dx.doi.org/10.1145/2996366.2996370
http://dx.doi.org/10.1007/978-3-540-85174-5_12
http://dx.doi.org/10.1145/3297858.3304037
http://dx.doi.org/10.1145/2851486
http://dx.doi.org/10.1007/s00145-015-9224-2
http://dx.doi.org/10.1007/s00145-015-9224-2
http://dx.doi.org/10.1007/978-3-319-54669-8_6
http://dx.doi.org/10.1007/978-3-319-54669-8_6
http://dx.doi.org/10.1007/978-3-662-44709-3_4
http://dx.doi.org/10.1007/s13389-011-0023-x
http://dx.doi.org/10.1109/ASAP.2002.1030727
http://dx.doi.org/10.1007/978-3-540-45146-4_27
http://dx.doi.org/10.1007/978-3-540-45146-4_27
http://dx.doi.org/10.1109/SP.2019.00002
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1109/HST.2010.5513104
http://dx.doi.org/10.1007/3-540-44499-8_19

F. Antognazza et al.: Metis: Integrated Morphing Engine CPU to Protect Against Side Channel Attacks

IEEE Access

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, F. Piessens, and
D. Gruss, “Plundervolt: How a little bit of undervolting can create a lot
of trouble,” IEEE Secur. Privacy, vol. 18, no. 5, pp. 28-37, Sep. 2020, doi:
10.1109/MSEC.2020.2990495.

D. Oswald and C. Paar, “Breaking mifare DESFire MF3ICD40: Power
analysis and templates in the real world,” in Cryptographic Hardware
and Embedded Systems—CHES, (Lecture Notes in Computer Science),
vol. 6917, B. Preneel and T. Takagi, Eds. Berlin, Germany: Springer,
Sep./Oct. 2011, pp. 207-222. 10.1007/978-3-642-23951-9_14.

D. Oswald, B. Richter, and C. Paar, ““Side-channel attacks on the Yubikey
2 one-time password generator,” in Research in Attacks, Intrusions, and
Defenses (Lecture Notes in Computer Science), vol. 8145, S. J. Stolfo,
A. Stavrou, and C. V. Wright, Eds. Berlin, Germany: Springer, Oct. 2013,
pp. 204-222, doi: 10.1007/978-3-642-41284-4_11.

A. Peetermans, V. Rozic, and I. Verbauwhede, “A highly-portable true
random number generator based on coherent sampling,” in Proc. 29th
Int. Conf. Field Program. Log. Appl. (FPL), Barcelona, Spain, Sep. 2019,
pp. 218-224, doi: 10.1109/FPL.2019.00041.

M. Rivain and E. Prouff, “Provably secure higher-order masking of AES,”
in Cryptographic Hardware and Embedded Systems, CHES, S. Mangard
and F.-X. Standaert, Eds. Berlin, Germany: Springer, 2010, pp. 413-427.

E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn, “IoT goes
nuclear: Creating a ZigBee chain reaction,” IEEE Secur. Privacy, vol. 16,
no. 1, pp. 54-62, Jan. 2018, doi: 10.1109/MSP.2018.1331033.

S. A. Seyyedi, M. Kamal, H. Noori, and S. Safari, “Securing embed-
ded processors against power analysis based side channel attacks using
reconfigurable architecture,” in Proc. IEEE/IFIP 9th Int. Conf. Embedded
Ubiquitous Comput. (EUC) 2011, Melbourne, VIC, Australia, Oct. 2011,
pp. 255-260, doi: 10.1109/EUC.2011.62.

F. Standaert, T. Malkin, and M. Yung, “A unified framework for
the analysis of side-channel key recovery attacks,” IACR Cryp-
tol. ePrint Arch., vol. 2006, p. 139, Jun. 2009. [Online]. Available:
http://eprint.iacr.org/2006/139

VOLUME 9, 2021

[53] STMicroelectronics. (2020). STM32F407/417 Cortex-M4 Based
Microcontroller Datasheet. [Online]. Available: https://www.st.com/
resource/en/datasheet/stm32f415rg.pdf

[54] M. Tunstall, C. Whitnall, and E. Oswald, ‘“Masking tables—An underesti-
mated security risk,” in Fast Software Encryption (Lecture Notes in Com-
puter Science), vol. 8424, S. Moriai, Ed. Singapore: Springer, Mar. 2013,
pp. 425444, doi: 10.1007/978-3-662-43933-3_22.

FRANCESCO ANTOGNAZZA is currently pursuing the Ph.D. degree with
the Politecnico di Milano, Italy. His research interest includes efficient and
side channel-resistant hardware implementations of cryptographic primi-
tives, with a focus on post-quantum asymmetric cryptosystems.

ALESSANDRO BARENGHI is currently an Associate Professor with the
Politecnico di Milano, Italy. He has published more than 80 articles in
international peer-reviewed venues. His research interests include computer
and network security, formal languages, and compilers.

GERARDO PELOSI (Member, IEEE) is currently an Associate Professor
with the Politecnico di Milano, Italy. He is a co-inventor of ten patents
concerning the design of cryptographic systems. He has published more
than 90 articles in international peer-reviewed journals and conference
proceedings. His main research interests include computer security, cryp-
tography, security in hardware and in the area of data security, and privacy.

69225

http://dx.doi.org/10.1109/MSEC.2020.2990495
http://dx.doi.org/10.1007/978-3-642-23951-9_14
http://dx.doi.org/10.1007/978-3-642-41284-4_11
http://dx.doi.org/10.1109/FPL.2019.00041
http://dx.doi.org/10.1109/MSP.2018.1331033
http://dx.doi.org/10.1109/EUC.2011.62
http://dx.doi.org/10.1007/978-3-662-43933-3_22

