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ABSTRACT In this correspondence, we present an accurate Magnetic Resonance (MR) image
Super-Resolution (SR) method that uses a Very Deep Residual network (VDR-net) in the training phase.
By applying 2D Stationary Wavelet Transform (SWT), we decompose each Low Resolution (LR)-High
Resolution (HR) example image pair into its low-frequency and high-frequency subbands. These LR-HR
subbands are used to train the VDR-net through the input and output channels. The trained parameters are
then used to generate residual subbands of a given LR test image. The obtained residuals are added with their
LR subbands to produce the SR subbands. Finally, we attempt to maintain the intrinsic structure of images by
implementing the Gaussian edge-preservation step on the SR subbands. Our extensive experimental results
show that the proposedMR-SRmethod outperforms the existing methods in terms of four different objective
metrics and subjective quality.

INDEX TERMS Deep learning, edge-preservation, MR imaging, residual network, stationary wavelet
decomposition, super-resolution.

I. INTRODUCTION
The motive of single-image Super-Resolution (SR) is to
generate a High Resolution (HR) image from an input Low
Resolution (LR) image. The generated HR image is expected
to possess adequate edge information with minimum arti-
facts. Single-image SR algorithms are currently active in
industrial and academic applications as well. Few applica-
tions include medical imaging, crime investigation, video
surveillance, infrared image processing, and consumer elec-
tronics [1]–[5]. In this work, we focus on improving the
resolution of LRMagnetic Resonance (MR) images to benefit
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clinical applications. As a result, we can overcome the limi-
tations of MR imaging, such as a lower signal-to-noise ratio
and longer scan time. Research on single-image SR has been
classified into three categories, namely interpolation meth-
ods, dictionary learning methods, and deep learning methods.

Bilinear and bicubic methods are the widely used tradi-
tional interpolation algorithms in practice [6]. The bilinear
method considers four closest neighbor pixels, and the bicu-
bic method considers sixteen pixels to compute the unknown
pixels. Every missing pixel in the HR grid is obtained using
the neighboring pixels based on simple isotropic kernels. As a
result, the bilinear and bicubic methods fail to preserve the
intrinsic edge structures leading to severe blurring and jaggy
artifacts. Jaggies are unwanted high-frequency components
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that appear along straight lines or curved edges in the recon-
structed image. These artifacts appear so widespread in digi-
tal display devices and remain an issue in the design of print-
ing devices. To overcome these deficiencies, edge-directed
interpolation methods are proposed [7], [8]. These methods
attempt to preserve the overall edge structures of images but
often produce speckle-noise around edges. Besides, the per-
formance of these methods degrades very rapidly for scale
factors above 2. To address this issue, interpolation tech-
niques are combined with wavelet transforms. The Discrete
Wavelet Transform (DWT) [9], [10], Stationary Wavelet
Transform (SWT) [11], lifting wavelet transform [12], and
dual-tree complex wavelet transform [13] are used for
wavelet domain interpolation. Recently, a Rational Fractal
Interpolation (RFI) model is constructed by Zhang et al. [14]
and Shao et al. [15] for preserving textural details. The
RFI function is more accurate and works better than poly-
nomial interpolation kernels [7], [8]. However, the perfor-
mance of interpolation methods [6]–[8], [14] is inferior to
learning-based SR methods.

Learning-based methods use an external LR-HR train-
ing dataset to find the missing high-frequency details in
an LR image. These methods can be further categorized
into two types. The first category is based on dictionary
learning, and the second is based on deep learning. Dic-
tionary learning methods solve the SR problem based on
statistical analysis or intuitive understanding of many natu-
ral images. Neighbor embedding approaches [16], [17] and
sparse coding approaches [18]–[24] are the commonly used
dictionary-based methods in practice. In neighbor embedding
approaches, an input LR image is usually expressed as a
weighted linear combination of example patches from an
LR dictionary. The same weight combination is used with
its HR dictionary to reconstruct the output patch. This is
because LR and HR images share similar local geometric
structures. However, this approach leads to a quick expansion
of dictionaries when the desired training dataset is large.

