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ABSTRACT Processing a reachability query in large-scale networks using existing methods remains
one of the most challenging problems in graph mining. In this paper, we propose a novel incremental
algorithmic framework for arbitrary-order reachability computation inmassive graphs. The proposedmethod
is intuitive and significantly outperforms the currently known methods in terms of computation time.
We focus on the arbitrary-order reachability matrix framework called AORM, which can handle directed
and disconnected networks such as citation networks. The AORM can handle diverse types of real-world
datasets. We conduct extensive experimental studies with twenty synthetic networks generated from five
random graph generation models and twenty massive real-world networks. The experimental results show
the advantages of the method in terms of both computational efficiency and approximation controllability.
In particular, the proposed method outperforms up to 10 times compared to NetworkX for incremental all-
pairs shortest paths computation. Moreover, the computational results of the method rapidly converge to the
ground truths. Thus, we can get the correct solution in the early stage of the incremental approximation.
We can employ the method as a versatile feature extraction framework for network embedding. Overall,
the experimental results present a remarkable improvement in speed-up for reachability computation.

INDEX TERMS Reachability query, approximate all-pairs shortest paths, graph girth, graph embedding,
higher-order structural proximity.

I. INTRODUCTION
The World Health Organization (WHO) declared COVID-19
a pandemic caused by the new SARS-CoV-2 virus in
March 2020. Accordingly, COVID-19 has formed a new
scientific community to address the pandemic, unlike other
recent crises. Many data analysts and researchers in modern
graph analytics utilize new pandemic analysis methods and
recent artificial intelligence approaches to tackle this prob-
lem. In particular, massive graph analytics is essential to pre-
dict virus diffusion and discover super-spreaders on a global
scale [1]. In terms of graph theory, the data analysts employ
directed, disconnected graphs to investigate these viral epi-
demics. Most researchers often employ adjacency matrices
as representations of these graphs to perform fundamental
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graph analytics operations, such as reachability queries, all-
pairs shortest paths (APSP), and so on. Specifically, in most
practical applications, adjacency matrices of massive graphs
are usually sparse [2]–[4]. Moreover, these applications
appropriate unweighted edges rather than weighted edges to
describe relationships between vertices in a graph.
Motivations: Prior researchers in graph mining found that

existing networks manifest surprisingly small diameters even
though graphs are massive. Specifically, the average edge
degree of hyperlink networks for the web is nineteen [3].
Furthermore, most social networks also present the six-
degrees or even four-degrees of separation characteristics [4],
[5]. Also, most citation networks are disconnected graphs
with directionality due to their low reciprocity [6]. Figure 1
shows examples of real networks in the form of disconnected
graphs. A temporal reachability network is a network whose
edges are active only at certain points in time. This network is
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FIGURE 1. Two examples of real networks in the form of disconnected
graphs. (a) The scc_infect-dublin is the contact network whose edges are
face-to-face contacts. A contact network is one of the temporal
reachability networks. (b) The cit_patent is the US patent citation network
(1975-1999). This network is an unweighted and directed graph.

formed by putting an edge in the temporal reachability graph
if there exists a strong temporal path between two vertices.
Hence, a temporal path describes a sequence of contacts
(i.e., face-to-face contact in Figure 1-(a)) that follows time.
Therefore an edge in this kind of graphs represents the fact
that an entity might have transmitted a piece of information
(or disease, etc) to another (and vice-versa). Citation net-
works are disconnected graphs that represent collections of
academic publications as shown in Figure 1-(b). In these
networks, vertices denote authors or papers. Edges represent
relationships of author-coauthor or paper-paper citation. Fur-
thermore, directed graphs are indispensable in applications
utilizing edge directionality of graphs: road networks, infec-
tious diseases networks, and citation networks.

Motivating Example (TrafficCongestion Prediction)All-
pairs shortest paths (APSP) and reachability query com-
putations are important graph operations in modern graph
analytics. In urban road networks, arbitrary congested road
segments connect to nearby other congested ones. And as
time progresses, these congested roads have the characteristic
of spreading congestion to nearby road segments. Thus, pre-
dicting how congestion will propagate over the road network
in the near future is one of the crucial things to alleviate
congestion in advance [7]. From a graph theory point of
view, these congested road links are subdigraphs in a graph
G for the road network. To find and trace these subdigraphs,
we utilize reachability queries and APSP to find neighbor
roads from the current congested road segment.

The majority of prior studies have focused on unweighted,
undirected graphs [8], [9]. Thus, these methods cannot
capture the directions of edges: required in several appli-
cations, such as tracing virus diffusion, analysis of traf-
fic congestion propagation [7], [10], [11]. To address these
problems, we exploit a directed graph to represent not only
symmetrical but also asymmetrical relationships between
nodes in a network. A few researchers proposed some
approaches for graph-related operations for directed graphs,
such as APSP computation, network embedding, and so
on [12]–[18]. However, most of the existing methods con-
centrated on undirected graphs with limited attention to
the directed, disconnected networks [19], [20]. The APSP

algorithm working on weighted directed graphs via circuit
complexity efficiently reduced a matrix product over the min-
plus algebra [15], [21]. Unfortunately, this algorithm can
work with a relatively small number of rectangular matrix
products. Consequently, this method is hard to perform the
APSP computation for the massive graphs.

Inspired by the characteristics of small diameter, low reci-
procity (directionality), and sparsity of common real-world
networks, we present a novel arbitrary-order reachability
matrix computation framework for directed, disconnected
graphs. To the best of our knowledge, no previous research
has studied the arbitrary-order reachability computation
problem via incremental fashion. Moreover, the proposed
algorithm works on directed graphs and disconnected net-
works; these graphs frequently arise in citation networks.
Our Goal: We aim to develop a new algorithmic frame-

work for reachability query processing. The proposed frame-
work can rapidly and incrementally compute arbitrary-order
reachability in directed graphs (i.e., road networks) and dis-
connected graphs (i.e., citation networks and collaboration
networks). We call this new framework, AORM. Besides,
we focus on designing and implementing the APSP compu-
tation algorithms based on AORM to show the validity and the
efficiency of the method.

We can efficiently employ our proposed framework
to diverse graph representation learning approaches for
unweighted and directed graphs. Those approaches include
embeddings or encodings of the original network nodes onto
a low-dimensional vector space while maintaining the prox-
imity and structural equivalence properties. The aim of graph
embedding for given graph G is to learn a mapping, E(G) :
V 7→ Z , that maps each vertices vi of G to a vector zi in
a space with lower-dimension known as embedding space
[22]–[24]. The proximity between vertices in graphs is one of
the essential properties to preserve for network representation
learning. Existing graph embedding strategies, such as com-
binatorial approaches and stochastic graph traversal methods,
depended on adjacency matrix multiplications for measuring
the proximity between nodes. Hence, these methods are hard
to parallelize the computations for capturing the proximity in
graphs. Furthermore, these techniques are arduous to utilize
for machine learning-based methods; since the powers of any
adjacency matrix rapidly become dense so that the matrix
multiplications require a massive amount of computations for
massive graphs.
Challenges: The first challenge is processing arbitrary-

order reachability queries for massive graphs. The computa-
tion of the powers of the adjacency matrix is one of the core
operations for node embeddings. Network embedding with
higher-order proximity considers the ‘roles’ of nodes, such as
a hub, bridge, and near-clique in a graph. However, we cannot
capture these roles by stochastic neighbor search methods
such as random walk sequences [25]. So, we should define
higher-order proximity to capture the higher-order structural
natures of vertices in a graph. For example, we can appre-
hend the probability of the context node vj being reached by
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node vi by examining the second-order proximity [26]. Here,
the second-order proximity of two nodes means the similarity
of the neighbors of two nodes. We can define any k-order
proximities as the similarity of reachable nodes with path
length k . Also, we obtain these latent properties by computing
the powers of adjacency matrix [27]. However, for massive
graphs, this operation requires a lot of computations due
to the many matrix multiplications. Thus, the improvement
in computing the powers of adjacency matrix is one of the
important challenges.

The second challenge is improving an all-pairs shortest
paths computation (APSP) algorithm supporting directed
graphs. The APSP in a graph is a reasonable measure for pair-
wise distance for node embedding. However, the complete
computation of APSP is notoriously expensive. Traditional
APSP soluton, FLOYD–WARSHALL algorithm, requiresO(n3)
time for n-node weighted graphs with no negative cycle. This
time complexitymakes it impossible to employ this algorithm
as a generic method for massive graphs.

