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ABSTRACT The main difficulty in the traditional nonlinear H∞ control design lies in how to solve the
nonlinear partial differential Hamilton-Jacobi-Isaacs equation (HJIE), especially for nonlinear time-varying
systems. In this study, a novel HJIE-embedded DNNH∞ control scheme is proposed to be efficiently trained
for nonlinear H∞ stabilization and tracking control designs of nonlinear dynamic systems with the external
disturbance. The proposed DNN-based H∞ control approach not only capitalizes on the availability of
theoretical partial differential HJIE but also reduces the amount of empirical data and the complexity to train
HJIE-embedded DNN. We have shown that the proposed DNN-based H∞ control scheme can approach
the theoretical result of H∞ robust control when the training error approaches zero and the asymptotic
stability is also guaranteed if the nonlinear time-varying system is free of external disturbance. The proposed
method could be easily extended to DNN-basedH∞ reference tracking control of nonlinear systems for more
practical applications. Finally, two examples, including (i) an H∞ stabilization of nonlinear time-varying
system and (ii) an H∞ unmanned aerial vehicle (UAV) reference tracking control system, are proposed to
illustrate the design procedure and to demonstrate the effectiveness of our DNN-based H∞ method.

INDEX TERMS Nonlinear time-varying dynamic system, nonlinear H∞ stabilization and tracking control,
Hamilton Jacobi Issac equation (HJIE), DNN-based H∞ control design, unmanned aerial vehicle (UAV)
tracking control.

I. INTRODUCTION
Deep neural network (DNN) is an information processing
model inspired by biological neural systems and enables us to
perform tasks by learning from big data for a large variety of
applications. In the last few years, powerful big data-driven
methods based on DNN have been exceptionally applied
to speech recognition [1], [2], image classification [3], [4],
translation of languages [5], etc. These kinds of works are
usually simple to perform by human beings but are still very
difficult to execute by machines. In order to fit input/output
data pairs of the above applications, we need to train the
best architecture of an DNN as possible [6], [7]. The current
training methodology of deep learning methods is to employ

The associate editor coordinating the review of this manuscript and

approving it for publication was Nasim Ullah .

a big data-driven approach. Once DNN has been trained, it
can respond to never-observed input data with the optimal
output according to past trained knowledge [8].

Recently, deep learning methods have made great progress
in several application domains successfully due to the devel-
opment of hardware. In general, the traditional deep learn-
ing methodology employs big data-driven approach, i.e. it
acquires a very large amount of empirical data about system
behavior for training to achieve the specific performance
optimization [9]. However, opposite to image classification
and speech recognition, system dynamic models and theo-
retical optimal results have been well developed over several
decades of intense research and very often available in the
system control field [10], [11]. Consequently, the application
of deep learning to system control designs and optimization
problems offers more possibilities than a pure big data-driven
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approach in the traditional deep learning methodology. It is
believed that these can be regarded as priori expert knowledge
that should not be missed and ignored in the deep learning
approaches. Therefore, this study puts forth a new DNN-
based H∞ control design to utilize the availability of system
models and theoretical minimax Nash game results of H∞
stabilization design problem. This will reduce the amount
of training data and the complexity of training DNN for the
robust H∞ control, especially for external disturbance data
which are always unavailable and unpredictable for training
DNN in real system applications.

In general, due to the system uncertainties in modeling,
there exists time-varying parameters in the physical sys-
tem [12], [13]. For example, the value of resistance in motor
system, which depends on environmental temperature, will
varies within a range during the control process [14]. More-
over, since the physical systems are always nonlinear with
external disturbance, nonlinearH∞ control of nonlinear time-
varying systems has been a major research in the robust con-
trol field for decades [15], [16]. In recent decades, researchers
have come up with ideas that boast more constructive
methodologies on how to recover and design robust H∞ con-
troller, which are particularly stimulated by a variety of appli-
cations, especially the flight and attitude control in outerspace
[17], [18]. Generally, nonlinear H∞ control is proposed
to minimize the worst-case effect of external disturbance
on system performance. Based on the nonlinear dynamic
system, the optimal nonlinear H∞ control design needs
to solve a nonlinear partial differential Hamilton-Jacobi-
Isaacs equation (HJIE) for nonlinear H∞ control law [19].
In general, there exists no efficient method to solve the non-
linear partial differential HJIE analytically or numerically,
especially in the case of H∞ tracking control design for
nonlinear time-varying systems, and may not have global
analytic solutions even in simple cases. To deal with this
problem, in previous studies, the nonlinear time-invariant
system is interpolated by a set of local linearized sys-
tems through fuzzy interpolation method [20], [21], global
linearization method [22], [23], gain scheduling method
[24], [25], etc. Then the nonlinear partial differential HJIE
can be replaced by a set of Riccati-like inequalities while
the Lyapunov function in the HJIE is selected as a specific
quadratic function, i.e., V (x(t)) = xT (t)Px(t) for some posi-
tive symmetric matrix P. By utilizing the technique of Schur
complement, the set of Riccati-like inequalities can be trans-
formed to a set of linear matrix inequalities (LMIs), which
can be easily solved with the help of LMIs TOOLBOX in
MATLAB [26].

Recently, in order to avoid solving HJIEin finite-time non-
liner H∞ robust control, a finite-time L2 gain synchronous
control for continuous-time positive hidden Markov jump
system was introduced via T-S Fuzzy model approach [35].
A finite-time stabilization was introduced for positiveMarko-
vian jumping neural network in [36]. A finite-time positive-
ness and distributed control was introduced for Lipschitz

nonlinear multi-agent system in [37]. Further, radial basis
function (RBF) neural network has been utilized for nonlinear
system control design. For example, a RBF neural network-
based adaptive robust control was proposed for nonlinear
bilateral teleoperation manipulators with uncertainties and
time-varying dealy in [38]. A radial basis function neu-
ral network (RBFNN) -based adaptive sliding mode con-
trol design was introduced for delayed nonlinear multilayer
robotic system with cooperative manipulation in [39]. Fuzzy
output feedback controls in [40]–[42] were also employed
to treat robust control of nonlinear dynamic system. The
related works about the application of robust RBFNN can be
refered to [43], [44].

However, even the above approximation methods can
efficiently solve HJIE for H∞ control of nonlinear time-
varying systems, there is some approximation error between
the nonlinear systems and a set of interpolated local linear
systems. Furthermore, the conventional nonlinear Lyapunov
function V (x(t)) is always limited to a quadratic function
V (x(t)) = xT (t)Px(t), which may lead to a conservative
result of nonlinear H∞ control of nonlinear time-invariant
systems [20]–[27]. Moreover, in order to decrease the T-S
fuzzy approximation error, we need to increase the number of
T-S fuzzy rules, which will significantly increase the number
of Riccati-like equations to be solved [24]–[27]. This will
lead to the inconvenience and complexity in the large scale
systems or interconnected systems nowadays. For example,
in the fuzzyH∞ reference tracking control of quadrotor UAV
system of example 2 in the sequel, due to highly nonlinear
dynamic system of quadrotor, there are a large number of
Riccati-like equations to be solved for fuzzy control gains
in the fuzzy control systems, and it needs to compute fuzzy
control at every time instant [27]. It is a very complicate
process and more efforts are still needed in the practical H∞
fuzzy tracking control application to quadrotor UAV.

Even H∞ robust control designs of nonlinear time-
invariant system have beenwidely studied in the past decades.
At present, few H∞ robust control designs of nonlinear time-
varying system have been discussed because we need to
solve a more difficult partial differential equation of time-
varying HJIE than the nonlinear time-invariant system [42],
which cannot be easily solve analytically or numerically.
More precisely, the difficulties to the research of DNN H∞
control scheme for time varying nonlinear dynamic system

are (i) how to solve ∂V (x(t),t)
∂x(t) and ∂V (x(t),t)

∂t from HJIE in (4)
and (ii) how to prove the HJIE-embeddedH∞ control scheme
in Fig. 1 to approach the theoreticalH∞ control strategy in the
time-varying nonlinear dynamic system as training error ε(t)
approaches to zero.

In this study, based on nonlinear dynamic model,
an HJIE-embedded DNN is constructed to be trained
for solving ∂V (x(t),t)

∂t and ∂V (x(t),t)
∂x(t) , i.e. ∂V̄ (x̄(t))

∂ x̄(t) =

[( ∂V (x(t),t)
∂x(t) )

T
( ∂V (x(t),t)

∂t )
T
]T , of the nonlinear partial dif-

ferential HJIE for nonlinear H∞ controller of nonlinear
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FIGURE 1. Flow chart of HJIE-embedded DNN-based H∞ control scheme
of nonlinear time-varying system in (1). In the training phase, x(t) is
generated by nonlinear dynamic model with H∞ control u∗(t) and the
worst-case external disturbance v∗(t) through the output of the
HJIE-embedded DNN. In the operation phase, x(t) is the real state of
nonlinear system with H∞ control input u∗(t) and real external
disturbance v (t).

time-varying systems with external disturbance. In the train-
ing process as shown in Fig. 1, we input system state x(t)
into HJIE-embedded DNN to obtain output ∂V̄ (x̄(t))

∂ x̄(t) , which
must satisfy with the HJIE. The error computed by the
embedded HJIE is fed back to train the weightings of DNN
to approach ∂V̄ (x̄(t))

∂ x̄(t) of HJIE, which is the functional of
∂V̄ (x̄(t))
∂ x̄(t) . We can prove that when the error of embedded HJIE

approaches to 0, the HJIE-embedded H∞ control scheme
in Fig. 1 will approach the H∞ robust stabilization control
of nonlinear time-varying system with external disturbance.
Further, if external disturbance disappears, the asymptotical
stability of nonlinear time-varying system is also guaranteed.

The HJIE can be considered as a priori expert knowledge
of H∞ control of nonlinear time-varying system to train
DNN. The proposed HJIE-embedded DNN H∞ robust con-
trol design can significantly reduce the amount of training
data and training time when compared with the traditional
deep learning approaches based on big data. The reason is
that we can train the DNN based on the state x(t) generated
by the nonlinear dynamic system model through the H∞
control input u∗(t) and the worst-case external disturbance
v∗(t), which can be generated via the DNN output to replace
the unavailable v(t) from the H∞ disturbance rejection per-
spective in the training process as shown in Fig. 1.

The main contributions of this article are described as
follows:

(I) An HJIE-embedded DNN H∞ control design is pro-
posed to integrate the available theoreticalH∞ control results
with DNN learning schemes to efficiently solve robust H∞
control design problems for nonlinear systems, especially
nonlinear time-varying systems. The training process can be
accomplished by Adam learning algorithm [29] to adjust
DNN parameters to satisfy HJIE to achieve the robust H∞
control performance of nonlinear time-varying system.

(II) Unlike the conventional methods to solve V (x(t), t)
from HJIE directly, an HJIE-embedded DNN is constructed

to approach ∂V (x(t))
∂x(t) of HJIE of the H∞ robust control strat-

egy of nonlinear time-varying dynamic system with exter-
nal disturbance. The DNN-based control scheme can be
shown to approach the H∞ robust control of nonlinear time-
varying system by Adam learning algorithm and can be easily
extended to the design of H∞ reference tracking control on
nonlinear dynamic systems with external disturbance.

