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ABSTRACT Video quality assessment (VQA) methods focus on particular degradation types, usually
artificially induced on a small set of reference videos. Hence, most traditional VQA methods under-perform
in-the-wild. Deep learning approaches have had limited success due to the small size and diversity of existing
VQA datasets, either artificial or authentically distorted. We introduce a new in-the-wild VQA dataset that
is substantially larger and diverse: KonVid-150k. It consists of a coarsely annotated set of 153,841 videos
having five quality ratings each, and 1,596 videos with a minimum of 89 ratings each. Additionally,
we propose new efficient VQA approaches (MLSP-VQA) relying on multi-level spatially pooled deep-
features (MLSP). They are exceptionally well suited for training at scale, compared to deep transfer learning
approaches. Our best method, MLSP-VQA-FF, improves the Spearman rank-order correlation coefficient
(SRCC) performance metric on the commonly used KoNViD-1k in-the-wild benchmark dataset to 0.82.
It surpasses the best existing deep-learning model (0.80 SRCC) and hand-crafted feature-based method
(0.78 SRCC).We further investigate how alternative approaches perform under different levels of label noise,
and dataset size, showing that MLSP-VQA-FF is the overall best method for videos in-the-wild. Finally,
we show that theMLSP-VQAmodels trained on KonVid-150k sets the new state-of-the-art for cross-test per-
formance on KoNViD-1k and LIVE-Qualcomm with a 0.83 and 0.64 SRCC, respectively. For KoNViD-1k
this inter-dataset testing outperforms intra-dataset experiments, showing excellent generalization.

INDEX TERMS Datasets, deep transfer learning, multi-level spatially-pooled features, video quality
assessment, video quality dataset.

I. INTRODUCTION
Videos have become a central medium for business mar-
keting [1], with over 81% of businesses using video as a
marketing tool. Additionally, over 40% of businesses have
adopted live video formats such as Facebook Live for market-
ing and user connection purposes [2]. For consumers, video is
the primary source of media entertainment; for example the
average US consumer spends 38 hours per week watching
video content [3] and it is projected that online videos will
make up more than 82% of all consumer internet traffic
by 2022 [4]. Streaming platforms such as YouTube report
that more than a billion hours of video are watched every
day [5]. The success of online videos is due in part to the con-
sumer belief that traditional TV offers an inferior quality [3].
Additionally, increased accessibility to video content
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acquisition hardware, as well as improvements in overall
image quality, are a central aspect in smartphone technology
advancement. Similarly, user-generated content is produced
at an increasing rate, but the resulting videos often suffer from
quality defects.

Therefore, a wide range of video producers and consumers
should be able to get automated feedback on video qual-
ity. For example, user-generated video distribution platforms
like YouTube or Vimeo may want to analyze new videos
according to quality to separate professional from the amateur
video content, instead of only indexing by video playback
resolution. Additionally, with an automated video quality
assessment (VQA) system, video streaming services can
adjust video encoding parameters to minimize bandwidth
requirements while ensuring the delivery of satisfactory video
quality.

A critical emerging challenge for VQA is to handle ecolog-
ically valid in-the-wild videos. In environmental psychology,
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ecological validity is defined as ‘‘the applicability of the
results of laboratory analogues to non-laboratory, real life
settings’’ [6]. In our case the term can be understood as a
measure for the extent to which the data represented in a
dataset can be generalized to data that would be naturally
encountered in the use of a technology. Concretely, this
would refer to the types and degree of distortions in visual
media contents of internet videos, such as those consumed
on YouTube, Flickr, or Vimeo. The term in-the-wild refers to
datasets that are ‘‘not constructed and designed with research
questions in mind’’ [7]. In the case of VQA this would
mean datasets that are not recorded or altered with a specific
research purpose inmind, such as artificially distorting videos
at variable degrees.

It comes as no surprise that no-reference VQA (NR-VQA),
in particular, has been a field of intensive research in
the past few years achieving significant performance gains
[8]–[19]. However, state-of-the-art NR-VQA algorithms per-
form worse on in-the-wild videos than on synthetically dis-
torted ones. These methods aggregate individual video frame
quality characteristics that are engineered for specific pur-
poses, such as detecting particular compression artifacts.
Often, these features are a balance between precision and
computational efficiency. Furthermore, since there is a lack
of large-scale in-the-wild video quality datasets with authen-
tic distortions, a thorough evaluation of NR-VQA methods
is difficult. Most existing databases are intended as bench-
marks for the detection of those specific artificial distortions
that NR-VQA algorithms have classically been designed to
detect.

Given the previous challenges, our first contribution is the
creation of a large ecologically valid dataset, KonVid-150k.
Similar to the dataset KoNViD-1k [20], the ecological valid-
ity of KonVid-150k stems from its size, content diversity,
as well as naturally occurring, and thus representative degra-
dations. However, being two orders of magnitude larger than
existing datasets, it poses new challenges to VQA methods,
requiring to train across a vast amount of content and a wide
span of authentic distortions. Moreover, since a fixed budget
usually constrains the development of a dataset, we needed
to ensure a minimum level of annotation quality. Therefore,
a part of KonVid-150k consists of 153,841 five seconds
long videos that are annotated by five subjective opinions
each. This set, from here on called KonVid-150k-A, is over
125 times larger than existing VQA datasets in terms of
number of videos and with close to one million subjective
ratings over eight times larger in number of annotations
[20]–[23]. The dataset is accompanied by a benchmark set of
nearly 1,600 videos (KonVid-150k-B) from the same source
with a minimum of 89 opinion scores each. This presents
a unique opportunity to analyze the trade-off between the
number of training videos and the annotation noise/precision,
in terms of the performance on the KonVid-150k-B bench-
mark dataset.

This new dataset exacerbates two problems of classi-
cal NR-VQA methods. First, the computational costs of

hand-crafted feature-based approaches are increased through
the sheer number of videos. Second, since hand-crafted
features handle in-the-wild videos worse than conventional
databases, this dataset is very challenging for classical
NR-VQA methods. An alternative to hand-crafted features
comes with the rise of deep convolutional neural networks
(DCNNs), where stacked layers of increasingly complex fea-
ture detectors are learned directly from observations of input
images. These features are often relatively generic and have
been proven to transfer well to similar tasks that are not too
different from the source domain [24], [25]. This suggests
considering a DCNN as a feature extractor with a benefit over
hand-crafted features in that the features are entirely learned
from data.

As a second contribution, we propose to use a new way
of extracting video features by aggregating activations of all
layers of DCNNs, pre-trained for classification. We adopt
a strategy similar to Hosu et al. [26] and extract narrow
multi-level spatially pooled (MLSP) features of video frames
from an InceptionResNet-v2 [27] architecture to learn VQA.
By global average pooling the outputs of inception module
activation blocks, we obtain fixed sized feature represen-
tations of the frames. We showcase the scalability of this
approach by comparing it to the baseline of freezing the
weights of the feature extraction network and training a new
head, which is a technique that is commonly used in transfer
learning.

The third contribution of this paper consists of two network
variants trained on the frame feature vectors that surpass
state-of-the-art NR-VQA methods on in-the-wild datasets
and train at a rate that is able to scale to hundreds of thousands
of videos. In a short ablation study we investigate the impact
of architectural and hyperparameter choices of both models.
Both approaches are then evaluated on existing VQA datasets
consisting of authentic videos as well as those containing arti-
ficially degraded videos and show that on in-the-wild videos
the proposed method outperforms classical methods based on
hand-crafted features. In particular, training and testing on
KoNViD-1k improves the state-of-the-art 0.80 to 0.82 SRCC.
Finally, we show that training our proposed model on the
new dataset we achieve a 0.83 SRCC when cross-testing on
KoNViD-1k. This outperforms state-of-the-art intra-dataset
test scenarios, where training and testing is performed on the
same dataset. It is surprising, as intra-dataset tests have the
benefit of not being affected by any domain shift [28].

In summary, our main contributions are:
• KonVid-150k, an ecologically valid in-the-wild video
quality assessment database, two orders of magnitude
larger than existing ones.

• The successful application of deep multi-layer spatially
pooled features for video quality assessment, which
allows training of state-of-the-art models at scale on
conventional hardware.

• Three deep neural network models (MLSP-VQA-FF,
-RN, and -HYB). They surpass the intra-dataset state-
of-the-art performance on KoNViD-1k with 0.82 SRCC
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versus the best existing 0.80 SRCC, and show excel-
lent generalization in inter-dataset tests when trained
on KonVid-150k, surpassing even the intra-dataset tests
with 0.83 SRCC.

II. RELATED WORK
This paper contributes to datasets andmethods for video qual-
ity assessment. In this section we summarize related work in
both fields as well as research that uses deep features that was
influential for our work.

A. VQA DATASETS
There are a few distinguishing characteristics that divide
the field of VQA datasets which are usually governed by
decisions made by their creators. We will cover the character-
istics differentiating thewide variety of relevant relatedworks
separately.

1) VIDEO SOURCES
The first distinguishing factor that heavily influences the use
of a dataset is the source of stimuli.

The early works in the field of VQA datasets stem
from 2009 to 2011. EPFL-PoliMI [29], [30], LIVE-VQA
[31], [32], CSIQ [33], VQEG-HD [34], and IVP [35] were
mostly concerned with particular compression or transmis-
sion distortions. Consequently, these early datasets contain
few source videos that were degraded artificially to cover
the different distortion domains. From today’s standpoint the
induced degradations lack ecological validity when compared
to degradations observed in new videos in-the-wild. Overall,
the focus of VQA datasets has been shifting away from
both transmission artifacts, as transmission networks have
become much more stable over the last decades, and artificial
introduction of distortions. Instead, a primary concern has
been covering more contents and in-the-wild distortions.

Recently designed VQA datasets from 2014 to 2019
(CVD2014 [21], LIVE-Qualcomm [22], KoNViD-1k [20],
and LIVE-VQC [23]) have taken the first steps towards
improving ecological validity. CVD2014 contains videos
which were degraded with realistic video capture related
artifacts. Videos in LIVE-Qualcomm, LIVE-VQC, and
KoNViD-1k were either self-recorded or crawled from public
domain video sharing platforms without any directed alter-
ation of the content. In this paper we make the distinc-
tion between synthetic and in-the-wild datasets, where the
former includes videos that have been either altered after
recording or recorded in a specific way to contain particular
distortions, and the latter represents sets of videos that have
been gathered from auxiliary sources with minimal alter-
ation, in order to represent content commonly consumed by
internet users. Both CVD2014 and LIVE-Qualcomm fall into
the synthetic category, while we categorize LIVQ-VQC and
KoNViD-1k as in-the-wild.

An additional side-effect of the above-mentioned change in
dataset paradigms are differences in numbers of devices and
formats represented in modern datasets. Synthetic datasets

commonly include fewer capturing devices, are usually
recorded in the same format, and often depict fewer scenes.
In-the-wild datasets, on the other hand, include more unique
contents and capturing devices, as the data is gathered from
external sources without control over the recording process.
This is also reflected in the datasets we reference:
• CVD2014 considers videos taken by 78 different cam-
eras with different levels of quality from low-quality
camera phones to high-quality digital single-lens reflex
cameras. The video sequences were captured one at a
time from different scenes using different devices. They
captured a total of 234 videos, three from each camera,
with a mixture of in-capture distortions. While each
stimulus in CVD2014 is a unique video rather than an
alteration of a source video, the dataset only covers five
unique scenes, which is the smallest number of unique
scenes among all VQA datasets.

• LIVE-Qualcomm contains videos recorded using eight
different mobile cameras at 54 scenes. Dominant fre-
quently occurring distortion types such as insufficient
color representation, over/under-exposure, auto-focus
related distortions, blurriness, and stabilization related
distortions were introduced during video capturing.
In total, the 208 videos cover six types of authentic dis-
tortions, but there is no quantification as to how common
these distortions are for videos in-the-wild.

• LIVE-VQC contains videos captured by 80 naïvemobile
camera users, totaling 585 unique video scenes at vari-
ous resolutions and orientations.

• KoNViD-1k contains 1,200 unique videos sampled from
YFCC100m. It is hard to quantify the number of devices
covered, but in terms of content and distortion variety,
it is the largest existing collection of videos. The videos
in KoNViD-1k have been reproduced from Flickr, based
on the highest quality download option; however, they
are not the raw versions originally uploaded by users.
The videos show compression artifacts, having been re-
encoded to reduce bandwidth requirements.