Last challenge is to develop a framework of reachability
and APSP computation working on even disconnected
graphs. As previously mentioned, most real networks include
directed and disconnected graphs. Nevertheless, existing
studies have focused on unweighted and connected graphs.
These algorithms cannot support practical applications
related to collaboration networks, citation networks, and tem-
poral networks.
Our Approach: First, to compute the powers of the adja-

cency matrix without matrix multiplications, we propose a
new incremental reachability computation framework, called
AORM. Although existing methods are effective to make
reachability queries and all-pairs shortest paths computation,
most of them assume that the input graphs are unweighted,
undirected [8], [9]. Unfortunately, many graph analytics
applications involve directed, disconnected networks, such
as road networks, collaboration networks, and citation net-
works. The key idea is that we exploit the neighborhood infor-
mation in the first-order proximity of a graph and hierarchical
reachability matrices to compute an arbitrary-order reacha-
bility. In particular, the characteristic of incremental matrix
computation provides benefits for massive graphs. These
benefits include fundamental operations in graph embedding,
such as capturing arbitrary-order proximity, computing all-
pairs shortest paths, and processing reachability queries in a
graph. Besides, we propose a novel feature representation of
node embedding by applying high-order proximity via APSP
and shortest cycle length computations based on AORM. Also,
our APSP method based on AORM approximates the correct
solution with small errors.
Difference from Previous Work: Existing reachability com-

putation methods typically depend on matrix multiplications
for the powers of the adjacency matrix. In contrast, AORM

exploits neighborhood information and boolean reachability
matrix for arbitrary-order reachability computation instead
of expensive matrix multiplications. AORM’s contributions
include incremental arbitrary-order reachability computation

and fast APSP approximations. In terms of parallel comput-
ing, prior techniques have focused on the parallelization for
matrix multiplications under multi-core or distributed com-
puting environments. In contrast, we present a novel incre-
mental reachabilitymatrix computation approachwithout any
matrix multiplications. Also, the results of AORM are asymp-
totically correct in O(δvmd) time; n denotes the number of
vertices, δv refers to v-dimensional vectorized operation time;
δv � n, and d refers to a diameter of a graph. To summarize,
the main advantages of AORM over existing techniques are
the incremental property and fast convergence property in
the computational aspect for the approximated APSP and
reachability queries.
Main Contributions: Our major contributions can be sum-

marized as follows:

• Efficient framework: We formulate AORM framework
as an arbitrary-order reachability matrix computation
with the objective of approximating multi-hop similarity
among vertices in a graph. Also, we propose several
techniques based on AORM to efficiently solve graph
connectivity-related problems, including the efficient
approximation of the reachability matrices, fast APSP,
and shortest cycle length computation.

• Directed and disconnected graphs: We further con-
sider edge direction to support directed graphs. Besides,
AORM works on disconnected graphs that are common
in real-world networks (i.e., citation networks).

• Incremental computation: One of the key features in
AORM framework is incremental computation for effi-
ciently approximated reachability and APSP solution.
This property enables data analysts to perform fast graph
analytics (i.e., node classification and clustering) on
massive graphs.

• Hierarchical representation: AORM framework can store
the weighted accumulation of the incremental k-order
reachability hierarchically. We can efficiently appropri-
ate this AORM’s feature for flexible k-order reachability
queries and diverse graph analytics, such as computation
of minimum cycle and feature extraction for each node.

Reproducibility: Our source codes and data1 are publicly
available on https://github.com/sungsoo/AORM.
Organization: The rest of the paper is organized as follows.

We first detail the preliminaries and notations used in the
paper in Section II. In Section III, we introduce the algo-
rithmic framework of the proposed reachability computation
approach. Then we present the detailed algorithms of incre-
mental and constrained k-order reachability computation for
massive graphs in Section IV. Section V describes the exper-
imental results. Related works are reviewed in Section VI.
Finally, Section VII concludes the paper.

1We utilize the datasets from SNAP [28] and the network repository [29]
for our experiments.
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II. PRELIMINARIES
This section describes some background about graphs, nota-
tions, and definitions. We discuss a few reachability-related
matrices and sets in Section III.

First, we describe the notations related to the superscript
of several matrices in this paper. The superscript used as xk

refers to the k-th power of x. Whereas the superscript with
parenthesis such as x(k) denotes the instance x at the k-th
iteration. Second, we use the notations for representing an
element in a matrix as the followings. We specify with two
subscripts i, j to describe the element at i-th row and j-th
column in a matrix. The subscript : means all rows or all
columns in accordance with the location of the subscript.

Let V and E be a finite set of n vertices {v1, · · · , vn} and
a finite set of m edges {ei,j|vi, vj ∈ V } respectively. Let G =
(V ,E) be an unweighted graph (directed or undirected) with
|V | = n and |E| = m. We call vertices and edges as nodes and
links respectively and interchangeably. Also, we define a path
in a graphG to be a sequenceP of nodes 〈v1, v2, . . . , vk−1, vk 〉
with the property that each consecutive pair vi, vi+1 is joined
by an edge in G [30].P is often called a path from v1 to vk , or a
v1  vk path. Then, the cycle with n ≥ 3 vertices, denoted
by C , is a subgraph of the graph G, isomorphic to vs  vs
path with an identical start and end node vs.
Directed Graphs and Disconnected Graphs: Directed

graphs play a crucial role in various user applications, such
as navigation systems. Unfortunately, the majority of prior
studies have focused on undirected graphs [26]. A graph is
said to be disconnected if it is not connected, i.e., if there exist
two vertices such that no path has those vertices as endpoints.
This graph refers to a disconnected graph that frequently
appears in real-world such as infectious disease networks.
For these reasons, most of the data analysts exploit not only
directed networks but disconnected graphs.

A. NOTATIONS
Table 1 summaries symbols and notations used throughout
this paper.
Definition 1 (First-Order Proximity): The first-order

proximity is the local pairwise similarity between vertices
linked by edges. Each pair of vertices linked by an edge (u, v)
means the first-order proximity between u and v [26]. First-
order proximity is 0 if and only if no edge exists between u
and v.
Two vertices in the graph are similar if they are connected

with the edge. It characterizes the local network structure. If
there exists an edge ei,j between node vi and vj, we assign
non-zero value of element Ai,j according to the edge weight
in adjacency matrix A to represent the first-order proximity.
In addition, we set zeros to the diagonal elements of A.
Definition 2 (Arbitrary-Order Proximity): Given adja-

cency matrix A of an undirected or directed graph, we define
an arbitrary-order proximity as a polynomial function P(·) of
A similar to the proximity defined in [9]:

P(A) = w1A+ w2A2
+ · · · + +wkAk , (1)

where k is the order and w1,w2, . . . ,wk are the weights.

TABLE 1. Summary of symbols and notations.

Our algorithm aims to provide arbitrary-order reachabil-
ity computation for undirected, directed, and disconnected
graphs. Thus, the adjacency matrix A of G is asymmetric.
To estimate arbitrary-order proximity, we need to compute
the k-th power of the adjacency matrix. Let Ak be the k-th
power of the adjacency matrix. Then the element at the i-th
row and j-th column of the k-th power matrix is Aki,j. Let A

k
i,∗

andAk
∗,i denote the i-th row vector and the j-th column vector

respectively. The element of Aki,j means the number of paths
from vi to vj with exactly k hops. The Heaviside function
H(·) is a non-continuous function whose value is zero for a
negative input and one for a positive input [31]. The diameter
of the graph d is the longest distance between any pair of
vertices. The Heaviside function H(·) and the diameter are
beneficial for efficient computation of reachability-related
matrices.
Reachability refers to the ability to move from one vertex

to another within a graph. In directed graphs, a vertex u
can reach a vertex v if there exists a u  v path. The
boolean reachability matrix R(d) is a matrix including all the
reachability information of a graph whose adjacency matrix
isA. A nonzero elementR(d)i,j indicates that there exists at least
one path vi  vj. In other words, R(d)

= H(
∑d

s=1A
s).

Definition 3 (Arbitrary-Order Reachability): Given adja-
cency matrix A of an undirected or directed graph, we define
an arbitrary-order reachability as follows:

R(k)
= H(

k∑
s=1

As), (2)

R(k) is the k-order reachability of which entries R(k)i,j is
nonzero when we can find a path vi  vj with k or less hops.
Figure 2 illustrates the notion of arbitrary-order reachability.
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FIGURE 2. Arbitrary-order reachability. The v0  v10 path has two
different paths. One is 〈v0, v8, v9, v10〉 path (blue dashed lines). This path
provides third-order reachability. The other is 〈v0, v8, v9, v11, v10〉 path
(red dashed lines). This is fourth-order reachability.

Definition 4 (Arbitrary-Order Optimal Reachability):
Given adjacency matrixA of an undirected or directed graph,
we define a k-order optimal reachability; which is accessible
by the shortest path as the following. The k-order optimal
reachability matrix R(k)? of which nonzero element R(k)

?

i,j
means that the shortest vi  vj path is exactly k .
The main benefit of incremental computation is to provide

significant performance gain than computing new outputs
naively. We exploit two sets of vertices Ni and F

(k)
i to utilize

the incremental computation of reachability-related matrices.
We employ the set Ni composed of the vertices linked with
vertex vi. Also, we define a footprint set F (k)

i with the ver-
tices found by vertex vi within k steps including vi itself. In
incremental reachability computation, Ni is static and F

(k)
i is

dynamically updated. F(k) is a boolean matrix of which i-th
row has the nonzero element at j-th location if the vi  vj path
has been already found during the incremental computation
of reachability. Therefore, F (k)

i,j is 1 if and only if vj ∈ F
(k)
i .

