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ABSTRACT This manuscript deals with the system identification of lightly (under) damped processes to
find a suitable model structure. To identify such processes, the Kautz model, which is a two-parameter
representation of orthogonal basis functions (OBF) in state space format, is used. The process parameters
are obtained through the subspace method by sequencing the states obtained from the Kautz model. The
obtained states are transformed into convex optimization in which the eigen values poles) to be estimated
are confined to lie within user-defined regions in the convex plane. To derive the optimal states, an efficient
control scheme based on the state observer design is implemented. The viability of the proposed work has
been verified on real-timeCoriolisMass FlowMeter (CMFM) under no flow condition and the corresponding
responses are plotted using MATLAB.

INDEX TERMS Kautz function, subspace methods, algebraic Riccati equations, YALMIP toolbox, Coriolis
mass flow meter.

I. INTRODUCTION
Modeling of dynamic systems based on the system identi-
fication method (black box modeling) is highly an iterative
procedure. It requires input-output (I/O) data, model structure
(order and type), and selection criteria (rank models based
on pre-defined cost function) [1]. The most challenging task
in system identification is building the appropriate model
structure and the accuracy of the model to mimic the real
time system is based on the order of the system, system
gain, dominating time constants, etc. If the order of the
model is deliberatelymade high, then themodel will perfectly
mimic the real-time system irrespective of its nature i.e.,
linear/nonlinear, time-invariant/time-variant, etc. Increasing
the order of the model increases the challenges in validating
the real time system and designing an appropriate control
algorithm for such systems is cumbersome. These challenges
are the serious limitations in Impulse Response (IR) methods,
even though, they are highly recommended to approximate
any stable linear system as it guarantees stability and neglects
truncation errors [2]. Similarly, other black-box models viz.,
Auto-Regressive (AR), Auto-Regressive Moving Average
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(ARMA), and Output Error (OE), etc., will suffer while
approximating higher order systems and these methods offer
less guarantee in terms of stability [1]. The above black-box
models can get rid of these limitations (in dealing with a
linear system), by choosing the correct basis functions. Basis
functions are orthogonal in general, due to the aspect of con-
vergence of model error, its completeness and hence deserves
the name Orthogonal Basis Functions (OBF). IR methods
have impulse functions as the basis functions to represent
linear systems. It has a delay operator in its structure and these
delay terms get added if the order of the system is increased
thereby making the model more sluggish. The fruitfulness
of generalizing the IR structure (Finite Impulse Response)
obtained by replacing the delay operator with an all-pass
function has been pointed out by Wahlberg [3]. This leads to
a simple and efficient OBF that mimics the real-time system.
To make the system to be strictly proper, the first delay
element will be replaced by the low-pass function and the rest
will be replaced by the all-pass function. The first order rep-
resentation of such systems is called as Laguerre function [4]
and the second order representation of such systems is called
as Kautz function [5]. Laguerre functions are used to mimic
highly damped systems and Kautz functions are used to
mimic lightly damped systems. The importance of Laguerre
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polynomials in filtering came into the limelight after an
inspirational work done by Lee and Wiener [6]. Kautz [7],
obtained a new set of OBF by orthogonalization of the time
exponential functions intending to improve the analog filter
design called Kautz polynomials. A discrete version of Kautz
polynomial has been investigated in [8]. The state space rep-
resentation of Kautz functions were carried out by Reddy and
Saha [9]. Wahlberg has pioneered the application of Laguerre
and Kautz functions in system identification. He represented
the Laguerre and Kautz functions in the discrete frequency
domain (Z-transform). In addition to that, he claimed that no
matter whatever may be the value of an unknown parame-
ter, the true system approximated using Laguerre and Kautz
functions should be strictly proper and analytic. But choosing
any random value of unknown parameters, the system takes
more steps to converge. To make the convergence rate faster,
the optimal choice for the unknown parameters is the system’s
dominant poles [10]. Fetching the system’s dominant poles
using an appropriate system identification method is an uphill
task as the system’s physical insight is hardly known. The
better way to get the system behavior and specifications are
by using non-parametric (frequency domain) system identifi-
cation methods like Spectral estimate [11]. This method is
indeed an easy way for modeling as little amount of prior
system knowledge will suffice. However, the non-parametric
methods suffer from drawbacks as they are not directly used
for simulations. On the other hand, in the parametric sys-
tem identification method, the information of gain, dominant
poles should be exploited to decide the order of the model to
be used. But the direct information of the gain and poles of
the system are seldom or never explicitly utilized. To over-
come this issue and to obtain the system poles, the state
partition-based subspace method with eigenvalue constraint
has been utilized in this paper. The subspace methods (SM)
have drawn more attention in the past decades not only
because of their numerical stability and simplicity but also
for their ease of applicability to MIMO systems [12]. The
traditional steps followed in SM are to generate Extended
Observability matrix and Toeplitz matrix from measurement
data and system parameters are estimated using these two
matrices. But this method has limitations i.e., the generated
observability matrix obtained from the bulk measurement
data leads to uncontrollable and unobservable mode (concern
matrices becomes singular). Miller et al. [13] proposed a
novel method to estimate the system parameters by trans-
forming the entire state space model into convex optimization
with constraints in terms of Linear Matrix Inequality (LMI).
In this paper, the states obtained from the recursive Kautz
functions are used to form a cost function by sequencing it
and the constraint in the eigenvalues of the transition matrix
obtained from Kautz functions lie in the unit circle to ensure
stability. To get the optimal states in order to guarantee
noise-free states, the state feedback control law is utilized
and the controller gain is calculated using Algebraic Riccati
Equation (ARE). Numerical tools like MATLAB R2018A
and YALMIP toolbox, a third-party toolbox for MATLAB is

