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ABSTRACT Because of resource-constrained environments, network compression has become an essential
part of deep neural networks research. In this paper, we found a mutual relationship between kernel weights
termed as Inter-Layer Kernel Correlation (ILKC). The kernel weights between two different convolution
layers share a substantial similarity in shapes and values. Based on this relationship, we propose a new
compression method, Inter-Layer Kernel Prediction (ILKP), which represents convolutional kernels with
fewer bits through similarity between kernel weights in convolutional neural networks. Furthermore, to effec-
tively adapt the inter prediction scheme from video coding technology, we integrate a linear transformation
into the prediction scheme, which significantly enhances compression efficiency. The proposed method
achieved 93.77% top-1 accuracy with 4.1 x compression ratio compared to the ResNet110 baseline model on
CIFARI10. It means that 0.04% top-1 accuracy improvement was achieved by using less memory footprint.
Moreover, incorporating quantization, the proposed method achieved a 13x compression ratio with little
performance degradation compared to the ResNets baseline model trained on CIFAR10 and CIFAR100.

INDEX TERMS Deep learning, model compression, neural networks, neural network compression, inter

prediction, linear transform, quantization, ILKC, ILKP, ILKP-Q.

I. INTRODUCTION

Recently, Deep Neural Networks (DNN), specifically Con-
volutional Neural Networks (CNN), are showing exceptional
performance compared with traditional methods for a wide
variety of tasks in many fields such as image classification
[1]-[3], object detection [4]-[6], and also speech recogni-
tion [7], [8]. However, with this performance improvement,
the size of the CNN model has increased enormously, and
the recent works are also expanding in size with more model
parameters for better performance.

These large CNN models, which could not be driven only
in the early 2000s, became possible with the advancement
of hardware. However, it is still challenging to deploy them
in an environment with limited computing resources such as
mobile environment, embedded system environment, naviga-
tion system and a kiosk.

In order to solve this problem, methods of reducing the
size of a CNN model or designing an efficient CNN structure

The associate editor coordinating the review of this manuscript and

approving it for publication was Jinjia Zhou

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

have emerged as core fields in recent deep neural network
research. Representative methods include pruning [9]-[12],
quantization [13]-[15], knowledge distillation [16]-[18],
weight sharing [19]-[22], and efficient structural design
methods, e.g., Depthwise Separable Convolution [23]-[26].
These methods are widely used to compress the size of the
CNN model.

Among them, the weight sharing methods are categorized
into: i) vector quantization methods where the similar-valued
weights are clustered into classes [15], [27]; ii) and methods
that design the networks to have the shared weights [19], [28].
It has been shown that both methods drastically reduce the
number of CNN parameters as compared to previous papers.
Contrary to the existing weight sharing methods, we propose
a new weight sharing method based on prediction techniques
essentially used in traditional video compression technology,
such as H.264 [29] and H.265 [30].

Prediction methods are based on the fact that there are
many parts with high correlations within each intra-frame
as well as between inter-frames in sequential frames. For
prediction, each frame is divided into macro-blocks (MBs),
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and each MB in the current frame is predicted by searching
the best MB in the search range with respect to minimizing
rate-distortion costs. As the residuals between the current and
predicted (best) MBs tend to have low entropy following a
narrow-shaped Laplacian distribution, the residuals are com-
pressed and stored in the encoder side [29], [30].

In this paper, we show that the kernel' weights between the
two different convolution layers tend to share high similarity
in shapes and values. We call this reciprocal relationship
Inter-Layer Kernel Correlation (ILKC). This paper explores
an efficient neural network method that fully takes advantage
of the ILKC hypothesis. Based on ILKC, this paper proposes
a simple and effective weight compression method Inter-
Layer Kernel Prediction (ILKP) that effectively shares the
weights by prediction.

A. CONTRIBUTIONS
Main contributions of this paper are listed below:

o From comprehensive experiments, we find out that the
kernel weights between the two different convolutional
layers in a CNN tend to share strong similarities, which
lead us to hypothesizing ILKC.

« Based on ILKC, we propose a simple and useful model
weight compression method, ILKP that minimizes the
weight sizes by prediction.

o The proposed ILKP achieves about 4.1 x compression
ratio on average at the same accuracy level compared
to the ResNets [3] (ResNet 20/32/44/56/110) baseline
model on CIFAR10 and CIFAR100.

o Furthermore, by combining an efficient quantization
method, the proposed method, called Quantized ILKP
(ILKP-Q), achieves about 13x compression ratio on
average with little accuracy degradation compared to
the baseline model (without prediction) in various
ResNet models [3] (ResNet 20/32/44/56/110) trained on
CIFAR10 and CIFAR100.