For KonVid-150k we are employing a strategy similar to
KoNViD-1k in that we download them from Flickr, however
we obtained the originally uploaded versions of the videos
to re-encode them at a higher quality. We aim to reduce
the number of encoding artifacts while keeping the file size
manageable for distribution in a crowdsourcing study with an
average of 1.23 megabytes per video.

2) SUBJECTIVE ASSESSMENT
The second distinguishing factor is the choice of subjective
assessment environment. VQA has been a field of research
since before the time when video could easily and reliably
be transmitted over the Internet. Consequently, early datasets
have all been annotated by participants in a lab environment.
This allows for assessment of quality under strictly-controlled
conditions with reliable raters, giving an upper bound to
discriminability. With dataset sizes increasing, due to a push
for more content diversity and transmission rates improving,
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crowdsourcing has become an affordable and fast way of
annotating multimedia datasets with subjective opinions. In a
lab setup it is practically infeasible to handle annotation of
tens of thousands of items. The downside of crowdsourcing
is a reduced level of control over the environment, resulting in
potentially lower quality of annotation. However, with care-
ful quality control considerations a crowdsourcing setup can
achieve an annotation quality comparable to lab setups [36].
Concretely, CVD2014 and LIVE-Qualcomm are annotated
in a lab environment, while KoNViD-1k and LIVE-VQC
are both annotated using crowdsourcing. Considering the
sheer size of our dataset, we also employed a crowdsourcing
campaign with rigorous quality control in the form of an
initial quiz and interspersed test questions to ensure a good
annotation quality.

3) NUMBER OF OBSERVERS
A third factor that has been insufficiently studied thus far
is the choice of numbers of ratings per video. With a few
exceptions, early works in lab environments ensured at least
25 raters per stimulus. Additionally, it has been a common
approach that all participants rated all stimuli.

Recent works [23] have increased the number of ratings per
stimulus to above 200 to ensure very high quality annotation.
However, given a fixed, affordable budget of annotations, one
must consider the trade-off between the benefit of slightly
more accurate quality scores for a small number of stimuli
and the potential increase in generalizability when annotating
more stimuli with fewer votes. The 8-fold increase in num-
bers of ratings per stimulus when going from the generally
accepted 25 to 200 ratings could just as well be invested in
an 8-fold increase of numbers of stimuli, each rated 25 times.
The increase of the precision of the experimentalMOS suffers
from diminishing returns as the number of raters increases.
Since the precision gain per vote is highest at none or few
ratings, careful considerations have to be made with respect
to the distribution of annotation budgets across an unlabeled
dataset. This is especially true in the wake of deep learning
approaches outperforming classical methods in many com-
puter vision tasks, as deep learning models are known to be
robust to noisy labels [37] but also hungry for input data.

Figure 1 shows a comparison of relevant VQA datasets on
some of these characteristics. There is an evident progression
to a wider variety of contents in the last few years. We are
attempting to push this boundary much further by exploring
the trade-off between the number of ratings per video and the
total annotated stimuli.

B. IQA USING DEEP FEATURES
There have been several recent works that inspired our
approach for feature extraction. TL-Xception [38] was an ini-
tial work that utilized deep-features to predict image quality
in a transfer learning setting. Using an Xception-net [39] as a
base-model, they added two 1 × 1 convolutional layers on
top, followed by both a global average pooling layer and
a global maximum pooling in parallel. The outputs of the

FIGURE 1. Comparison of size characteristics of current VQA datasets. Our
proposed datasets, KonVid-150k-A and KonVid-150k-B are represented by
the two right most bars of the histograms. Note the logarithmic scale.

pooling served as an input to a small fully connected head
which was topped off with a 5-neuron output layer that repre-
sents the opinion score as a distribution. Using this approach,
the authors achieved state-of-the-art performance.1

Recently, two related works [42], [43] extracted features
from pre-trained networks, before feeding them into neural
networks for quality predictions of much smaller size. Both
of these approaches perform the extraction only at the heads
of the feature extraction networks, which typically model
higher-level semantic structures. In the case of VSFA [42]
a ResNet-50 model was used, where features were extracted
from the ‘res5c’ layer near the top of the network and subse-
quently pooled. The prediction network is a recurrent network
using a gated recurrent unit capable of modeling temporal
dependencies in the features. PVQ [43] on the other hand
use both 2D features extracted from a PaQ-2-PiQ [44] model,
as well as 3D features extracted using a 3D-ResNet-18 [45]
model. The features are pooled independently and ultimately
fed into an InceptionTime [46] network for the prediction
task.

The BLINDER framework [24] improved upon the
approach of feature extraction at the head of a pre-trained
network by using multiple layers of the base-model to extract
deep features. They resized images to 224×224 and extracted
a feature vector from each layer of a pre-trained VGG-net.
Each of these features vectors was then fed into separate SVR
heads and trained, such that the average layer-wise scores
predict the quality of an image. BLINDER was evaluated on
a variety of IQA datasets and reported an improvement of the
state-of-the-art.

Reference [26] went a step further by utilizing deeper
architectures to extract features, such as Inception-v3 and
InceptionResNet-v2. Furthermore, features were aggregated
from multiple levels and extracted from images at their
original size. This retained detailed information that would
have been lost by down-sizing the inputs. Moreover,
it allowed linking information coming from early levels

1The paper also references DeepRN [40] as a better model, however the
results of DeepRN for KonIQ-10k have since been shown to be incorrect [41]
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(image dependent) and general category-related information
from the latter levels in the network.

This approach has since been further elaborated on with
DeepFL [47], which incorporated a supervised fine-tuning
step prior to feature extraction to drastically improve state-
of-the-art NR-IQA performance on the complex artificially
degraded KDID-10k dataset.

We use the same approach as presented in [26] to extract
sets of features of video frames. The layers of the DNNs
are a basic measure for the level of complexity that the fea-
ture can represent. For example, first layer features resemble
Gabor filters or color blobs, while features in higher levels
correspond to semantic entities such as circular objects with
a particular texture or even faces. Changes in the response of
different features can, therefore, encode temporal informa-
tion. For example, it is reasonable to assume that a change
in the overall response of low-level Gabor-like features can
indicate the rapid movement of an object. Consequently,
learning from frame-level features allows to learn the effect
of temporal degradations on video quality indirectly.

In [48] a similar approach was used for the purpose of
NR-VQA. The method extracted features for intra-frames,
averaging them along the temporal domain to obtain a video-
level feature vector. The final video quality prediction is
done by an SVR. In our approach we go beyond this by
considering both an average feature vector with our MLSP-
VQA-FF architecture, as well as an LSTM model that takes
a set of consecutive features of frames as input, leveraging
temporal information of feature activations.

C. NR-VQA
Existing NR-VQA methods can be differentiated based on
whether they are based solely on spatial image-level fea-
tures or also explicitly account for temporal information.
In general, however, all recently developed models are
learning-based.

Image-based NR-VQA methods are mostly based on
theories of human perception, with natural scene statis-
tics (NSS) [49] being the predominant hypothesis used
in several works, such as the naturalness image quality
evaluator (NIQE) [50], blind/referenceless image spatial
quality evaluator (BRISQUE) [51], feature-map-based refer-
enceless image quality evaluation engine (FRIQUEE) [52]
and high dynamic-range image gradient-based evaluator
(HIGRADE) [53]. NSS hypothesizes that certain statistical
distributions govern how the human visual system processes
particular characteristics of natural images. Image quality can
be derived by measuring the perturbations of these statis-
tics. The approaches above have been extended to videos by
evaluating them on a representative sample of frames and
aggregating the features by averaging.

Approaches that consider temporal features, so-called
general-purpose VQA methods, are less numerous and more
particular in their approach. In [11], the authors extended an
image-based metric by incorporating time-frequency charac-
teristics and temporal motion information of a given video

using a motion coherence tensor that summarizes the pre-
dominant motion directions over local neighborhoods. The
resulting approach, coined V-BLIINDS, has been the de facto
standard that new NR-VQA methods are compared with.

Apart from V-BLIINDS, several other machine-learning-
based models for NR-VQA have been proposed. Regret-
tably, most have only been evaluated on older datasets
such as LIVE-VQA, making comparisons across multiple
datasets difficult. Moreover, their codes are not publicly
available, further exacerbating this issue. The three most
notable examples are the following. V-CORNIA [52] is
an unsupervised frame-base feature-learning approach that
uses Support Vector Regression (SVR) to predict frame-
level quality. Temporal pooling is then applied to obtain the
final video quality. SACONVA [54] extracts feature descrip-
tors using a 3D shearlet transform of multiple frames of a
video, which are then passed to a 1D CNN to extract spatio-
temporal quality features. COME [55] separated the problem
of extracting spatio-temporal quality features into two parts.
By fine-tuning AlexNet on the CSIQ dataset, spatial quality
features are extracted for each frame by both max pooling
and computing the standard deviation of activations in the last
layer. Additionally, temporal quality features are extracted as
standard deviations of motion vectors in the video. Then, two
SVR models are used in conjunction with a Bayes classifier
to predict the quality score.

TLVQM [19] and 3D-CNN + LSTM [56] are recently
published approaches in blind VQA which claim state-of-
the-art performance. The former is a hierarchical approach
for feature extraction. It computes two types of features: low
complexity features characterizing temporal aspects of the
video for all video frames, and high complexity features rep-
resenting spatial aspects. High complexity features relating to
spatial activity, exposure, or sharpness, are extracted from a
small representative subset of frames. TLVQM achieves the
best performance on LIVE-Qualcomm. 3D-CNN+ LSTM is
an end-to-end DNN approach, where 32 groups of 16 224×
224 crops of frames are extracted from the original video and
individually fed into a 3D-CNN architecture that outputs a
scalar frame-group quality. This is then subsequently passed
to an LSTM that predicts the overall video quality. This
approach sets the state-of-the-art for KoNViD-1k, besting
TLVQM slightly.

State-of-the-art for CVD2014 is achieved by VSFA [42],
which is an approach that leverages feature extraction at the
head of a ResNet-50 model for each frame of a video. For
each video, all frame features are fed into a recurrent neural
network, with the aim of modeling temporal dependencies in
the frame-wise features. The approach was designed specifi-
cally for quality assessment of in-the-wild videos.

Finally, PVQ [43] is the most recent approach to blind
VQA that marks state-of-the-art performance on the LIVE-
VQC dataset. It combines frame-level feature extraction
using PaQ-2-PiQ [44] with spatio-temporal feature extraction
on patches of frame stacks using a 3D ResNet-18 [45] pre-
trained on the Kinetics dataset [57]. Both the frame-level
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features as well as the 3D features are pooled twice indepen-
dently, before being fed into the InceptionTime [46] model
that is used to predict the quality of a given video.

There has been a body of work by another author on
NR-VQA [48], [58], [59]. However, there are concerns
about the validity of the published performance values [41].
Specifically, it has been shown that the performance values
reported in both [58] and [59] were obtained with implemen-
tations containing some forms of data leakage. In both cases,
the fine-tuning stage of the two-stage process embedded
information about the test sets into the model used for fea-
ture extraction. Furthermore, in [41] it was shown that fine-
tuning prior to feature extraction had much less impact on the
final performance than claimed. Since [48] is using a similar
two-stage approach involving fine-tuning and feature extrac-
tion, and there is a substantial improvement in performance
from the non-fine-tuned to the fine-tuned implementation,
we hold some reservations as to the validity of the reported
performance values.

III. DATASET IMPLEMENTATION DETAILS
In this section, we introduce the video dataset in two parts.
First, we discuss the design choices and gathering of the
data in Section III-A alongside an evaluation of the diver-
sity captured by the dataset in relation to existing work in
Section III-B. Then, Section III-C follows up with details
regarding the crowdsourcing experiment to annotate the
dataset. Finally, in Section III-D we analyze the quality of
annotations according to the SOS hypothesis.