used to generate the Kautz model in state space form, to per-
form convex optimization using SeDuMi solver and to solve
ARE to obtain the controller gain [14]. The proposed work is
validated with a lightly damped flow-measuring meter called
Coriolis Mass Flow Meter (CMFM). The CMFM measures
the flow rate of the fluid in terms of mass.

This paper is organized as follows. Following the
Introduction,
• Section II deals with the development of the recursive
Kautz model in state space form.

• Section III focuses on obtaining system parameters by
sequencing the states from the Kautzmodel. This is done
by formulating a cost function (convex optimization) in
Frobenius norm with eigenvalue constraint and subse-
quently, the optimal states are derived by implementing
the state feedback control law.

• Section IV shows the simulation results and discussions
of the proposed work along with its real-time application
(Coriolis Mass Flow Meter at no flow condition).

• Section V discusses the numerical results analysis,
which is followed by the conclusion.

II. TWO PARAMETER KAUTZ REPRESENTATION IN STATE
SPACE MODEL
The real functions are said to be orthonormal in the interval
[0,∞), if it has the following representation where l and q
are merely the number of terms in which the functions are
defined.

∞

∫
0
ml(t)mq(t) = 0, l 6= q (1)

The functions that possess orthonormal property are said
to be complete. It means the orthogonal functions are ana-
lytic as well as convergent for a given predefined space.
If the functions are analytic and convergent around a certain
point or other function in a predefined space, then the function
is said to be complete.

∞

∫
0
f (t)mq(t) = 0 (2)

If the function mq(t) for all t = 0, 1, 2 . . . . . . , n is orthonor-
mal and complete in the interval [0,∞), then the function
f (t) has the formal expansion analogous to Fourier series
expansion. In the context of approximation, the function has
been written as,

f (t) =
∞

∫
0
pdmq(t) (3)

where, pd are the coefficients of the expansion. The
paramount feature of OBF for system identification is its
simplicity as well as its predominant utilization of coeffi-
cients pd to describe the system properties and functions.
The Kautz functions used in this paper is suitable for the
system having complex poles and used for resonant ones.
The idea behind the complex value poles is that the sys-
tem shows underdamped behavior. It has initially a transient
response and as the time progresses, it reaches a steady state.
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The Kautz model is good in approximating the system that
has the above-mentioned property. It allows non-identical
poles in the construction of resonant systems. The two param-
eter Kautz model takes two non-identical, but symmetric
poles as the free parameters. The generalized Kautz function
with complex poles is given as,

M2n−1(s)=
√
2an/2

s+hn/2(
s+an/2

+ jbn/2

) (
s+an/2

− jbn/2

)ρn(s)
(4)

M2n(s)=
√
2an/2

s−hn/2(
s+an/2

+ jbn/2

) (
s+an/2

− jbn/2

)ρn(s)
(5)

where,

ρn(s) = 5
n
2−2
i=1

(s− ai − jbi) (s− ai + jbi)
(s+ ai + jbi) (s+ ai − jbi)

(6)

which represents the all-pass function. Here, n = N
2 order of

the system, N is the number of terms in the Kautz function.
hi =

√
ai + jbi, represents complex poles. a and b denotes

real and imaginary terms [15].
The discrete Kautz function in terms of Z-transform is,

hi =
√
ai + jbi

(
z−1 − a

)i−1 ((
z−1 − b

)i−1(
1− az−1

)i (1− bz−1)i
0 ≤ a ≤ 1, 0 ≤ b ≤ 1 (7)

a, b are the free parameters or scaling factors that the user
must define. These scaling factors are called dominant poles
in the Kautz function perspective, which are complex con-
jugate in nature. These functions satisfy the orthogonal
property.