Il. RELATED WORK

A. NETWORK PRUNING

Network pruning methods prune the unimportant weight
parameters, enabling to reduce the redundancy of weight
parameters inherent in neural networks. References [9]
and [10] reduced the number of weight connections implic-
itly through setting a proper objective function for train-
ing. Reference [11] successfully removed the unimportant
weight connections through certain thresholds for the weight
values, showing no harm of accuracy in the state-of-the-art
convolutional neural network models. Recently, structured
(filter/channel/layer-wise) pruning methods have been pro-
posed in [31] and [12], where a set of weights is pruned
based on certain criteria (e.g., the sum of absolute values
in the set of weights), demonstrating significantly reduced

UIn this paper, the kernel denote as a two-dimensional convolution kernel
obtained by dividing a three-dimensional convolution filter map channel-
wise, e.g., in 3 x 3x32 convolution filter map has 32 3 x 3 kernels.
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number of weight parameters and computational costs. Fur-
thermore, [32] uses AutoML for channel pruning and their
proposed method yields 13.2% higher accuracy than filter
pruning method [12]. Our paper is linked with removing
unimportant weights of the pruning method to prevent the use
of inessential weights in the kernel by utilizing the kernel on
the previous layer using the prediction method.

B. QUANTIZATION

Quantization reduces the representation bits of original
weights in neural networks. Reference [13] proposed a weight
quantization using weight discretization in neural networks.
Reference [11] incorporated a vector quantization into prun-
ing, proving that quantization and pruning can jointly work
for weight compression without accuracy degradation. Deep
Compression, a pruning-quantization framework, became a
milestone in model compression research of deep neural
networks. Reference [33] proposed a fixed-point quantiza-
tion using a linear scale factor for weight values where bit-
widths for quantization are adaptively found for each layer,
enabling a 20% reduction of the weight size in memory
without any loss in accuracy compared to the baseline fixed-
point quantization method. Furthermore, [34], [35] and [36]
use clipping weights before applying linear quantization, thus
improving accuracy compared to linear quantization without
clipping. In this paper, we apply a quantization technique
to the by-product of predictions (e.g., indices of predicted
weight kernels), thus dramatically compressing the parameter
sizes of CNNS.

C. WEIGHT SHARING

In Deep Compression [15], the CNN model was compressed
by collecting similar weights in each layer and quantizing
them where similar-valued weight values are clustered into
few classes, which can be viewed as a weight sharing in
values. In BSConv [40], it showed that similar kernels exist in
each layer, and scalar multiplication was used on one kernel
shared in each filter map in a vanilla convolutional layer. They
proved that through equation rearrangement, the weight shar-
ing property can make a convolution layer decomposed into
a point-wise convolution layer and a depth-wise convolution
layer.

In the above studies, weight sharing was performed based
on the existence of similar weights within layers. However,
this paper found that similar kernels exist between two differ-
ent layers. Therefore, weight sharing and model compression
method based on the inter-frame prediction method, that is,
ILKP is proposed accordingly.

D. PREDICTION IN CONVENTIONAL VIDEO CODING

Prediction techniques are considered one of the most cru-
cial parts of video compression, aiming at minimizing the
magnitudes of signals to be encoded by subtracting the input
signals to the most similar encoded signals in a set of predic-
tion candidates [29], [30], [41]. The prediction methods can
produce the residuals of signals with low magnitudes and a
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large number of non/near zero signals. Therefore, they have
effectively been incorporated into transforms and quantiza-
tion for concentrating powers in low frequency regions and
reducing the entropy, respectively. There are two prediction
techniques: inter- and intra- predictions. The inter-prediction
searches the best prediction signals from the encoded neigh-
bor frames out of the current frame. At the same time,
the intra-prediction generates a set of prediction signals from
the input signals and determine the best prediction [29], [30].
This is because intra frames that use only intra-prediction
for compression are used as reference frames for subsequent
frames to be predicted.

Note that a few studies explored to apply the transform
techniques of video and/or image coding to the weight
compression problem in neural networks. References [42]
and [43] applied DCT (Discrete Cosine Transform) used in
the JPEG (Joint Picture Encoding Group) algorithm to the
model compression problem of deep neural networks such
that the energy of weight values became concentrated in
low frequency regions, thus producing more non/near-zero
DCT coefficients for the weights. Compared to the papers
mentioned above, our work does not adopt transform tech-
niques to reduce model sizes since transformations intro-
duce high computational cost during inference, decreasing
the effectiveness of the weight compression in practical
applications.