With above notations, we formally define our problem related
to reachability queries as follows:

Problem (Arbitrary-Order Reachability Queries) Let
G = (V ,E) be a large directed or undirected graph that
has n nodes and m edges. The k-order reachability queries is
denoted as u v, where u and v are two vertices in G. Here,
u v returns true if and only if there exists a path via k-hops
in the graph G. The problem is to compute the reachability
via k-hops among every vertex in G as k-order reachability
matrix.

• Input:Adjacency matrixA of G, reachability constrains
k

• Output: k-order reachability matrix R(k)

Next section, we describe the overview of the proposed
algorithmic framework (AORM).

III. AORM FRAMEWORK OVERVIEW
In this section, we introduce our proposed algorithmic frame-
work as shown in Figure 3. Then we describe the proposed
method for k-order reachability computation problem.

FIGURE 3. The overall architecture of arbitrary-order reachability matrix
(AORM): First, we extract the neighborhood information of A as NA.
We assign input adjacency matrix to first-order reachability matrix R(1).
Then, we use NA and R(1) to compute the second-order reachability R(2)

(red boxs). Likewise, we can compute the third-order reachability R(3)

using NA and R(2).

The advantage of our framework is providing performance
and efficiency for arbitrary-order reachability queries. First,
we extract the neighborhood information of A as NA. The
NA is essential information to compute the reachability in
an iterative fashion. We assign the input adjacency matrix to
the first-order reachability matrix R(1). Then, we useNA and
R(1) to compute the second-order reachabilityR(2). Likewise,
we can compute the third-order reachability R(3) using NA
and R(2). Based on the AORM framework, we can efficiently
find the all-pairs shortest paths in G. Besides, we utilize
the AORM framework to extract and represent features for
graph representation learning. We will describe the AORM

computation algorithm in detail in Section IV.
Next, we introduce the arbitrary-order reachability matrix

that answers both first- and higher-order reachability
queries. One of the essential properties for performing net-
work or graph embedding is the proximity between vertices
in graphs. The adjacency matrix most intuitively represents
the proximity of a graph. However, the adjacency matrices
for massive real networks are very sparse [3], [4], [24].
Thus, an adjacency matrix is not sufficient for graph ana-
lytics or the feature extraction for machine learning. Con-
sequently, we exploit the higher-order proximity gathering
from the powers of an adjacency matrix, such as A2, A3, and
so on.

A. REACHABILITY MATRIX
The ultimate goal of our research is to develop an efficient
graph embedding method. In particular, we aim to capture
the proximity as well as structural properties of a graph. We
propose a novel incremental reachability matrix computation
algorithm for unweighted, directed, and disconnected graphs.
The core idea of AORM is to construct a k-order reachability
matrix (RM) in an incremental fashion. We exploit the neigh-
borhood information in first-order proximity and (k − 1)-th
reachability matrix to compute k-order RM.
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The k-order reachability is useful in many practical appli-
cations in graph analytics, such as product recommendations,
viral marketing, and community detection. We now briefly
describe why k-order reachability is essential for these appli-
cations in terms of graph analytics.
Higher-Order Proximity: The higher-order proximity

refers to k-hop reachable relations between indirectly con-
nected vertices, where k ≥ 3. This proximity property can
capture the more global structure of a graph rather than the
structural role proximity [32], [33]. We can get the higher-
order proximity between two vertices by computing the pow-
ers of the adjacent matrix A. The Ak , the k-th power of A,
has non-zero elements Aki,j if there exists any path length k
from vi to vj. In the circumstances of real-world networks,
Ak is always sparse; this is because most real-world networks
follow small world phenomenon. Thus, we can compute the
Ak in an efficient manner by the boolean matrix computation
approach in a similar fashion proposed in [34]. We perform
the Ak computation separately by each row i using the first-
order proximity information in A. The Ni refers to the set of
the first-order proximal neighbors of node i. Then, we can
update the i-th row of Ak as follows:

Ak
i,: =

∑
j∈Ni

Ak−1
j,: (3)

Here, the time complexity of Ak computation is O(n3 p);
p denotes the probability that an arbitrary entry of the matrix
is not zero. Note that the computation Ak from A requires
O(kn3p) without any multiplications [34]. Besides, p is usu-
ally a small value in real-world networks, such as citation
networks, social networks, and so on.

There are several existing methods for high-order proxim-
ity based on an adjacency matrix, such as, skip-gram [35]
and GraRep [27]. The skip-grammodel, a technique for word
representation learning, employed a normalized adjacency
matrix as the transition probability from node vi to vj. Also,
the GraRep utilized normalized A to produce the transition
probabilities with k hops. However, this method does not con-
sider the linear relationship among the powers of adjacency.
Moreover, these two methods have the critical limitation
that the powers of the adjacency matrix rapidly decays as k
increases. So, these methods often failed to capture the high-
order connectivity in a graph. To avoid this problem, one can
employ an original adjacency matrix rather than normalized
adjacency to capture the high-order proximity. However, this
naive approach has some difficulties. For example, the pow-
ers of the adjacency matrix can diverge or produce a large
number. To overcome this problem, we exploit the boolean
reachability matrix R(1) instead of adjacency matrix A. Here,
R(1)i,j is TRUE if and only if there exist any path from node vi
to vj (i.e., Ai,j > 0), otherwise FALSE. Then we compute the
boolean powers of the reachability matrix R as follows:

R(k)
i,: =

∨
j∈Ni

R(k−1)
j,: , (4)

FIGURE 4. An example of directed graph G with 7 vertices and
12 directed edges. (a) Both v0 and v6 are reachable to v2 by second-order
(or 2-hop). (b) We can find these connectivity information in A2 and R(2).
Here, the value of A2

0,2 entry is 2. (See the green box in A2.) This is
because we have two possible two-hop paths from v0 and v2; 〈v0, v1, v2〉
path and 〈v0, v4, v2〉 path. In contrast, we have only one 2-hop path from
v6 to v2, 〈v6, v5, v2〉 path. Therefore, the value of A2

6,2 is 1. (See the

yellow box in A2.) (c) AORM contains the lower-order connectivity
information in A1 and R(1). These matrices include information about the
different paths to the same vertex.

where
∨

operator performs the element-wise logical OR

operation with all theR(k−1)
j,: such that j is the first-order prox-

imal nodes of vi. For the computational simplicity, we use
0 for FALSE, and 1 for TRUE.

B. HIERARCHICAL REACHABILITY REPRESENTATION
We describe the hierarchical reachability matrix (HRM) rep-
resentation for the high-order proximity of a graph. HRM
prevents the divergence problem in the powers of the adja-
cency matrix by boolean reachability representation. The
main benefit of this representation is incrementally providing
arbitrary-hop connectivity information. Besides, this supports
the hierarchical management and the reuse of the previously
obtained intermediate reachability results.

We start with an analysis that how HRM can provide an
arbitrary-order reachability matrix. To do this, we explain the
structure of HRM through an example of a directed graph
G in Figure 4-(a). Both v0 and v6 are reachable to v2 by
second-order (or 2-hop). In Figure 4-(b), we can find these
connectivity information in A2 and R(2). Here, the value of
A2
0,2 entry is 2. This is because we have two possible two-hop

paths from v0 and v2; 〈v0, v1, v2〉 path and 〈v0, v4, v2〉 path.
In contrast, we have only one two-hop path from v6 to v2,
〈v6, v5, v2〉 path. Therefore, the value of A2

6,2 is 1. However,
the second-order reachability matrix R(2) in AORM describes
the existence of the paths of k-hop reachability (Here, k = 2).
On the other hand, one might worry that it is difficult to
capture accurate connectivity and proximity of a graph using
a boolean reachability matrix. Fortunately, AORM contains
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the lower-order connectivity information in A1 and R(1) as
shown in Figure 4-(c). This hierarchical structure enables us
to capture the connectivity information of a graph based on
the arbitrary-order reachability.

IV. THE AORM ALGORITHM
In this section, we introduce our proposed AORM-based three
algorithms for computing reachability and all-pairs shortest
paths (APSP) on directed, disconnected graphs. The first one
is the k-order optimal reachability matrix algorithm, called
AORM. This algorithm utilizes the parallel matrix multipli-
cations for reachability computations. The second one is the
algorithm using the hierarchical reachability matrix based
on neighborhood information. This algorithm appropriates
HRM to accelerate the reachability computation. The last
one is the computation algorithm for APSP employing AORM

algorithm. We elaborate on each of the algorithms in subse-
quent sections.