M (k) = Z−1M (z) (8)

However, the inverse of the Kautz function is not easy to
construct. The compact form of Kautz function is obtained
through state space modeling by recursively solving the
Kautz function represented in Equation (7)

Mk (z) = Mk−1(z)

(
z−1 − a

)1 ((
z−1 − b

)1(
1− az−1

)1 (1− bz−1)1 (9)

where,

Mk−1(z) or M1(z) =

√(
1− a2

) (
1− b2

)(
1− az−1

) (
1− bz−1

) (10)

By repeating this in similar fashion, the state space format of
the Kautz function is obtained.

M (k + 1) = A1M (k)+ A2M (k − 1)+ BD(k) (11)

A1 and A2 are the matrices of size n×n,D is the input or exci-
tation signal and B is the input vector. The fourth order Kautz

function is expressed along with its parameters as,

A1 =
(

v 0
v(w− 1) v

)
(12)

A2 =
(
−w 0

1− w2
−w

)
(13)

B =
(

1
γ v

)
(14)

γ =

√(
1− a2

) (
1− b2

)
(15)

where,

v = ab

w = a+ b

In contrast to Laguerre function, the Kautz function takes free
parameters in complex and conjugate form. To nullify the
imaginary term, free parameters in terms of v and w are used
to construct matrices instead of a and b.

The transfer function in the discrete domain can be written
in terms orthogonal kernel as,

T (z) =
N∑
n=1

θnMn(z) (16)

The input-output relationships in terms of regression phe-
nomena are represented as,

Y (k) = 	×8(k) (17)

Here, Y is the output of the Kautz function,	 is the parameter
vector and 8 is the regression in terms of Kautz function as
shown below

8(k) =


M1(z)
M1(z)
·

·

Mn(z)

× u(k) (18)

The parameter vector takes the form as,

	 =


θ1
θ2
·

·

θn


′

(19)

The above equation with a single quote represents the
transpose of 	. This parameter vector 	 can be estimated
through the least square technique. From (17), it is assumed
that the Kautz functionsM (z) acts as the system states. Hence,
the formal mapping of states with Kautz functions in terms
of second order all pass function is,

xodd,1 =

√(
1− a2

) (
1− b2

)(
1− az−1

) (
1− bz−1

) (20)

xodd,2 =

(
z−1 − a

)1 (
z−1 − b

)1(
1− az−1

) (
1− bz−1

) (21)
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The generalized N th
term is given as,

xoddN =

(
z−1 − a

)N−1 ((
z−1 − b

)N−1(
1− az−1

)N−1 (1− bz−1)N−1 (22)

Therefore, the generalized state representation for the N-th
order system is given as,

xodd (k) =


x1(k)
x3(k)
x5(k)
...

x2n−1(k)

 (23)

xeven (k) =


x2(k)
x4(k)
x6(k)
...

x2n(k)

 =


x1(k − 1)
x3(k − 1)
x5(k − 1)

x2n−1(k − 1)

 (24)

The regression function in terms of odd and even is written as,

8(k) =
(
ϕN−1(k)
ϕN (k)

)
(25)

where,

ϕN (k) = C11xn{xodd (k)− A1nxnxeven (k)] (26)

ϕN (k) = C21xn{xodd (k)− A2nxnxeven (k)] (27)

Equations (25), (26) and (27), the regression model is
partitioned in terms of odd and even ones like the partition
of states and this regression model is in the form of time
exponential functions stated by Kautz [7].

C1 =

√ (
1− v2 + 2w2

)
(1− w)(

1+ A12
) (
1+ A22

)
+ 2A1v

(28)

C2 =

√ (
1− v2 + 3w2

)
(1− w)(

1+ A22
) (
1+ A22

)
+ 2A1v

(29)

The overall state space equation is written as,

Xodd (k + 1) = A1Xodd (k)+ A2Xeven (k)+ BD(k) (30)

where,

Xeven (k) = Xodd (k − 1) (31)

Y (k) = C1Xodd (k − 1)+ C2Xeven (k − 1) (32)

The output matrix is represented as,

C =
(
C1 C2

)
Y (k) is estimated through linear regression concept and the
least square approximation is shown in the equations (18),
(27) and (28). The parameter vector obtained through the least
square technique is the output vector and it satisfies the linear
dependent property with the output vector C obtained from
the Kautz function. It is possible only if careful analysis is
done in generating regression function.

The real-time or benchmark output is compared with the
Kautz function output and the discrepancies are minimized
using Euclidean norm analysis with constraints in terms of
eigenvalues of the system matrix A1 and A2. It is a kind
of quadratic optimization with non-linear constraints. Let us
assume the real time output to be Y1, then

δ =‖ Y1− Y ‖2 (33)

subjected to

x2 + y2 ≤ 1 (34)

The above constraint pertains to the unity circle. x is the
eigenvalue of A1 and y is the eigenvalue of A2.

III. ESTIMATING THE SYSTEM POLES USING SUBSPACE
METHOD
The states obtained from the Kautz model is sequenced in
two segments in a recursive fashion. The Kalman gain is
estimated by solving ARE and its co-efficient matrix P [16].
To solve the Riccati equations, we must know the system
parameters, Q and R matrices. To estimate the system param-
eters via state estimation, the spectral radius concept has been
implemented [17].