In this paper, we found out that the inter-prediction tech-
nique can play a crucial role for weight compression. As a
result, the proposed inter-prediction method for memory
yields impressive compression performance enhancement at
the similar accuracy level compared to the baseline models.

IIl. INTER-LAYER KERNEL CORRELATION (ILKC)

From the perspective of prediction technique in video com-
pression, two statistical characteristics of signals are essential
to have high prediction performance, i.e., the similarities in
magnitude range and direction between two signals.

To show similarity in magnitude range of weights among
layers, we plot the weight distribution in each layer obtained
from the pre-trained ResNet20 on CIFARI10 in Figure 1.
As shown in Figure 1, the weight values tend to be in certain
ranges regardless of their layer positions, supporting our
ILKC hypothesis.

To observe the similarity in direction of weight kernels
between layers, we measure the maximum absolute value of
Pearson Correlation Coefficient (MA-PCC) between a kernel
in the i-th current layer (C;) and a set of all kernels in the j-th
reference layer (R;). The MA-PCC that is defined for the /-th
kernel in C; and is calculated as

MA-PCC(Ci,z,Rj)zk {rlnax |r(C,-,1,Rj,k) , (1)
efl,-,

K}

where C; is the [-th kernel in Cj, R; i is the k-th kernel in R;,
and K is the number of kernels in R;. In Eq. (1), #(C; ;, R x)
is the value of the sample Pearson Correlation Coefficient
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FIGURE 1. Weight distribution of each convolutional layer in

ResNet20 trained on CIFAR10. (a) 2nd layer; (b) 4th layer; (c) 7th layer;
(d) 12th layer; (e) 14th layer; (f) 17th layer; Layer ordinal numbers start
at 0.

(sample PCC; PCC) [44] which is calculated as
Y (X = X) (Yn = 7)
V(X = X2 (Y — 1)

where X, (or Y;;,) is the m-th element when each kernel is
vectorized, and X (or Y) is the mean of X (or Y).

Figure 2 and 3 show the MA-PCC for combination of
different layers in pre-trained ResNet20 on CIFAR10 and
CIFAR100. As shown in Figure 2 and 3, overall, MA-PCC
values are high enough, indicating that the kernels between
two different convolutional layers are similar in direction.
Therefore, based on ILKC, we propose an inter-layer predic-
tion method in the next section.

r(X,Y)=

@

IV. INTER-LAYER KERNEL PREDICTION

A. INTER-LAYER KERNEL PREDICTION (ILKP)

We propose ILKP motivated from the inter-frame prediction
method. As shown in Figure 4, the ILKP is a method of
approximating the current kernel with a linear transformed
reference kernel with a scale factor () and offset factor (B).
It is noted that the search range for reference layers directly
affects training time. From our comprehensive experiments,
we found that the first layer of the neural network (i.e., Ro)
with linear transformation (LT) tends to well approximate
the dominant portion of rest kernels in the whole network.
Therefore, using Ry as a reference layer significantly reduces
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FIGURE 2. Histogram of MA-PCC values between two different
convolutional layers in ResNet20 trained on CIFAR10. Between (a) Ry and
Ce: (b) Ry and C,3; (c) Ry and Cg; (d) R, and C,3; (e) R5 and Cg; (f) Rs
and C]s.

training time. During training, the proposed method updates
the weights in the reference layer as well as dynamically
searches the most similar kernel (denoted as the best kernel)
to the current kernel from the reference layer in each epoch
with respect to maximizing absolute PCC as

k= arg max ]r(C,-J,Ro,k)|. 3
ke{l,--,K}

After finding the best reference kernel X, o and g for the
current kernel Y are calculated with the least-squares estimate
of the slope (o) and the intercept (8) [45] as

_ X Xn=X) (Yn =)
Y (X — X) @
B=Y —aX.

Finally, we replace the current kernel with the three ele-
ments, i.e., &, B and the index of the best kernel (I%) which
are stored in memory. Note that k hasa bit-depth of [log, n]
where 7 is the number of kernels in the reference layer. The
ILKP process can be seen in Algorithm 1.