(III) By the proposed HJIE-embedded DNN approach,
the priori expert knowledge of nonlinear dynamic models
and theoretical robust H∞ control results, which have been
acquired over decades, can complement the traditional pure
big data-driven deep learning approaches to facilitate the use
of deep learning schemes for application to robustH∞ control
system designs of complex nonlinear time-varying systems,
which cannot be easily solved by conventional methods.
Further, since the H∞ control u∗(t) and the worst-case exter-
nal disturbance v∗(t) are used to generate x(t) by the nonlinear
system model to train HJIE-embedded DNN in the training
phase, we can save a large amount of training data and
training time than the conventional data-driven DNN control
methods.

The remainder of this study is organized as follows.
In Section II, we discuss the concept of H∞ control.
In Section III, a novel model of DNN-based H∞ control
design is introduced to deal with time-varying nonlinear sys-
tems. In Section IV, a numerical example and a UAV example
are provided to demonstrate the performance of the proposed
method. The conclusion is made in Section V.
Notations: AT : the transpose of matrix A; A = AT ≥ 0:

symmetric positive semi-definite matrix A; In: n-by-n identity
matrix; 0n×m: n-by-m zero matrix; Rn: the set of n-tuple real
vectors; Rn×m

: the set of all real n × m matrices; L2[0,∞):
a set of real n-tuple functions with finite energy, i.e., for
∀w(t) ∈ L2[0,∞), ‖w(t)‖2 = (

∫
∞

0 wT (t)w(t)dt)
1
2 <∞.

II. PROBLEM FORMULATION
Robust H∞ control design has been a major research topic
for decades and it encompasses a broad spectrum of areas
and impacts. In general, external disturbances are always
unavoidable in real control systems, such as the loadings and
environmental interference. In the past decades, robust H∞
control strategies have been developed to efficiently attenuate
the effect of external disturbance on the nonlinear quadratic
stabilization performance from the worst-case perspective.
In this section, we review the concept of robust H∞ control
of nonlinear dynamic systems with external disturbance.

Consider the following nonlinear time-varying systemwith
external disturbance:

ẋ (t) = F (x(t), t)+ G (x(t), t) u (t)+ D (x(t), t) υ (t)

x(0) = x0 (1)

where x(t) ∈ Rn denotes the state vector, x(0) ∈ Rn

denotes the initial condition, u(t) ∈ Rm denotes the input
vector, F(x(t), t) ∈ Rn and G(x(t), t) ∈ Rn×m denote
system functions. υ(t) ∈ Rk denotes external disturbance and
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D(x(t), t) ∈ Rn×k denotes the coupling matrix from external
disturbance to the nonlinear system.

The following robust minmaxH∞ control strategy is
employed to efficiently attenuate the external disturbance on
the quadratic stabilization [11]–[16]:

min
u(t)

max
υ(t)∈L2[0,∞)

∫
∞

0 (xT (t)Qx(t)+uT (t)Ru(t))dt−V (x(0),0)∫
∞

0 υT (t)υ(t)dt

≤ ρ
(2)

where Q = QT ≥ 0 and R = RT > 0 are the weighting
matrices of state variables and control input, respectively,
and ρ > 0 is the prescribed disturbance attenuation level.
V (x(t), t) > 0 is the Lyapunov function of nonlinear time-
varying system in (1). V (x(0), 0) in the numerator of (2) is
to extract the effect of initial condition x(0). The physical
meaning of robust H∞ control strategy in (2) is that the
worst-case effect of external disturbance v(t) on the quadratic
control performance must be minimized by control u(t) and
should be also less than or equal to a prescribed disturbance
attenuation level ρ > 0 from the energy perspective.
Remark 1: The choice of weighting parameter Q and R of

control strategy in (2) is a trade-off between the stabilization
performance and control effort. If the designer wants x(t) to
approach to 0 quickly without the consideration of control
effort, then Q is selected large than R. If the designer wants
to save control effort and does not care about the convergence
rate of x(t), then R is selected larger than Q. if xi(t) (i.e., ith
state of x(t)) is more significant than xj(t) (i.e., jth state of
x(t)), then the diagonal term in Qii is larger than Qjj. Simi-
larly, if ui(t) (i.e., ith component of u(t)) is with a more cost
than uj(t) (i.e., jth component of u(t)), Rii is larger than Rjj.
Theorem 1: (a) The minmaxH∞ control strategy in (2)

for the nonlinear time-varying system in (1) can be solved by
the following H∞ control u∗(t) and the worst-case external
disturbance v∗(t):

u∗(t) = −
1
2
R−1GT (x, t)(

∂V (x(t), t)
∂x(t)

)

υ∗(t) =
1
2ρ

DT (x, t)(
∂V (x(t), t)
∂x(t)

) (3)

where V (x(t), t) > 0, V (0, t) = 0 is the solution of the
following HJIE:

HJIE

= (
∂V (x(t), t)

∂t
)+

(
∂V (x(t), t)

∂x

)T
F(x(t), t)+ xT (t)Qx(t)

−
1
4
(
∂V (x(t), t)
∂x(t)

)TG(x(t), t)R−1GT (x(t), t)(
∂V (x(t), t)
∂x(t)

)

+
1
4ρ

(
∂V (x(t), t)
∂x(t)

)TD(x(t), t)DT (x(t), t)(
∂V (x(t), t)
∂x(t)

)

= 0 (4)

(b) If the nonlinear time-varying system in (1) is free of
external disturbance v(t), i.e., v(t) = 0, then the H∞ control
strategy in (3) will achieve asymptotic stability, i.e., x(t)→ 0
as t →∞.

Proof: See Appendix A. �

HJIE in (4) is a partial time-varying nonlinear differential
equation. In general, it is still very difficult to solve HJIE
in (4) for H∞ control of (1). The conventional methods
(e.g., [42]) always solve V (x(t), t) from HJIE in (4) directly.
If we employ DNN to solve V (x(t), t) directly in Fig. 1,
we still need to calculate ∂V T (x(t),t)

∂x(t) for u∗(t) in (4), which is
not easy to perform in the DNN-based H∞ control in Fig. 1
because V (x(t), t) and x(t) are all numerical data. In this
study, unlike the conventional methods to solve V (x(t), t)
of HJIE in (4), we want to solve ( ∂V (x(t),t)

∂x(t) ) and ( ∂V (x(t),t)
∂t ),

i.e., ∂V (x̄(t),t)
∂ x̄(t) = [( ∂V

T (x(t),t)
∂x(t) ) ( ∂V

T (x(t),t)
∂t )]T , from (4) by the

proposed HJIE-embeddedDNN scheme in Fig.1 for u∗(t) and
v∗(t) in (3) in the off-line training phase. u∗(t) and v∗(t) are
feedback to nonlinear model in (1) to replace v(t) and u(t) to
generate x(t) to train DNN by Adam learning algorithm to
approach ∂V (x̄(t),t)

∂ x̄(t) to solve HJIE = 0 in (4) to achieve H∞
robust control. More details will be discussed in the sequel.

In some specific systems, the coefficients of system func-
tions F(x(t), t) andG(x(t), t) are time-invariant as the follow-
ing nonlinear time-invariant system:

ẋ (t) = F (x(t))+ G (x(t)) u (t)+ D (x(t)) υ (t) ,

x(0) = x0 (5)

Then the above theorem is modified as follows.
Corollary 1 ([11], [19]): The robust H∞ control strategy

in (2) for the nonlinear time-invariant system in (5) can be
solved by the following H∞ control u∗(t) and worst-case
external disturbance v∗(t):

u∗(t) = −
1
2
R−1GT (x(t))(

∂V (x(t))
∂x(t)

)

υ∗(t) =
1
2ρ

DT (x(t))(
∂V (x(t))
∂x(t)

) (6)

where V (x(t)) > 0 and V (0) = 0 is the solution of the
following time-invariant HJIE:

xT (t)Qx(t)+ (
∂V (x(t))
∂x(t)

)TF(x(t))

−
1
4

(
∂V (x(t))
∂x(t)

)T
G(x(t))R−1GT (x(t))

(
∂V (x(t))
∂x(t)

)
+

1
4ρ

(
∂V (x(t))
∂x(t)

)T
D(x)DT (x)

(
∂V (x(t))
∂x(t)

)
= 0 (7)

Proof : Similar to Appendix A.
The physical meaning of Corollary 1 is that in the nonlinear

time-invariant system of (5) the H∞ control u∗(t) in (6)
will achieve the minmax H∞ control performance with a
prescribed attenuation level ρ in (2) even under theworst-case
effect of v∗(t) in (6) among all possible v(t) ∈ L2([0,∞]).
Since the nonlinear system in (5) is time-invariant, HJIE in
(7) is free of ∂V (x(t),t)

∂t as the HJIE in (4) due to the time-
varying characteristic in (1). Since finite-time H∞ control
is an interesting topic in practical application [35]–[37],
if we impose an additional flexibility on the terminal time
in the H∞ quadratic performance index in (2), the finite-time
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minmax H∞ control strategy is given as follows:

min
u(t)

max
υ(t)∈L2[0,tf )

V (x(tf ),tf )+
∫ tf
0

(
xT (t)Qx(t)+uT (t)Ru(t)

)
dt−V (x(0),0)∫ tf

0 υT (t)υ(t)dt

≤ ρ

(8)

where V (x(t), tf ) is the penalty on the terminal state x(tf ).
And then we get the following result.
Remark 2: At present, some published works have focused

on solving the H∞ robust control of nonlinear time-invariant
systems in (5). Since the HJII in (7) is still very diffi-
cult to solve directly, many methods have been developed.
Some published works do not solve HJIE directly. They used
the global linearization method [22], [23], gain scheduling
method [24], [24] or fuzzy interpolation method [20], [21]
by combining several local linearized systems to approxi-
mate nonlinear time-invariant system in (5). Then, the HJIE
will become a set of Riccati-like equations, which could be
transformed to a set of LMIs and it can be easily solved
by LMI TOOLBOX in MATLAB. However, in some highly
nonlinear systems like quadrotor UAV, a large number of
local linear systems are needed to approach nonlinear time-
invariant system. Thus, much effort is needed in the design
procedure and it takes more computation time to calculate
control signal u(t).
Corollary 2 ([11], [19]): The minmaxH∞ control strat-

egy in (8) for the time-varying nonlinear system with external
disturbance in (1) can be solved by:

u∗(t) = −
1
2
R−1GT (x, t)

(
∂V (x, t)
∂x(t)

)
υ∗(t) =

1
2ρ

DT (x, t)
(
∂V (x, t)
∂x(t)

)
(9)

where V (x(t), t) > 0 with V (0, t) = 0 is the solution of the
following time-varying HJIE:(
∂V (x(t), t)

∂t

)
+

(
∂V (x(t), t)
∂x(t)

)T
F(x(t), t)+ xT (t)Qx(t)

−
1
4

(
∂V (x(t), t)
∂x(t)

)T
G(x(t), t)R−1GT (x(t), t)

×

(
∂V (x(t), t)
∂x(t)

)
+

1
4ρ

(
∂V (x(t), t)
∂x(t)

)T
D(x(t), t)

×DT (x(t), t)
(
∂V (x(t), t)
∂x(t)

)
= 0 (10)

Proof : Similar to Appendix A.
Corollary 3 ([11], [19]): The finite-time minmax H∞

control strategy in (8) for the nonlinear time-invariant system

in (5) is given by

u∗(t) = −
1
2
R−1GT (x(t))

(
∂V (x(t))
∂x(t)