The identified system states from the Kautz model are
given as,

Ẋ = AC ∗ X + BC ∗ D

Y = 	 ∗ X (35)

where,

AC =
(
A1nxn A2nxn
1nxn 0nxn

)
(36)

BC =
(
Bnxn
0nxn

)
(37)

The states obtained from the Kautz model as,

X =
[
X(odd ,nx1);X(even ,nx1)

]
(38)

D = [D(0)D(1) . . .D(n)] (39)

The states can be sequenced as follows,

Xn−1 = X(:,1:n−1)Xn = X(:,2:n) (40)

The input sequence is given by,

D = [D(0)D(1) . . .D(n− 1)] (41)

From Miller and Raymond [13]

Xn = [AC ∗ BC] ∗
[
Xn−1
U

]
(42)

Then, we estimate the parameters ÂCB̂C by minimizing the
cost function as,

J (AC,BC) =

∥∥∥∥[AC ∗ BC] [ X̂n−1U

]
− X̂

∥∥∥∥
F

(43)
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In the unconstrained casewith the least square approximation,

[ÂCB̂C] = X̂n ∗
(
Xn−1
U

)+
(44)

+ is the Pseudo-Inverse. The constraint takes the form as the
spectral radius which is defined in terms of the eigenvalues
of the matrix AC .

Q = {z ∈ C,Z ≤ 1− eig(ÂC),−1 ≤ eig(ÂC) ≤ 1} (45)

The main intention of state observer design is to get the
optimal control gain matrix K by estimating the system states
and using the state feedback control law, and then one shall
obtain the necessary control signals.

U = −K ∗ X (46)

The basic concept of the state feedback using Luenberger gain
is mentioned in the following equation

X̂ (k + 1) = AC∗X̂ (k)+ BC∗u(k)+ L
(
Y −2∗X̂ (k)

)
(47)

where, u(k) is the control signal, L is the Luenberger gain
matrix.

The purpose of finding the Luenberger gain is to find how
much the output Y is penalized in order to get the desired
output Ŷ .

The closed loop system is represented as,

X̂ (k + 1) = (AC − LC)X̂ (k)+ L
(
Y −2∗X̂ (k)

)
(48)

This optimal controller gain Kopt is calculated using ARE,

P ∗ ÂC + ÂC ′ ∗ P− P ∗ B̂C ∗ R−1 ∗ B̂C ′ ∗ P+ Q = 0

Uopt = −Kopt ∗ Xopt
Kopt = P ∗ B̂C ∗ R−1 ∗ B̂C ′ ∗ P (49)

To obtain Riccati coefficient P, the YALMIP toolbox with
SeDuMi solver is used. Similarly, the state weighting matrix
Q and control weighting matrix R can be calculated using the
YALMIP toolbox.

The next step is to find the optimal gain K through the
matrices R,P and 	.

The parameter vector 	 is obtained in (19)

Kopt = P ∗ R−1 (50)

The optimal control law is calculated by,

Uopt = −Kopt ∗ Xopt (51)

where,

Kopt = P ∗ B̂C ∗ R−1 ∗ B̂C ′ ∗ P (52)

Finally, the optimal states are calculated as,

Xopt = ÂC ∗ X + B̂C ∗ D+ Kopt (Y − Ŷ ) (53)

where,

Y = 	 ∗ Xopt (54)

Using the optimal control law, the closed loop dynamics can
be obtained as,

X̂ =
(
ÂC − B̂C ∗ Kopt

)
X + Kopt

(
Y −�Xopt

)
(55)

where
_

X is the desired states. The stability is guar-
anteed through eigenvalues of the closed loop matrix(
ÂC − B̂C ∗ Kopt

)
that lies within the unity circle by making

ARE equation as spectral radius in terms of Linear Matrix
Inequalities (LMI) mentioned in (46).

The above equation is solved iteratively for the length of
the I/O sequence and the optimal states are obtained. Once the
optimal states are obtained, move to (30) and find AC and BC
matrices as per (36) and (37). Thus, the stability is guaranteed
through the eigenvalues of the matrix AC in terms of unity
circle constraint i.e., the eigenvalues should not go beyond
the limits [-1;1].

A. ALGORITHM FOR GETTING THE OPTIMAL STATES AND
PARAMETERS
Step 1: Assign values for a and b in the Kautz function with
some numerical values that should be within the unity circle
to guarantee stability.

Step 2: Get the Kautz parameters in a recursive fashion.
Step 3: Use the Kautz states and parameters, formulate the

objective function in Frobenius norm by splitting the states
as mentioned in (40) and estimate the parameters ÂC and B̂C
using (36) and (37).

Step 4: Calculate the optimal Riccati coefficient, P, by
solving ARE using optimization solver SeDuMi.