A. VIDEO DATASET
Our main objective was to create a video dataset that cov-
ers a wide variety of contents and quality-levels as com-
monly available on video sharing websites. For this reason,
we took a similar approach to collect our data as was done
for KoNViD-1k, with an additional step to improve the qual-
ity of the videos. In KoNViD-1k all collected videos had
been transcoded by Flickr, to reduce their bandwidth require-
ments and standardizing them for playback. Consequently,
noticeable degradation was introduced relative to the original
uploads. Flickr allows the uploading of video files of most
codec and container combinations, resolutions, and durations.
However, they re-encode the uploaded videos to common
resolutions such as HD, Full HD, strongly compressing them.

The Flickr API allows access to metadata that links to
the original, raw uploads. As these raw uploads are often
very large and come in many different formats, they cannot
directly be used for crowdsourcing. Therefore, we proceeded
as follows. We downloaded authentic raw videos that had an
aspect ratio of 16:9 and resolution higher than 960 × 540
pixels. Then we rescaled them to 960 × 540, if necessary,
and extracted the middle five seconds.

Our choice of a playback duration of five seconds was
grounded in several considerations. First, videos with longer
playback durations may bias the subjective evaluation proce-
dure due to the presence of a temporal hysteresis effect [60],

which is a lingering negative impact on the subjective quality
perception after a subject observed a degradation. The longer
a video playback duration, the more likely this effect can
take place. Moreover, from a practical perspective, since we
tied the payment of crowd workers participating in our study
to the playback duration, reducing it would yield more total
annotations. As a final point, shorter videos are less likely to
be affected by buffering events and the total individual file
size is reduced.

We re-encoded the videos using FFmpeg at a constant rate
factor of 23, which balances visual quality and file size. The
resulting files have an average size of 1.23 megabytes.

FIGURE 2. Comparison of the quality of the original (center) to the
version Flickr provides (right) and our transcoded version (left).

Figure 2 is a visual comparison of the different video
versions, showing a small crop of a frame of the originally
uploaded video together with the two re-encodings offered
by Flickr and our own version. Compression artifacts are
clearly visible in the Flickr re-encoded version, whereas our
re-encoding is very similar to the original.

For each video, we extracted meta-information that iden-
tifies the original encoding, including the codec and the
bit-rate. Furthermore, we collected social-network attributes
such as the number of views and likes and publication dates
that indicate the popularity of videos. In total, the collection
amounts to 153,841 videos.

We believe that all the additional measures we have taken
to refine our dataset significantly improved its ecological
validity, and thus the performance of VQA methods trained
on it in the future.

B. DATASET EVALUATION
In order to evaluate the diversity of KonVid-150k, which is
our main objective with this dataset, we will now demonstrate
that it is not only the largest annotated VQA dataset in terms
of video items, but also the most diverse in terms of con-
tent. First, we need a measure for content diversity. For this
purpose we extract the activations at the top of an Inception-
ResNet-v2 model pre-trained on ImageNet for each frame.
To represent a given video, we spatially average the activa-
tions of the last four Inception modules over all frames and
subsequently concatenate them to obtain a 1792-dimensional
content feature. A similar approach has been used in the
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FIGURE 3. Still images from videos closest to the query video on the left as measured by the Euclidean distance d in the feature space of top-layer
features from Inception-ResNet-v2. This shows the utility of activations of layers from pre-trained DCNNs for usage in a content similarity
measure. Even though only the 1792 activations of the last layer were used, which are commonly understood to focus on semantic entities more
so than low level structures, these features encode useful information.

image quality domain before to create a subset of data that
is diverse in content [61].

Figure 3 is an illustration of the usefulness of these content
features to assess content similarity. Given a query video
taken from KoNViD-1k on the left we compute the Euclidean
distance in content feature space to all other videos in the
dataset. On the right we show still frames from the three
videos with smallest distance to the query. We can see that
close proximity in content feature space seems to correspond
to semantically similar video content. The images in the first
row show flying objects in a blue sky, where the color of
the object as well as the color of the sky seem to influence
the distance in content feature space. In the second row we
can see that crowds in front of a stage are located in close
proximity in content feature space. Images in the third row
show that videos containing heads, but especially babies are
encoded similarly in the 1792-d content feature vectors. Light
shows and underwater videos, as seen in the fourth and fifth
rows, can also be retrieved by querying nearest neighbours of
an appropriate video. It is to be noted that the closest videos
for rows one, two and four are near duplicates. The recordings

seem to be from different periods of time of the same
scene.

Therefore, the extracted features are useful as an informa-
tion retrieval tool, andwemake use of it to quantify the degree
by which a video dataset covers the content of competing
datasets. For this purpose we represent a video dataset by its
corresponding set of content feature vectors, X = {xi | i =
1, . . . ,N }, where N is the number of videos in the dataset.
We consider the Euclidean distance of a point x in feature
space to a (finite) point set Y , d(x,Y ) = min{d(x, y) | y ∈ Y }.
For two finite point sets X = {x1, . . . , xn}, Y = {y1, . . . , ym}
and any given distance s ≥ 0, we define the fraction or ratio
of the first dataset X , that is covered by the dataset Y at
distance s as

CY ,s(X ) =
|{x ∈ X | d(x,Y ) ≤ s}|

|X |

where |A| denotes the cardinality of a set A. For example,
if X ⊆ Y , then Y covers X perfectly at distance zero,
i.e., CY ,0(X ) = 1. Or, if CY ,1(X ) = 0.8, then this means
that the union of all balls of radius 1 centered at the points
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of the set Y contain 80% of the points in X . The function
s 7→ CY ,s(X ) thus comprises the cumulative histogram of the
individual distances d(x,Y ) for all x ∈ X .

When comparing the coverage two datasets with respect
to each other, we check the corresponding cumulative his-
tograms showing the coverage of one dataset by the other.
The dataset with the topmost cumulative histogram then
can be considered to be the dominant one that covers the
competing one.

To compare the diversity of content for several given
datasets X1, . . . ,XK , let us form their union Z = X1 ∪
· · · ∪,Xk and consider how well each dataset Xk covers
all the others, i.e., the complement X ck = Z\Xk . For this
purpose we compute the cumulative histograms CXk ,s(X

c
k )

for k = 1, . . . ,K . Figure 4 shows the result for the five
datasets KonVid-150k, KoNViD-1k, VQC, Qualcomm, and
CVD 2014. Here, KonVid-150k clearly has the best coverage
of contents present in the other datasets, as it has the largest
area under the curve.

To summarize the coverage of one dataset X by another, Y ,
by a single number rather than the curves of the cumulative
histogram of distances, we define the one-sided distance of X
from Y as

d(X ,Y ) = f (d(x1,Y ), d(x2,Y ), . . . , d(xn,Y ))

where f is a scalar, non-negative function. For example, if f
is the maximum function, then d(X ,Y ) is known as the one-
sided Hausdorff distance. For our purpose, the median is
better suited as it is less sensitive to outliers. The distance
d(X ,Y ) can be understood as a simplified indicator for the
coverage of X by Y . These medians are shown in Figure 4 by
the bullet dots at the coverage ratio of 0.5.

FIGURE 4. This figure shows how well a video dataset covers all others
together. The curves are the empirical cumulative histograms of Euclidean
distances d (xc , X ) for all xc ∈ X c , where X c is the complement to X ,
i.e., the union of the other datasets. The green, red, blue, yellow, and cyan
lines refer to X being KonVid-150k, KoNViD-1k, VQC, Qualcomm, and CVD
2014, respectively. KonVid-150k covers the other datasets the best, as the
green plot has the largest area under the curve and it has the smallest
median distance of approximately 2.3 at coverage ratio 0.5. This means
that for half of the videos in all other datasets, there is a similar video in
KonVid-150k that has a distance in content feature space of at most 2.3.

Figure 5 then shows d(X ,Y ) for the competing dataset
pairs individually. It can be seen that KonVid-150k covers the

FIGURE 5. Pairwise comparison of content coverage. Empirical
cumulative histograms of d (x, Y ) for all x ∈ X . The green, red, blue,
yellow, and cyan line colors refer to the covering set Y and the different
line styles refer to X being KonVid-150k, KoNViD-1k, CVD 2014,
Qualcomm, and VQC, respectively. As expected from the previous figure,
KonVid-150k covers the other datasets the best, indicated by the four
green plots consistently falling to the left of their counterparts.

contents of competing datasets the best, as the green curves
are strictly above the cumulative histograms for the other
datasets. Moreover, the other datasets cover the content space
of KonVid-150k the worst, as the solid lines depicting the
coverage of KoNViD-1k, CVD 2014, Qualcomm, and VQC
of KonVid-150k are generally to the right of the other three
for the respective dataset.

These findings are an indication that our proposed dataset
KonVid-150k is comprised of a large variety of contents with
good coverage of the contents contained in existing works.

C. VIDEO ANNOTATION
We annotated all 153,841 videos for quality in a crowd-
sourced setting on Figure Eight.2 First, each participant was
presented with instructions according to VQEG recommen-
dations [62], which were modified to our requirements. Here,
participants were introduced to the task and provided with
information about types of degradation, e.g., poor levels of
detail, inconsistencies in color and brightness, or imperfec-
tions in motion. Next, we provided examples of videos of a
variety of quality levels with a brief description of identifiable
flaws and instructed the reader on the workflow of rating
videos, which is illustrated in Figure 6. Finally, we informed
participants about ongoing hidden test questions that were
presented throughout the experiment, as well as the mini-
mum resolution requirement that enabled them to continue
participating in the experiment. This was checked before the
playback of any video.

During the actual annotation procedure, for each stimulus,
workers were first presented with a white-box of the size of
the video that also functioned as a play button. Then, the video
was shown in its place with the playback controls hidden and
deactivated. After playback finished, it was hidden, and the
rating scale was revealed below it. This setup ensured that
neither the first nor the last still frame of the video were

2http://www.figure-eight.com/ (now https://appen.com/)
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FIGURE 6. Illustration of the crowdsourcing video playback workflow. A worker is first presented with a white box of 960× 540
pixels. Upon clicking the box, the video plays in its place. Playback controls are disabled and hidden. Upon finishing, the video is
hidden and replaced with a white box that informs the participant to rate the quality on the Absolute Category Rating (ACR)
scale shown below. The rating scale is only shown upon completion of video playback.

influencing the worker’s ratingwhich could be another source
for the temporal hysteresis effect [60], and no preemptive
rating could be performed before the entirety of the video
had been seen. An option to replay the video was also not
provided. These choices are a deviation from the VQEG
recommendations, and might be perceived overly restrictive
and annoying by a crowd worker. However, feedback from
pilot studies for the interface design did not reflect this.
Moreover, this approach improves attentiveness and ensures
that the obtained score is the intuitive response from the
worker. Additionally, playback of any other video on the page
was disabled until the currently playing video was finished,
in order to better control viewing behavior and discourage
unreliable or random answers.

According to Figure Eight’s design concept, crowd work-
ers submit batches of multiple ratings in so-called pages.
Each page has a fixed batch size of rows, where each row
conventionally represents a single item. Due to constraints on
the number of rows allowed per study, we grouped 15 stimuli
by random selection into each row, with a page size of ten
rows per page, totaling to 150 videos per batch, respectively
page.

Moreover, the design concept intends a two-stage testing
process, where workers are first presented with a quiz of test
questions followed by subsequent pages where test questions
are randomly inserted into the data acquisition process. Test
questions are not distinguishable from conventional annota-
tion items.

In our implementation, illustrated in Figure 7, we inter-
spersed three test videos with twelve videos randomly sam-
pled from the dataset in each row with test questions. The test
videos were sampled from hand-picked set of videos, which
in one part was made up of very high-quality videos obtained
from Pixabay3 and in another of heavily degraded versions of
them. Therefore, we defined the ground truth quality of each
test video as either excellent or bad, respectively. We per-
formed a confirmation study to ensure that the perceived
quality of these videos was rated at the very top or bottom
ends of the 5-point ACR scale.

In the second stage, after the quiz, consisting of only test
rows, workers annotated 150 videos in 10 rows per page.

3http://pixabay.com

FIGURE 7. Simplified work flow diagram of the experiment. A worker is
first presented with a quiz page of test rows (TR, in yellow) with three test
videos and twelve data videos each. Upon passing the quiz with ≥70%
accuracy they proceed to answer data pages with one test row per page.
Data rows (DR, in white) contain 15 data videos. Data rows are annotated
by five unique participants. Test rows can be answered once by each
worker.