Before going into details, we briefly describe some notions
related to reachability on a graph, such as walks, cycles, trails,
and paths. A walk can visit the same vertices and edges more
than once. A cycle is a closed walk where the first and last
vertices are the same. On the other hand, a trail means a
walk where all edges are unique. In particular, a path is a
trail in which all edges and vertices are unique. One can
exploit adjacency matrices to represent graphs without any
loss of information. However, the vital matters to consider
are information redundancy and noise, not information loss.
The powers of the adjacency matrix produce all the possible
walks, including trails with redundant node visits. Usually,
these walks, cycles, and trails are not simple paths in a graph.

Another popular idea for capturing the connectivity is to
exploit the shortest path between nodes, which is the measure
for nodes to examine their neighbors in a graph. In contrast,
in the context of random walk approaches, the accumulation
of adjacency matrix powers includes noise information about
the excessive random walks of little significance.

A. k-ORDER OPTIMAL REACHABILITY
Our goal is to compute an arbitrary-order reachability matrix
including only the all-pairs shortest paths in directed, dis-
connected graphs. To achieve this, we introduce a novel
algorithm, calledAORM, which performs the fast computation
of the optimal reachability matrix. As previous mentioned in
Definition 4, the element R(k)

?

i,j in k-order optimal reachability
matrix R(k)? is nonzero if and only if the shortest path from
vi to vj is k .
Reachability Pruning: Now, we describe the algorithm

details for AORM and all-pairs shortest path computation
using AORM. First, we perform the pruning for the following
three types of insignificant walks such as cycles, trails, and
longer paths to obtain an optimal reachability matrix:

• Cycle pruning: The powers of the reachability matrix
produce the cycles that revisit the starting vertices.

• Trail pruning: Some trails also occur in the powers of
the reachability matrix as the number of powers (i.e.,
k-order) increases.

• Paths pruning: During the iterative reachability matrix
computation, two or more paths from vi to vj with dif-
ferent hops may happen. We remove these longer paths
leaving only the shortest paths to obtain the optimal
reachability matrix.

Cycle Pruning: To perform cycle pruning, we apply the
following equation for subtracting the diagonal matrix for the
reachability matrix from the initial matrix. Here, R̃ refers to
an intermediate result of a reachability matrix.

R̃(1)
= R(1)

− diag(R(1)), (5)

where diag(X) is n×n diagonal matrix whose diagonal entries
are identical to the those of the matrix X ∈ Rn×n. Then,
we eliminate the generated cycles, which occurred in previous
iterative reachability computation as follows:

R̃(k)
i,: =

∨
j∈Ni

R̃(k−1)
j,: − diag(

∨
j∈Ni

R̃(k−1)
j,: ) (6)

Thus, we can get a reachability matrix with every cycle
returning to the starting vertices eliminated. However, we still
have the trails with multiple visits to any other vertices dif-
ferent from the starting nodes.
Trail Pruning: To proceed trail pruning, our algorithm

exploits the footprint set, F . This set refers to the set of
vertices found by vertex vi within k steps including vi itself.
The first-order optimal reachability matrix can be initialized
as follows:

R(1)?
= R(1) (7)

Fi(1) = {vi} ∪ {vj|R(1)i,j = 1} (8)

Initially, the first-order optimal reachability matrix R(1)? is
initialized to be an initial reachability matrix R(1). The set of
found nodes with one-hop from node vi (i.e., F

(1)
i ) is initially

filled with the node vi itself, and linked nodes vj such that R
(1)
i,j

is 1.
We can compute the optimal reachability matrix R(k)?

removing any trails with redundant nodes in an incremental
fashion described in Eq. (4) as follows:

R(k)
?

i,j =

{
0, if j ∈ F (k−1)

i∨
l∈Ni R

(k−1)?

l,j , otherwise
(9)

Fi(k) = Fi(k−1) ∪ {vj|R
(k)?

i,j = 1} (10)

Path Pruning:Note that we restrict the element R(k)
?

i,j not to
produce 1 (True) if any shorter path from vi to vj was already
in the footprint setF (k−1)

i in order to remove paths longer than
the shortest path between two nodes. Recall that the iterative
computation yields k-order optimal reachability matrix R(k)?

by Definition 4.
The computation of each i-th row of R(k+1)? requires

the ci iterations for summation (
∑

or
∨
) of n-element

vectors while ci is the number of edges from node
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FIGURE 5. Comparison between k-order reachability matrix and k-order optimal reachability matrix: (a) a given directed graph with unit edge costs,
(b) nodes are included in different color bands in accordance with the order of the reachability from the node v0 which is encoded in the row R(k)

0,:
,

and (c) the optimal reachability information encoded in R(k)?
0,:

.

vi and
∑n

i=1 ci = m. Here, the time complexity is O(nci).
Therefore, the computation of R(k)? from R(k−1)? takes
O(nm) time. Besides, the shortest path from node vi to node
vj has the length of k iff R(k)

?

i,j is nonzero. The following two
lemmas support the fact that the optimal reachability matrix
is the result of the path pruning:
Lemma 1: If R(k)

?

i,j is nonzero, no elements R(k−s)
?

i,j is
nonzero for any positive integers s less than k .

Proof: If there exists any nonzero element R(k−s)
?

i,j ,

the node vjmust have been inserted inF (k−s)
i which is a subset

of F (k)
i . If the node is in F (k)

i , R(k)
?

i,j is enforced to be 0. This
is contradictory to the assumption. Therefore, the lemma is
true.
Lemma 2: If R(k)

?

i,j is nonzero, no elements R(k+s)
?

i,j is
nonzero for any positive integers s.

Proof: Since N (k)
i is the subset of N (k+s)

i and node vj is
the element of N (k)

i , it is trivial that R(k+s)
?

i,j will be enforced
to be 0.

First simple idea is to accelerate the computation for
summation of n-dimensional vectors using vector paral-
lelism. Vector parallelism exploits data level parallelism
[36]. By Flynn’s categorization in parallel processors, single
instruction, multiple data (SIMD) processing exploits the
same instruction broadcasting to all ALUs and execution
in parallel on ALUs. This same operation can handle eight
32-bit floating-point operations or four 64-bit floating-point
operations. The number of elements in a SIMD operation
varies from a small number to thousands. Besides, modern
standard array processing libraries such as NumPy employs
SIMD vectorized operations based on SSE2 [37]. The vec-
torization enables the processing of v-element array to be
done in O(δv), and δv � n. Thus, the improved SIMD-based
computation for R(k)? from R(k−1)? takes O(δvm) time.
Our arbitrary-order reachability computation algorithm

works by employing the reachability pruning. Algorithm 1

Algorithm 1 k-Order Reachability Matrix (AORM)

Input: Adjacency matrix A ∈ Rn×n,
Reachability constraints kc

Output: Sequence of reachability matrix R(k)? ,
where R(k)?

∈ Rn×n for k ∈ {2, . . . , d}
• Phase #1. Initialization

1: k ← 1
2: R(k)?

← A F initialize reachability matrix
3: F← I+ A F initialize footprint matrix
• Phase #2. Incremental R(k)? via matrix multiplication

4: while R(k)? is not converged or k < kc do
5: k ← k + 1
F perform vectorized reachability pruning using@ op.
F@: SIMD-based matrix multiplication

6: R(k)?
← H(H(A@R(k−1)? )− F)

7: F← R(k)?
+ F F update a footprint matrix

8: yield R̃k

9: end while

presents the k-order reachability matrix computation algo-
rithm. This algorithm receives the adjacency matrix A and
the reachability constraints kc as inputs. Then the algorithm
yields the sequence of R(k)? for a given k = 2, 3, · · · , d ,
where d is a diameter of a graph. This algorithm consists of
two phases: the initialization phase and the incremental opti-
mal reachability matrix R(k)? computation phase via matrix
multiplication. In the initialization phase, first, the algorithm
initializes a hop count variable, reachability matrix, and foot-
print matrix (Line 1–3). In the incremental R(k)? computa-
tion phase, it performs k-order optimal reachability matrix
computation via the vectorized reachability pruning (Line 6).
The H(x) function is heaviside step function (or unit step
function). This function returns 1 if x is larger than 0, and 0 if
otherwise. Then it updates a footprint matrix (Line 7). Then
it incrementally produces the optimal reachability matrix
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according to the hop count (Line 8). It performs iteratively
this procedure until the k-order reachability matrix is con-
verged or reachability constraints are reached (Line 4–9).

To present a more detailed AORM procedure, we describe
how we can obtain the optimal reachability with the example
in Figure 5.Wemark nodes with different color bands accord-
ing to the order of reachability from v0. Also, we express the
directed edges with different colors by the path length from
v0. Let S ⊂ E be a subset of edges in an arbitrary-order
shortest path S and S̄ = E \S be a subset of edges included in
longer paths than S . For instance, given the directed graph G,
we have S̄ = {e7,3, e10,11, e12,4} in Figure 5 (dashed black
edges). Besides, the color bands represent the information
encoded in R(k)

0,: . More specifically, the node v11 appears in

R(3)
0,: andR

(4)
0,: because of the edge e6,11 and e10,11 respectively.