Step 5: Find the optimal control gain,Kopt from using(52).
Step 6: Using Kopt , find the optimal states Xopt
Step 7: Repeat steps 3-6 until the Frobenius norm is min-

imized or reaches a predefined tolerance value as mentioned
by the user.

IV. RESULTS AND DISCUSSION
A. REAL-TIME EXAMPLE: KAUTZ APPROXIMATION FOR
CORIOLIS MASS FLOW METER WITH PIEZO SENSORS
Coriolis mass flow meter is a type of flow measuring instru-
ment that measures the flow in terms of mass. CMFM relies
on the vibratory interaction of the fluid and its conveying
tube that induces the Coriolis acceleration on the fluid and
senses its effect on the tube. It consists of twin vibrating tubes
with a transmitter that maintains the flow tube vibrations for
measurement [18]. The experimental setup consists of two
sensors attached to the bending end of the tube and one more
is fixed at the center of the tube, which acts as the exciting
element. Since, the piezo sensor is also an inverse sensor, it is
used for dual purposes i.e., actuation and sensing. The essen-
tial measurements using CMFM are amplitude and frequency
of tube at no flow condition (analyzed in the proposed work)
and tube frequency at flow condition, which is the function
of the phase difference between two sensor measurements.
The working principle of CMFM is when the fluid travels
through the pipe it generates vibrations based on the Coriolis

70928 VOLUME 9, 2021



R. Rajaprasanna et al.: System Identification of Lightly Damped Systems Using Recursive Kautz Functions

effect [19]. The Coriolis force
−→
F c depends on the moving

mass of the fluid flow 1m, angular velocity −→w and radial
velocity −→v of the oscillating system.

−→
F c = 1m(

−→w ∗ −→v ) (56)

CMFM measures the flow rate in terms of mass and not
in terms of volume. It measures mass in terms of kilograms
per second. In volumetric flow measurement, the flow rate
is measured in terms of the mass of the fluid by density
(good for constant density). If the density varies, then the
relationship becomes complicated. The density depends on
temperature and pressure. At the time of flow, the pressure
exerted on the tube changes and it changes the density. If
density varies, mass varies. CMFM acts typically on the
resonance condition. i.e., when the tube frequency is equal to
the excitation frequency it generates sustained oscillations.
If there is any fluid flow, the mass of the fluid varies due
to the density variation in terms of pressure and the fre-
quency of the tube also varies. It is necessary to tune the
excitation frequency equal to the tube frequency to keep
CMFM in the resonant condition. The mass has a relation-
ship with the angular frequency in terms of ratio of spring
constant/mass.

The signals received from the sensors are given to the data
acquisition system (DAQ). The actuating signal is given to the
piezo sensor which is placed at the center of the tube using a
function generator. These actuating and sensing signals are
taken as input-output to design the Kautz function. At no
flow, the tube is at resonance condition. i.e., having sustained
oscillations with no phase shift or negligible phase shift. But
at flow condition, the Coriolis effect creates the twisting force
and subsequently, the Coriolis acceleration makes the tube
wobble and alters the tube’s vibrational mode. This forces the
tube to vibrate at some other frequency and creates the phase
difference between the two sensor signals. The difference in
the phase is proportional to the mass of the fluid and hence
this flow meter is called CMFM.

In addition to the meter under test (CMFM), the real-time
experimental setup also includes a multivariable flowmeter
designed by Endress + Hauser (with specification Proline
Promass 80F). This flow meter can act as a reference CMFM
meter and the twin tube under test attached parallel to the
reference CMFM is used as a working tube where the Piezo
transmitter and sensors are attached.

The illustrative results are provided to validate the pro-
posed model. Fig. 1 displays the pseudo random signal
tracked by the Kautz model and user defined second order
underdamped system. The pseudo random signal is fed to
the user defined second order underdamped system obtained
using the Kautz model. Similarly, the Kautz model is vali-
dated with the same underdamped system using Chirp sig-
nal (variable frequency signal) as excitation signal shown
in Fig. 2.

G(z) =
0.9615z− 0.5002

z2 + 0.2822z+ 0.1795

FIGURE 1. Responses for Pseudo random signal excitation.

FIGURE 2. Responses for Chirp Signal Excitation.

FIGURE 3. Coriolis mass flow meter tube movement.

is the second order underdamped transfer function obtained
using Kautz function.