On each page, we included one further test row at a random
position. Participants had to retain at least 70% accuracy on
test questions throughout the experiment. Data entered from
workers that dropped below this threshold were removed
from our study, and the corresponding videos were scheduled
for re-annotation.

When running a study on Figure Eight, the experimenter
decides the number of ratings per data row, as well as the
pay per page. The latter was set such that with eight seconds
per video, including five seconds for viewing and three sec-
onds for making the decision, a worker would be paid USD
3 per hour. We had compiled 10,368 data rows of 15 data
videos each. These data rows were presented to five workers
each, yielding 155,520 annotated video clips. From these,
152,265 were valid4 and were retained, forming our larger
dataset, called KonVid-150k-A.

Each of the 10,368 data rowswas presented to fiveworkers.
There were altogether 133 test rows for presentation to all
crowd workers. However, each crowd worker could annotate

4In some rare (≤ 1%) cases users bypassed our restrictions by disabling
javascript and were able to proceed without actually rating the videos. In that
case the required 5 votes were not met, and we had to discard this video.
Additionally, not all videos were readable by the Python libraries we used as
feature extractors. Those videos were also removed.
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any given test row at most once. Since 12 of the 15 videos
in a test row were sampled from the set of data videos,
we thus obtained far more than five ratings for each of these
individual videos. In total, 1,596 data videos were used in
the 133 test rows and were rated between 89 and 175 times,
due to randomness in test question distribution. We separated
1,575 valid4 videos of this very extensively annotated set
in a new dataset and call it KonVid-150k-B. As a random
subset of the entirety of our videos selected from Flickr, it is
ecologically valid and from the same domain as the other data
videos. This dataset will be used as a test set for the evaluation
of our models trained on KonVid-150k-A.

The choice for five individual ratings per data row was
based on a small scale pilot study with a subset of 600 ran-
domly sampled videos. For this subset we obtained two sets
of 50 opinion scores for each video with a similar experimen-
tal setup as described above. We then evaluated the SRCC
between a MOS comprised of a random sample of n votes
from one set to theMOS of the other set. At 5 votes this SRCC
reached 0.8, which we considered to be a good threshold. For
reference, the SRCC between the two independent samplings
of 50 votes settled at 0.9. Further investigation of the feasi-
bility of our choice of 5 ratings is contained in more detail
in Section V-E.

D. ANNOTATION QUALITY
Another common characteristic to compare the annotation
quality of different studies is by evaluating the standard devi-
ation of opinion scores (SOS) as a function ofMOS. It follows
the basic idea that in quality controlled experimental studies
subjective opinions will vary only to a certain extent, as the
experimental setup ensures similar test conditions. In the
case of the 5-point scale we used in our experimental setup,
the maximum SOS is expected near a MOS of 3, while the
minimumwill be attained near the extremes of the rating scale
(i.e., 1 and 5). Therefore, computing the average SOS over all
videos is not an unbiased indicator, as common datasets have
differing distributions of MOS values. Instead, the variance
σ 2 is modelled as a quadratic function of the MOS [63],
which in the case of a 5-point scale is described as:

SOS(MOS)2 = a(−x2 + 6x − 5), (1)

and the SOS parameter a is a better indicator the variance of
subjective opinions for any particular experimental study.

Moreover, the SOS parameter has been shown to correlate
with task difficulty and can be used to characterise applica-
tion categories [64]. For VQA the SOS parameter has been
reported in the range a ∈ [0.11, 0.21], with aKoNViD-1k =
0.14 and aCVD2014 = 0.17. In the case of LIVE-Qualcomm
and LIVE-VQC, no SOS parameter has been reported and the
publicly available annotation data does not allow for such an
analysis, as only the MOS values for videos in these specific
datasets are available.

We computed and visualized the SOS parameter for
KonVid-150k-B as well, see Figure 8. For the case of the
larger KonVid-150k-A set, we have 5 ratings per stimulus

FIGURE 8. Comparison of the SOS hypothesis [63] of KoNViD-1k,
CVD2014, and KonVid-150k-B. The SOS parameter for the three datasets
are a = 0.14, a = 0.17, and a = 0.21, respectively. For VQA the typical
range is a ∈ [0.11, 0.21], which shows that KonVid-150k can be
considered a typical example in terms of annotation quality.

which allows only for 21 different MOS values, and therefore
we did not include it in the figure. Nonetheless, KonVid-
150k-B is a good estimation of what can be expected in terms
of annotation quality of KonVid-150k as a whole. The fig-
ure shows the comparison between KoNViD-1k, CVD2014,
and KonVid-150k-B, where the latter has an SOS parameter
of aKonVid-150k-B = 0.21, which lies within the typical range
for VQA experiments.

Considering the similarities between KoNViD-1k and
KonVid-150k, the difference in a seems surprisingly large at
first. However, some differences in the design choices of the
subjective annotation process can be identified as potential
causes for the larger SOS parameter for KonVid-150k.

Videos from KoNViD-1k and KonVid-150k are both sam-
pled from Flickr.com. However, their compression settings
are different. While the videos in KonViD-1k are heavily
compressed, those in KonVid-150k are representative of the
originals as uploaded by their respective authors. This means
that KonVid-150k videos are more diverse in terms of distor-
tion types, as heavy compression can have a strong masking
effect. A wider variety of distortions is expected to cause a
higher disagreement between raters, and thus a higher vari-
ance of their answers.

Moreover, the sources for the test videos in each dataset
used during the crowdsourcing experiment are different.
KoNViD-1k test videos were sampled from the same source
and with ground truth annotations from a prior study, while
the test videos in KonVid-150k are sampled from another
source, and involve artificial distortions.

On the one hand, the choice of test videos for KoNViD-1k
can cause workers to pay more attention, and agree better,
however, at the cost of having more biased answers. First,
the test and data videos are impossible to distinguish at a
glance. This means that crowd-workers need to constantly
pay attention to all work items, and not just to those that are
easy to identify as test items. Second, the test videos have
similar levels and types of distortions. There are no other
items to anchor user opinions at the extreme of the quality
scale. This means that the range of the quality scale may not
be used well. The downside of this choice is that the accepted
answers for the test videos are derived from a pilot study, and
this can introduce a bias towards the opinions expressed in
that study.
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FIGURE 9. Extraction of multi-level spatially-pooled (MLSP) features from a video frame, using an InceptionResNet-v2 model pre-trained on
ImageNet. The features encode quality-related information: earlier layers describe low-level image details, e.g. image sharpness or noise, and
later layers function as object detectors or encode visual appearance information. Global Average Pooling (GAP) is applied to the activations
resulting from the Stem, each Inception-module, as well as the Reduction-modules, and finally concatenated to form MLSP features. For more
information regarding the individual blocks please refer to the original paper [27].

On the other hand, KonVid-150k uses pristine quality
videos from a different source (Pixabay.com), alongside
highly degraded variants of the same videos. These videos are
easier to distinguish from data videos. Consequently, workers
are not forced to pay attention to all items the same, they can
theoretically put more thought in answering test videos than
they do for data videos. The tests in this case are more lenient,
as they are selected to represent the extremes of the quality
range (both highest and lower quality). However, they also
serve as anchors for the quality scale, which are not available
for KoNViD-1k. The approach is less biased, but can result in
more disagreement between annotators, which in turn leads
to a higher variance of the answers. It is preferable to have
less bias rather than a higher agreement on the wrong ratings.

IV. VIDEO QUALITY PREDICTION
In this section, we illustrate our approach to video quality
prediction. We provide a brief description of the way we per-
form feature extraction in Section IV-A, followed by details
regarding the models we evaluate in Section IV-B. Finally,
in Section IV-C we provide a comparison of our two-stage
approach of feature extraction followed by training with dif-
ferent fine-tuning approaches that are common for transfer
learning approaches.

A. FEATURE EXTRACTION
The naïve way to perform transfer learning for tasks related
to visual features with small sets of data is removing the head
of a pre-trained base-model and replacing it with a small fully
connected head. By freezing the layers in the base-model it’s
predictive power can be used to perform well on the new task.
After training this new header, it is not uncommon to unfreeze
all layers and fine-tuning the entire trained network with a
low learning rate to improve predictive power even more.
However, this approach has three important downsides.

1) First, the new task is trained based on the highest level
features in the base-model. These features are partic-
ularly tuned to detecting high-level semantic features
that are useful in the detection of objects present in
the image. However, for tasks such as quality, low-level
features with a small receptive field are arguably more
important.

2) Secondly, for each forward and backward pass the
entire base-model has to be present in memory, which
contain many more weights than the header network
that is being trained. Consequently, training is slowed
down a lot.

3) Finally, the last fine-tuning step is prone to overfitting,
as the high capacity of the base-model alone allows the
network to memorize training data rather than extract-
ing useful general features. Careful hyperparameter
tuning is therefore required, to ensure this step is suc-
cessful in improving performance.

Instead of performing fine-tuning, we trained our models
on features extracted from pre-trained DCNNs. The proce-
dure is an expansion of what we described earlier for the
comparison of content diversity, except we extracted fea-
tures of all Inception modules of the network. The approach
is inspired by [26], namely we extracted narrow multi-
level spatially-pooled (MLSP) features, but for individual
frames of videos, as shown in Fig. 9. In principle, this
general approach of extracting activations from individual
layers of a network can be applied to any popular archi-
tecture. Related work has shown that this approach works
with an Inception-ResNet-v2 network as a feature extrac-
tor in the IQA domain [47], [61]. For the extraction pro-
cess we, therefore, passed individual video frames to an
InceptionResNet-v2 network, pre-trained on ImageNet [27].
We then performed global average pooling on the activation
maps of all kernels in the stem of the network, as well as
on each of the 40 Inception-ResNet modules and the two
reduction modules. Concatenating the results yielded our
MLSP feature vector consisting of average activation levels
for 16,928 kernels of the InceptionResNet-v2 network. These
MLSP feature vectors were extracted for all frames of all
videos. Figure 10 shows a visualization of parts of the MLSP
feature vector for multiple consecutive frames.

Table 1 gives an overview of some hyperparameter set-
tings used in the training of our MLSP-based models for
the compared datasets. Mean square error (MSE) was used
as a loss function for a duration of 250 epochs, stopping
early if the validation loss did not improve in the most recent
25 epochs at an initial learning rate of 10−4. By default,
the MLSP-VQA-FF model was trained with a learning rate
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FIGURE 10. Visualization of the variation of activation levels of MLSP features over the course of KonVid-150k videos. In the center, the median
level of activation for each of the 43 blocks from the Inception-ResNet-v2 network is displayed for 3 sample videos. The black whiskers indicate the
50% confidence interval on the level of activation. For the first block (Stem), the whiskers extend to 0.7. The left and right plots show the activation
of 1/8th of the first and last blocks’ features over time.

TABLE 1. Training settings and parameters.

of 10−2, and both the MLSP-VQA-RN and the MLSP-VQA-
HYB models were trained with a learning rate of 10−4.

B. MODEL IMPLEMENTATION DETAILS
Different learning-based regression models, such as Sup-
port Vector Regression (SVR) or Random Forest Regression
(RFR), have been employed to predict subjective quality
scores from frame features, with SVR yielding generally
better results [19]. However, most existing works only extract
a few dozen to a few hundred features. Since SVR is sub-
optimal when applied to very large dimensional features
like our MLSP feature, we instead train three small-capacity
DNNs (Figure 11):

• MLSP-VQA-FF, a feed-forward DNN where the aver-
age feature vector is the input of three blocks of fully
connected layers with ReLU activations, followed by
batch normalization and dropout layers.

• MLSP-VQA-RN, a deep Long Short-Term Memory
(LSTM) architecture, where each LSTM layer receives
the feature vector or the hidden state of the lower LSTM
layer as an input and outputs its hidden state. This stack-
ing of layers allows for the simultaneous representation
of input series at different time scales [65]. The bottom
LSTM layer can be understood as a selective memory of
past feature vectors. In contrast, each additional LSTM
layer represents a selective memory of past hidden states
of the previous layer.

• MLSP-VQA-HYB, a two-channel hybrid of both the FF
and RN variants. The temporal channel is a copy of

the RN model’s architecture, while the second channel
is a mirror of the FF network scaled up to match the
number of kernels in the temporal branch in the last
layer. The outputs of the two channels are concatenated
and a small 32 kernel fully connected layer feeds into
the last prediction layer.