On the other hand, sparse coding approaches address this
issue by enforcing an efficient representation using a sparse
linear combination. Yang et al. [18] applied this idea to
the SR problem by jointly training the LR-HR dictionaries
using similar sparse representations. Their algorithm first
computes a sparse representation vector from a given input
patch and uses the same sparse prior for computing the output
patch. Zeyde et al. [19] made significant improvements to
Yang et al.’s model [18] in terms of speed and quality. Other
attempts used centralized, nonlocally centralized sparse rep-
resentations [20], [21], and statistical prediction model with-
out sparse invariance assumption [22]. Timofte et al. [23],
[24] attempted to reduce the running time of sparse coding
approaches by combining sparse learned LR-HR dictionaries
with neighbor embedding approaches. However, these meth-
ods fail to yield superior SR results compared to the recent
deep learning-based methods [25]–[28].

The second category of learning-based SR methods uses
deep learning technology by applying Convolutional Neural

Networks (CNNs) [25]–[39]. This class of SR methods
has gained considerable attention from many researchers in
recent times. Dong et al. [29], [30] introduced the first deep
convolutional network to solve the SR problem.Motivated by
this work, several other problems like depth map SR [31] and
face hallucination [32] have produced state-of-the-art results.
Unlike the traditional learning-based methods [16]–[24],
Dong et al.’s method [30] directly learns a non-linear map-
ping between LR and HR spaces. This end-to-end map-
ping in deep networks trains all the model parameters more
efficiently, leading to an accurate inference. Inspired by
this, Wang et al. [33] developed a network with a set of
cascaded sparse coding networks in each mapping layer.
However, the sparse coding solver cannot guarantee the opti-
mal mapping accuracy of this approach.

Dong et al. [34] modified their network [29], [30] in terms
of the number of mapping layers, filter sizes, and feature
dimensions. The resultant network provides fast upscaling
with improved accuracy. In addition, it operates directly on
LR images without the initial bicubic interpolation. In other
approaches, generative adversarial networks were used to
recover fine textures and edges [35], [36]. Self-exemplars
were used in [37] where LR-HR training examples exploit
self-similarity to enhance the output SR quality. Cui et al. [38]
introduced a deep cascade network for gradual upscaling of
LR patches after each layer. A deep joint SRmodel was devel-
oped in [39] using a high complex convolutional auto-encoder
network.

In this paper, we exploit the idea of residual learning [26]
in the stationary wavelet domain and attempt to preserve
the intrinsic structure of images. The input LR image is
subjected to 2D SWT for decomposing into its low-frequency
and high-frequency subbands. We prefer SWT to overcome
the shift variance and inferior directionality of DWT. The
decomposed LR subbands are fed forward through the trained
VDR-nets using the four input channels to produce corre-
sponding residual subbands. These residuals are added to the
LR subbands to yield the SR subbands. Finally, we apply the
edge-preservation step on the SR subbands using Gaussian
operation and then fuse the resulting subbands to generate the
output SR image.

In the following, we discuss the deep learning methods in
our related work module in Section 2. The network architec-
ture and SR reconstruction process of our proposed algorithm
are given in Section 3. Section 4 describes the image datasets,
methods, metrics, and implementation details, followed by a
discussion on experimental results. Finally, conclusions are
drawn in Section 5.

II. RELATED WORK
More recently, Very Deep Residual networks (VDR-nets)
[25]–[28] have shown great improvement over the exist-
ing deep learning networks with faster convergence rates
and accurate SR performance. Unlike traditional networks,
the VDR-net does not directly reconstruct HR images.
Instead, it emphasizes on the residuals between LR-HR image
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FIGURE 1. VDR-net configuration for prediction of LR-HR output residual image.

pairs and reduces the training time significantly. In particular,
we focus on the VDR-net presented by Kim et al. [25], [40]
in their work.

A. VDR-NET
The structure of the VDR-net is shown in Fig. 1. As illus-
trated, the network hasM layers, namely an image input layer,
M −2 middle layers, and a regression layer. The filter details
of these layers are briefed as follows.
• Image input layer: This is the first layer in the network
that operates on input image patches. It consists of 64
filters of size 3× 3.

• Middle layers: All themiddle layers are similarly param-
eterized with 64 filters of size 3× 3× 64 in each layer.

• Regression layer: This is the last layer in the network
which reconstructs the output residual image. It has a
single 3× 3× 64 sized filter.