)
υ∗(t) =

1
2ρ

DT (x(t))
(
∂V (x(t))
∂x(t)

)
(11)

where V (x(t)) ≥ 0 with V (0) = 0 is the solution of the
following HJIE:(
∂V (x(t))
∂x(t)

)T
F(x(t))+ xT (t)Qx(t)

−
1
4

(
∂V (x(t))
∂x(t)

)T
G(x(t))R−1GT (x(t))

(
∂V (x(t))
∂x(t)

)
+

1
4ρ

(
∂V (x(t))
∂x(t)

)T
D(x(t))DT (x(t), t)

(
∂V (x(t))
∂x(t)

)
= 0

(12)

Proof : Similar to Appendix A.
For the finite-time minmax H∞ control strategy in (11)

of nonlinear time-invariant system in (5), if we could solve
∂V (x(t))
∂x(t) from HJIE in (12), then we could obtain the H∞

robust control u∗(t) = − 1
2R
−1GT (x(t), t)( ∂V (x(t),t)

∂x(t) ) and
the worst-case external disturbance v∗(t) = 1

2ρD
T (x(t), t)

( ∂V (x(t),t)
∂x(t) ) to achieve the finite-time minmax H∞ control

strategy.
Suppose we want to design H∞ reference tracking control

for nonlinear system in (5) to track a desired reference r(t).
Then theH∞ reference tracking performance is given as (13),
shown at the bottom of the page. Let us denote the tracking
error as follows.

e(t) = x(t)− r(t) (14)

Then we have

ė(t) = ẋ(t)− ṙ(t)

= F(x(t))+ G(x(t))u(t)+ D(x(t))v(t)− ṙ(t)

= F(e(t)+ r(t))− ṙ(t)+ G(e(t)+ r(t))u(t)

+D(e(t)+ r(t))v(t) (15)

which can be considered as nonlinear time-varying dynamic
system due to explicit time function r(t) and ṙ(t) in the above
tracking error system. Let us denote

Fe(e(t), t) = F(e(t)+ r(t))− ṙ(t)

Ge(e(t), t) = G(e(t)+ r(t))

De(e(t), t) = D(e(t)+ r(t))

Then the tracking error dynamic system in (15) can be
arranged as the following nonlinear time-varying system.

ė(t) = Fe(e(t), t)+ Ge(e(t), t)u(t)+ De(e(t), t)v(t) (16)

min
u(t)

max
υ(t)∈L2[0,∞)

∫
∞

0 [(x(t)−r(t))TQ(x(t)−r(t))+uT (t)Ru(t)]dt−V (x(0)−r(0),0)∫
∞

0 vT (t)v(t)dt

≤ ρ
(13)
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and the H∞ reference tracking control problem in (13) is
modified as the following H∞ stabilization of the tracking
error system in (16):

min
u(t)

max
υ(t)∈L2[0,∞)

∫
∞

0 [eT (t)Qe(t)+uT (t)Ru(t)]dt−V (e(0),0)∫
∞

0 vT (t)v(t)dt

≤ ρ
(17)

In this situation, the H∞ tracking control in (13) of non-
linear time-invariant system in (5) can be transformed to the
H∞ stabilization control problem in (17) of nonlinear error
dynamic system in (16). Then we get the following result.
Corollary 4: (a) The minimax H∞ tracking strategy in

(13) or (17) for the nonlinear time-varying tracking error
system in (16) is solved by:

u∗(t) = −
1
2
R−1GTe (e(t), t)

(
∂V (e(t), t)
∂e(t)

)
υ∗(t) =

1
2ρ

DTe (e(t), t)
(
∂V (e(t), t)
∂e(t)

)
(18)

where V (e(t), t) ≥ 0 and V (0, t) = 0 is the solution of the
following HJIE:

HJIE

=
∂V (e(t), t)

∂t
+

(
∂V (e(t), t)
∂e(t)

)T
Fe(e(t), t)+ eT (t)Qe(t)

−
1
4

(
∂V (e(t), t)
∂e(t)

)T
Ge(e(t), t)R−1GTe (e(t), t)

×

(
∂V (e(t), t)
∂e(t)

)
+

1
4ρ

(
∂V (e(t), t)
∂e(t)

)T
×De(e(t), t)DTe (e(t), t)

(
∂V (e(t), t)
∂e(t)

)
= 0 (19)

(b) If the nonlinear system in (5) is free of external distur-
bance or the tracking error dynamic system in (16) is free of
v(t), i.e., v(t) = 0, than the H∞ tracking control u∗(t) in (18)
will achieve the asymptotic tracking ability, i.e., e(t)→ 0 as
t →∞.

Proof: Similar to Appendix A. �
The robustH∞ reference tracking problem inCorollary 4 is

equivalent to solving the robust H∞ stabilization problem in
(2) of the nonlinear time-varying system in (1) in Theorem 1
only with e(t) replacing x(t). Therefore, the robust H∞ sta-
bilization design method in Theorem 1 can be employed to
treat this equivalent H∞ stabilization problem of the tracking
error system in (16) and (17) in Corollary 4 only with e(t)
replacing x(t). In general, it is very difficult to solve the H∞
stabilization design problem in (3) and (4) and H∞ tracking
design problem in (18) and (19) of nonlinear tracking error
system (16) by the convenient methods. Following the HJIE-
embedded DNN-based tracking control scheme in Fig.1 for
theH∞ stabilization control of nonlinear time-varying system
in (1), based on Corollary 4, an HJIE-embedded DNN-based
control scheme for the H∞ robust tracking control strategy
in (13) and (17) is also given in Fig. 2. In the off-line train-
ing phase, the state vector x(t) is generated by nonlinear
system model in (5) with the worst-case disturbance v∗(t)

FIGURE 2. The flow chart of HJIE DNN-based reference tracking control
scheme based on Corollary 4 and Fig. 1. In the off-line training phase,
u∗(t) and v∗(t) is fedback to the nonlinear system in (5) to generate x(t)
and then minus r (t) to obtain e(t), which is accessed to DNN to output
∂V̄ (ē(t))

ē(t) to solve HJIE in (19). The error of HJIE in (19) will be fed back to
train DNN by Adam learning algorithm. In the on-line operation phase,
v∗(t) is not needed to be sent to the error dynamics and is replaced by
real v (t).

and DNN-based control u∗(t) as input. x(t) is extracted by
the reference signal r(t) to obtain e(t) as input into DNN to
output ∂V (x̄(t),t)

∂ x̄(t) = [( ∂V
T (x(t),t)
∂x(t) ) ( ∂V

T (x(t),t)
∂t )]T , which is used

to generate v∗(t) and u∗(t) as well as is substituted into HJIE
in (19) to train DNN to solve HJIE in (19) for H∞ roubst
tracking control in (18). In this study, a reference tracking
of quadrotor UAV will be given as a design example by the
proposed HJIE-embedded DNNH∞ tracking control method
in Corollary 4 in the sequel.

In general, there exists no efficient analytic or numer-
ical method to solve the above partial differential HJIEs
for robust H∞ control design of nonlinear dynamic system,
except some special nonlinear systems. In the last decades,
several application methods such as T-S fuzzy method
[20], [21], global linearization technique [22], [23], gain
schedule scheme [24], [25], etc, have been employed to
interpolate several local linearized systems to approximate
the time-invariant nonlinear system in (5) so that the HJIE in
(7) can be transformed to a set of local Riccati-like equations
with the assumption that the Lyapunov function V (x(t)) in
(7) is of the form V (x(t)) = xT (t)Px(t) with positive sym-
metric matrix P, which will limit the solution of HJIE [26].
Moreover, in some practical cases, there are a large number
of Riccati-like equations to be solved for a large number
of local control gains ki. For example, in the quadrotor
UAV tracking control of example 2 in the sequel, there are
about 125 local fuzzy systems to approximate the nonlinear
quadrotor dynamic system in [27]. Furthermore, we need
to compute fuzzy control signal u(t) =

∑125
i=1 hi(x)kix(t) at

every time instant, where hi(x) denotes the ith fuzzy interpo-
lation basis. Moreover, there still exist some difficulties to
treat the nonlinear time-varying system in (1) by the con-
ventional T-S fuzzy method and global linearization tech-
nique which have always been employed to interpolate some
local linear time-invariant systems to approximate nonlinear
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time-invariant systems. More efforts are still needed for
approximating nonlinear time-varying systems by these
methods [20]–[23]. For example, internal type-2 fuzzy model
is needed for the approximation of time-varying nonlinear
systems, which will increase the complexity of control design
procedures.

Recently, deep learning schemes have been employed to
learn system behavior by data-driven approach through a
large amount of empirical data and have been successfully
applied to image classification, communication, translation
of language, speech recognition, etc [1]–[3]. Even some of
these deep learning schemes have very good results, they need
a very large amount of data for training. Further, they cannot
guarantee some specific performance like H2 optimal control
performance or H∞ robust control performance. Neverthe-
less, few deep neural network learning methods have been
applied to control system designs and optimization methods.
In the system control field, system dynamic models and
theoretical control design methods have been well developed
and available for several decades. They can be considered as
priori expert knowledge in deep learning approaches to solve
some difficult problems in the control system designs such
as the above minmax H∞ reference tracking control system
design problem in (17)–(19) of nonlinear time-varying track-
ing error system in (16) under external disturbance. Conse-
quently, system model-based and HJIE-embedded DNN H∞
control design can save much training data and training time
than the conventional big data-driven DNN control method.

In the above minmaxH∞ robust control design problem,
the difficulty lies in how to solve ∂V (x(t),t)

∂t and ∂V (x(t),t)
∂x(t) of the

nonlinear partial differential HJIE in (4), (7), (10) and (12) for
H∞ robust stabilization control or solve ∂V (e(t),t)

∂t and ∂V (e(t),t)
∂e(t)

of HJIE in (19) for H∞ robust reference tracking control.
In this study, an DNN-basedH∞ control design is introduced
to efficiently solve these HJIEs for H∞ robust control design
problems of nonlinear time-varying systems.

III. DNN-BASED H∞ CONTROL DESIGN OF
NONLINEAR TIME-VARYING SYSTEMS
For the nonlinear time-varying system with external distur-
bance in (1), the robust minmaxH∞ robust control strategy
u∗(t) in (3) can efficiently attenuate the effect of worst-
case external disturbance v∗(t) on the quadratic stabilization
control performance to a desired level ρ in (2). However, from
Theorem 1, the minmaxH∞ robust control in (3) needs to
solve the HJIE in (4). In general, it is not easy to solve HJIE
analytically or numerically for robust H∞ control design.
Moreover, if V (x(t), t) in (4) is solved by training schemes
like conventional methods, we still need to find ∂V (x(t),t)

∂x(t) for
theH∞ control law u∗(t) and the worst-case disturbance v∗(t)
in (3). It is a difficult work for DNN-based control design.
Therefore, we suggest solving ∂V (x(t),t)

∂x(t) and ∂V (x(t),t)
∂t instead

of V (x(t), t) from HJIE in (4) by training DNN directly.
In the off-line training phase, the training process of the

proposed HJIE-embedded DNN for ∂V (x(t),t)
∂x(t) and ∂V (x(t),t)

∂t to
solve HJIE in (4) for the H∞ control u∗(t) and the worst-case

disturbance υ∗(t) in (3) of the nonlinear time-varying system
in (1) is shown in Fig. 1. In Fig. 1, the system state x(t) is
first generated by nonlinear dynamic model in (1), then we
input state vector x(t) into DNN. After several hidden layers
of DNN, we expect it can produce ∂V (x(t),t)

∂x(t) and ∂V (x(t),t)
∂t , i.e.