In particular, the edge e12,4 generate a cycle. Thus, v7 and v12
appear again in R(5)

0,: and R(6)
0,: respectively. Even though the

diameter of the graph is only 3, these nodes will appear in
R(5+3s)
0,: and R(6+3s)

0,: for every integer s ≥ 0 due to the cycle.
Convergence Property: We can get the k-order opti-

mal reachability matrix via reachability pruning as shown
in Figure 5-(c). The color bands in the figure shows the infor-
mation encoded inR(k)?

0,: . Note thatR
(k)?

0,: is 0when k is greater
than the diameter of the graph. So, each node appears in
only one of the color bands representing the k-order optimal
reachability. The R(k)? converges to 0 as k increases accord-
ing to the reachability convergence characteristic. Hence,
the maximum k with non-zero R(k)? is the diameter of the
graph. Recall that we can not provide this property via Ak

and R(k). One can utilize a normalized adjacency to compute
the proximity for graph embedding. However, the powers of
the adjacency matrix only decay but never converge to 0. The
convergence of R(k) makes it possible for the proximity mea-
sure based on the powers to determine the truncation order.
We can exploit a weighted sum of a finite number of the k-
order optimal reachability matrix as a proximity measure for
the higher-order representation learning of graphs as follows:

P =
d∑
k=1

wkR(k)? , (11)

where wk is the weight for the k-th reachability matrix. Here,
we can define weights for the significance of each order of
reachability simply wk = 1/k . Another approach to finding
the appropriate weights is to employ machine learning tech-
niques using deep learning models such as Deepwalk [38],
node2vec [39], and LINE [26].

B. INCREMENTAL k-ORDER REACHABILITY
Although SIMD-based AORM, called M-AORM, in Algo-
rithm 1 accelerates the matrix multiplication operations on
relatively small graphs, it still requires substantial time to
handle massive sparse graphs in practice. To overcome this
limitation, we present incremental AORM to utilize the sum-
mation of non-zero elements in the hierarchical reachability
matrix based on neighborhood information. Our algorithm

Algorithm 2 Incremental k-Order Reachability Matrix (I-
AORM)
Input: Adjacency matrix A ∈ Rn×n,

Reachability constraints kc
Output: Sequence of reachability matrix R(k)? ,

where R(k)?
∈ Rn×n for k ∈ {2, . . . , d}

• Phase #1. Initialization
1: k ← 1
2: R(1)?

← H(A) F initialize reachability matrix
3: F← I+ R(1)?

F initialize footprint matrix
F construct neighbors information NA

4: for i ∈ {0, . . . , n− 1} do
5: Ni← extract_neighbors(Ai,∗)
6: end for
• Phase #2. Incremental R(k)? computation

7: while R(k)? is not converged or k < kc do
8: k ← k + 1
F compute an optimal reachability matrix R(k)?

9: for i ∈ {1, . . . , n} do
10: R(k)?

i,: ← H(
∑

l∈Li R
(k−1)?

l,: )
11: end for

F perform reachability pruning
12: R(k)?

← H(H(R(k)? )− F)
13: F← R(k)?

+ F F update a footprint matrix
14: yield R(k)?

15: end while

so-called I-AORM consists of two phases: the initialization
phase and the incremental R(k)? computation phase as shown
in Algorithm 2. In the initialization phase, first, the algo-
rithm initializes a hop count variable, reachability matrix,
and footprint matrix (Line 1–3). Then it constructs neighbors
information NA (Line 4–6). Based on NA, the algorithm
performs the computation of an optimal reachability matrix
R(k)? (Line 9–11) with reachability pruning (Line 12–13)
in the second phase. For each node, it updates the optimal
reachability according to the reachability constraint (Line 9).
Then it performs the reachability pruning (Line 12) and
updates a footprint matrix (Line 13). It performs iteratively
this procedure until the k-order reachability matrix is con-
verged or reachability constraints are reached (Line 7).
Architecture Details: Figure 6 illustrates the I-AORM

framework. First, we extract the neighborhood information
NA from A. Then, we exploit this information to perform
incremental computation for reachability matrices from the
order of 1 to k . This information is static throughout the
computation. Thus, computational cost for each iteration
for incremental computation is also constant. Each iteration,
we utilize the previous order reachability R(k−1) to compute
the k-order reachability R(k). Our algorithm constructs the
i-th row of R(k) in accordance with the neighbor information
Ni by aggregating allR

(k−1)
j such that j ∈ Ni. We easily obtain

the k-order optimal reachability matrix R(k)? by applying the
footprint matrix F as mask to the reachability matrix. Then,
the framework keeps the nonzero elements in the reachability
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FIGURE 6. I-AORM framework: First, I-AORM extracts the neighborhood information NA. Then,
we exploit this information to perform incremental computation for reachability matrices from the
order of 1 to k . Our algorithm constructs the i -th row of R(k) using NA and R(k−1)

j . For reachability
pruning we use the footprint matrix F as mask to the reachability matrix. This procedure continues until
reachability converged or the reachability constraints are satisfied.

matrix to F to compute the next order optimal reachabil-
ity matrix. This procedure continues until reachability con-
verged or the reachability constraints are satisfied. Recall that
the shortest path from node vi to node vj has the length of k if
and only if R(k)

?

i,j is nonzero. In this context, we can efficiently
exploit the proposed algorithm for incremental APSP compu-
tation with k-order optimal reachability matrix.We can easily
determine the weight ws in Eq. (11) to yield all-pair shortest
paths matrix D based on the Lemma 1 and Lemma 2. We
now introduce the following Theorem called the Incremental
APSP theorem adapting the AORM convergence property to
the APSP problem.
Theorem 1 (Incremental APSP): Let R(k)? be the k-order

optimal reachability matrix for a unweighted, directed graph,
diameter d and order k . Then the distance matrix for APSP is

D =
d∑
k=1

kR(k)? , (12)

where k = 1, 2, · · · , d . Here, the element Di,j ∈ D means
the length of the shortest path from vi to vj.

Proof: If the shortest path from node vi to vj has the
length of k , R(k+s)

?

i,j is 1 iff s = 0 by the Lemma 1 and Lemma

2. Thus, Di,j = k means
∑d

k=1 kR
(k)?

i,j .

Note that we figure out the diameter d when all the entries
in R(k)? is zero; this means no longer path with a length of
k + s with a positive integer s exists. Thus, we can terminate
the iterative computation by checking whether the current
optimal reachability matrix is 0 or not. The pseudo code
in Algorithm 3 shows how we compute all-pairs shortest
paths based on the AORM. This algorithm receives the adja-
cency matrix A and the reachability constraints kc as inputs.
Then the algorithm returns the all-pairs shortest path distance
matrix D according to the reachability constraints kc. First,
the algorithm sets the reachability constraints (Line 1). Then,
it assigns an initial distance matrix as an input adjacency
matrix (Line 2).

And it creates an AORM instance as an iterator (Line 3).
Based on the Theorem 1, it incrementally computes the all-
pairs shortest path distance matrix according to the reachabil-
ity constraints (Line 4–6). This computation terminates if the
reachability matrix is converged or the reachability constraint
is satisfied. Note that the algorithm performs the reachability
matrix computation in a whole graph-wise fashion via matrix
operations.

C. COMPLEXITY ANALYSIS
The complexity analysis of our algorithms includes the fol-
lowing two aspects: reachability computation for exact APSP
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Algorithm 3 All-Pairs Shortest Paths Computation

Input: Adjacency matrix A ∈ Rn×n

Reachability constraints kc [default: kc = ∞]
Output: All-pairs shortest path distance matrix D ∈ Rn×n

1: k ← kc F set the reachability constraints
2: D← A
3: AORMITERATOR← AORM(A, k)
F perform incremental APSP computation

4: for each R(k)? from AORMITERATOR do
5: D← D+ kR(k)?

6: end for
7: return D

and arbitrary-hop constrained APSP with reachability con-
straints for graph embedding applications.
Reachability Computation for Exact APSP: The time com-

plexity of AORM optimal reachability computation for an
unweighted, directed graph G is O(nm). Hence, time com-
plexity of exact APSP is O(nmd), where d = diam(G) or the
diameter of G. Furthermore, by exploiting the vectorized pro-
cessing for matrix column-wise sum operations, we improve
the time complexity toO(δvmd), where δv = n

γ
and γ denotes

the number of elements in a SIMD operation.2 The nonzero
elements of R̃k are the k-th level nodes visited by the breadth-
first search (BFS) from all the nodes.

It is well known that the time complexity of BFS for finding
the single-source shortest paths is O(n + m). Then, we can
extend this algorithm for all n nodes to compute the all-pair
shortest paths. Therefore, the time complexity of BFS-based
all-pair shortest paths computation is O(n2 + nm). The com-
plexity of one of the best previous algorithms is O(nω log n),
where nω denotes the time required for the multiplication
of two n × n matrices [8]. The best known algorithm for
solving APSP problem is proposed in [40]. However, both
methods are only applicable to undirected graphs. It is also
proposed to solve the APSP problem with directed graphs
[41]. Nevertheless, this method demands more time than the
other APSP algorithms for undirected graphs.