Fig. 3 shows the tube movement of tubes under no flow as
well as flow condition. The flow tube of CMFM is vibrated
at the frequency called resonant frequency or drive or work-
ing frequency. When there is no flow, the tube vibrates
at its natural frequency generating signals of same phase
in both the inlet and outlet portion of the tube. The flow
induces, the Coriolis force which is generated due to fluid-
tube interaction and it slightly changes the drive mode signal
shape. The change in signal shape is visualized through the
time difference of two sensor signals placed at the curved
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end of the tube. It affects the drive frequency and pre-
dominantly changes to a new mode of frequency called
Coriolis frequency. Using an arbitrary function generator, a
sinusoidal waveform of amplitude one is fed to the Piezo
sensor attached at the center of tube. It makes the tube
vibrate at the excitation or drive frequency. To find out
the tube’s natural frequency, a spectral estimation test is
performed. DAQ is used as an interfacing unit to load the
signals from sensors to the computer. The (DAQ) software
module called Tracer DAQ views the signal in Strip chart
recorder and oscilloscope. Then these signals are loaded in
the MATLAB platform using DAQ toolbox to develop the
Kautz function, and parameters are estimated using convex
optimization and finally the optimal states are obtained. The
components used, the real-time experimental setup of CMFM
and the overall block diagram of the proposed approach
are shown in Figs 4a, 4b and 4c. The reference meter
in Fig. 4a will display the mass flow rate, density, frequency
etc., of the fluid that passes through the reference tube
shielded near the reference meter. Fig. 4a also depicts the
piezoelectric sensors and DAQ.

Fig.4b shows the overall experimental design. The Piezo-
actuator, which is housed at the center of the tube, is ener-
gized with sinusoidal waveform using an arbitrary function
generator. The same signal is given as the input to the
Kautz model through the DAQ card (analog input pin1).
The tube is vibrated and the two sensors which are placed
at the two ends of the tube, senses these vibrations. These
sensor signals are fed into PC through DAQ output pins.
The discrepancies in the output of model and sensor output
have been treated as the minimization function, which can
be solved using an optimization procedure with eigenvalue
constraints. After this, the state space partitioning, estimation
of parameters and state feedback controller design are carried
out in PC.

Fig. 4c explicates the block diagram of the proposed
approach. The natural frequency of the tube was identified
by providing an excitation signal to the tube through a piezo
actuator with some range of frequencies in trial-and-error
basis shown in Fig.5 The range of frequencies was esti-
mated by the sound generated by the piezo actuator (buzzer)
based on its internal properties. The tube frequency esti-
mated in this work is 4.772 KHz as shown and verified in
Fig. 6 using Welch Power Spectral Density (WPSD) method.
Now, the tube is excited with this estimated sinusoidal fre-
quency through an arbitrary function generator to achieve
the resonant condition. At no flow condition, both sensor
readings show the vibrating signals with no phase shift as
shown in Fig.7. At flow condition, these signals show phase
variation as well as amplitude variation. The phase difference
in both sensor signals serves as an indication of mass mea-
surement directly. Amplitude variation shows the damping
factor induced in the tube.

The same estimated excitation signal is used for Kautz
model which is fed to PC through DAQ as indicated in Fig. 4c
and the modeling of tube is done using the algorithm

FIGURE 4. a. Components in Experimental Setup. b. Real-Time
Experimental Setup. c. Overall Block Diagram of the proposed work.

explained in Section III. Fig. 8 depicts the tracking of noisy
sensor signal by Kautz model and Fig. 9 depicts the tracking
of noise free sensor signal by Kautz model. Since, the Kautz
model identifies the system dynamics through the informa-
tion of dominant poles, the initial guess for Kautz function is
provided with some arbitrary values. Their numbers depend
on the order of the system. The proper selection of the initial

70930 VOLUME 9, 2021



R. Rajaprasanna et al.: System Identification of Lightly Damped Systems Using Recursive Kautz Functions

FIGURE 5. Frequency estimation of sensor signal using Welch Power
Spectral Density at different frequencies.

FIGURE 6. Input or Excitation signal.

FIGURE 7. Sensor readings.

guess values is based on the simple stability criteria for pole
locations in discrete functions.

Since, this work utilizes the discrete Kautz function,
the initial guess should be less than unity irrespective of its
sign.

Fig 10 shows the natural frequency of the tube from the
collected sensor readings depicted in Fig. 7. The frequency
of the tube is found to be 4.7 KHz against the source or
excitation frequency of 4.772 KHz which is found from

FIGURE 8. Tracking of sensor signal using Kautz function with Noise.

FIGURE 9. Tracking of sensor signals using Kautz function without Noise.

FIGURE 10. Estimated Natural frequency of the sensor signal.

the internal properties of the Piezo sensors. This differ-
ence is negligible and will not deviate the system from the
resonance condition, which is the basic for the operation
of CMFM.

Fig. 11 shows the step response of Kautz model states in
which the states mimic the stability of underdamped or lightly
damped response.

Fig. 12 and 13 show the comparison of sensor signal that
senses vibration in the CMFM tubewith different types of sig-
nal identification methods along with the Kautz model. The
quantitative results are shown in Table 1. In Table 1, the values
are obtained for different norms for various black boxmodels.
The norms having the least value show the effectiveness of the
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TABLE 1. Comparison of Kautz Function with other System Approximation Methods.