∂V̄ (x̄(t))
∂ x̄(t) = [( ∂V (x(t),t)

∂t )
T
( ∂V (x(t),t)

∂x(t) )
T
]T at the output of DNN,

which will be sent to the block of HJIE to calculate the value
of HJIE in the following. As a consequence, the output of
HJIE-embedded DNN is expected to approach ∂V (x(t),t)

∂x(t) and
∂V (x(t),t)

∂t of HJIE= 0 after training. The error ε(θi(t)) of HJIE
in the training step i at time t is sent back to theDNN to update
weighting parameters of DNN, i.e. if the outputs ( ∂V (x(t),t)

∂x(t) )ε
and ( ∂V (x(t),t)

∂t )ε of DNN are substituted into HJIE to calculate
its value as follows.

HJIEε

=

(
∂V (x(t), t)

∂t

)
ε

+

(
∂V (x(t), t)
∂x(t)

)T
ε

F (x(t), t)

+ xT (t)Qx(t)−
1
4
(
∂V (x(t), t)
∂x(t)

)Tε G(x(t), t)R
−1GT (x(t), t)

× (
∂V (x(t), t)
∂x(t)

)ε +
1
4ρ

(
∂V (x(t), t)
∂x(t)

)Tε D (x(t), t)

×DT (x(t), t)(
∂V (x(t), t)
∂x(t)

)ε = ε(θi(t)) (20)

then ε(θi(t)) will be sent back to train weighting and bias
parameters of neurons in the i + 1 training step of DNN
until the output of DNN equals to ∂V (x(t),t)

∂x(t) and ∂V (x(t),t)
∂t .

Further, the output ∂V (x(t),t)
∂x(t) of DNN is multiplied by

−
1
2R
−1GT (x(t), t) to produce H∞ control u∗(t) in (3), which

is the control input to the nonlinear system in (1), and multi-
plied by 1

2ρD
T (x(t), t) to produce the worst-case external dis-

turbance v∗(t) in (3), which is also sent back to the nonlinear
system in (1) as external disturbance in the training phase.

In real systems, external disturbance υ(t) is always
unavailable. Moreover, for the H∞ robust control, it is very
difficult to generate x(t) of nonlinear time-varying system in
(1) for all possible v(t) ∈ L2([0,∞]) to train DNN in the
off-line training phase from the big data perspective. In this
situation, the worst-case disturbance v∗(t) is used to replace
all possible external disturbance v(t) ∈ L2([0,∞]) from the
minmax H∞ disturbance rejection point of view in (2). Then
the system state x(t) generated by u∗(t) and v∗(t) is sent to
DNN and HJIE as input signals from nonlinear time-varying
system in (1) to start another cycle of training. Therefore,
in the off-line training phase, the training signal vector x(t)
can be generated by nonlinear dynamic model in (1) with
u∗(t) and v∗(t) instead of u(t) and υ(t), to save the training
time and amount of empirical data and reduce the complexity
of conventional training schemes of DNN by big data.

On the other hand, in the operation phase, the state vector
x(t) can be obtained from the real nonlinear system with
real external disturbance υ(t) and H∞ control u∗(t). There-
fore, the proposed HJIE-embedded DNN can bridge the gap
between deep neural network learning and traditional robust
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H∞ control theory to efficiently solve the complex nonlinear
robust H∞ control design problem and speed up the training
process of HJIE-embedded DNN for nonlinear robust H∞
control design of nonlinear time-varying system with uncer-
tain external disturbance.
Remark 3: For the nonlinear H∞ reference tracking con-

trol design problem in (18) and (19) in Corollary 4, the input
information of HJIE-embedded DNN includes e(t), r(t) and
ṙ(t) as shown in (15). The flowchart of HJIE-embedded DNN
reference tracking control scheme based on Corollary 4 and
Fig. 1 is shown in Fig. 2.

FIGURE 3. The HJIE-embedded DNN architecture of H∞ robust control
in Fig. 1. The HJIE-embedded DNN architecture of H∞ robust reference
tracking control in Fig. 2 is similar but with x(t) being replaced by e(t).

The architecture of HJIE-embedded DNN consists of input
layer, multiple hidden layers, HJIE layer and output layer as
shown in Fig. 3. The input layer, output layer and HJIE layer
do not have activation function. The neurons in hidden layers
use LeakyReLU , which is not equal to zero but has a constant
gradient when the input x is negative and is the same as ReLU
when the input x is positive, as the activation function [28].
In this way, we can keep the advantage of ReLU and avoid
the problem of facing ‘‘dead ReLU ’’ (ReLU is not activated
when the input is negative). The definition of LeakyReLU is
given as follows.

f (x) =

{
λ1x if x > 0
λ2x if x ≤ 0

where λ1 and λ2 are some constant and λ1, λ2 ∈ (0, 1).
The error ε(θi(t)) of HJIE in (20) is fed back to train the
weighting and bias parameters of DNN by Adam learning
algorithm [29] to minimize the objective function ε2(θi(t)) as
follows.

θi(t) = θi−1(t)−
η√

v̂i(t)+ τ
m̂i(t), i = 1, . . . , I (21)

where θi(t) denotes the weighting parameter vector to be
trained for DNN to output ( ∂V (x(t),t)

∂x(t) )ε and ( ∂V (x(t),t)
∂t )ε at

time t, η denotes the learning rate or stepsize and I denotes the
number of training timesteps. The bias-corrected estimators
m̂(t) and v̂(t) are defined as follows.

m̂i(t) =
mi(t)

1− β i1

ν̂i(t) =
νi(t)

1− β i2

mi(t) = β1mi−1(t)+ (1− β1)gi(t)

νi(t) = β2νi−1(t)+ (1− β2)g2i (t)

where gi(t) = ∂
∂θi(t)

√
1
N

∑N
i=1 ε

2(θi(t)) is the gradient, i.e.
the vector of partial derivative of objective function with
respect to θi(t) at time step i at time t . N denotes batch size.
β1, β2 ∈ [0, 1] are the degree of previous impact influence
on the current direction and can be specified by the designer.
With β1 and β2, we can utilize the concept of momentum.
Using the concept of momentum, we can avoid being trapped
in local minimum and speed up the learning process [29].
If the direction of current gradient is the same as the accu-
mulated gradient, then the gradient will be strengthened,
otherwise, the gradient will be weakened. β i1 and β i2 are the
ith power of β1 and β2, respectively. τ is a small number to
prevent the denominator from being zero. mi(t), νi(t) are the
moving average of gradient and squared gradient at time t.
With ν̂i(t), we can take the advantage of the idea of adap-
tive learning rate, which is large at the beginning and small
near the minimum. The Adam learning algorithm combines
the advantages of momentum and RMSProp [30] and is an
efficient parameter-specific adaptive learning method. Since
Adam learning algorithm is easy to implement and has great
performance, it is one of the most popular optimizer being
used recently.
Remark 4: From [29], the convergence of weighting

parameter vector has been proven. If the number of hidden
nodes and timesteps are large enough, the neural network
updating weighting parameter θi(t) by Adam learning algo-
rithm can converge to a globally optimal θ∗i (t) at a linear
convergence rate as i→∞ in (21).
In the case of robustH∞ control strategy in (2), we need to

solve the time-varying partial differential HJIE in (4) for the
H∞ control of u∗(t) and the worst-case external disturbance
v∗(t) in (3). In this situation, we denote

∂V̄ (x̄(t))
∂ x̄(t)

=

[
∂V (x(t),t)
∂x(t)

∂V (x(t),t)
∂t

]
, F̄(x̄(t), t) =

[
F(x(t), t)

1

]
R̄−1 =

[
R−1 0
0 0

]
, Ḡ(x̄(t), t) =

[
G(x(t), t) 0

0 0

]
,

D̄(x̄(t), t) =
[
D(x(t), t)

0

]
Then the time-varying HJIE ofH∞ control strategy in (4) can
be represented by:

HJIE =
(
∂V̄ (x̄(t))
∂ x̄(t)

)T
F̄ (x̄(t), t)+ xT (t)Qx (t)

−
1
4

(
∂V̄ (x̄(t))
∂ x̄(t)

)T
Ḡ (x̄(t), t) R̄−1ḠT (x̄(t), t)

×

(
∂V̄ (x̄(t))
∂ x̄(t)

)
+

1
4ρ

(
∂V̄ (x̄(t))
∂ x̄(t)

)T
D̄ (x̄(t), t)

× D̄T (x̄(t), t)
(
∂V̄ (x̄(t))
∂ x̄(t)

)
= 0 (22)
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In the off-line training process, the output ( ∂V̄ (x̄)
∂ x̄ )ε of DNN

is sent to HJIE to calculate error ε(θi(t)) in the following as
shown in Fig. 1.

HJIEε =
(
∂V̄ (x̄(t))
∂ x̄(t)

)T
ε

F̄ (x̄(t))+ xT (t)Qx (t)

−
1
4

(
∂V̄ (x̄(t))
∂ x̄(t)

)T
ε

Ḡ (x̄(t)) R̄−1ḠT (x̄(t))

×

(
∂V̄ (x̄(t))
∂ x̄(t)

)
ε

+
1
4ρ

(
∂V̄ (x̄(t))
∂ x̄(t)

)T
ε

D̄ (x̄(t))

× D̄T (x̄(t))
(
∂V̄ (x̄(t))
∂ x̄(t)

)
ε

= ε(θi(t)) (23)

The error ε(θi(t)) of HJIE will be sent back to train DNN
to output the precise ∂V (x̄(t))

∂x(t) for robust H∞ control signal

u∗(t) = − 1
2R
−1GT (x(t), t)

(
∂V (x(t),t)
∂x(t)

)
and the worst-case

external disturbance v∗(t) = 1
2ρD

T (x(t), t)( ∂V (x(t),t)
∂x(t) ) in the

training process.
The following theorem is to prove that when the error

ε(θi(t)) of embedded-HJIE DNN approaches 0 in Adam
learning process, the output ( ∂V (x̄(t))

∂ x̄(t) )ε of DNN can approach

( ∂V (x̄(t))
∂ x̄(t) ).

Theorem 2: If ε(θi(t)) → 0 in (23) by Adam learning
algorithm, then ( ∂V (x̄(t))

∂ x̄(t) )ε → ( ∂V (x̄(t))
∂ x̄(t) ) in (22), i.e., HJIE-

embedded DNN-based control u∗(t) in Fig. 1 will approach
the theoretical H∞ robust control u∗(t) in (3) of nonlinear
time-varying system in (1).