All these convolution layers except the regression layer are
followed by Rectified Linear Unit (ReLU) layers. The func-
tion of ReLU is to introduce nonlinearity in the network by
replacing negative values with zeroes. As a result, the time
required to estimate the output residual is minimized.

B. DATA MODELING
To compute the output residual for a given LR image, we train
the VDR-net using numerous LR-HR example images.
Let {L(i),H (i)

}
N
i=1 represents the training dataset, where L

denotes an interpolated LR image and H represents its HR
version. The network learns a model f , which accepts the LR
training images and predicts the corresponding HR images.
The model can be represented as

Ĥ = f (L), (1)

where Ĥ is an estimate of the original HR image H . The
resultant mean square error is modeled as a loss function
which has to be minimized by averaging over the training
dataset.

loss =
1
2
‖H − f (L)‖22. (2)

In Eq. (2), the mean squared error-l2 is considered while
computing the loss function. l2 is convex and differentiable in
nature which is very advantageouswhile solving optimization
problems. These properties led to l2’s widespread adoption

in regression problems, signal and image processing as the
dominant error measure.

The objective of the VDR-net is to estimate the residual
between input and output images rather than the HR images
directly. Now, if R = H − L represents the residual between
LR-HR images, the loss function can be modified as

loss =
1
2
‖R− f (L)‖22. (3)

The VDR-net is trained by minimizing the loss function
in Eq. (3), and the weights and biases are computed. The
Stochastic Gradient Descent with Momentum (SGDM) tech-
nique [41] is used for obtaining the optimum parameters of
the network. These parameters are used in the testing phase
of our method to generate the residual image for a given LR
image.

III. PROPOSED METHOD
In this section, we present the details of our network structure,
training, and SR reconstruction process.

A. NETWORK STRUCTURE AND LOSS FUNCTION
The task of SR is to restore the maximum lost high-frequency
details of an image. An efficient way to achieve this is to
process the low-frequency and high-frequency content of an
image separately. For this, we apply SWT on a given image I
to decompose into its low-frequency LL and high-frequency
LH ,HL, and HH subbands.

{LL,LH ,HL,HH} = SWT(I ) (4)

Eq. (4) represents the subband decomposition of an image I
using SWT operation. Here LL represents the approximation
coefficient, whereas LH ,HL, and HH are the detail coef-
ficients along horizontal, vertical, and diagonal directions.
Similarly, for a given training dataset {L(i),H (i)

}
N
i=1, the LR

subbands are given as {LLL ,LHL ,HLL ,HHL
} and the HR

subbands as {LLH ,LHH ,HLH ,HHH
}. Considering all these

subbands together, we solve the SR problem in the wavelet
domain.

Fig. 2 illustrates the structure of our deep CNN used in
the training phase. The network has four input and four
output channels connected to the VDR-net. The input chan-
nels couple each LR subband with VDR-net, transform-
ing into the corresponding output residual subbands at the
output channels. The output residuals corresponding to the
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FIGURE 2. Proposed network structure.

FIGURE 3. Proposed SR reconstruction.

LR subbands {LLL ,LHL ,HLL ,HHL
} are represented by

{LLR,LHR,HLR,HHR
}.

As described in Section 2, the VDR-net has an image input
layer,M − 2 middle layers, and a regression layer. The input
layer consists of 64 filters of size 3×3, the middle layers have
64 filters of size 3× 3× 64 in each layer, and the regression
layer has a single 3×3×64 sized filter. Here the objective of
VDR-net is to train a model f that accepts the LR subbands
and outputs the residuals between LR-HR subbands. From
Eq. (3), the loss function corresponding to each channel is
given as

CH loss
i =

1
2
‖JRi − f (J

L
i )‖

2
2, (5)

where Ji ∈ {LL,LH ,HL,HH} for i = {1, 2, 3, 4}. We min-
imize the loss function using the SGDM technique [41] and
solve for the optimum network parameters. The momentum

and L2 regularization parameter are set to 0.9 and 0.0001 dur-
ing the optimization process. The obtained network param-
eters are used in the testing phase to generate the residual
subbands for a given set of LR image subbands.

B. SR RECONSTRUCTION
The proposed SR reconstruction scheme is outlined as a
block diagram in Fig. 3. The given LR test image L is first
interpolated using the bicubic filter with a factor s and then
subjected to 2D SWT decomposition.