Our tests showed that employing dropout of any kind within
the recurrent networks, such as input/output dropout or recur-
rent dropout, resulted in reduced performance. We therefore
do not employ any dropout in these architectures.

C. TRANSFER LEARNING COMPARISON
As mentioned before, this two-step strategy of feature extrac-
tion followed by training a regressor is much faster than
transfer learning and fine-tuning an Inception-style network.
It’s difficult to fairly assess the difference, as a lot of factors
play a role. For example, when fine-tuning an Inception-net,
the speed at which the videos are read from the hard-drive
can become a bottle-neck, if a very powerful GPU is per-
forming the training procedure. Our proposed approach with
an Inception-ResNet-v2 as a feature extraction network has a
benefit for this scenario. Since the input data for each frame
is fixed at 16,928 floating point values, the requirements
for hard-drive reading speed are not exacerbated when using
datasets with larger resolution videos. In contrast, if the GPU
used to perform the training is not as powerful, it itself can
become a bottle-neck of the system. In this case, our proposed
approach has the alternative benefit that the small network
size allows for much larger batches and quicker forward and
backward passes.

In order to quantify the difference, we compare differ-
ent setups of transfer learning and fine-tuning to our pro-
posed two-step MLSP feature-based training procedure on
a machine that reads from an NVMe connected SSD and
trains the networks using Tensorflow 2.4.1 on an NVIDIA
A100 with 40GB of VRAM. To simplify the setup, we are
evaluating only the MLSP-VQA-FF model on the pre-
extracted first frames of KonVid-150k-B. One might argue
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FIGURE 11. Left: The MLSP-VQA-FF model, that relies on average frame MLSP features and a densely connected
feed forward network. Middle: The MLSP-VQA-RN recurrent model, implementing a stacked long short-term
memory network. Right: The hybrid MLSP-VQA-HYB dual channel model, that has a bigger variant of the FF
network on the left and the recurrent part of the RN network on the right. Both channels output activations at
each timestep and are merged along the feature dimension, before feeding into a small prediction head. Both the
RN and HYB models take corresponding frame features at each time step as an input to the network.

that the first frame is not as representative of the opinion
scores, but our aim is to investigate the differences in train-
ing speed, rather than an exhaustive performance evaluation.
The transfer learning scenarios are all performed using an
Inception-ResNet-v2 base-model with our FF model sitting
on top for 40 epochs. However, we compare four slightly
different scenarios:
• Koncept: The FF model takes the last layer of the base-
model as an input, much like the Koncept model pro-
posed in [61]. The weights of the base-model are not
frozen, so the entire model is fine-tuned over the course
of the training. We employ two training stages, one with
a learning rate of 1×10−3, and the secondwith a learning
rate of 1× 10−5.

• IRNV2: Instead of fine-tuning the entire model through-
out both stages, we freeze the layers of the Inception-
ResNet-v2 base-model for the first stage, so as to avoid
the large update steps caused by the random initialisation
of the header network to destroy the useful features in
it. For the second stage we unfreeze the weights in all
layers.

• IRNV2-MLSP: As stated before, one downside of the
above approaches lies in the circumstance that the
header network relies only on the top level features as
inputs. For the third comparison we concatenate the
activation layers of all Inception-modules and feed that
as an input to the header network. Here, we also freeze
the base-model weights for the first stage, and unfreeze
all weights for the second stage.

• MLSP: The final item in the comparison takes the
MLSP features described above as an input. This means,
the model is much smaller, as the base-model does not
need to be loaded. However, the model cannot leverage
the spatial information about the activations to make it’s
prediction. No explicit weight freezing is performed in
this scenario.

These different cases are compared in Figure 12. The green
graph, corresponding to the Koncept model, takes the longest
to train in total and achieves the worst validation performance
at the end of the 80 epochs. The reason for the slow train-
ing in the first stage is that none of the weights are frozen
and the backpropagation step therefore takes additional time.
Both the orange IRNV2 and blue IRNV2-MLSPmodels train
faster by approximately 22%, as the weights are frozen in
the first stage. However, they differ in that the inclusion
of all Inception-modules in the concatenation layer for the
latter increases performance significantly. Finally, the red
graph, representing the MLSP-VQA-FF model trained on
extractedMLSP features achieves the best performance while
surpassing the IRNV2-MLSP model in terms of speed by a
factor of 74. Moreover, peak performance is achieved much
earlier, as the second training stage is not required, raising the
speed-up to factor 171.

However, feature extraction has to be performed once as
well, which for the first frames of KonVid-150k-B took
38 seconds. Including this time in the comparison still renders
the MLSP-VQA-FF model faster by factor 36, when consid-
ering both training stages. This factor is dependant on input
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FIGURE 12. A visualization of the convergence of different transfer
learning techniques along with information about the training times. The
solid lines depict the first training stage of 40 epochs, where the IRNV2
(orange) and IRNV2-MLSP (blue) architectures have their weights frozen.
The dashed lines represent the second training stage of 40 epochs where
all models had their weights unfrozen. For the second stage we start from
the best performing model according to validation loss from the previous
stage. This is the reason for the discontinuities between the graphs.
Koncept (green) and IRNV2 connect the last layer to the small header
network, while IRNV2-MLSP concatenates all individual Inception-module
outputs to feed into the head. Finally, MLSP-VQA-FF works off of
extracted MLSP features, which for this scenario took 38 seconds.

resolutions, however with videos increasing in resolution
the speed-up will only change in favor of the MLSP-based
model, as its training speed will not change, while the training
speed of the fine-tuning approach is inversely correlated with
input resolution. This shows the power of using pre-extracted
MLSP features.

Furthermore, we have observed the success of fine-tuning
an Inception-style network in this manner is very sensitive
to hyperparameters, while training the small FF network on
MLSP features is fairly robust.

V. MODEL EVALUATION
In this section, we provide several performance evaluations
of our proposed models as well as related works on our
proposed dataset. First, in Section V-A we give some context
to performance evaluations of modern VQA approaches of
different kinds of datasets. Section V-B then compares the
MLSP-VQAmodels on existing datasets, validating their use-
fulness as VQAmodels. A performance comparison of differ-
ent VQA methods on the KonVid-150k-B set is provided in
Section V-C, validating the utility of our proposed dataset.
Section V-D then investigates inter-dataset performance of
our proposed models when trained on our proposed dataset.
Finally, in Section V-E we explore more elaborate training
schemes for the MLSP-VQA-FF model which consider dif-
ferent numbers of vote budget distributions.

A. INTRODUCTION
Our proposed NR-VQA approach of extracting features
from a pre-trained classification network and training DNN
architectures on them have been designed to predict video
quality in-the-wild. We evaluate the potential of the MLSP

features when used for training the shallow feed-forward and
recurrent networks by measuring their performance on four
widely used datasets (KoNViD-1k, LIVE-VQC, CVD2014,
and LIVE-Qualcomm) and our newly established dataset
KonVid-150k. We consider two basic scenarios, namely
(1) intra-dataset, i.e. training and testing on the same dataset,
and (2) inter-dataset, i.e., training (and validating) on our
large dataset KonVid-150k and testing on another.

There are two fundamental limitations in these datasets
that affect the performance of our approach. The first one
relates to the video content, in the form of domain shifts
between ImageNet and the videos in the datasets. The other
one is due to the different types of subjective video quality
ratings (labels) in the datasets, that may affect the cross-
testing performance.

First, the features in the pre-trained network have been
learnt from images in ImageNet. There are situations when
the information in the MLSP features may not transfer well
to video quality assessment:
• Some artifacts are unique to video recordings; this is
the case of temporal degradations such as camera shake,
which does not apply to photos.

• Compression methods are different for videos in com-
parison to images. Thus, the individual frames may
show encoding-specific artifacts that are not within the
domain of artifacts present in ImageNet.

• In-the-wild videos have different types and magni-
tudes of degradations compared to photos. For example,
motion blur degradations can be more prevalent and of
a higher magnitude in videos compared to photos. This
could affect howwellMLSP features from networks pre-
trained on ImageNet transfer to VQA.

Secondly, concerning the subjective video quality ratings
to be predicted when cross-testing, while there are similari-
ties between the rating scales used in the subjective studies
corresponding to each dataset, the ratings themselves may
suffer from a presentation bias. For example, in the case of a
dataset with highly similar scenes, but minuscule differences
in degradation levels, as is the case for LIVE-Qualcomm and
CVD2014, a human observer may become very sensitive to
particular degradations. Conversely, video content becomes
less critical for quality judgments. The attention of the human
observer is diverted to parts in the video he might otherwise
not have looked at, had he not seen the same or a very similar
scene many times before. Whether the resulting subjective
judgments can be regarded as fair quality values is arguable.
A human observer would rarely watch a scene multiple times
before rating the quality. This bias of subjective opinions
may greatly influence how the quality predictions trained
in one setting generalize to others. Similarly, quality scores
obtained in a lab environment will be much more sensitive
to differences in technical quality than a worker in a crowd-
sourcing experiment might be able to pick up. Therefore,
it may be challenging to generalize from one experimental
setup to another. While consumption of ecologically valid
video content happens in a variety of environments and on
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TABLE 2. Results of different NR-VQA metrics on different authentic VQA datasets. Top performance of each dataset is highlighted.

a multitude of devices, it is arguable whether one experimen-
tal setup is superior.

B. MODEL PERFORMANCE COMPARISONS
We first evaluate the performance of the proposed model
on four existing video datasets. KoNViD-1k and LIVE-VQC
both pose the unique challenge that they are in-the-wild video
datasets, containing authentic distortions that are common
to videos hosted on Flickr. LIVE-Qualcomm contains self-
recorded scenes of different mobile phone cameras that were
aimed at inducing common distortions. CVD2014 differs
from the previous two, in that it is a dataset with artificially
introduced acquisition-time distortions. It also contains only
five unique scenes depicting people. Finally, LIVE-VQCwas
a collaborative effort of friends and family of the LIVE
research group that were asked to submit video files of a
variety of contents to capture diversity in capturing equipment
and distortions.

We are comparing our proposed DNNmodels against pub-
lished results for other methods that have been thoroughly
evaluated on these datasets using SVR and RFR. Detailed
information regarding the experimental evaluation and results
of the classical methods can be found in [19].

We adopt a similar testing protocol by training 100 dif-
ferent random splits with 60% of the data used for training,
20% used for validation, and 20% for testing in each split.
Table 2 summarizes the SRCC w.r.t. the ground-truth for
the predictions of the classical methods (taken from [19])
alongside several recent approaches based on deep features
and our own DNN-based approach. It is to be noted that the
random splits for the classical methods are equal, whereas
the test setups used for VSFA, PVQ and 3D-CNN + LSTM
are slightly different. Moreover, the splits we used for our
evaluations of the MLSP-VQA models are different from the
ones used to evaluate the classical methods in [19], but we put

an emphasis on emulating the test setup. For brevity, we are
only reporting the results for classical methods obtained using
SVR, although four individual results are slightly improved
using RFR.

The FF network outperforms the existing works
on KoNViD-1k, improving state-of-the-art SRCC from
0.80 to 0.82, while the RN and HYBmodels remain competi-
tive with an SRCC of 0.78 and 0.79, respectively. This shows
that the proposed approaches are performing close to state-of-
the-art on authentic videos with some encoding degradations.
Since the feature extraction network is trained on images with
natural image distortions, some of the extracted features are
likely indicative of these distortions, which are not unlike the
video encoding artifacts introduced by Flickr.

Existing methods had not been evaluated exhaustively on
LIVE-VQC at the time of writing. Our recurrent networks
achieve 0.70 (RN) and 0.69 (HYB) SRCC, while the FF
model performs at 0.72 SRCC. Recent articles on arXiv have
pushed the state-of-the-art to 0.83 SRCC [43]. One of the
difficulties inherent to VQC with respect to our models is the
circumstance, that it is comprised of videos of various reso-
lutions and aspect ratios. An evaluation of the performance
of the models with respect to the video resolutions can be
found in the top part of Figure 13. Since 1080p, 720p, and
404p in portrait orientation are the predominant resolutions
with 110, 316, and 119 videos, respectively, we grouped the
other resolutions into the other category. We can see that both
the FF and RN models perform worse on the 1080p and 720p
videos, whereas the HYBmodel performs better on the higher
resolution videos.