Proof: See Appendix B. �
Remark 5: In Theorem 2, it is seen that the pro-

posed HJIE-embedded DNN-based control scheme u∗(t)
in Fig. 1 will approach the minmax H∞ control u∗(t) in (3) as
output ε(θi(t)) of HJIE in (23) approaches zero after the train-
ing process of Adam learning scheme in (21). By Theorem 1,
as v(t) = 0, the minmax H∞ control u∗(t) in (3) could
achieve the asymptotic stability of nonlinear time-varying
system in (1) when v(t) = 0. Therefore, as ε(θi(t)) → 0, the
proposed HJIE-embedded DNN-based control will achieve
the asymptotic stability of nonlinear time-varying in (1) with
v(t) = 0.
Remark 6: Recently, the disturbance observer-based

control have been widely used for nonlinear system to elim-
inate the external disturbance [45]. However, the conven-
tional disturbance observer-based control is always based
on the singular descriptor model. In general, the disturbance
observer-based control needs a singular descriptor model
to estimate disturbance which is very difficult to design
for nonlinear time-varying system. In this study, we do not
need to estimate external disturbance but it effect can be
effectively attenuated by the DNN-based H∞ control strategy
in (2) to a desired attenuation level ρ of external disturbance
by minimizing their worst-case effect in (2). The proposed
DNN-based control scheme could be applied to solve ∂Ṽ (x̄(t))

∂ x̄(t)
of HJIE in (22) for the optimal control u∗(t) to directly

attenuate the effect of external disturbance on the quadratic
performance to a desired level ρ

In the off-line training phase, we input state vector x(t),
which is generated by nonlinear system model in (1) with the
H∞ control u∗(t) and worst-case external disturbance v∗(t),
into DNN as shown in Fig. 1. In this way, we can train HJIE-
embedded DNN to output ∂V̄ (x̄(t))

∂ x̄(t) if ε(θi(t)) calculated by
HJIE approaches 0. Nevertheless, in the practical applica-
tions, we always stop the training phase and transfer into the
operation phase if ε2(θi(t)) is smaller than a prescribed value
δ > 0. In this study, we set δ = 0.01 for the design examples
in the sequel. In the operation phase, based on the trained
weighting parameters θi(t) of DNN in the off-line training
phase, we can input x(t) of real nonlinear dynamic systems
into DNN. However, the weighting parameters θi(t) of DNN
can be still updated by on-line training via Adam learning
algorithm in (21) if |ε(θi(t))| > δ during the control process
in the operation phase. In fact, we could train HJIE-embedded
DNN in the operation phase through Adam learning algo-
rithm without the influence on the DNN-based control if
ε2(θi(t)) ≥ δ for some specific δ to improve the H∞ robust
control performance in the operation phase. In this study,
unlike the conventional big data-driven DNN, since training
data x(t) is generated by system model, we can significantly
save a much amount of training data and training time of
the HJIE-embedded DNN and avoid the instability of the
control system at the beginning in the operation phase. There-
fore, the proposed DNN-based H∞ robust control design is
suitable for the robust H∞ control of nonlinear time-varying
systems.

Similarly, in the off-line training process of the HJIE-
embedded DNN-based reference tracking control scheme
in Fig. 2, the error εe(θi(t)) of HJIE will be sent back to train
the parameters of neurons in DNN based on Adam learning
algorithm in (21). Let us denote the εe(θi(t)) as follows:

HJIEε

=

(
∂V̄ (ē(t), t)
∂ ē(t)

)T
ε

F̄e(ē(t), t)+ eT (t)Qe(t)

−
1
4

(
∂V̄ (ē(t), t)
∂ ē(t)

)T
ε

Ḡe(ē(t), t)R̄−1ḠTe (ē(t), t)

×

(
∂V̄ (ē(t), t)
∂ ē(t)

)
ε

+
1
4ρ

(
∂V̄ (ē(t), t)
∂ ē(t)

)T
ε

D̄e(ē(t), t)

× D̄Te (ē(t), t)
(
∂V̄ (ē(t), t)
∂ ē(t)

)
ε

= εe(θi(t)) (24)

where

∂V̄ (ē(t), t)
∂ ē(t)

=

[ ∂V (e(t),t)
∂e(t)

∂V (e(t),t)
∂t

]
, F̄e(ē(t), t) =

[
Fe(e(t), t)

1

]
R̄ = diag{R, 0}, Ḡe(ē(t), t) = diag{Ge(e(t), t), 1}

D̄e(ē(t), t) =
[
De(e(t), t)

0

]
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Then we get the following result of the HJIE-embedded
DNN-based reference tracking control scheme in Fig. 2 for
the minmax H∞ reference tracking control strategy
in Corollary 4.
Corollary 5: If εe(θi(t)) approaches to 0 in (24) by Adam

learning algorithm, than
(
∂V̄ (ē(t),t)
∂ ē(t)

)
ε
in (24) approaches to

∂V̄ (ē(t),t)
∂ ē(t) in (19), i.e., HJIE-embedded DNN reference control

u∗(t) in Fig. 2 will approach the H∞ robust reference tracking
control u∗(t) in (18) of the nonlinear system in (5).

Proof: Similar to Appendix B. �
Obviously, from Corollary 5, if εe(θi(t)) approaches to

zero in the HJIE-embedded DNN reference tracking control
scheme in Fig. 2, the DNN will output ∂V̄ (ē(t),t)

∂ ē(t) to produce
H∞ robust reference tracking control u∗(t) in (18) to achieve
the minmax H∞ tracking strategy in (13) or (17).

However, in practical applications, wewill stop the training
process if |εe(θi(t))| < η for a prescribed threshold η > 0.
In the sequel, an example of reference tracking control of
nonlinear quadrotor UAV based on HJIE-embedded DNN
H∞ tracking scheme in Fig. 2 will be given to illustrate the
design procedure of HJIE-embedded DNN-based H∞ refer-
ence tracking control scheme and validate it’s H∞ reference
tracking performance.
Remark 7: The minimax H∞ control design problem in

Theorem 1 will be reduced to the optimal quadratic control
design problem when v(t) = 0 in (1) and ρ = ∞, i.e., u∗(t) =
−

1
2R
−1GT (x, t)( ∂V (x(t),t)

∂x(t) ) in (3) is the optimal control solu-
tion of minu(t)

∫
∞

0 [xT (t)Qx(t) + uT (t)Ru(t)]dt for nonlinear
time-varying system in (1) without external disturbance v(t)
where V (x(t), t) > 0 is the solution of HJE = ∂V (x(t),t)

∂t +

( ∂V (x(t),t)
∂x(t) )TF(x(t), t) + xT (t)Qx(t) − 1

4 (
∂V (x(t),t)
∂x(t) )TG(x(t), t)

GT (x(t), t)( ∂V (x(t),t)
∂x(t) ) = 0 which is modification of HJIE

in (4) with ρ = ∞. Therefore, only with some modifica-
tion, the proposed DNN-based control scheme in Fig. 1 or
Fig. 2 could be also employed to treat the optimal H2
quadratic control of nonlinear time-varying system in (1)
without consideration of external disturbance, i.e., v(t) = 0.

IV. SIMULATION
After the introduction of HJIE-embedded DNN H∞ robust
control design of nonlinear time-varying systems under exter-
nal disturbance, two examples are given to illustrate the
design procedure and to confirm the performance of the
proposed design method. An example of HJIE-embedded
DNN H∞ robust stabilization control scheme is provided at
first for a nonlinear time-varying system with high frequency
external disturbance. The second example is to design an
HJIE-embedded DNNH∞ reference tracking control of prac-
tical quadrotor unmanned aerial vehicle (UAV).
Example 1: Robust DNN-based finite-time H∞ control

design of nonlinear time-varying system with high frequency
external disturbance.

Suppose we want to design an HJIE-embedded DNN H∞
control with ρ = 1 and terminal time tf = 80s in (8) for the

following nonlinear time-varying systemwith high frequency
external disturbance.

ẋ1 (t) =
x1 sin 5t

1+ x1 (t) x2 (t)
+ (1+ x2 (t)) u1 (t)

+ x1 (t) sin 30t

ẋ2 (t) =
x2 cos t

1+ 2x1 (t) x2 (t)
+ (0.5+ x1 (t)) u2 (t)

+ x2 (t) cos 30t ∗ N (0, 0.1) (25)

where N (0, 0.1) denotes the normal distribution with zero
mean and 0.1 variance. Let us denote

X (t) =
[
x1(t)
x2(t)

]
, F(X (t), t) =

 x1(t) sin 5t
1+x1(t)x2(t)

x2(t) cos t
1+2x1(t)x2(t)

 ,
G(X , t) =

[
1+ x2(t) 0

0 0.5+ x1(t)

]
, u(t) =

[
u1(t)
u2(t)

]
,

D(X , t) =
[
x1(t) 0
0 x2(t)

]
, υ(t) =

[
sin 30t

cos 30t∗N (0, 0.1)

]
According to Corollary 2, we need to solve ∂V (x(t),t)

∂x(t) and
∂V (x(t),t)

∂t of the following time-varying HJIE by DNN learn-
ing for the robust H∞ control design.

(
∂V (x(t), t)

∂t
)+ (

∂V (x(t), t)
∂x(t)

)T
[ x1 sin 5t

1+x1(t)x2(t)
x2 cos t

1+2x1(t)x2(t)

]

−
1
4
(
∂V (x, t)
∂x

)T
[
1+ x2(t) 0

0 0.5+ x1(t)

]
R−1

×

[
1+ x2 (t) 0

0 0.5+ x1 (t)

]T
(
∂V (x(t), t)
∂x(t)

)

+ xT (t)Qx(t)+
1
4ρ

(
∂V (x(t), t)
∂x(t)

)T
[
x1 (t) 0
0 x2(t)

]
×

[
x1 (t) 0
0 x2(t)

]T (
∂V (x(t), t)
∂x(t)

)
= 0 (26)

In general, it is almost impossible to solve ∂V (x(t),t)
∂x(t) and

∂V (x(t),t)
∂t from the above HJIE analytically or numerically

for the robust H∞ control law u∗(t) = − 1
2R
−1GT (x(t), t)

( ∂V (x(t),t)
∂x(t) ) and worst-case external disturbance υ∗(t) =

1
2ρD

T (x(t), t)( ∂V (x,t)
∂x ) in (9). Therefore, the proposed HJIE-

embedded DNN H∞ control scheme is employed to treat the
H∞ robust stabilization of the nonlinear time-varying system
in (25). Let us denote

∂V̄ (x̄)
∂ x̄(t)

=

[ ∂V (x(t),t)
∂x(t)

∂V (x(t),t)
∂t

]
, F̄ (x̄(t)) =


x1(t) sin 5t
1+x1(t)x2(t)

x2(t) cos 5t
1+2x1(t)x2(t)

1

 ,
R̄−1 =

[
R−1 0
0 0

]
, D̄(x̄(t)) =

x1(t) 0
0 x2(t)
0 0

 ,
Ḡ(x̄(t)) =

1+ x2(t) 0 0
0 0.5+ x1(t) 0
0 0 0


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FIGURE 4. State trajectories of example 1 under DNN-based H∞ control.
The proposed HJIE-embedded DNN H∞ control could achieve the robust
stabilization of nonlinear time-varying system with high frequency
external disturbance in (1). The zoom-in fluctuations in x1(t) and x2(t)
show the effect of high frequency external disturbance on the state
trajectories, which has been significantly attenuated by the DNN-based
H∞ control scheme.