From Eq. (4):

{LLL ,LHL ,HLL ,HHL
} = SWT(L). (6)

The LR subbands {LLL ,LHL ,HLL ,HHL
} are fed forward

through the VDR-net using the four input channels. The
VDR-net transforms the LR subbands into the corresponding

VOLUME 9, 2021 71409



G. Suryanarayana et al.: Accurate MR Image SR Using Deep Networks and Gaussian Filtering

output residual subbands {LLR,LHR,HLR,HHR
}. By adding

these residuals to the LR subbands produces the SR subbands
{LLS ,LHS ,HLS ,HHS

}.

JSi = JLi + J
R
i , (7)

where

Ji ∈ {LL,LH ,HL,HH} for i = {1, 2, 3, 4}. (8)

In the SR problem, bicubic interpolation in the prepro-
cessing stage leads to the loss of high-frequency compo-
nents. This loss is due to the averaging effect caused by
the interpolation filters. As a result, the SR subbands are
deficient in edge information causing poor reconstruction
quality. To increase the quality of the SR image, preserving
edge information is essential. We apply the Gaussian low
pass filter on all the SR subbands and subtract the Gaussian
smoothed output from the SR subbands.

FIGURE 4. SR result pairs on the IXI-MR test images: (a) without Gaussian
(b) with Gaussian (c) without Gaussian (d) with Gaussian.

The necessity of Gaussian edge-preservation can be under-
stood from Fig. 4. In Fig. 4(a)-Fig. 4(b), we present one pair
of the proposed SR results without and with the Gaussian
operation, respectively. Similarly, Fig. 4(c)-Fig. 4(d) repre-
sent another pair of our SR results. From these figures, we can
see that the SR images in Fig. 4(a) and Fig. 4(c) suffer from
poor edge information. Whereas the SR images in Fig. 4(b)
and Fig. 4(d) have better edge details and are visually pleas-
ing. The Gaussian process extracts the edge details from each
SR subband which are then added back to the SR subbands.
The resultant SR subbands have more edge details leading to
superior SR reconstruction quality when fused using Inverse
SWT (ISWT).

IV. RESULTS AND DISCUSSION
In this section, we conduct experiments to evaluate the per-
formance of our method. First, we present the details about
image datasets, methods, and metrics used for comparison.
Next, the parameter settings for training and testing are given.
Finally, we provide a discussion on the results and assess the
quality of SR algorithms.

A. EXPERIMENTAL CONFIGURATION
1) IMAGE DATASETS
The VDR-net is trained using the public IXI-MR image
dataset (http://brain-developme-nt.org/ixi-dataset) [42]. The
dataset has 600MR-HR images collected from three different
hospitals with Philips 3T , Philips 1.5T , and GE 3T systems,
respectively. We have randomly selected 500 subjects with
augmentation for training and performed selective testing on
the other 100 subjects.

For a fair comparison with the state-of-the-art methods,
we also train the VDR-net by employing three benchmark
datasets, namely 91 image dataset from Yang et al. [18],
BSDS200, and BSDS300 from Berkeley segmentation
datasets [43]. A total of 591 HR images are used in the train-
ing phase with data augmentation. For SR image reconstruc-
tion, we employ two benchmark datasets in the testing phase.
‘Set5’ [17] and ‘Set14’ [19] containing 5 and 14 images
respectively. Total 19 images are used with three different
scaling factors (2, 3, and 4). We use the luminance channel
information alone for both training and testing phases. This
is because humans are more sensitive to changes in intensity
than in color.

2) METHODS AND METRICS
To compare the SR performance, twelve classic and recent
state-of-the-art methods are involved in testing. These meth-
ods are based on interpolation, dictionary learning and
deep learning. Interpolation methods include bicubic, new
edge directed interpolation (NEDI) [7], local RFI (LRFI)
[15]. SR via sparse representation (SCSR) [18], statis-
tical prediction model based on sparse representations
(SPMSR) [22], adjusted anchored neighborhood regression
(A+) [24] are dictionary learning techniques. Cascaded deep
sparse coding based networks (SCN) [33], SR using deep
CNNs (SRCNN) [30], accelerating SRCNN (FSRCNN) [34],
SR using very deep CNNs (VDSR) [25], deep wavelet pre-
diction for SR (DWSR) [27], multi-scale saliency and deep
CNNs for SR (MSSCNN) [28] are based on deep learning.