During the inference time, only the kernels in the reference
layers and a set of «, 8 and k are accessed from the memory
by which all weights in the network can be restored.
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FIGURE 3. Histogram of MA-PCC values between two different
convolutional layers in ResNet20 trained on CIFAR100. Between (a) R,
and C¢; (b) R; and Cy3; (c) Ry, and Cyg; (d) Ry, and Cyg; (e) Ry5 and Cyg;

(f) R-|5 and C|8.
@eoﬁ
i-th layer @
Ciy

2. Save the kernel index
with scale & offset factor

0-th layer

‘ 1. Find the best kernel

FIGURE 4. An illustration of the proposed method. The upper dashed box
represents the conventional CNN where R ; and C; | are the k-th kernel

in the 0-th layer and the /-th kernel in the i-th layer, respectively. The
lower one-dot chain box represents ILKP parameters of C; ; by prediction
with RO l:"

B. ILKP WITH o, 8 QUANTIZATION (ILKP-Q)

To maximize the effectiveness of the proposed ILKP, we pro-
pose ILKP-Q which quantizes « and B. For training the
quantized o and 8, we apply the quantization-aware training
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Algorithm 1 ILKP
Input: Pretrained model
Output: ILKP model
/I'N is the number of layers
/I M (i) is the number of kernels in i-th layer

I: fori=1toN — 1 do

22 for/=0toM(@(i)—1 do

3 find k using Eq. (3)

4: calculate o, B between C;; and Ry using Eq. (4)
5: store (a, 3, 12)

6: end for

7: end for

8:

return Ry and («, S, 12) list

method [46]. That is, the full-precision o and B are kept
in memory where the quantized o and 8 are used for feed-
forward process, and the gradients are updated with full-
precision o and 8 during back-propagation. The quantization
method used in this experiment is a linear uniform quantiza-
tion, and « and B are quantized to 8 bits each epoch. Since the
o and B of each kernel are reduced from 32 to 8 bits, much
higher compression ratio can be obtained.

V. EXPERIMENTAL RESULTS

A. EXPERIMENTAL DETAILS

In this section, we describe and prove the superiority of
the proposed method by applying it on image classification
tasks, specifically for CIFAR10 and CIFAR100 datasets. For
securing the generality of our proposed ILKP, we applied
our method in pre-trained ResNet20/32/44/56/110 models.
The framework used in the experiment is PyTorch. One
NVidia 2080-Ti GPU with the Intel i9-7900X CPU is used
to perform the experiments. For the hyper-parameter setting
in the training process, we set the initial learning rate as
0.01, which is multiplied by 0.98 after every epochs. We used
Stochastic Gradient Descent (SGD) optimizer with Nesterov
momentum [47] factor 0.9. All the neural networks are trained
for 200 epochs with a batch size of 256. In all the experiments,
the test accuracy and compression ratio are marked from the
average of 5 runs. Compression ratio (CR) is computed by the
ratio of the total number of bits of the convolution weights for
the baseline over that of the proposed methods.

B. INTER-LAYER KERNEL PREDICTION

As shown in Table 1, the proposed ILKP decreases the sizes
of all the test models more than 4x with negligible perfor-
mance drop compared to the baseline models. In particular,
the largest test model, i.e., ResNet110, it obtained a compres-
sion ratio of 4.11x with a performance increase of 0.04% on
CIFAR10.

C. ILKP WITH «, 8 QUANTIZATION (ILKP-Q)

We show the experimental results of ILKP-Q on « and 8
8-bit quantization. As shown in Table 2 and Table 3, ILKP-Q
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TABLE 1. Test top-1 accuracy and compression ratio of the proposed

method compared to the baseline.

| Top-1accuracy (%)

Dataset ‘ ‘ CR (x)

Model
| | Baseline |  Ours |
ResNet20 92.27 91.25+0.16 4.09
ResNet32 92.66 92.19+0.17 4.10
CIFAR10 ResNet44 93.24 93.13+0.19 4.11
ResNet56 93.52 93.24+0.19 4.11
ResNet110 93.73 93.77+0.18 4.11
ResNet20 66.54 65.70+0.30 4.09
ResNet32 68.96 67.70£0.11 4.10
CIFAR100 ResNet44 69.57 68.15+0.10 4.11
ResNet56 70.62 69.41+0.29 4.11
ResNet110 72.85 71.47£0.18 4.11

TABLE 2. Test top-1 accuracy and compression ratio of ILKP and ILKP-Q
compared to the baseline trained on CIFAR10. ‘Base’ means baseline.