In contrast, our AORM-based APSP algorithm via the
power iteration of the reachability matrix works on directed
graphs without any difficulties. Furthermore, our algorithm
can handle even disconnected graphs. The time complexity of
the method isO(δvmd). Most real networks such as temporal
reachability networks, citation networks, and collaboration
networks are sparse. So, δv is small enough compared to n.
Consequently, AORM performance only depends on |E| and
diam(G). Therefore, the proposed algorithm is suitable for
massive graphs with sparse edges.
Arbitrary-Hop Constrained APSP: One of the vital prob-

lems in massive graph mining is to capture the local neighbor
structure of a node as fast as possible. To solve this prob-
lem efficiently, we need to exploit arbitrary-hop constrained

2The bit widths of SIMD in modern commodity CPUs are 128, 256, and
512. Hence, 16 ≤ γ ≤ 64 in case of the byte operations.

reachability computation for massive graphs [42], [43]. In
the context of traffic congestion prediction (our motivating
example in Section I), all-pairs shortest paths are less mean-
ingful for predicting the diffusion of the future congestion
in the near future [7]. In particular, congestion of a road
segment does not affect the congestion from road segments
reachable via many hops in a road network. Motivated by this
example, AORM-based APSP algorithm in Algorithm 3 can
handle the arbitrary-hop constrained APSP for practical prox-
imity analysis. Moreover, in the context of graph embedding,
the relationship between two nodes far away from each other
does not show a significant similarity in massive networks.
Specifically, our arbitrary-hop constrained reachability algo-
rithm is beneficial for node embedding approaches based on
the shortest path distance [44]. Therefore, once we regard the
distance greater than k-hop constraints dk as an unimportant
factor, we can cut off the sequence of the power iteration
of the reachability matrix with dk . The time complexity for
our arbitrary-hop constrained APSP algorithm is O(δvmdk ).
Lastly, the space complexity of Algorithm 1, 2, and 3 is2(n2)
since these algorithms require a constant number of matrices.

D. INCREMENTAL GIRTH
We now present another attractive characteristic of AORM for
graph analytics. The girth of a graph is an essential graph
quantity to analyze the characteristics of a directed graph in
graph mining [45]–[47]. A q-cycle is a cycle of length q. If
a directed graph G has a q-cycle, where q is the minimum
integer, then q means the girth of G; denoted by g(G) [46].

In our work, we can compute the girth of a unweighted
directed graph via AORM with a particular operator, SEMIN

operator. In addition, our algorithm provides the lengths of
the shortest cycle and the longest one for each node. Note
that the shortest cycle has the smallest accessibility distance
since our algorithm focuses on handling directed unweighted
graphs which can be even disconnected.
Definition 5 (Selection of Element-wise Minimum): Let a

matrix X = [aij]0≤i,j≤n be given as the following:

X =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

 (13)

For simplicity, we use this matrix notation X as [aij], where
i, j ∈ [n]. We define the selection of element-wise minimum
(SEMIN) operator, Iul . The SEMIN operator selects the element-
wise minimum positive value among given matrices Xs and
returns a matrix Xm as follows.

Isk=1(Xk ) = min(X1,X2, . . . ,Xs) (14)

= min
i,j∈[n]

([aij]1, [aij]2, . . . , [aij]s) = Xm, (15)

where k = 1, 2, . . . , s.
For G, let Gk be the k-hop constrained reachable configura-
tion, and let k be a positive integer. In other words, every node
in G has at most k-order reachability to other nodes. Also,
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if k = d , every node can traverse a graph without any hop
constraints, where d denotes the diameter of G.
Theorem 2 (Incremental Girth:) For any unweighted

directed graph G, and unknown girth g(G), we can compute
the incremental girth g(Gk ) via AORM and SEMIN operator
under k-hop constrained reachable configuration Gk as fol-
lows.

C(k)
= Iki=2(i+ 1)H(diag(AR̃(i))) (16)

g(Gk ) = min
i∈[n]
{Ci,i} (17)

where C(k) denotes the diagonal matrix for Gk , its diagonal
entry Ci,i refers to the incremental girth under k-hop con-
strained reachable configuration, and d is a diameter of G.

Proof: Assume we have distinct vertices v1, v2, . . . , vs,
where s = k − 1. A path C = 〈v1, v2, . . . , vs, vk 〉 is a s-cycle
if and only if v1 = vk . Here, R̃(k) is the k-order reachabil-
ity matrix before performing the reachability pruning. Thus,
the element R̃(k)i,s has 1. Since vs ∈ Ni, AR̃(i) will produce a
matrixwith i-th diagonal element being nonzero. At arbitrary-
order k for reachability, the cycle length at k is k + 1.
Thus, the minimum of Ci,i is the girth of Gk . Furthermore,
the maximum of Ci,i means the longest cycle length in Gk .
So, the result of min{Ci,i} for C(k) at k = d is the girth of the
given graph G. According to the reachability order k , cycle
length l is 3 and d + 1 from R̃(2) and R̃(d), respectively;
3 ≤ l ≤ d + 1. Hence the computation result via AORM

and SEMIN operator on Gk according to k is incremental girth
g(Gk ).
Application to Versatile Feature Generation: The rows

of all-pairs distance matrix D has diagonal of 0’s, and the
shortest cycle length (girth) matrix C is a diagonal matrix.
Therefore, we can generate a feature matrix by performing
the addition of two matrices as D+ C.

Besides, we utilize the matrix D to produce the weighted
sum of R(k)? with several weights for k . For example, if we
want to obtain

∑d
k=1 wk R̃

k with wk = 1/k , then we can
compute the weighted sum as follows:

d∑
k=1

1
k
R(k)?

= 1�0̃ D, (18)

where�0̃ is the same as the Hadamard division� except that
the result is 0 when the divider is 0. Moreover, we can obtain
the weighted sum with wk = 1/k2 as

∑d
k=1

1
k2
R(k)?

= (1�0̃

D)2. To provide general form, we can generate the weighted
sum with wk = w(k) by employing W(X); this performs the
element-wise application of the function w(·) to each element
of the matrix X as follows:

d∑
k=1

w(k)R(k)?
=W(D) (19)

In graph embedding, one can create the node features
in diverse ways. The proposed method for versatile feature
generation enables us to embed different features for graph
representation learning. Furthermore, we can perform the

FIGURE 7. Datasets of a random graph and a real world network. (a) The
ba_network is a random graph based on Barabási–Albert model. (b) The
cit-DBLP is one of the citation networks that is a disconnected directed
real-world network.

comparison between the embedding results. Thus, our ver-
satile feature generation method is useful for obtaining sev-
eral weighted sums in a flexible manner applicable to graph
embedding.

V. EXPERIMENTS
In this section, we conduct extensive experiments on several
types of synthetic and real-world networks for verifying the
effectiveness of the AORM framework.

A. EXPERIMENTS SETUP
We perform all our experiments on the single machine with
Intel Xeon E5 3GHz, 64 GB memory. We implement the
AORM framework using Python. Also, we utilize the Net-
workX library [48] to create random graphs and compare the
APSP performance comparison.
Datasets: We summarize data statistics of synthetic net-

works and real-world networks in Table 2 and Table 3, respec-
tively. Figure 7 shows examples of synthetic datasets and real-
world datasets; a Barabási–Albert model-based randomgraph
and a citation network, respectively.

For synthetic network experiments, we exploit twenty
datasets in Table 2. These datasets are random networks gen-
erated from several random graph generation models, such
as Barabási–Albert, Erdös-Rényi, random geometric graph,
power-law cluster graph, and random k-out graph models.
For the objective evaluation and reproducibility, we utilize the
seventeen public benchmark datasets from the network repos-
itory [29]. We also employ the other three datasets generated
by our implemented random graph generator exploiting the
NetworkX API. Here, the random k-out graph is a connected,
directed network.
For real-world network experiments, we employ twenty

real-world networks for APSP performance evaluation. We
obtain these datasets from the SNAP [28] and the network
repository [29]. These datasets have various network types
such as directed networks, citation networks, collaboration
networks, temporal reachability networks, social networks,
and road networks in Table 3.
Baselines: We perform a comparison of the APSP com-

putation performance of the AORM against the following
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TABLE 2. Data statistics of synthetic networks. We conduct the
experiments for twenty synthetic networks. These networks include
seventeen datasets from the network repository [29] and three datasets
(marked with *) generated from our implemented random graph
generator exploiting the NetworkX API. Most datasets are connected and
undirected networks. On the other hand, we exploit three disconnected
networks (marked with †) and one directed network (marked with ‡).
(Model - BA: Barabási–Albert, ER: Erdös-Rényi, GEO: random geometric
graph, PLC: powerlaw cluster graph, KOG: random k-out graph).

three baseline methods. The baseline methods used in our
work are currently known to be superior in terms of com-
putational complexity (Seidel’s method [8]) and the most
widely employed (NetworkX [48] and vectorized BFS-based
approaches) in the network analytics community. Besides,
these methods are publicly available for performance com-
parison.
• P-SM [8]: This method is Seidel’s method using vector-
ized matrix multiplications.