Then the HJIE in (22) needs to be solved for H∞ control
u∗(t) and the worst-case disturbance v∗(t). From the flow
chart in Fig. 1, HJIE-embedded DNN is trained through
Adam learning algorithm in (21) by HJIEε = ε(θi(t)) in (23)
to solve the time-varying HJIE in (26) for robust H∞ control
u∗(t) and worst-case disturbance v∗(t) in (9) with 20000 ini-
tial conditions which are chosen randomly around the origin
in the off-line training phase. After |ε(θi(t))| ≤ 0.01, we stop
the offline training phase and begin the operation phase. The
architecture of DNN in Fig. 3 used in this example contains
input layers, four hidden layers, an HJIE layer and an output
layer. The hidden layers consist of 50, 30, 10 and 3 hidden
units, sequentially. We set the parameters in Adam algorithm
as β1 = 0.9, β2 = 0.999, τ = 10−7 andN = 30. The weight-
ing matrices are chosen as: Q = I2,R = I2. The sampling
time used in this example is 0.01. After HJIE-embeddedDNN
H∞ controller being trained by Adam learning algorithm,
the simulation results of state trajectory x1(t) and x2(t) of
the nonlinear time-varying system in (25) controlled by the
trained HJIE-embedded DNN H∞ controller in operation
phase with the initial condition x(0) = [2.27 2.33]T are
shown in Fig. 4. The state trajectories have become stable
under theHJIE-embeddedDNNH∞ control after a short tran-
sient response in the beginning under the impact of external
disturbance. The corresponding control signals generated by
the trained HJIE-embedded DNN H∞ controller are found
in Fig. 5. The real H∞ control performance of the proposed
HJIE-embedded DNN H∞ control scheme in Fig. 1 for non-
linear time-varying system in (25) is calculated as follows:∫ 80

0 [xT (t)Qx(t)+ uT (t)Ru(t)]dt − V (x(0), 0)∫
∞

0 υT (t)υ(t)dt
=̃0.15 (27)

The zoom-in fluctuation in Fig. 4 is the effect of high fre-
quency external disturbance on the state trajectories of non-
linear time-varying system in (1), which can be significantly
attenuated by the proposed HJIE-embedded DNN-based H∞
control scheme. From the zoom-in control signals in Fig. 5,

FIGURE 5. Control signals of example 1 under DNN-based H∞ control.
The zoom-in control signals fluctuate reversely with the zoom-in
trajectories in Fig. 4 show the proposed DNN-based H∞ control scheme
could override the effect of hight frequency external disturbance.

it is seen that the DNN-based H∞ control u∗(t) in zoom is
found to be reversely fluctuated with zoom-in state trajectory
to significantly override the effect of the high frequency
external disturbance on the state trajectory of nonlinear time-
varying system in (25).
Example 2: DNN-based H∞ reference tracking control

scheme of quadrotor UAV.

FIGURE 6. Quadrotor UAV system in example 2.

The H∞ reference tracking design example of quadrotor
unmanned aerial vehicle (UAV) is given to demonstrate the
tracking performance of the proposed DNN-based H∞ con-
trol scheme. In [31], [32], two reference frames including the
inertial earth-fixed frame (xe, ye, ze) and the body-fixed frame
(xb, yb, zb) are needed to model the dynamic of quadrotor
UAV. The schematic dynamic system of a quadrotor UAV
is presented in Fig. 6. The position of the center of the
gravity of the quadrotor is denoted by [x y z]T . The position
vector is to describe the linear position related to the inertial
frame (E). Moreover, the orientation of the quadrotor depends
on three Euler angles [θ φ ψ]T , which are roll, pitch and
yaw, respectively. The orientation vector is associated with
the body frame (B). The linear velocity and acceleration of the
quadrotor in the earth-frame are given as [ẋ ẏ ż]T and [ẍ ÿ z̈]T ,
respectively. The angular velocity and angular acceleration
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of the quadrotor in the body-frame are denoted by [θ̇ φ̇ ψ̇]T

and [θ̈ φ̈ ψ̈]T , respectively. To apply the proposed method
to the quadrotor UAV, we transform the H∞ tracking prob-
lem in (13) of the quadrotor UAV into the H∞ stabilization
problem (17) of time-varying tracking error system in (16).
We denote the tracking error of distance and angular by
e1(t) = x(t) − xd (t), e3(t) = y(t) − yd (t), and e5(t) =
z(t) − zd (t), e7(t) = θ(t) − θd (t), e9(t) = φ(t) − φd (t),
e11(t) = ψ(t)− ψd (t), respectively, where xd (t), yd (t), zd (t)
are desired reference position and θd (t), φd (t), ψd (t) are the
desired reference roll, pitch and yaw angle, respectively. The
velocity error and angular velocity error are given as e2(t) =
ẋ(t) − ẋd (t), e4(t) = ẏ(t) − ẏd (t), and e6(t) = ż(t) − żd (t),
e8(t) = θ̇ (t)− θ̇d (t), e10(t) = φ̇(t)− φ̇d (t), e12(t) = ψ̇(t)−
ψ̇d (t), respectively. Therefore, the tracking error dynamics
of the quadrotor can be expressed using the Newton-Euler
equations as (28), shown at the bottom of the page, where
ut (t), uθ (t), uφ(t), uψ (t) are the total thrust and the rotational
force produced by four rotors, respectively. υx(t), υy(t), υz(t)
are external disturbances in the three translation dynamics of
quadrotor UAV, respectively. υθ (t), υφ(t), υψ (t) are external
disturbances caused by the unexpected rotation forces in raw,
pitch, yaw dynamic quadrotor UAV, respectively. m denotes
the mass of quadrotor UAV, Jθ , Jφ, Jψ are the moments of
inertia,Kx ,Ky,Kz,Kθ ,Kφ,Kψ are the aerodynamic damping
coefficients, g is the acceleration of gravity, l represents the
distance from the center of each quadrotor UAV to the cen-
ter of gravity, and c represents constant of force-to-moment
factor.

By the conventional H∞ fuzzy tracking control of quadro-
tor UAV in [27], 125 fuzzy local linear systems are used
to interpolate to approximate the nonlinear tracking error
system in [27] due to its highly nonlinearity of quadrotor
UAV. In this situation, we need to solve 125 Riccati-like
inequalities forH∞ fuzzy controller u(t) =

∑125
i=1 hi(x)kix(t),

which needs to be computed in every time instant, too.

Hence, more efforts are needed to employ H∞ fuzzy con-
troller for practical applications. Therefore, the proposed
DNN-based H∞ control design in Corollary 4 is employed
to simplify the robust H∞ tracking control design of quadro-
tor UAV. Thus, the nonlinear robust H∞ reference tracking
control scheme in (17) of quadrotor UAV can be designed
by the robust H∞ reference tracking control in (18) with
ρ = 2 for the following nonlinear time-varying tracking error
system in (16):

ė (t) = Fe(e(t), t)+ Ge(e(t), t)U (t)+ De(e(t), t)V (t) (29)

where

e(t) = [x(t)− xd (t), ẋ(t)− ẋd (t), y(t)− yd (t),

ẏ(t)− ẏd (t), z(t)− zd (t), ż(t)− żd (t),

θ (t)− θd (t), θ̇(t)− θ̇d (t), φ(t)− φd (t),

φ̇(t)− φ̇d (t), ψ(t)− ψd (t), ψ̇(t)− ψ̇d (t)]T ,

Fe(e(t), t) =



e2(t)
−
Kx
m e2(t)−

Kx
m ẋd (t)− ẍd (t)
e4(t)

−
Ky
m e4(t)−

Ky
m ẏd (t)− ÿd (t)
e6(t)

−
Kx
m e6(t)−

Kz
m żd (t)− z̈d (t)− g
e8(t)

−
kθ l
Jθ
e8(t)−

kθ l
Jθ
θ̇d (t)− θ̈d (t)

e10(t)
−
kφ l
Jφ
e10(t)−

kφ l
Jφ
φ̇d (t)− φ̈d (t)

e12(t)
−
kψ
Jψ
e12(t)−

kψ
Jψ
ψ̇d (t)− ψ̈d (t)



,

U (t) =
[
ut (t) uθ (t) uφ (t) uψ (t)

]T
,

V (t) = [υx(t) υy(t) υz(t) υθ (t) υφ(t) υψ (t)]T



ė1(t)
ė2(t)
ė3(t)
ė4(t)
ė5(t)
ė6(t)
ė7(t)
ė8(t)
ė9(t)
ė10(t)
ė11(t)
ė12(t)



=



e2(t)
−
Kx
m e2(t)−

Kx
m ẋd (t)− ẍd (t)
e4(t)

−
Ky
m e4(t)−

Ky
m ẏd (t)− ÿd (t)
e6(t)

−
Kx
m e6(t)−

Kz
m żd (t)− z̈d (t)− g
e8(t)

−
kθ l
Jθ
e8(t)−

kθ l
Jθ
θ̇d (t)− θ̈d (t)

e10(t)
−
kφ l
Jφ
e10(t)−

kφ l
Jφ
φ̇d (t)− φ̈d (t)

e12(t)
−
kψ
Jψ
e12(t)−

kψ
Jψ
ψ̇d (t)− ψ̈d (t)



+



0
(cos(e9(t)+ φd (t)) sin(e7(t)+ θd (t))

cos(e11(t)+ ψd (t))+ sin(e9(t)+ φd (t))
sin(e11(t)+ ψd (t)))

ut (t)
m

0
(cos(e9(t)+ φd (t)) sin(e7(t)+ θd (t))

cos(e11(t)+ ψd (t))− sin(e9(t)+ φd (t))
sin(e11(t)+ ψd (t)))

ut (t)
m

0
(cos(e9(t)+ φd (t)) cos(e7(t)+ θd (t)))

ut (t)
m

0
l
Jθ
uθ (t)
0

l
Jφ
uφ(t)
0

c
Jψ
uψ (t)



+



0
vx(t)
0

vy(t)
0

vz(t)
0

vθ (t)
0

vφ(t)
0

vψ (t)



(28)
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De(e(t), t) =


0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1



T

It is hard to control all six outputs independently due to
the underactuated property of the quadrotor [27]. In this case,
we only select the desired position xd (t), yd (t), zd (t) and
desired yawψd (t) to construct the reference guidance system.
The yaw trajectory is specified by the designer and we set
ψd (t) = 0 in this example. On the other hand, the desired
roll reference φd (t) and the desired pitch reference θd (t) are
computed accordingly in the following.

φd (t) = sin−1(
m
T (t)

(ux(t) sinψd (t)− uy(t) cosψd (t)))

θd (t) = tan−1(
1

uz(t)+ g
(ux(t) cosψd + uy(t) cosψd ))

(30)

where T (t) denotes the total thrust.
From [33], the virtual input ux , uy, uz and total thrust T (t)

can be defined as follows:

T (t) = m
√
u2x(t)+ u2y(t)+ u2z (t)

ux(t) =
T (t)
m

(cosφd (t) sin θd (t) cosψd (t)

+ sinφd (t) sinψd (t))

uy(t) =
T (t)
m

(cosφd (t) sin θd (t) sinψd (t)

− sinφd (t) cosψd (t))

uz(t) =
T (t)
m

(cosφd (t) cos θd (t))− g (31)

The quadrotor’s system parameters of this example are
listed as: Kx = Ky = Kz = 0.01Ns2/rad , Jθ = Jφ =
Jψ = 0.1Ns2/rad , m = 2kg, l = 1.2m, Kθ = Kφ =
Kzψ = 0.01Ns2/rad , c = 1, g = 9.8m2/sec. We set the

radius of the trajectory as 10m, the sampling time as 0.01s,
terminal time tf = 30s. The weighting matrices are chosen
as: Q = 10−2I12,R = I4. The desired reference position
trajectory and yaw angle trajectory are selected as: xd (t) =
10 sin(0.5t), yd (t) = 10 cos(0.5t), zd (t) = t . The external
disturbances are given as: vx = 0.1N (0, 1) vy = 0.1N (0, 1),
vz = 0.1N (0, 1), vθ = 0.1N (0, 1), vφ = 0.1N (0, 1), vψ =
0.1N (0, 1) where N (0, 1) denotes normal distribution with
mean 0 and unit variance.