In the case of LIVE-Qualcomm our best performance
of 0.75 SRCC of the hybrid model is surpassed only by
TLVQM with 0.78. Since the dataset is comprised of videos
containing six different distortion types, we also evaluated
the performance of the models according to each degrada-
tion, as depicted in the middle plot of Figure 13. Here, we
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FIGURE 13. Percent deviation of the mean RMSE of the proposed models
on each of the six degradation types present in LIVE-Qualcomm (top),
each of the six test scenarios in CVD2014 (middle), and the different
resolutions in LIVE-VQC (bottom).

show the deviation of the RMSE of each model for each
distortion type from the average performance in percent.
Little deviation between all three models is observed for both
Exposure and Stabilization type distortions. However, for
Artifacts and Color the RNmodel deviates from the other two
drastically, performing worse on the former and better on the
latter. Videos in the focus degradation class show auto-focus
related distortions where parts of the video are intermittently
blurry or sharp over time and are overall the biggest challenge
for our recurrent models, that both perform over 20% worse
on them than average. Finally, the Sharpness distortion is best
predicted by the recurrent networks, with the hybrid model
outperforming the pure LSTM network.

On CVD2014, our proposed models with SRCCs of 0.77,
0.75, and 0.79 for the FF, RN and HYB models, respectively,
are outperformed by both FRIQUEE and TLVQM at 0.82 and
0.83 SRCC and far outperformed by VSFA at 0.88 SRCC.
CVD2014 is a dataset of videos of two different resolutions,
with artificially introduced capturing distortions and only five
unique scenes of humans and human faces. The magnitude of
the artifacts is at a level that is not commonly seen in videos
in-the-wild, and the types of defects are also not within the
domain of distortions present in ImageNet. Therefore, this
is the most challenging dataset for our approach and, con-
sequently, the relative performance of our approach is worse.
CVD2014 is split into six subsets with partially overlapping
scenes but distinct capturing cameras. The bottom part of
Figure 13 shows the relative deviation of the RMSE from
the mean performance for each of these test setups. The first

two setups include videos at 640 × 480 pixels resolution,
which are generally rated with a lower MOS than videos in
the other test setups, which could both be an important factor
in our models’ increased performance here. Although all
setups include scenes 2 and 3, scene 1 is only included in test
setups 1 and 2, scene 4 is only included in test setups 3 and 4,
and scene 5 is solely included in test setups 5 and 6. Since the
features we use are tuned to identify content, as we showed in
Section III-B, inclusion or exclusion of particular scenes can
have an impact on the performance of our method. Moreover,
since each test setup contains videos taken from different
cameras than the rest, it is possible that the in-capture distor-
tions caused by particular cameras in any individual test setup
may be closer to the types of distortions present in ImageNet.

C. EVALUATION OF KONVID-150K-B
We now consider the performance evaluation when train-
ing and testing on our new dataset, KonVid-150k-B
of 1,596 videos, each with at least 89 ratings comprising the
quality score. We separate these tests from the previous ones
because, in this case, we have the option to train the networks
on the additional 150k videos in KonVid-150k-A that stem
from the same domain. From the previous experiments, it is
evident that TLVQM is the best performing classical metric
on the similar domain, given by KoNViD-1k, by a large
margin. Therefore, we compare ourMLSP-VQAmodels only
against TLVQM and the standard V-BLIINDS. Furthermore,
since the authors of VSFA has made code available to train
their model from scratch, we also evaluate this DNN-based
method. For both PVQ and 3D-CNN + LSTM functional
implementations to train a model from scratch was not avail-
able at the time of writing.

Table 3 summarizes the performance results. Compared
to the performance on KoNViD-1k, V-BLIINDS (row 1)
improves slightly, while TLVQM (row 2) performs signif-
icantly worse. In the case of VSFA the performance on
KonVid-150k-B is only slightly worse. Since the main dif-
ference between KoNViD-1k and this dataset is the reduced
re-encoding degradations, it appears as though the classical
methods over-emphasize their prediction on these artifacts.
The fourth through sixth rows list the performance of our
models, which outperform the other comparedmethods, beat-
ing VSFA’s 0.72 SRCC with 0.81 (FF), 0.78 (RN) and 0.75
(HYB) when trained and tested on the B variant exclusively.

Finally, the last three rows show the results from train-
ing on the large dataset, KonVid-150k-A, with 150k videos.
For these last three evaluations a random subset of 50%
of KonVid-150k-B was used for validation during training.
The remaining part of KonVid-150k-B was used for test-
ing. We note an additional substantial performance increase
for our networks. The FF model’s performance increases
from 0.81 SRCC to 0.83, while the RN model improves
from 0.78 SRCC to 0.81. The largest performance gain can
be observed for the HYB network, as it improves from
0.75 SRCC to 0.81 SRCC as well. This demonstrates, for the
first time, the enormous potential gains that can be achieved
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TABLE 3. Results of NR-VQA metrics tested on KonVid-150k-B. The first six rows are all intra-dataset performance results, meaning that the metrics were
trained and tested on KonVid-150k-B. The bottom three rows denoted by ‘‘(Full)’’ describe the performance when training on the entirety of
KonVid-150k-A, using half of KonVid-150k-B as a validation set, and the other as a test set.

TABLE 4. Inter-dataset test performance comparison of our three models averaged over 10 splits trained on the entirety of KonVid-150k-A when
compared with previous best results (See the table notes for the sources of the performance numbers.). The first row additionally contains the best
intra-dataset performance. The different splits only affect the validation and test sets, as all videos of KonVid-150k-A are used for training.

by vast training datasets for VQA. Although KonVid-150k-A
only has MOS scores comprised of five individual votes,
by training on them and validating on the target dataset we
drastically improve performance. It is to be noted as well
that the test sets in this scenario are larger than when train-
ing and testing solely on KonVid-150k-B. This renders the
test performance to be even more representative. However,
the change in variance of the resulting correlation coeffi-
cients cannot directly be attributed to the increase in train-
ing dataset size. The difference likely arises from the fact
that the models trained using KonVid-150k-A have the same
training data, and are therefore more likely to learn simi-
lar features. Nonetheless, this effect should be investigated
further.

D. INTER-DATASET PERFORMANCE
Considering the diversity in content and distortions in
KonVid-150k we highlight the power of KonVid-150k in
combination with our MLSP-VQA models in inter-dataset
testing scenarios. At the time of writing, LIVE-VQC has
not been considered in any performance evaluations across
datasets. The previously best reported cross-test perfor-
mances between the other three legacy datasets are three
different combinations of NR-VQA methods and training

datasets.5 Specifically, TLVQM trained on CVD2014
performs best on KoNViD-1k cross-testing with 0.54 SRCC.
V-BLIINDS trained on KoNViD-1k is the best combina-
tion for cross-testing on LIVE-Qualcomm with 0.49 SRCC.
Finally, FRIQUEE trained on KoNViD-1k performs best
when cross-testing on CVD2014 with 0.62 SRCC. It is appar-
ent from these results that no single NR-VQA and dataset
combination generally outperforms in inter-dataset testing
scenarios.

We evaluate the performance of our models when
cross-testing on other datasets, trained on KonVid-150k-A
and validated and tested on each 50% of KonVid-150k-B.
The average SRCC performances of 10 models are reported
in Table 4. For ease of comparison we also include the best
within-dataset performance in the first row, as well as the pre-
vious best cross-dataset test performances as taken from [18]
in the second row of the table. Although the performances
between our different models do not vary much, the results
reveal some interesting findings.
• The cross-dataset test performance of the FF model
on KoNViD-1k of 0.83 SRCC is higher than all other
within-dataset test performances and especially any
cross-test setups. This again underlines the potential

5These results are taken from [18].
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power of data, even if it is annotated with lower preci-
sion. Although KonVid-150k does not have the Flickr
video encoding artifacts present, it can predict the dis-
torted videos of KoNViD-1k better than training on
videos taken from the same dataset.

• On LIVE-Qualcomm the cross-dataset test perfor-
mances of all our models are slightly better than
V-BLIINDS (0.60), when it is trained and tested
on LIVE-Qualcomm. Since V-BLIINDS has been
the de facto baseline method, this is a remarkable
result. Additionally, for a cross-dataset test our pro-
posed KonVid-150k dataset shows the best generaliza-
tion to LIVE-Qualcomm, improving the previous best
0.49 SRCC to 0.64.

• Next, our models struggle with CVD2014, as none of
them beat even the most dated classical models trained
and tested on CVD2014 itself. This may be in part due to
the nature of the degradations induced in the creation of
the dataset, which are not native to the videos present
in KonVid-150k. Moreover, the domain shift between
KonVid-150k and CVD2014 seems to be larger than
to the other datasets, as the previous best cross-dataset
performance is also not achieved.

The cross-test performance drops notably when testing
on synthetic video datasets. This has already been observed
in the IQA domain [47], where training and testing on the
same domain resulted in much higher performance than when
the source and target domains were different. The types of
distortions in individual frames of videos from two different
domains result in different characteristics of the activations
of Inception-net features, resulting in reduced performance.

E. EVALUATION OF TRAINING SCHEMES
As described in Section II-A, the choice of the number of rat-
ings per video is a distinguishing, yet so far unexplored factor
in the design of VQA datasets in the context of optimizing
model training performance. In order to study the effect of
varying the number of ratings per video, we trained a large
set of corresponding models in two experiments. In the first
one, we increased the number of ratings to reduce the level
of noise in the training set. In the second one, we additionally
introduced the natural constraint of a vote budget, limiting the
total number of ratings to a constant.

It is common to use an equal number of votes for each
stimulus so that the MOS of the training, validation, and
test sets have the same reliability, respectively, the same
level of noise. Deep learning is known to be robust to label
noise [37], however, this has been only studied when the
same amount of noise is present for all items in all parts of
the dataset (train/test/validation). Thus, the first question we
investigate is:

• What impact do different noise levels in the training and
validation sets have on test set prediction performance?

More precisely, we are interested to know the change in pre-
diction performance when fewer votes are used for training

and validating deep learningmodels, compared to the number
of votes used for test items.

In order to answer this question, we randomly sampled
v = 1, 2, 4, 7, 14, 26, and 50 votes five times for each
video within KonVid-150k-B and computed the correspond-
ing MOS values (7 × 5 MOS per video). We then trained
our MLSP-VQA-FF model by varying both training set, and
validation set MOS vote counts while keeping the test set
MOS vote count at 50. For each pair of training and vali-
dation MOS, we considered twenty random splits with 60%
of the data for training, 20% for validation, and 20% for
testing, with the above mentioned five versions of the MOS
each. Therefore, we trained 5 × 20 × 7 × 7 = 4900 models
in total.

FIGURE 14. This plot summarizes the evaluation of MLSP-VQA-FF models
trained on KonVid-150k-B using different numbers of votes comprising
the training or validation MOS, indicated by the x axis and the color of the
graphs, respectively. The y-axis shows the average of 20 models’ SRCC
between the predicted MOS values on the test set and the ground truth
data, which is comprised of 50 votes.

The graph in Figure 14 depicts the mean SRCC between
the models’ predictions and the ground truth MOS of the test
sets. Each line in this graph represents a different number
of votes comprising the validation MOS, whereas the x-axis
indicates the number of votes comprising the training MOS.
Note that the x-axis is scaled logarithmically for better visu-
alization. There are three key observations concerning the
prediction performance:
• The prediction performance improves as the number of
votes comprising the trainingMOS increases, regardless
of the number of votes used for validation.

• The performance improvements scale approximately
logarithmically with the number of votes comprising the
training MOS.

• The test set performance varies less due to changes in
the number of votes used for validation than it does due
to the number of votes for items in the training set.

The fact that performance improves with lower training
label noise is not surprising. Nonetheless, the gentler slope
for the performance curves beyond four votes comprising
the training MOS is an indicator that the common policy to
gather 25 votes for all stimuli in a dataset may be sub-optimal,
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due to diminishing returns. In fact, at approximately five
votes (1/10th of the analysed budget) the model bridges
more than 66% of the performance gap between the minimal
performance at 0.55 SRCC and best performance at around
.73 SRCC, suggesting it to be a good trade-off between
precision and cost.