• NetworkX [48]: NetworkX is an open-source network
analysis library in Python. This library supports many
standard graph algorithms includingAPSP computation.
We exploit APSP computation API in NetworkX to
perform performance comparison.

• V-BFS [49]: Breadth First Search (BFS) is a means of
traversing the portion of the graph that is reachable from
a particular vertex. We can get the APSP via compu-
tation of Single-Source Shortest Paths (SSSP) for each
node in a directed unweighted graph. We implement
the vectorized BFS-based algorithm to accelerate APSP
computations via SIMD utilization.

We perform the APSP computation as described Algorithm
3 which may utilize either Algorithm 1 or 2. Based on the
AORM algorithm, the method can be distinguished as follows:
• M-AORM: We implement the APSP algorithm using
the vectorized matrix multiplication-based AORM.

• I-AORM: We implement the APSP algorithm via incre-
mental AORM with vectorized column-wise summation
based on the first-order reachability.

The P-SM method only supports connected unweighted
undirected graphs due to its recursive algorithm nature.

TABLE 3. Data statistics of real-world networks. All directed networks
and citation networks are directed graphs. (Type - DN: directed networks,
CIT: citation networks, CA: collaboration networks, TRN: temporal
reachability networks, SOC: social networks, RN: road networks).

To compare with P-SM, we perform the APSP computation
performance on connected undirected random graphs based
on several generation models; Erdös-Rényi, Barabási–Albert,
random geometric graph, and powerlaw clustered graphmod-
els [50].

B. APSP PERFORMANCE
In this section, we evaluate the performance of APSP compu-
tation compared with baseline methods on synthetic graphs
and diverse real-world networks. Tables 4 and 5 show
the performance comparison results of APSP computation
for random graphs and real-world networks, respectively.
According to Table 4 and 5, our proposedmethods,M-AORM
and I-AORM, outperform three baselines. We perform the
comparison between our methods and three baselines for ten
different random networks based on Barabási–Albert growth
model in Figure 8. The result shows that our method outper-
forms NetworkX up to 11 times.
Incremental APSP: We conduct the experiments for

incremental APSP computation on the directed network
(email-Eu-core) and the collaboration network (ca-HepPh)
in Table 3. For our experiments, we set reachability con-
straints according to the diameters of these networks. Note
that P-SM does not support the incremental APSP compu-
tation due to its recursive algorithm nature. Our methods
(I-AORM, M-AORM) are up to 10X and 11.1X faster than
the NetworkX in Figure 9 (a) and (b), respectively.

C. ASYMPTOTIC CORRECTNESS
In this section, we evaluate the asymptotic correctness of
our approach. Our AORM approach provides fast conver-
gence property for asymptotic correctness. We perform the
experiment on a random graph with 5,000 nodes based on
Erdös-Rényi model for the proposed AORM-based incre-
mental APSP computation. The elements of approximate
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TABLE 4. Performance comparison of APSP computation for synthetic
networks. We mark three disconnected graphs and one directed network
as † and ‡, respectively. The P-SM cannot handle these networks due to
its recursive algorithm nature. Here, bold font denotes the fastest running
time. (Methods - P: P-SM, NX: NetworkX, V-B: V-BFS, M-A: M-AORM, I-A:
I-AORM, unit: seconds).

TABLE 5. Running time comparison of APSP computation for real-world
networks. Note that P-SM is not applicable for directed networks and
disconnected networks. Here, bold font denotes the best performance.
(Methods - P: P-SM, NX: NetworkX, V-B: V-BFS, M-A: M-AORM, I-A:
I-AORM, unit: seconds).

APSP matrix D(k) monotonically increase as the number
of iteration k increases. Therefore, the correctness of the
approximate solution can be easily measured by comparing
the total sum of elements of the matrix with that of the
exact solution matrix. We measure the asymptotic correct-
ness C of our method by dividing the element sum of the
approximate matrix D(k) by that of the correct solution D as
follows:

C =
∑n

i=1
∑n

j=1D
k
ij∑n

i=1
∑n

j=1Dij
(20)

Table 6 shows the measured correctness of approximate
APSP computation for a 5,000-node random graph based

FIGURE 8. Comparison of APSP computation performance for synthetic
networks. We conduct the comparison between our methods (M-AORM,
I-AORM) and three baselines (P-SM, NetworkX, V-BFS) and for ten
random graphs based on Barabási–Albert growth model (n = {500, 1,000,
2,500, 5,000, 7,500, 10,000, 15,000, 20,000, 25,000, 30,000}). Our method
outperforms up to 11X compared to NetworkX.

FIGURE 9. Performance comparison of incremental APSP computation for
real-world networks. We compare the performance of incremental APSP
computation between our methods (M-AORM, I-AORM) and baselines
(NetworkX, V-BFS). (a) ca-HepPh dataset (n = 11, 204): I-AORM
outperforms up to 10X compared to NetworkX. The average speedup
compared to NetworkX is 5.3X. (b) email-Eu-core dataset (n = 986):
M-AORM outperforms up to 11.1X compared to NetworkX. The average
speedup compared to NetworkX is 8.2X.

on Erdös-Rényi model with different edge probabilities p.
Our method provides fast convergence property finding
the exact solution within 4 iterations in this experimental
setting.

In Figure 10, the line plots represent the correctness of
the approximate solutions for graphs with 10,000 nodes
and different edge probabilities. As the number of iterations
increases, the lines approach to one. The approximate solu-
tion more rapidly approaches to the correct result when the
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TABLE 6. The asymptotic correctness. The correctness C of approximate
computation of APSP for the 5,000-node random graph based on
Erdös-Rényi model with different edge probabilities p. The proposed
method provides fast convergence property for asymptotic correctness
finding the exact solution within 4 iterations in this experimental setting.

FIGURE 10. The asymptotic correctness. We conduct the experiment of
incremental APSP computation for the random graph based on
Erdös-Rényi model with 10,000 nodes and the edge probabilities p. The
proposed method provides fast convergence property for asymptotic
correctness. The line plots represent the correctness of the approximate
solutions for graphs with different edge probabilities.

edge probabilities increase. Note that the convergence speed
is not proportional to the edge probability.

Besides, we experiment with a graph with 20,000 nodes to
measure the correctness of approximate APSP with massive
number of nodes. Figure 11 presents the difference between
the approximate and correct computations of all-pair shortest
paths. The rows illustrate the progressive convergence of the
approximate computation with different edge probabilities p.
The first column shows the adjacency matrices. The matrices
from the 2nd column to the 6th column visualize the differ-
ence between the correct APSPmatrixD and the approximate
solutions with k iterations, i.e., D(k)

=
∑k

s=1R
(k)? . The 7th

column is the approximate solution obtained only with six
iterations. The last column shows the exact APSP matrix.
Note that 0-value entries are colored as white. As shown in the
figure, the approximate APSP with incremental computation
rapidly converges to the correct solution as the number of
edges increases.
Analysis and Limitations: Based on the sparsity on real-

world networks, the results of our extensive experiments
show that AORM significantly improves the performance
of reachability computations. The main advantage of our
method is its properties of incremental computation and fast
convergence. One limitation of our current implementation

FIGURE 11. The difference between the approximate and exact
computations of all-pair shortest paths. Each row shows the convergence
of the approximate computation with different edge probabilities p. Note
that the differences between the exact results and the approximate
estimations is visualized in black rectangles, and 0-value entries are
colored as white.

is that we employ data structures based on matrix repre-
sentation requiring substantial memory spaces compared to
sparse matrices. However, it is easy to re-implement our
method with sparse matrix representation for further opti-
mization in the aspect of memory usage and computational
cost.

D. APPLICATION: NODE EMBEDDING
We perform the experiment for node embedding as one of the
AORM-based applications. Figure 12 shows the famous social
network first introduced in [51]. The club was divided into
two clubs as shown in Figure 12 (b). Figure 12 (c) shows the
four communities are detected based onmodularity.Modular-
ity measures how many more edges are there within groups
compared to the expected number in an equivalent network
with random edges [52].

We exploit the AORM framework to compute the vari-
ous feature matrices in node embedding tasks. Based on
these feature matrices, we perform the network embedding
for Zachary’s karate network using the matrix factorization
shown in Figure 13. The node communities represent dif-
ferent colors to see how the method embedded the nodes
in the same cluster in the latent space. In our experiments,
the representation space is two-dimensional. The upper row
illustrates the embedding results with colors indicating two
communities after the actual division of the club (the ground
truth). The lower row shows the same embedding results, but
the communities are determined by the modularity measure.
The embedded nodes in the upper row connect each other
based on the original connectivity. Here, we can observe that
the nodes in different communities are separated along the
vertical axis. In the lower row, we represent only nodes but
distinguish the nodes by the auxiliary lines. In particular,
the embedding result in the 2nd column cannot be divided
by linear line segments. Each column presents the different
feature matrix. We exploit the all-pairs shortest path distance
D to represent node features in Figure 13-(a). Figure 13
(b), (c), and (d) show the results when we employ 1 �0̃

D, 1 �0̃ (D + C), and 1 �0̃ (D ⊗ D + C) for features
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FIGURE 12. Zachary’s karate network. (a) the connectivity of the club members, (b) two communities after the actual division, and (c) the four
communities detected by modularity analysi.