Based on Corollary 4, the minmax H∞ tracking trajec-
tory strategy in (13) and (17) for the nonlinear time-varying
tracking error system of quadrotor in (29) needs to solve the
following HJIE:

∂V (e(t), t)
∂t

+

(
∂V (e(t), t)
∂e(t)

)T
Fe(e(t), t)+ eT (t)Qe(t)

−
1
4

(
∂V (e(t), t)
∂e(t)

)T
Ge(e(t), t)R−1GTe (e(t), t)

×

(
∂V (e(t), t)
∂e(t)

)
+

1
4ρ

(
∂V (e(t), t)
∂e(t)

)T
De(e(t), t)

×DTe (e(t), t)
(
∂V (e(t), t)
∂e(t)

)
= 0 (32)

where Fe(e(t), t), Ge(e(t), t) and De(e(t), t) are defined in
(29) and ρ = 2.

It is very difficult to solve the HJIE in (32) analyt-
ically or numerically for H∞ reference tracking control
u∗(t) = − 1

2R
−1GTe (e(t), t)

∂V (e(t),t)
∂e(t) in Corollary 4 for the

quadrotor system in (28). Therefore the proposed HJIE-
embedded DNN control scheme in Fig. 2 is employed for
the H∞ reference tracking control design of quadrotor UAV.
The architecture of DNN used in this example contains an
input layer, five hidden layers, an HJIE layer and an out-
put layer. There are 100, 150, 120, 80 and 13 hidden units
in each hidden layer, sequentially. In the off-line training
phase, we randomly select 200000 initial state vectors around

Ge(e(t), t) =



0 0 0 0
(cos(e9(t)+ φd (t)) sin(e7(t)+ θd (t)) 0 0 0

× cos(e11(t)+ ψd (t))+ sin(e9(t)+ φd (t))
× sin(e11(t)+ ψd (t))

ut (t)
m

0 0 0 0
(cos(e9(t)+ φd (t)) sin(e7(t)+ θd (t)) 0 0 0
× cos(e11(t)+ ψd (t))+ sin(e9(t)+ φd (t))

× sin(e11(t)+ ψd (t))
ut (t)
m

0 0 0 0
cos(e9(t)+ φd (t)) cos(e7(t)+ θd (t))

ut (t)
m 0 0 0

0 0 0 0
0 l

Jθ
uθ (t) 0 0

0 0 0 0
0 0 l

Jφ
uφ(t) 0

0 0 0 0
0 0 0 c

Jψ
uψ (t)


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FIGURE 7. The tracking performance of three position trajectories of the
UAV under HJIE-embedded DNN H∞ tracking control.

FIGURE 8. The tracking performance of three linear velocity trajectories
of the UAV under the proposed HJIE-embedded DNN H∞ tracking control.

the origin to generate x(t) to obtain e(t) from the training
error dynamic equation in (28) and then input them into
the HJIE-embedded DNN in Fig. 2 to train DNN-based
H∞ tracking control of quadrotor UAV by Adam learning
algorithm in (21). We set the parameters in Adam algorithm
as β1 = 0.9, β2 = 0.999, η = 0.001, τ = 10−7

and N = 30. After the absolute error |ε(θi(t))| of HJIE is
less than 0.01, we can begin the operation phase. In order
to validate the tracking performance of the trained DNN-
based H∞ tracking controller of quadrotor UAV, the simu-
lation results of operation phase with an initial state vector
x(0) = [0.54, 5.55, 10.57, 0.57, 2, 1.7, 0.5, 0, 0.52, 0.52, 0.55,
0.52]T are shown in Figs. 7-10. In Figs. 7-10, the UAV state
trajectories of position, angle, velocity and angular velocity
can achieve the robustH∞ tracking performance under influ-
ence of external disturbance in the operation phase. The con-
trol signals generated by the proposed HJIE-embedded DNN
H∞ controller are shown in Fig. 11. From the 3-D trajectory
of quadrotor UAV as shown in Fig. 12, the quadrotor UAV
can track the desired trajectory quickly after a short transient
response.

The real trajectory tracking performance of the proposed
HJIE-embedded DNN-based H∞ robust reference tracking
control scheme in Fig. 2 is calculated as follows:∫ 30

0 [eT (t)Qe(t)+ uT (t)Ru(t)]dt − V (e(0), 0)∫ 30
0 vT (t)v(t)dt

= 1.61 (33)

FIGURE 9. The tracking performance of three angular velocity trajectories
of the UAV under the proposed HJIE-embedded DNN H∞ tracking control.

FIGURE 10. The tracking performance of three Euler angle trajectories of
the UAV under the proposed HJIE-embedded DNN H∞ tracking control.

FIGURE 11. The control signals of the UAV under the proposed
HJIE-embedded DNN H∞ tracking controller.

Obviously, the proposed HJIE-embedded DNN-based H∞
robust reference tracking control scheme in Fig. 2 could
perform quiet well. For comparison, the H∞ T-S fuzzy
model reference tracking control design in [27] is used to
compare with the proposed DNN-based H∞ control scheme
of quadrotor UAV. By the T-S fuzzy controller u(t) =∑125

i=1 hi(x(t))Kie(t) with five fuzzy rules on θ (t), φ(t) and
ψ(t), respectively, in [27], where hi(t) is the ith interpolation
function and Ki is the ith controller gain, we need to solve
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FIGURE 12. 3-D trajectory tracking performance of the UAV under
HJIE-embedded based DNN H∞ tracking control.

FIGURE 13. The tracking performance of three position trajectories of
UAV by T-S fuzzy tracking control strategy in [27].

FIGURE 14. The tracking performance of three velocity trajectories of UAV
by T-S fuzzy tracking control strategy in [27].

125 linear matrix inequalities (LMIs), which are used to
approximate HJIE in (32) by fuzzy interpolation finctions
{hi(e(t))}125i=1 under the assumption V (e(t)) = eT (t)Pe(t)
for fuzzy controller {Ki}125i=1. The reference tracking perfor-
mance of H∞ model reference tracking control in [27] of
quadrotor UAV with the same initial condition and exter-
nal disturbance is shown in Figs. 13–17. The 3-D track-
ing performance of H∞ T-S fuzzy tracking control is given
in Fig. 17. The real tracking tracking performance of H∞
robust T-S fuzzy model reference tracking is calculated as
follows:∫ 30

0 [eT (t)Qe(t)+ uT (t)Ru(t)]dt − V (e(0), 0)∫ 30
0 vT (t)v(t)dt

= 6.51 (34)

FIGURE 15. The tracking performance of three angle trajectories of UAV
by T-S fuzzy tracking control strategy in [27].

FIGURE 16. The tracking performance of three angular velocity
trajectories of UAV by T-S fuzzy tracking control strategy in [27].

FIGURE 17. 3D trajectory of x(t), y (t) and z(t) in UAV by T-S fuzzy tracking
control strategy in [27]. The fluctuations of Vx (t), Vy (t), Vz (t) in Fig. 14 as
well as θ(t), φ(t), ψ(t) in Fig. 15 and Vθ (t), Vφ (t), Vψ (t) in Fig. 16 cannot
be seen in this figure.

From Figs. 13–16, there exist some fluctuation and even
instability phenomenon in the initial H∞ tracking control
process. However, the fluctuations of Vx(t), Vy(t), Vz(t)
in Fig. 14 as well as θ (t), φ(t), ψ(t) in Fig. 15 and Vθ (t),
Vφ(t) andVψ (t) in Fig. 16 cannot be seen in 3-D trajectories in
Fig. 17, where only the trajectory x(t), y(t) and z(t) is shown.
In fact, due to the limitation of the number of fuzzy IF-THEN
rules, the universe of discourse of H∞ T-S fuzzy tracking
control in [27] is limited to a small region, i.e., the T-S fuzzy
tracking control strategy for UAV system in [27] can only
be applied to track a small class of reference trajectory.
For example, the suitable desired trajectories with xd (t) =
2 cos 0.5t, yd (t) = 2 sin 0.5t and zd (t) = t can improve
the tracking performance of H∞ fuzzy tracking control with
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125 fuzzy IF-THEN rules in [27]. If we want to improve the
H∞ tracking performance, we need to increase the fuzzy rules
on θ (t), φ(t) and ψ(t) or decrease the scale of desired trajec-
tory. However, the increment of the fuzzy rules will increase
the difficulty of design and the computational complexity of
fuzzy controller u(t). On the other hand, the decrease of the
scale of the desired trajectory r(t) will limit the application
region. Instead of solving 125 LMIs, the proposed HJIE-
based H∞ reference tracking control scheme of quadrotor
UAV can solve HJIE in (32) directly and globally. Therefore,
the tracking performance of the proposed DNN-based H∞
control in Fig. 2 is much better than the tracking performance
of H∞ fuzzy tracking control in [27].

V. CONCLUSION
In this study, in order to overcome the design difficulty and
complexity of H∞ robust control design of nonlinear time-
varying system with external disturbance, a DNN-based con-
trol design is proposed to simplify the robust H∞ control
design as shown in Fig. 1. With the nonlinear time-varying
dynamic model as well as H∞ control u∗(t) and the worst-
case disturbance v∗(t), we generate trajectories by nonlin-
ear time-varying system model as input to DNN and train
weighting and bias parameters of neurons in the hidden units
of DNN via Adam learning algorithm by the HJIE error
ε(θi(t)) so that DNN is not only a big-data driven scheme
for solving the conventional classification and recognition
problem, but also a dynamic model-based scheme to be with
much potential for solving system control design in nonlin-
ear systems and filter design in nonlinear signal processing
systems. With the proposed method, we can save a large
amount of training data and much training time of DNN for
robust DNN-based H∞ tracking control design of nonlinear
time-varying systems. In Theorem 2, we have proven that
the proposed HJIE-embedded DNN-based control scheme
could approach the nonlinear H∞ robust control design by
Adam learning algorithm. Therefore, the proposed DNN-
based control scheme could achieve the H∞ robust con-
trol design strategy of nonlinear time-varying system in (1)
from solving HJIE in (4) directly, which is very difficult to
solve analytically or numerically by conventional methods
at present. Further, the DNN-based H∞ reference tracking
control of nonlinear dynamic system can be transformed to
the DNN-based H∞ stabilization problem of nonlinear time-
varying tracking error system for more practical applications.
In Corollary 5, we have also proven that when HJIE error
ε(θi(t)) approaches to zero, the HJIE-embedded DNN ref-
erence tracking control scheme in Fig. 2 can achieve the
H∞ reference tracking performance in (13) or (17). Finally,
two simulation examples of a DNN-based H∞ stabilization
design of nonlinear time-varying system and a DNN-based
H∞ reference tracking control design of complex quadrotor
UAV are also provided to illustrate the design procedure
and to confirm the H∞ reference tracking performance of
the proposed DNN-based H∞ control scheme in nonlin-
ear time-varying system with external disturbance. In future

researches, we will focus on the observer-based DNN-based
H∞ control of nonlinear time-varying systems while state
variables cannot be measured directly and a robustH∞ DNN-
based state estimator is needed simultaneously. Especially,
since the HJIE of H∞ observer includes the terms F(x(t), t)
and D(x(t), t), which are function of unavailable state x(t),
more efforts are needed for DNN-based H∞ observer-based
control design.