To assess the performance of SR methods, four
full-reference objective assessment indices are reported. They
are Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
Index Measure (SSIM), perceptual blur (Qblur ), and ringing
(Qring) metrics [44]. PSNR and SSIM metrics have been
widely in the field of digital imaging for several decades.
However, many researchers argue that these simple fidelity
metrics do not provide a precise correlation with human
perception. Hence, we report two additional metricsQblur and
Qring along with PSNR and SSIM. Qblur and Qring metrics
enable us to measure the artifacts present in SR images and
better assess the algorithms. For better performance, high
PSNR, SSIM, low Qblur , and Qring indices are desired.

B. PARAMETER SETTINGS
1) TRAINING
During the training phase, the images are subjected to one
level 2D SWTwith Haar wavelet function. It decomposes the
HR images into {LLH ,LHH ,HLH ,HHH

} subbands. These
subbands are then down-sampled and upscaled using the
bicubic filter by the same factor s (s = 2, 3, and 4) to yield the
LR image subbands {LLL ,LHL ,HLL ,HHL

}. On subtract-
ing the LR subbands from the HR subbands produces the
residual subbands {LLR,LHR,HLR,HHR

}. The VDR-net is
trained using the LR and residuals subbands individually for
each subband type. The subbands are cropped to 41 × 41
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FIGURE 5. Factor 4 SR results on the IXI-MR test image: (a) Ground truth image (b) bicubic (c) LRFI (d) VDSR (e) MSSCNN
(f) Proposed.

FIGURE 6. Factor 3 SR results on the IXI-MR test image: (a) Ground truth image (b) bicubic (c) LRFI (d) VDSR (e) MSSCNN
(f) Proposed.

FIGURE 7. Factor 2 SR results on the IXI-MR test image: (a) Ground truth image (b) bicubic (c) LRFI (d) VDSR (e) MSSCNN
(f) Proposed.

sub-images with no overlap. The depth of the VDR-net is
set to M = 20, and the weights and biases are updated by
minimizing the loss function in Eq. (5) using the SGDM
optimizer. For SGDM optimization, the momentum and L2
regularization parameter are set to 0.9 and 0.0001, respec-
tively. The gradients threshold is set to 0.01 using norm
clipping. The initial learning rate is 0.1 and decreases by a
factor 10 for every 10 epochs. After 100 epochs, the VDR-net
is fully converged, and it takes about 12 hours to train all the
subbands with a single GPU.

2) TESTING
We consider the ground truth images from the IXI-MR
dataset, ‘Set5’ [17], and ‘Set14’ [19], for full reference image
quality assessment. These images are down-sampled and
upscaled using bicubic interpolation by a factor s (s = 2, 3
and 4) to generate the LR test images. We use one level 2D
SWT with the Haar wavelet function for subband decom-
position. The Gaussian low pass filtering is applied on the
SR subbands with standard deviation σ = 0.9. For SR
reconstruction by a factor s, we use the weights and biases
of the VDR-net trained with the same factor s.

C. QUALITY ASSESSMENT
We assess the quality of SR algorithms for three different
upscaling factors. Figs. 5-7 present the SR results on three
different test images from the IXI-MR dataset for s = 4,
s = 3, and s = 2 respectively. Figs. 5(a)-7(a) represent the
ground truth MR images. The results based on interpolation
are depicted in Figs. 5(b)-7(b) for bicubic and Figs. 5(c)-7(c)
for LRFI. In Figs. 5(d)-7(d) and Figs. 5(e)-7(e), we present
the results of deep learning methods VDSR and MSSCNN,
respectively. When compared with interpolation methods and
deep learning methods in Figs. 5(b)-7(b), Figs. 5(c)-7(c),
Figs. 5(d)-7(d), and Figs. 5(e)-7(e), the SR images of the
proposedmethod in Figs. 5(f)-7(f) appears close to the ground
truth images. Besides, the proposed method has high PSNR
and SSIM indices with minimized Qblur and Qring artifacts.
To prove the effectiveness of the proposed method,