FIGURE 11. Step response of optimal states of CMFM.

FIGURE 12. Comparison of different system identification methods with
sensor signals.

black box model to mimic the real-time system. The Signal to
Noise Ratio (SNR) is the indication of the noise immunity of
the models and values of high SNR show that the model has
high noise immunity. Hence, the Kautz model is suggested.
Table 2 shows the computational efficiency of MATLAB

FIGURE 13. Zoomed image of Figure 12.

inbuilt optimization solver ‘fmincon’ with the third-party
solver ‘SeDuMi’ of YALMIP toolbox. The readings in the
Table imply that the YALMIP toolbox provides better com-
putational efficiency and this toolbox is highly recommended
for solving convex optimization.

V. NUMERICAL RESULTS
This work utilizes two parameter Kautz function for approx-
imating CMFM and a system with order two has been
generated.

Taking the initial guess values of a and b as,

ε =

(
0.345
0.617

)
The Kautz parameters generated using (12)-(39) are,

AC =
(
−0.6700 −0.2292

1 0

)
BC =

(
0.437
0

)
C = (−0.34500.6426)
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TABLE 2. Computational Efficiency Analysis.

	 =

(
−0.7120
1.4312

)
The estimated parameters using SM are

ÂC =
(
0.8759 0.4288
0.2112 0.0198

)
B̂C =

(
−0.5799
1.3848

)
The numeric values of coefficients and parameters regarding
ARE are,

P =
(
0.5932 0.2988
0.2988 0.0198

)
Q =

(
0.4161 0.2955
0.2955 0.1959

)
R = 50

The control gain matrix is given as,

Kopt =
(
0.00178
0.0093

)
Similarly, the Luenberger Observer gain matrix is,

L =
(
0.0103
0.0053

)
and the closed loop transition matrix is

(
ÂC − B̂C ∗ Kopt

)
=

(
0.8685 0.4342
0.1865 0.0072

)
The Eigenvalues (poles) of the transition matrices are
obtained as,

AC = −0.3350± 0.3420j

ÂC = 0.9715± 0.0758j(
ÂC − B̂C ∗ Kopt

)
= 0.9802± 0.0741j

The estimated eigenvalues are stable. The size of input vec-
tor D is (10000 × 1) and the size of the output vector Y is
(10000×1). The size of the optimal states Xopt is (2×10000).
The size of the control vector Uopt is (2× 10000), where 2 is
the order of the system.

VI. CONCLUSION
This paper claims the importance of the Kautz model for
lightly damped systems as it uses few numbers of parameters
and has fast convergence which is proved through illustrative
results on the real-time application of Coriolis mass flow
meter (CMFM). The system is analyzed at no flow condition
using the Kautz model and the result obtained using the
Kautz model is superior to deal with the lightly damped
systems effectively as compared to other system identifi-
cation methods. After obtaining the recursive Kautz model
in state space form, the states of the model are visualized
through convex optimization technique with a constraint in
terms of eigenvalues and the system parameters are identi-
fied effectively. The optimal states obtained using the state
feedback technique (using the obtained optimal control gain)
guarantees the improved noise immunity of the system with
high signal to noise ratio (SNR). The future scope of this
work is to study 1) the sensitivity and robustness of the model
in terms of parametric uncertainty, 2) analyze the CMFM at
flow condition, 3) to design a robust controller to control the
flow rate.

APPENDIX I
The performance metrices in Table 1 are defined as follows,

The norm is defined as the distance between two vectors in
space.

1-norm or Manhattan norm: It is sum or difference of
magnitude of vectors in space. Norm is denoted as

‖ H ‖1= |Y | − |Y1|

2-norm or Euclidean norm: It denotes the shortest distance
between two vectors in space.

‖ H ‖2=
√
|Y |2 − |Y1|2

∞- norm: It is used to obtain the largest element in a vector

‖ H ‖∞= max
y

(|Y | − |Y1|)

Frobenius norm: It is represented in the similar fashion as
Euclidean form but it is generally used for matrices rather
than vectors.

‖ H ‖F=
√
trace

∣∣AAH ∣∣2
H is the complex conjugate of matrix A

VOLUME 9, 2021 70933



R. Rajaprasanna et al.: System Identification of Lightly Damped Systems Using Recursive Kautz Functions

REFERENCES
[1] L. Ljung, System Identification: Theory for the User. Englewood Cliffs,

NJ, USA: Prentice-Hall, 1987.
[2] L. Rabiner, ‘‘Techniques for designing finite-duration impulse-response

digital filters,’’ IEEE Trans. Commun., vol. COM-19, no. 2, pp. 188–195,
Apr. 1971.

[3] B. Wahlberg and E. J. Hannan, ‘‘Parametric signal modelling using
Laguerre filters,’’ Ann. Appl. Probab., vol. 3, no. 2, pp. 467–496,
May 1993.