APPENDIX A
PROOF OF THEOREM 1
The proof is divided into part (a) and part (b) as follows:

(a) In general, because υ(t) is independent of u(t) in (1), the
minmaxH∞ control design problem in (2) is equivalent to the
following minmax quadratic control design problem [34].

min
u(t)

max
υ(t)

∫
∞

0 (xT (t)Qx(t)+ uT (t)Ru(t)− ρυT (t)υ(t))dt

≤ V (x(0), 0)
(35)

By chain rule, we can get

dV (x(t), t)
dt

= (
∂V (x(t), t)
∂x(t)

)T (F(x(t), t)+ G(x(t), t)u(t)

+D(x(t), t)υ(t))+ (
∂V (x(t), t)

∂t
) (36)

By integrating the above equation from t = 0 to t = ∞,
we can obtain:

V (x(∞),∞)− V (x(0), 0)

=

∫
∞

0
(
∂V (x(t), t)
∂x(t)

)T (F(x(t), t)+ G(x(t), t)u(t)

+D(x(t), t)υ(t))+ (
∂V (x(t), t)

∂t
)dt (37)

By adding the right hand side of (37), and then extracting
the left hand side of (37), we get∫

∞

0
[xT (t)Qx(t)+ uT (t)Ru(t)− ρυT (t)υ(t)]dt

=

∫
∞

0
(
∂V (x(t), t)
∂x(t)

)T [F(x(t), t)+ G(x(t), t)u(t)

+D(x(t), t)υ(t)]+ (
∂V (x(t), t)

∂t
)

+ [xT (t)Qx(t)+ uT (t)Ru(t)− ρυT (t)υ(t)]dt
−V (x(∞),∞)+ V (x(0), 0) (38)

Completing the square for u(t) and υ(t) on the right hand
side of (38), we have∫
∞

0
[xT (t)Qx(t)+ uT (t)Ru(t)− ρυT (t)υ(t)]dt

=

∫
∞

0
[H (x(t), t)+ (u(t)+

1
2
R−1GT (x(t), t)

× (
∂V (x(t), t)
∂x(t)

))TR(u(t)+
1
2
R−1GT (x(t), t)(

∂V (x(t), t)
∂x(t)

))

− ρ(υ(t)−
1
2ρ

DT (x(t), t)(
∂V (x(t), t)
∂x(t)

))T

× (υ(t)−
1
2ρ

DT (x(t), t)(
∂V (x(t), t)
∂x(t)

))]dt

−V (x(∞),∞)+ V (x(0), 0) (39)
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where H (x(t), t) is denoted as

H (x(t), t) = (
∂V (x(t), t)

t
)+

(
∂V (x(t), t)
∂x(t)

)T
F(x(t), t)

−
1
4

(
∂V (x(t), t)
∂x(t)

)T
G(x(t), t)R−1GT (x(t), t)

×

(
∂V (x(t), t)
∂x(t)

)
+ xT (t)Qx(t)

+
1
4ρ

(
∂V (x(t), t)
∂x(t)

)T
D(x(t), t)

×DT (x(t), t)× (
∂V (x(t), t)
∂x(t)

)

which is the HJIE in (4). Then, if the HJIE in (4) holds, we
perform minmax in (35) as the following

min
u(t)

max
υ(t)

∫
∞

0
[xT (t)Qx(t)+ uT (t)Ru(t)− ρvT (t)v(t)]dt

= min
u(t)

max
υ(t)

∫
∞

0
[(u(t)+

1
2
R−1GT (x, t)(

∂V (x(t), t)
∂x(t)

))TR

× (u(t)+
1
2
R−1GT (x, t)(

∂V (x(t), t)
∂x(t)

))− ρ(υ(t)

−
1
2ρ

DT (x, t)
∂V (x(t), t)
∂x(t)

))T (υ(t)

−
1
2ρ

DT (x, t)
∂V (x(t), t)
∂x(t)

))]dt

−V (x(∞),∞)+ V (x(0), 0)

= −V (x(∞),∞)+ V (x(0), 0) (40)

with theminmax strategies u∗(t) and v∗(t) should be obtained
as (3). From (40), we can obtain

min
u(t)

max
υ(t)

∫
∞

0
[xT (t)Qx(t)+ uT (t)Ru(t)− ρvT (t)v(t)]dt

= −V (x(∞),∞)+ V (x(0), 0) ≤ V (x(0), 0) (41)

by the fact V (x(∞),∞) ≥ 0, which is (35).
(b) If v(t) = 0, then (41) becomes the following H2

quadratic optimal

min
u(t)

∫
∞

0
[xT (t)Qx(t)+ uT (t)Ru(t)]dt ≤ V (x(0), 0) (42)

i.e., the minmax H∞ control strategy will become the H2
quadratic optimal control strategy as v(t) = 0. Since
V (x(0), 0) is finite in (42), it is clear that as t approach to
infinite, both x(t) and u(t) will approach to zero, i.e., if the
nonlinear time-varying system in (1) is free of disturbance,
then the H∞ control u∗(t) in (3) will achieve the asymptotic
stability. Q.E.D

APPENDIX B
PROOF OF THEOREM 2
Suppose

(
∂V̄ (x̄(t))
∂ x̄(t)

)ε = (
∂V̄ (x̄(t))
∂ x̄(t)

)+ h(x̄(t)) (43)

where h(x̄(t)) is the error function. Subtracting (23) with (22),
ε(θi(t)) can be rewritten as:

ε(θi(t))
= HJIEε − HJIE

= ((
∂V̄ (x̄(t))
∂ x̄(t)

)Tε − (
∂V̄ (x̄(t))
∂ x̄(t)

)T )F̄(x̄(t))

−
1
4
(
∂V̄ (x̄(t))
∂ x̄(t)

)Tε Ḡ(x̄(t))R̄
−1ḠT (x̄(t))(

∂V̄ (x̄(t))
∂ x̄(t)

)ε

+
1
4ρ

(
∂V̄ (x̄(t))
∂ x̄(t)

)Tε D̄(x̄(t))D̄
T (x̄(t))(

∂V̄ (x̄(t))
∂ x̄(t)

)ε

+
1
4
(
∂V̄ (x̄(t))
∂ x̄(t)

)T Ḡ(x̄(t))R̄−1ḠT (x̄(t))(
∂V̄ (x̄(t))
∂ x̄(t)

)

−
1
4ρ

(
∂V̄ (x̄(t))
∂ x̄(t)

)T D̄(x̄(t))D̄T (x̄(t))(
∂V̄ (x̄(t))
∂ x̄(t)

)

= hT (x̄(t))F̄(x̄(t))

−
1
4
(
∂V̄ (x̄(t))
∂ x̄(t)

)T Ḡ(x̄(t))R̄−1ḠT (x̄(t))h(x̄(t))

−
1
4
hT (x̄(t))Ḡ(x̄(t))R̄−1ḠT (x̄(t))(

∂V̄ (x̄(t))
∂ x̄(t)

)

−
1
4
hT (x̄(t))Ḡ(x̄(t))R̄−1ḠT (x̄(t))h(x̄(t))

+
1
4ρ

(
∂V̄ (x̄(t))
∂ x̄(t)

)T D̄(x̄(t))D̄T (x̄(t))h(x̄(t))

+
1
4ρ

hT (x̄(t))D̄(x̄(t))D̄T (x̄(t))(
∂V̄ (x̄(t))
∂ x̄(t)

)

+
1
4ρ

hT (x̄(t))D̄(x̄(t))DT (x̄(t))h(x̄(t)) (44)

By the symmetric property, the following equations hold:

(
∂V̄ (x̄(t))
∂ x̄(t)

)T D̄(x̄(t))D̄T (x̄(t))h(x̄(t))

= hT (x̄(t))D̄(x̄(t))D̄T (x̄(t))(
∂V̄ (x̄(t))
∂ x̄(t)

)

(
∂V̄ (x̄)
∂ x̄(t)

)T Ḡ(x̄(t))R̄−1ḠT (x̄(t))h(x̄(t))

= hT (x̄(t))Ḡ(x̄(t))R̄−1ḠT (x̄(t))(
∂V̄ (x̄(t))
∂ x̄(t)

) (45)

Then, by the above equations, (44) can be written as:

ε(θi(t))
= hT (x̄(t))F̄(x̄(t))

−
1
2
hT (x̄(t))Ḡ(x̄(t))R̄−1ḠT (x̄(t))(

∂V̄ (x̄(t))
∂ x̄(t)

)

−
1
4
hT (x̄(t))Ḡ(x̄(t))R̄−1ḠT (x̄(t))h(x̄(t))

+
1
2ρ

hT (x̄(t))D̄(x̄(t))D̄T (x̄(t))(
∂V̄ (x̄(t))
∂ x̄(t)

)

+
1
4ρ

hT (x̄(t))D̄(x̄(t))D̄T (x̄(t))h(x̄(t))

= hT (x̄)[F̄(x̄)−
1
2
Ḡ(x̄)R̄−1ḠT (x̄)(

∂V̄ (x̄(t))
∂ x̄(t)

)

−
1
4
Ḡ(x̄)R̄−1ḠT (x̄)h(x̄)+

1
2ρ

D̄(x̄)D̄T (x̄)(
∂V̄ (x̄)
∂ x̄

)

+
1
4ρ

D̄(x̄)D̄T (x̄)h(x̄)] (46)
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If ε(θi(t))→ 0 in (46), then we have

hT (x̄)[F̄(x̄(t))−
1
2
Ḡ(x̄(t))R̄−1ḠT (x̄(t))(

∂V̄ (x̄(t))
∂ x̄(t)

)

−
1
4
Ḡ(x̄(t))R̄−1ḠT (x̄(t))h(x̄(t))

+
1
2ρ

D̄(x̄(t))D̄T (x̄(t))(
∂V̄ (x̄(t))
∂ x̄(t)

)

+
1
4ρ

D̄(x̄(t))D̄T (x̄(t))h(x̄(t))]→ 0 (47)

Clearly, the term

[F̄(x̄(t))−
1
2
Ḡ(x̄(t))R̄−1ḠT (x̄(t))(

∂V̄ (x̄(t))
∂ x̄(t)

)

−
1
4
Ḡ(x̄(t))R̄−1ḠT (x̄(t))h(x̄(t))

+
1
2ρ

D̄(x̄(t))D̄T (x̄(t))(
∂V̄ (x̄)
∂ x̄

)

+
1
4ρ

D̄(x̄(t))D̄T (x̄(t))h(x̄(t))] (48)

in (47) is different from HJIE = 0 in (22) and it will
not be zero for all x̄(t). As a result,, we can conclude
that h(x̄(t)) → 0 and it implies ( ∂V̄ (x̄(t))

∂ x̄(t) )ε → ( ∂V̄ (x̄(t))
∂ x̄(t) ),

i.e., HJIEε → HJIE = 0 as ε(θi(t)) → 0. According
to Theorem 1, the HJIE-embedded DNN-based H∞ control
u∗(t) in Fig. 1 will approach H∞ control strategy u∗(t) in (3)
in Theorem 1. Q.E.D.
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