The comparison between data splits in this experiment
is not balanced, because the data points in the graphs of
Figure 14 correspond to different vote budgets, ranging from
1 rating per video in one instance on the left up to 50 per
video on the right. The annotation of datasets in the lab and
also in the crowd usually is constrained by a budget in terms
of total hours of testing or overall cost of crowdsourcing.
This translates to a maximum number of votes that can be
attained for a given dataset. Therefore, the second question
we investigate is:

• Given a fixed vote budget, how does the allocation of
votes on the training set affect test performance?

In other words, is it better to collect more votes for fewer
stimuli, or less votes for more videos?

In order to answer this question, we first divided
KonVid-150k-B into five disjoint test sets (each with 20%
of all videos) and sampled the same number of videos from
the remaining set of KonVid-150k-B for validation. We then
considered three levels of precision at 100, 5, and 1 votes
comprising the MOS of videos used in training, as well
as six vote budgets of 100,000, 25,000, 10,000, 2,500, and
1,000 votes. We built the training sets accordingly, sampling
from the remaining videos in KonVid-150k-B first, and then
adding in videos from KonVid-150k-A, if needed, such that
the smaller sets are proper subsets of the larger variants. For
the vote budget of 100,000 votes we consequently created
three training sets of 1,000, 20,000, and 100,000 videos
at training MOS precision levels of 100, 5 and 1 vote(s),
respectively. It is to be noted that the overlap between the
different samples of the same sets increases as the set size
increases, as the whole KonVid-150k-B set is only comprised
of ≈150,000 videos, which in turn has an effect on the
standard deviation of the predictions.

We trained both MLSP-VQA-FF and MLSP-VQA-RN on
the five different splits for all three vote budget distributions
and reported the results in Table 5. We give the average
SRCC, PLCC, and RMSE between the models’ predicted
scores and the MOS computed by using all available votes.
There are few key takeaways from these results:

• As one would suspect, the performance drops as the total
vote budget decreases.

• Surprisingly, however, the performance appears to be
stable across the different distribution strategies for bud-
gets of more than 1,000 votes.

• For smaller vote budgets a middle ground choice
between MOS precision and numbers of videos seems
to be favorable, as indicated by the 5 vote MOS distri-
bution strategy outperforming the more and less precise
extreme strategies. This suggests that for very small vote

TABLE 5. Performance of our FF model at a fixed vote budget of 100,000,
25,000, 10,000, 2,500, and 1,000 votes.

budgets in particular the focus should be on fewer than
the commonly suggested 30 rating MOS recommenda-
tions that are found in literature.

VI. CONCLUSION
We introduced a large-scale in-the-wild dataset KonVid-150k
for video quality assessment (VQA), as well as three novel
state-of-the-art no-reference VQAmethods for videos in-the-
wild. Our learning approach (MLSP-VQA) outperforms the
best existing VQA methods trained end-to-end on several
datasets, and is substantially faster to train without sacrificing
any predictive power. The large size of the database and
efficiency of the learning approach have enabled us to study
the effect of different levels of label-noise and how the vote
budget (total number of collected scores from users) affects
model performance. We were able to study the effect of
different vote budget distribution strategies, meaning that the
number of annotated videos was adjusted according to the
desired MOS precision. Under a fixed budget, we found that
in most cases the number of votes allocated to each video is
not important for the final model performance when using our
MLSP-VQA approach and other feature-based approaches.

KonVid-150k takes a novel approach to VQA, going far
beyond the usual in the VQA community. The database
is two orders of magnitude larger than previous published
datasets, and it is more authentic both in terms of variety
of content types and distortions, but also due to the com-
pression settings of the videos. We retrieved the original
video files uploaded by users from Flickr, without the default
re-encoding that is generally applied by any video sharing
platform to reduce playback bandwidth costs.We encoded the
raw video files ourselves at a high enough quality to ensure
the right balance between quality and size constraints for
crowdsourcing.

The main novelty of the proposed MLSP-VQA-HYB
method is the two-channel architecture. By global average
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pooling the activation maps of all kernels in the Inception
modules of an InceptionResNet-v2 network trained on Ima-
geNet, we extract a wide variety of features, ranging from
detections of oriented edges to more abstract ones related
to object category. These features are input to the partially
recurrent DNN architectures, which on the one hand makes
use of the temporal sequence of the frame features, while
on the other also considering the individual frame features
as well.

We have trained and validated the proposedmethods on the
four most relevant VQA datasets, improving state-of-the-art
performance on KoNViD-1k. Our models fall short on LIVE-
VQC, which we assume is cause by the many different types
of resolutions present in the dataset. While a few works out-
perform our proposed method on the LIVE-Qualcomm and
CVD2014, this is likely due to the artificial nature of degra-
dations in these datasets that our feature extraction network
is not trained on. We also show that our proposed method
outperforms the current state-of-the-art on KonVid-150k-B,
the set of 1,596 accurately labeled videos that are part of our
proposed dataset. Additionally, by training our method on the
entirety of the proposed noisily annotated dataset, we can
improve the inter-dataset test performance on KoNViD-1k
and LIVE-Qualcomm and are competitive in an inter-dataset
setup on LIVE-VQC. Moreover, we surpass even the intra-
dataset performance on theKoNViD-1k dataset by training on
KonVid-150k. CVD2014 appears to be a tough challenge for
our approach, both when trained in within-dataset and cross-
dataset scenarios.

Some of our findings open up avenues for interesting
future investigations. The overall very high performance
of our MLSP-VQA-FF model suggests that recurrent neu-
ral networks pose difficulties for the purpose of modeling
video quality which has also been reflected in recent related
work [43]. Further investigations are required to understand
themore nuanced reasons for this beyond thewell-established
challenge of vanishing gradients within recurrent networks.
Moreover, it is likely that a more elaborate pooling scheme
which accounts for temporal hysteresis could be beneficial
for the performance of the FF model. Recent efforts in the
field show promising results by investigating more elaborate
temporal pooling strategies [42], [43]. Combining our efforts
of extracting features from all levels of a pre-trained network
with pooling strategies that account for particular temporal
effects is a key challenge in further improving quality predic-
tion of videos in-the-wild.

REFERENCES

[1] Wyzowl. (2019). Wyzowl State of Video Marketing Statistics
2019. Accessed: Nov. 15, 2019. [Online]. Available: https://info.
wyzowl.com/state-of-video-marketing-2019-report

[2] Buffer. (2019). State of Social 2019 Report. Accessed: Nov. 15, 2019.
[Online]. Available: https://buffer.com/state-of-social-2019

[3] K. Westcott, J. Loucks, K. Downs, and J. Watson, Digital Media Trends
Survey, 12th ed. Hermitage, TN, USA: Deloitte, 2018.

[4] Cisco, ‘‘Cisco visual networking index: Forecast and trends, 2017–2022,’’
Cisco, VNI, San Jose, CA, USA, White Paper, vol. 1, 2018.

[5] C. Goodrow. (2017). You Know What’s Cool? A Billion Hours.
Accessed: Nov. 15, 2019. [Online]. Available: https://youtube.
googleblog.com/2017/02/you-know-whats-cool-billion-hours.html

[6] G. E. McKechnie, ‘‘Simulation techniques in environmental psychol-
ogy,’’ in Perspectives on Environment and Behavior. Boston, MA, USA:
Springer, 1977, pp. 169–189.

[7] C. S. Ang, A. Bobrowicz, D. J. Schiano, and B. Nardi, ‘‘Data in the wild:
Some reflections,’’ Interactions, vol. 20, no. 2, pp. 39–43, Mar. 2013.

[8] S. Argyropoulos, A. Raake, M.-N. Garcia, and P. List, ‘‘No-reference
video quality assessment for SD and HD H.264/AVC sequences based on
continuous estimates of packet loss visibility,’’ in Proc. 3rd Int. Workshop
Qual. Multimedia Exper., Sep. 2011, pp. 31–36.

[9] Z. Chen and D. Wu, ‘‘Prediction of transmission distortion for wireless
video communication: Analysis,’’ IEEE Trans. Image Process., vol. 21,
no. 3, pp. 1123–1137, Mar. 2012.

[10] G. Valenzise, S. Magni, M. Tagliasacchi, and S. Tubaro, ‘‘No-reference
pixel video qualitymonitoring of channel-induced distortion,’’ IEEETrans.
Circuits Syst. Video Technol., vol. 22, no. 4, pp. 605–618, Apr. 2012.

[11] M. A. Saad, A. C. Bovik, and C. Charrier, ‘‘Blind prediction of natural
video quality,’’ IEEE Trans. Image Process., vol. 23, no. 3, pp. 1352–1365,
Mar. 2014.

[12] K. Pandremmenou, M. Shahid, L. P. Kondi, and B. Lövström, ‘‘A no-
reference bitstream-based perceptual model for video quality estimation
of videos affected by coding artifacts and packet losses,’’ in Proc. 20th
Hum. Vis. Electron. Imag., vol. 9394. International Society for Optics and
Photonics, 2015, Art. no. 93941F.

[13] C. Keimel, J. Habigt, M. Klimpke, and K. Diepold, ‘‘Design of no-
reference video quality metrics with multiway partial least squares
regression,’’ in Proc. 3rd Int. Workshop Qual. Multimedia Exper., 2011,
pp. 49–54.

[14] K. Zhu, C. Li, V. Asari, and D. Saupe, ‘‘No-reference video quality
assessment based on artifact measurement and statistical analysis,’’ IEEE
Trans. Circuits Syst. Video Technol., vol. 25, no. 4, pp. 533–546, Apr. 2015.

[15] J. Sogaard, S. Forchhammer, and J. Korhonen, ‘‘No-reference video quality
assessment using codec analysis,’’ IEEE Trans. Circuits Syst. Video Tech-
nol., vol. 25, no. 10, pp. 1637–1650, Oct. 2015.

[16] A. Mittal, M. A. Saad, and A. C. Bovik, ‘‘A completely blind video
integrity oracle,’’ IEEE Trans. Image Process., vol. 25, no. 1, pp. 289–300,
Jan. 2016.

[17] M. T. Vega, D. C. Mocanu, S. Stavrou, and A. Liotta, ‘‘Predictive no-
reference assessment of video quality,’’ Signal Process., Image Commun.,
vol. 52, pp. 20–32, Mar. 2017.

[18] J. Korhonen, ‘‘Learning-based prediction of packet loss artifact visibility in
networked video,’’ in Proc. 10th Int. Conf. Qual. Multimedia Exper., 2018,
pp. 1–6.

[19] J. Korhonen, ‘‘Two-level approach for no-reference consumer video
quality assessment,’’ IEEE Trans. Image Process., vol. 28, no. 12,
pp. 5923–5938, Dec. 2019.

[20] V. Hosu, F. Hahn, M. Jenadeleh, H. Lin, H. Men, T. Szirányi, S. Li, and
D. Saupe, ‘‘The konstanz natural video database (KoNViD-1k),’’ in Proc.
9th Int. Conf. Qual. Multimedia Exper. (QoMEX), May 2017, pp. 1–6.

[21] M. Nuutinen, T. Virtanen, M. Vaahteranoksa, T. Vuori, P. Oittinen, and
J. Häkkinen, ‘‘CVD2014—A database for evaluating no-reference video
quality assessment algorithms,’’ IEEETrans. Image Process., vol. 25, no. 7,
pp. 3073–3086, Jul. 2016.

[22] D. Ghadiyaram, J. Pan, A. C. Bovik, A. K. Moorthy, P. Panda, and
K.-C. Yang, ‘‘In-capture mobile video distortions: A study of subjective
behavior and objective algorithms,’’ IEEE Trans. Circuits Syst. Video
Technol., vol. 28, no. 9, pp. 2061–2077, Sep. 2018.

[23] Z. Sinno and A. C. Bovik, ‘‘Large-scale study of perceptual video
quality,’’ IEEE Trans. Image Process., vol. 28, no. 2, pp. 612–627,
Feb. 2019.

[24] F. Gao, J. Yu, S. Zhu, Q. Huang, and Q. Tian, ‘‘Blind image quality pre-
diction by exploiting multi-level deep representations,’’ Pattern Recognit.,
vol. 81, pp. 432–442, Sep. 2018.

[25] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, ‘‘The
unreasonable effectiveness of deep features as a perceptual metric,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 586–595.