[4] B.Wahlberg, ‘‘System identification using Laguerre models,’’ IEEE Trans.
Autom. Control, vol. 36, no. 5, pp. 551–562, May 1991.

[5] B. Wahlberg, ‘‘System identification using kautz models,’’ IEEE Trans.
Autom. Control, vol. 39, no. 6, pp. 1276–1282, Jun. 1994.

[6] W. Lee and J. Wiener, Statistical Theory of Communication Network.
Hoboken, NJ, USA: Wiley, 1960.

[7] W. H. Kautz, ‘‘Transient synthesis in time domain,’’ IEEE Trans. Circuit
Theory, vol. 1, pp. 29–39, Sep. 1952.

[8] T. Y. Young and W. H. Huggins, ‘‘Discrete orthonormal exponentials,’’ in
Proc. NEC, 1962, pp. 1–5.

[9] R. Reddy and P. Saha, ‘‘Kautz filters based model predictive control for
resonating systems,’’ Int. J. Dyn. Control, vol. 5, no. 3, pp. 477–495,
Sep. 2017.

[10] P. Lindskog, ‘‘Algorithms and tools for system identification using Prior
Knowledge,’’ Ph.D. Dissertation, Dept. Elect. Eng., Linkoping Univ.,
Linkoping, Sweden, 1994.

[11] T. SpoderStrom and P. Stoica. System Identification. Hempstead, U.K.:
Prentice-Hall, 1989.

[12] B. Schofield, ‘‘Sub-space system identification for adaptive control,’’
M.S. dissertation, Dept. Autom. Control, Lund Inst. Technol., Sweden,
Stockholm, 2003.

[13] D. N. Miller and R. A. de Callafon, ‘‘Subspace identification with eigen-
value constraints,’’ Automatica, vol. 49, no. 8, pp. 2468–2473, Aug. 2013.

[14] J. Lofberg, ‘‘YALMIP : A toolbox for modeling and optimization in MAT-
LAB,’’ in Proc. IEEE Int. Conf. Robot. Autom., Oct. 2004, pp. 284–289.

[15] P. S. C. Hueberger, P. M. J. Van den Hof, O. H. Bosgra, and M. Linear,
‘‘Dynamical system through genealized orthonormal basis function,’’ in
proc. 12th IFAC World Congresss, vol. 5, 1993, pp. 283–286.

[16] P. Khargonekar and G. B. Lee, ‘‘Approximation of infinite dimensional
system,’’ IEEE Trans. Autom. Control, vol. 40, no. 8, pp. 1388–1405,
Oct. 1995.

[17] B. Wahlberg and P. M. Mäkilä, ‘‘On approximation of stable linear dynam-
ical systems using Laguerre and Kautz functions,’’ Automatica, vol. 32,
no. 5, pp. 693–708, May 1996.

[18] T. Wang and R. Baker, ‘‘Coriolis flowmeters: A review of developments
over the past 20 years, and an assessment of the state of the art and likely
future directions,’’ Flow Meas. Instrum., vol. 40, pp. 99–123, Dec. 2014.

[19] S. Guirguis and F. S. Chun, ‘‘Modeling of Coriolis mass flow meter of
a general plane-shape pipe,’’ J. Flow Meas. Instrum., vol. 21, pp. 40–47,
Oct. 2010.

R. RAJAPRASANNA was born in Tamil Nadu,
India, in 1991. He received the B.E. degree in
electronics and instrumentation engineering and
the M.E. degree in applied electronics from Anna
University, India, in 2012. He is currently pursuing
the Ph.D. degree in process control from SASTRA
Deemed University, India. His current research
interests include process control, optimal control,
and robust control.

K. GHOUSIYA BEGUM received the bache-
lor’s degree in electronics and instrumentation
engineering from Bharathidasan University, India,
in 2004, the master’s degree in applied electron-
ics from Anna University, India, in 2012, and
the Ph.D. degree in process control from the
National Institute of Technology, Tiruchirappalli,
India, in 2018. Since 2019, she has been a Fac-
ulty Member with the School of Electrical and
Electronics Engineering, SASTRA Deemed Uni-

versity, Thanjavur, India. She has around 20 publications in refereed Interna-
tional (SCI, SCIE, Scopus), National Journals, and Conference proceedings.
Her research interests include process control, sensors and transducers,
physiological and linear control systems, modeling and simulation using
Matlab.

G. BALASUBRAMANIAN received the B.E.
degree in electrical engineering from Bharathi-
dasan University, in 1993, and the Ph.D. degree
in process control from SASTRA Deemed Uni-
versity, Thanjavur, India, in 2011. Since 2001,
he has been a Faculty Member with the School of
Electrical and Electronics Engineering, SASTRA
Deemed University. His current research interests
include process control, power electronics, and
control systems.

70934 VOLUME 9, 2021