we further trained VDR-net using Yang et al. [18] dataset,
BSDS200, and BSDS300 datasets [43]. The results are tested
on standard ‘Set5’ [17] and ‘Set14’ [19] images. Figs. 8-13
present visual comparisons of SR methods on ‘Set5’ and
‘Set14’ test images. Fig. 8 and Fig. 9 show the SR results for
s = 4, Fig. 10 and Fig. 11 show the SR results for s = 3,
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FIGURE 8. Factor 4 SR results on Comic image: (a) Ground truth image (b) bicubic (c) SCSR (d) SPMSR (e) A+ (f) SCN (g) SRCNN
(h) FSRCNN (i) VDSR (j) DWSR (k) MSSCNN (l) Proposed.

FIGURE 9. Factor 4 SR results on Woman image: (a) Ground truth image (b) bicubic (c) SCSR (d) SPMSR (e) A+ (f) SCN
(g) SRCNN (h) FSRCNN (i) VDSR (j) DWSR (k) MSSCNN (l) Proposed.

and Fig. 12 and Fig. 13 show the SR results for s = 2.
Fig. 8(a) and Fig. 9(a) represent the ground truth images of
Comic and Woman images. Fig. 8(b) and Fig. 9(b) are the

results obtained using bicubic interpolation. The results of
dictionary learningmethods, namely SCSR, SPMSR, andA+
are depicted in Figs. 8(c)-8(e) and Figs 9(c)-9(e). Whereas
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FIGURE 10. Factor 3 SR results on Bird image: (a) Ground truth image (b) bicubic (c) SCSR (d) SPMSR (e) A+ (f) SCN (g) SRCNN
(h) FSRCNN (i) VDSR (j) DWSR (k) MSSCNN (l) Proposed.

FIGURE 11. Factor 3 SR results on Flowers image: (a) Ground truth image (b) bicubic (c) SCSR (d) SPMSR (e) A+ (f) SCN
(g) SRCNN (h) FSRCNN (i) VDSR (j) DWSR (k) MSSCNN (l) Proposed.

the deep learning methods SCN, SRCNN, FSRCNN, VDSR,
DWSR, and MSSCNN are shown in Figs. 8(f)-8(k) and
Figs. 9(f)-9(k). The SR reconstruction results of the proposed
method are outlined in Fig. 8(l) and Fig. 9(l). The bicubic
method suffers from blurred and ringing artifacts. The SR
images of dictionary learningmethods are distorted and fuzzy
in nature. The deep learning methods generate images with
less distortion and a minimized number of artifacts. However,
the details of the flower (Figs. 8(f)-8(k)) and the textures of
the hat (Figs. 9(f)-9(k)) in the cropped regions are not well
preserved. The flower details of Comic image and the hat
textures of Woman image are more efficiently preserved in
the proposed method, as shown in Fig. 8(l) and Fig. 9(l).

Figs. 10(a)- 13(a) represent the ground truth images of
Bird, Flowers, Baby, and Coastguard images, respectively.

The results of different SR methods are shown
in Figs. 10(b)- 10(l) and Figs. 11(b)- 11(l) for s = 3,
Figs. 12(b)- 12(l) and Figs. 13(b)- 13(l) for s = 2.
Figs. 10(b)-13(b) show the bicubic interpolated images.
Figs. 10(c)-13(c), Figs. 10(d)-13(d) and Figs. 10(e)-13(e)
represent the dictionary learning methods. The images gener-
ated by deep learning methods are given in Figs. 10(f)-13(f),
Figs. 10(g)-13(g), Figs. 10(h)-13(h), Figs. 10(i)-13(i),
Figs. 10(j)-13(j) and Figs. 10(k)-13(k). The proposed method
is outlined in Figs. 10(l)- 13(l). As shown in Figs. 10-13,
the bicubic method has severe blurring and ringing artifacts.
The performance of dictionary learning methods SCSR,
SPMSR, and A+ is inferior to that of the deep learning
methods SCN, SRCNN, FSRCNN, VDSR, DWSR, and
MSSCNN. However, the edge-preservation in some of these
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FIGURE 12. Factor 2 SR results on Baby image: (a) Ground truth image (b) bicubic (c) SCSR (d) SPMSR (e) A+ (f) SCN (g) SRCNN
(h) FSRCNN (i) VDSR (j) DWSR (k) MSSCNN (l) Proposed.