[26] V. Hosu, B. Goldlucke, and D. Saupe, ‘‘Effective aesthetics prediction with
multi-level spatially pooled features,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 9375–9383.

72158 VOLUME 9, 2021



F. Götz-Hahn et al.: KonVid-150k: Dataset for NR-VQA of Videos in-Wild

[27] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, ‘‘Inception-v4,
inception-resnet and the impact of residual connections on learning,’’ in
Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 4278–4284.

[28] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira, ‘‘Analysis of repre-
sentations for domain adaptation,’’ in Proc. Adv. Neural Inf. Process. Syst.,
2007, pp. 137–144.

[29] F. De Simone, M. Naccari, M. Tagliasacchi, F. Dufaux, S. Tubaro,
and T. Ebrahimi, ‘‘Subjective assessment of H.264/AVC video sequences
transmitted over a noisy channel,’’ in Proc. Int. Workshop Qual. Multime-
dia Exper., Jul. 2009, pp. 204–209.

[30] F. De Simone, M. Tagliasacchi, M. Naccari, S. Tubaro, and T. Ebrahimi,
‘‘A H. 264/AVC video database for the evaluation of quality metrics,’’
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., Mar. 2010,
pp. 2430–2433.

[31] K. Seshadrinathan, R. Soundararajan, A. C. Bovik, and L. K. Cormack,
‘‘Study of subjective and objective quality assessment of video,’’ IEEE
Trans. Image Process., vol. 19, no. 6, pp. 1427–1441, Jun. 2010.

[32] K. Seshadrinathan, R. Soundararajan, A. C. Bovik, and L. K. Cormack,
‘‘A subjective study to evaluate video quality assessment algorithms,’’ in
Proc. 15th Hum. Vis. Electron. Imag., vol. 7527. International Society for
Optics and Photonics, 2010, Art. no. 75270H.

[33] D. M. Chandler, ‘‘Most apparent distortion: Full-reference image quality
assessment and the role of strategy,’’ J. Electron. Imag., vol. 19, no. 1,
Jan. 2010, Art. no. 011006.

[34] Video Quality Experts Group. (2010). Report on the Validation of Video
Quality Models for High Definition Video Content. [Online]. Available:
http://www.its.bldrdoc.gov/media/4212/vqeg_hdtv_final_report_version_
2.0.zip

[35] F. Zhang, S. Li, L. Ma, Y. C. Wong, and K. N. Ngan, ‘‘IVP
subjective quality video database,’’ Chin. Univ. Hong Kong, Hong
Kong, Tech. Rep., 2011. [Online]. Available: http://ivp.ee.cuhk.educ.
hk/research/database/subjective

[36] D. Saupe, F. Hahn, V. Hosu, I. Zingman, M. Rana, and S. Li, ‘‘Crowd
workers proven useful: A comparative study of subjective video qual-
ity assessment,’’ in Proc. Int. Conf. Qual. Multimedia Exper. (QoMEX),
2016, pp. 1–2.

[37] D. Rolnick, A. Veit, S. Belongie, and N. Shavit, ‘‘Deep learning is robust
to massive label noise,’’ 2017, arXiv:1705.10694. [Online]. Available:
http://arxiv.org/abs/1705.10694

[38] H. Otroshi-Shahreza, A. Amini, and H. Behroozi, ‘‘No-reference image
quality assessment using transfer learning,’’ in Proc. 9th Int. Symp.
Telecommun. (IST), Dec. 2018, pp. 637–640.

[39] F. Chollet, ‘‘Xception: Deep learning with depthwise separable convo-
lutions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 1251–1258.

[40] D. Varga, D. Saupe, and T. Szirányi, ‘‘DeepRN: A content preserving deep
architecture for blind image quality assessment,’’ in Proc. IEEE Int. Conf.
Multimedia Expo (ICME), Jul. 2018, pp. 1–6.

[41] F. Götz-Hahn, V. Hosu, and D. Saupe, ‘‘Critical analysis on the repro-
ducibility of visual quality assessment using deep features,’’ 2020,
arXiv:2009.05369. [Online]. Available: http://arxiv.org/abs/2009.05369

[42] D. Li, T. Jiang, and M. Jiang, ‘‘Quality assessment of in-the-wild videos,’’
in Proc. 27th ACM Int. Conf. Multimedia, Oct. 2019, pp. 2351–2359.

[43] Z. Ying, M. Mandal, D. Ghadiyaram, and A. Bovik, ‘‘Patch-VQ: ‘Patching
Up’ the video quality problem,’’ 2020, arXiv:2011.13544. [Online]. Avail-
able: http://arxiv.org/abs/2011.13544

[44] Z. Ying, H. Niu, P. Gupta, D. Mahajan, D. Ghadiyaram, and A. Bovik,
‘‘From patches to pictures (PaQ-2-PiQ): Mapping the perceptual space of
picture quality,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 3575–3585.

[45] K. Hara, H. Kataoka, and Y. Satoh, ‘‘Learning spatio-temporal features
with 3D residual networks for action recognition,’’ in Proc. IEEE Int. Conf.
Comput. Vis. Workshops (ICCVW), Oct. 2017, pp. 3154–3160.

[46] H. Ismail Fawaz, B. Lucas, G. Forestier, C. Pelletier, D. F. Schmidt,
J. Weber, G. I. Webb, L. Idoumghar, P.-A. Müller, and F. Petitjean, ‘‘Incep-
tionTime: Finding AlexNet for time series classification,’’ Data Mining
Knowl. Discovery, vol. 34, no. 6, pp. 1936–1962, Nov. 2020.

[47] H. Lin, V. Hosu, and D. Saupe, ‘‘DeepFL-IQA: Weak supervision for
deep IQA feature learning,’’ 2020, arXiv:2001.08113. [Online]. Available:
http://arxiv.org/abs/2001.08113

[48] D. Varga, ‘‘Multi-pooled inception features for no-reference video quality
assessment,’’ in Proc. VISIGRAPP (4: VISAPP), 2020, pp. 338–347.

[49] A. Srivastava, A. B. Lee, E. P. Simoncelli, and S.-C. Zhu, ‘‘On advances in
statistical modeling of natural images,’’ J. Math. Imag. Vis., vol. 18, no. 1,
pp. 17–33, 2003.

[50] A. Mittal, R. Soundararajan, and A. C. Bovik, ‘‘Making a ‘completely
blind’ image quality analyzer,’’ IEEE Signal Process. Lett., vol. 20, no. 3,
pp. 209–212, Nov. 2012.

[51] A. Mittal, A. K. Moorthy, and A. C. Bovik, ‘‘No-reference image quality
assessment in the spatial domain,’’ IEEE Trans. Image Process., vol. 21,
no. 12, pp. 4695–4708, Dec. 2012.

[52] J. Xu, P. Ye, Y. Liu, and D. Doermann, ‘‘No-reference video quality
assessment via feature learning,’’ in Proc. IEEE Int. Conf. Image Process.,
Oct. 2014, pp. 491–495.

[53] D. Kundu, D. Ghadiyaram, A. C. Bovik, and B. L. Evans, ‘‘No-reference
quality assessment of tone-mapped HDR pictures,’’ IEEE Trans. Image
Process., vol. 26, no. 6, pp. 2957–2971, Jun. 2017.

[54] Y. Li, L.-M. Po, C.-H. Cheung, X. Xu, L. Feng, F. Yuan, andK.-W. Cheung,
‘‘No-reference video quality assessment with 3D shearlet transform and
convolutional neural networks,’’ IEEE Trans. Circuits Syst. Video Technol.,
vol. 26, no. 6, pp. 1044–1057, Jun. 2016.

[55] C. Wang, L. Su, and W. Zhang, ‘‘COME for no-reference video quality
assessment,’’ in Proc. IEEE Conf. Multimedia Inf. Process. Retr. (MIPR),
Apr. 2018, pp. 232–237.

[56] J. You and J. Korhonen, ‘‘Deep neural networks for no-reference video
quality assessment,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP),
Sep. 2019, pp. 2349–2353.

[57] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier,
S. Vijayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, M. Suleyman,
and A. Zisserman, ‘‘The kinetics human action video dataset,’’ 2017,
arXiv:1705.06950. [Online]. Available: http://arxiv.org/abs/1705.06950

[58] D. Varga, ‘‘No-reference video quality assessment based on the tem-
poral pooling of deep features,’’ Neural Process. Lett., vol. 50, no. 3,
pp. 2595–2608, Dec. 2019.

[59] D. Varga and T. Szirányi, ‘‘No-reference video quality assessment via
pretrained CNN and LSTM networks,’’ Signal, Image Video Process.,
vol. 13, no. 8, pp. 1569–1576, Nov. 2019.

[60] K. Seshadrinathan and A. C. Bovik, ‘‘Temporal hysteresis model of time
varying subjective video quality,’’ in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), May 2011, pp. 1153–1156.

[61] V. Hosu, H. Lin, T. Sziranyi, and D. Saupe, ‘‘KonIQ-10k: An ecologically
valid database for deep learning of blind image quality assessment,’’ IEEE
Trans. Image Process., vol. 29, pp. 4041–4056, 2020.

[62] Objective Perceptual Assessment of Video Quality: Full Reference Tele-
vision, document Tutorial, ITU-T Telecommunication Standardization
Bureau, 2004.

[63] T. Hoßfeld, R. Schatz, and S. Egger, ‘‘SOS: The MOS is not enough!’’ in
Proc. 3rd Int. Workshop Qual. Multimedia Exper., Sep. 2011, pp. 131–136.

[64] L. Janowski and M. Pinson, ‘‘The accuracy of subjects in a quality exper-
iment: A theoretical subject model,’’ IEEE Trans. Multimedia, vol. 17,
no. 12, pp. 2210–2224, Dec. 2015.

[65] M. Hermans and B. Schrauwen, ‘‘Training and analysing deep recur-
rent neural networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 190–198.

FRANZ GÖTZ-HAHN was born in Zierenberg,
Germany, in 1987. He received the B.S. degree
in knowledge engineering and the M.S. degree in
artificial intelligence from Maastricht University,
in 2011 and 2015, respectively. He is currently
pursuing the Ph.D. degree in computer science
with the University of Konstanz.

His work focuses on image and video quality
assessment using deep learning and the subjec-
tive annotation of databases for this purpose using

crowdsourcing. As a member of the Multimedia Signal Processing Group,
Konstanz, he coauthored multiple video quality datasets. As part of the
SFB-TRR 161 Quantitative Methods for Visual Computing, he established
and co-organized the crowdsourcing workshop and has given recurring
lectures on the topic at the University of Konstanz.

VOLUME 9, 2021 72159



F. Götz-Hahn et al.: KonVid-150k: Dataset for NR-VQA of Videos in-Wild

VLAD HOSU received the Ph.D. degree from
the National University of Singapore, in 2014.
He was a Research Fellow with NUS. He has been
holding a postdoctoral position with the Depart-
ment of Computer and Information Science, Uni-
versity of Konstanz, Germany, since 2016. His
research interests include visual quality assess-
ment, image enhancement, crowdsourcing strate-
gies, understanding, and modeling human visual
perception via machine learning.

HANHE LIN received the Ph.D. degree from the
Department of Information Science, University of
Otago, New Zealand, in 2016. He is currently
a Postdoctoral Researcher with the Department
of Computer and Information Science, Univer-
sity of Konstanz, Germany. His research interests
include machine learning and deep learning-
based application, visual quality assessment, and
crowdsourcing.

DIETMAR SAUPE was born in Bremen, Germany,
in 1954. He received the Dr. rer. nat. degree in
mathematics from the University of Bremen, Ger-
many, in 1982. From 1985 to 1993, he was an
Assistant Professor with the Departments ofMath-
ematics, first at the University of California, Santa
Cruz, USA, and then at the University of Bremen,
resulting in his habilitation. From 1993 to 1998,
he was a Professor of computer science with the
University of Freiburg, Germany, the University of

Leipzig, Germany, until 2002, and since then, the University of Konstanz,
Germany. He is the coauthor of the book Chaos and Fractals, which won
the Association of American Publishers Award for Best Mathematics Book
of the Year, in 1992, and well over 100 research articles. His research
interests include image and video processing, computer graphics, scientific
visualisation, dynamical systems, and sport informatics.

72160 VOLUME 9, 2021