FIGURE 13. Node embedding results. We perform the matrix factorization of the various feature matrices for Zachary’s karate network.
Communities of nodes are distinguished with colors. (upper row: two communities observed, lower row: four communities detected with
modularity measure) The node features are represented with (a) all-pairs shortest path distance D, (b) reciprocal path distance 1�0̃ D,
(c) reciprocal path distance with cycles 1�0̃ (D+ C), and (d) reciprocal squared path distance 1�0̃ (D⊗ D+ C).

respectively. We normalize each row of matrices before the
matrix factorization. We obtain the feature matrices by the
accumulation of the k-order reachability matrices. We can
see that the node embedding result successfully preserves the
structural proximity between nodes, as shown in Figure 13.
We successfully employ the AORM for the node significance
analysis of networks in node classification. Figure 14 illus-
trates the node significance analysis based on the reachability
information. Also, we use Zachary’s karate club network.
We measure the significance of a node based on row of the
accumulated sum of the reachability matrices, i.e., D(k)

=∑k
s=1R

(s)? . Each row of the matrix represents the reacha-
bility or closeness between the corresponding node and all
other nodes. Therefore, we can estimate the node importance

by the frequency of the short paths to other nodes. For the
analysis shown in Figure 14, we compute the significance of
a node vi as

∑n
j=1 1/

0̃D3
i,j, where /

0̃ is identical to division
operation except that it returns 0 when the divider is 0. Hence,
we compute the significance by obtaining 1�0̃ D.
Graph Classification: One of the popular downstream

tasks in network embedding is graph classification: to predict
the class labels of graphs [22]. Various graph kernels and
graph neural network approaches have been studied for graph
classification [23], [44]. For graph classification, we expect
that AORM can be applied to graph kernels and deep learn-
ing on graphs as fundamental reachability query operators
for analyzing the network structure. For instance, we can
detect similar community structures in graphs by computing
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FIGURE 14. Node significance. We measure density or significance by
several operations on all-pairs path distance matrix, 1�0̃ D⊗ D⊗ D.

arbitrary-order reachability using AORM. Our framework
will be helpful to classify similar subgraphs by leveraging
both network context and node features in semi-supervised
learning.

VI. RELATED WORK
This section briefly presents recent literature on all pairs
shortest path algorithms, reachability computation, and graph
embedding for massive graphs.
All-Pairs Shortest Path Computation: Providing efficient

routes on road networks [53] is one of the popular commer-
cial applications of shortest path algorithm, such as Google
Maps, Yahoo Maps, or MapQuest. The all-pairs shortest
path problem (APSP) [54] is to discover the distance and
shortest path between every pair of vertices in a directed [41],
[55] or undirected graph G [56], [57]. A road network or com-
munication network is one of sparse graphs [10]. This kind
of graph has directional and sparse properties [49]. In terms
of graph sparsity, an average node degree in the graph is
seven or less. Thorup proposed a deterministic linear time and
space algorithm for the single-source shortest paths (SSSP)
problem [58]. His SSSP algorithm works in undirected, pos-
itive integer-weighted graphs.

Seidel’s algorithm works by recursively shrinking the
given graph G to a graph H such that H has 2 useful prop-
erties: H ’s shortest pairs are about half as long as G’s, and
the APSP of H can be exploited to quickly find the APSP
of G. The time complexity of this algorithm is Õ(nw), where
w = 2.373 [8]. However, it only works on undirected graphs
where each edge has weight one. Moreover, this algorithm
cannot compute arbitrary-order reachability since it performs
in a recursive fashion. The directionality of the edge is one of
the essential information for analyzing the asymmetric rela-
tionship in graphs. However, the majority of prior researches
focused only on undirected graphs. Pettie’s algorithm solved
the APSP problem to accommodate directed, real-weighted
graphs, which can perform in O(mn + n2 log log n) time
[59]. This algorithm adapted the hierarchy approach based

on Thorup’s algorithm [58]. Note that our algorithm works in
unweighted directed graphs, even for disconnected graphs.

In the high-performance computing research community
[60], many researchers focused on studying the acceleration
algorithms for solving the APSP problem based on the equiv-
alence between finding the shortest path and solving a linear
system [34], [61], [62]. Recent work showed a parallel APSP
algorithm via sparse matrix computation and shared-memory
parallelism for sparse graphs [63]. This study proposed a
method to employ graph sparsity in the FLOYD-WARSHALL

algorithm [64] to utilize efficient shared-memory parallelism.
Similarly, many previous works have focused on studying
parallel APSP algorithms based on sparse linear algebra [15],
[65]–[67]. Aaron et al. introduced a randomized algorithm
via random filtered broadcast for distributed all-pairs shortest
paths problems [68]. Their algorithm solved the distributed
APSP problem on the CONGESTmodel of distributed network
in Õ(n) expected time [69].
Reachability Computation: Reachability queries refers to

examining whether there exists a path between a node u and
node v in a graph [70]. In particular, processing reachability
queries formassive graphs is one of the challenging problems
in diverse domains, such as graph databases, graph mining,
and social network analytics [71]–[73]. The graph summa-
rization approach for label-constrained reachability queries
has been tackled in recent work [74]. This study concentrated
on regular path queries to recognize graph paths and approx-
imate evaluation of counting label-constrained reachability
queries. However, this method has serious problems to apply
in application areas requiring exact answers for reachability
queries, such as path-finding in road networks. In contrast,
we can give the exact optimal paths in a directed graph,
as well as arbitrary-order reachable paths through AORM.
Graph Embedding: Graphs contain discrete information

such as nodes and edges. However, most modern machine
learning (ML) techniques operate on continuous inputs. To
exploit ML for graph analytics, researchers utilize graph
embeddings for the continuous representation of graphs [26],
[38], [75]. These methods map graph nodes, edges, or sub-
graphs to low-dimensional vectors while preserving posi-
tional properties and structural characteristics in the original
graph [27], [39], [76], [77].

The major three common approaches for graph embedding
include matrix factorization, random walk and graph neural
networks. Wang et al. introduced one of the matrix factor-
ization approaches, so-call modularized nonnegative matrix
factorization (M-NMF). This method preserved both the local
structure and the global structure of graphs [78]. DeepWalk is
one of the random walk-based methods [38]. This technique
simulates randomwalks, and then encodes themwith a neural
network model to learn the graphs.

In real-world graphs, random walks will cross the commu-
nity boundaries very often. Each node in graphs has many
roles and belongs to many communities that the random
walk will explore partially. A more comprehensive survey
of network embedding can be found in [77], [79]. Similar
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to graph embedding, graph summarization is to find a com-
pact representation of the input graph; that preserves specific
structural, positional, and other properties in original graphs
[44], [80], [81]. The representation of graph summarization
consists of a summary graph and edge corrections [82].

VII. CONCLUSION
We proposed a novel incremental algorithmic framework
(AORM) to compute arbitrary-order reachability in massive
graphs. The proposed method is simple and fast. Moreover,
the method outperforms the previous methods in terms of
computation time for the all-pairs shortest paths. Another
meaningful advantage of the method is that we can compute
the reachability and APSP even with directed and discon-
nected graphs. This advantage supports practical applications
related to collaboration networks, citation networks, and tem-
poral networks.

Extensive experimental studies demonstrate the advan-
tages of our novel method in the aspects of both computa-
tional efficiency and approximation controllability. The main
advantage of our method is its properties of incremental
computation and fast convergence. The AORM showed bet-
ter computational performance against the currently known
algorithms for the all-pair shortest path problem. Our method
outperforms up to 10 times compared to NetworkX for syn-
thetic and real-world networks. Moreover, the computational
result of the AORM is asymptotically correct and rapidly con-
verges to the exact solution. Therefore, we can approximate
the APSP result with a small negligible error in the early
computation stage. Furthermore, we can exploit the AORM for
versatile feature extraction framework for node embedding.
Future Work: AORM is mainly focusing on the connec-

tivity relation between vertices. It is worth extending our
approaches to analyzing community structures in graphs.
Further work should address computing structural equiv-
alence and accelerating graph neural networks cooperat-
ing with our framework for effective network analytics.
Furthermore, learning on temporal reachability graphs is
related to incremental learning theory since we should con-
tinuously extend a model over time. We hope that future
studies will apply our proposed framework to a more general
case of incremental learning on temporal reachability graphs.
Future work also includes parallelization of AORM for better
performance on massive graphs. The algorithm of AORM

is embarrassingly parallelizable because of the independent
sub-matrices operations.
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