FIGURE 13. Factor 2 SR results on Coastguard image: (a) Ground truth image (b) bicubic (c) SCSR (d) SPMSR (e) A+ (f) SCN
(g) SRCNN (h) FSRCNN (i) VDSR (j) DWSR (k) MSSCNN (l) Proposed.

methods is still unsatisfactory (e.g., Fig 10(f), Fig 11(k), and
Fig 13(j)). The proposed method has a better performance
compared with other methods and is capable of preserving
the sharpness of edges (e.g., Fig. 10(l) and Fig11(l)).

Table 1 presents PSNR, SSIM, Qblur and Qring indices for
s = 4. Each metric value in the table represents the average of
19 test images from ‘Set5’ and ‘Set14’. Similarly, the average
metric indices for s = 3 and s = 2 are listed in Table 2 and
Table 3, respectively.

It can be noticed that the proposed method achieves better
results in terms of PSNR for all scaling factors. SSIM index
of the proposed for s = 4 is slightly inferior to MSSCNN
method, but superior for s = 3 and s = 2. In addition,

our method produces low Qblur and Qring indices for the
three scaling factors and is comparable with A+ and deep
learning methods. We noticed that LRFI also yields lowQblur
values for s = 2 and s = 3. However, its Qring values are
higher than A+ and the deep learning methods. Also, SCSR
and SPMSR methods have low Qblur and Qring values for
s = 2, but much higher values for s = 3 and s = 4. For
better performance of an SR algorithm, high PSNR, SSIM,
low Qblur , and Qring indices are desired. Considering all the
four objective metrics together, it is evident that the proposed
method is quantitatively superior to the existing methods.

In Table 4, we show the running times of different SR
methods for s = 4. Each value in the table represents the
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TABLE 1. PSNR, SSIM, Qblur and Qring metrics for upscaling factor 4.

TABLE 2. PSNR, SSIM, Qblur and Qring metrics for upscaling factor 3.

TABLE 3. PSNR, SSIM, Qblur and Qring metrics for upscaling factor 2.

average of 19 test images. The experiments are conducted in
Matlab on a system with 8 GB RAM and Intel(R) Core(TM)
i5-7400 CPU: 3.00 GHz. It is noticed that bicubic, A+,
DWSR, and MSSCNN are the fastest methods that can exe-
cute in 1 second. SCN, FSRCNN, VDSR, and the proposed

TABLE 4. Comparison of running times for upscaling factor 4.

TABLE 5. Comparison of running times with 1024× 1024 pixel images for
upscaling factor 4.

method consume less than 5 seconds. NEDI, SPMSR, and
SRCNN require 10 seconds approximately. LRFI and SCSR
are the slowest methods, with execution times 37 seconds and
117 seconds.

In Table 5, we show the running times of different SR
methods for s = 4. However, all the 19 test images are first
resized to 1024 × 1024 before downsampling and upscaling
operation by a factor s. We can notice that bicubic, A+,
DWSR, and MSSCNN execute in 1 second approximately.
SCN, FSRCNN, and the proposed method require less than
10 seconds. NEDI, LRFI, SPMSR, and SRCNN have an
execution range between 20 to 50 seconds. Whereas VDSR
and SCSR demand 65 seconds and 598 seconds.

From the discussion based on Tables 1-3 and Figs. 5-13,
we summarize that our method is superior in terms of objec-
tive and subjective quality assessment. Besides, the low com-
putational time is advantageous for real-time implementation.

V. CONCLUSION
In this work, we presented a new single-image MR-SR algo-
rithm using the VDR-net in the stationary wavelet domain.
The idea of residual learning and the wavelet subbands
increase data sparsity in the training and testing phases.
As a result, our algorithm has less computational complexity
and hence suitable for 24fps real-time implementation. SWT
promises shift-invariance and superior directionality features
when compared to DWT. Besides, the edge-preservation
using Gaussian operation helps to maintain the intrinsic
structure of the SR images. We have shown improve-
ments over the conventional and state-of-the-art SR meth-
ods in PSNR, SSIM, Qblur , and Qring metrics. In addition,
the edge-preserving nature of the proposed SR method can
be identified from the subjective analysis.
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