Model Top-1 accuracy (%) CR (x)
| Base | ILKP | ILKP-Q | ILKP | ILKP-Q
ResNet20 | 92.27 | 91.25+0.16 | 89.00+0.42 4.09 12.84
ResNet32 | 92.66 | 92.19+0.17 | 92.07+0.10 4.10 12.94
ResNet44 | 9324 | 93.13+0.19 | 92.93+0.18 4.11 12.99
ResNet56 93.52 | 93.24+0.19 | 93.09+0.09 4.11 13.01
ResNet110 | 93.73 | 93.77+£0.18 | 93.13+0.23 4.11 13.05

TABLE 3. Test top-1 accuracy and compression ratio of ILKP and ILKP-Q
compared to the baseline trained on CIFAR100. ‘Base’ means baseline.

Model | Top-1 accuracy (%) | CR (x)
| Base | ILKP | ILKP-Q | ILKP | ILKP-Q
ResNet20 66.54 | 65.70+£0.30 | 65.66%0.27 4.09 12.84
ResNet32 68.96 | 67.70+0.11 67.76£0.27 4.10 12.94
ResNet44 69.57 | 68.15+0.10 | 67.68+0.39 4.11 12.99
ResNet56 70.62 | 69.41+£0.29 | 68.54+0.27 4.11 13.01
ResNet110 | 72.85 | 71.47+£0.18 | 69.47+0.70 4.11 13.05

achieved a remarkable compression ratio of about 13x com-
pared to Baseline and about 3x compared to the original
ILKP based models with negligible performance degradation.

For better visibility purpose, we plot the performance
curves in trade-off between top-1 accuracy and the total
weight sizes in convolution layers of tested models on
CIFAR10 and CIFAR100 in Figure 5, where ‘Baseline-Q’ is
the quantized model with a linear quantization [46] in the
baseline model for {8, 7, 6, 5, 4} weight bits. As shown
in Figure 5, in most cases, ILKP has a slightly lower or almost
similar top-1 accuracy at the similar levels of compression
ratios to Baseline-Q. In addition, it is shown that, as the model
size increases, ILKP gradually improves the performance
in trade-off compared to Baseline-Q. This is because the
proposed ILKP keeps only one set of weight kernels in the ref-
erence layer while the rest are replaced with ILKP parameters
(a, B, IQ). The ILKP-Q shows superior performance in a trade-
off between top-1 accuracy and compression ratio to both
Baseline-Q and ILKP, especially showing better performance
on CIFAR100.
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FIGURE 5. Comparison between proposed methods with linear quantization method on baseline ResNet44/56/110 trained on CIFAR10/100.

TABLE 4. Test top-1 accuracy of ablation studies on CIFAR10.

| Top-1 accuracy (%)

TABLE 5. Test top-1 accuracy of ablation studies on CIFAR100.

Model ‘

Top-1 accuracy (%)

Model
| ILKPwio o, 3 | ILKPw/o 3 | ILKP | ILKPw/oa, 5 | ILKPw/o 3 | ILKP
ResNet20 62.41+2.61 88.36+0.17 | 91.25+0.16 ResNet20 23.79+7.69 54.36+3.81 65.70+0.30
ResNet32 63.65+4.81 89.84+0.26 | 92.19+0.17 ResNet32 27.17+0.84 64.16£0.24 | 67.70+0.11
ResNet44 65.70+1.02 90.82+0.18 | 93.130.19 ResNet44 23.62+7.43 65.89+0.51 | 68.15+0.10
ResNet56 66.16+2.33 91.55+0.45 | 93.24+0.19 ResNet56 28.63+3.30 67.02+0.15 | 69.41+0.29
ResNet110 72.98+0.56 92.65+0.16 | 93.77+0.18 ResNet110 31.06+3.73 68.86+0.41 71.47+0.18

D. ABLATION STUDY OF ILKP

For ablation studies, we investigated why LT parameters are
needed. We apply the proposed ILKP with and without «
and B. At this time, finding a similar kernel is the same
as the method in section IV-A. It is noted that, under no
bias condition, the least squared method for estimating « is
calculated as

o= > XY
XX
where the notations are equal to Eq. (4).

As shown in Table 4 and Table 5, LT with o and B play
crucial roles in ILKP.

&)

E. ANALYSIS
Figure 6 shows the confusion matrices of baseline and ILKP
on CIFARI10. indicating that ILKP often shows higher accu-
racy compared to the baseline over classes.

To further investigate the effectiveness of the proposed
method, we evaluate the similarity in average PCC between
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reference and current kernels. Figure 7 compares Similarity
in average PCCs in ResNet20 trained on CIFAR10 where
three modes are experimented: 1) Random prediction: for
all kernels of each layer in the pretrained baseline model,
reference kernel is randomly selected and the absolute PCC
values between the reference and current kernels are calcu-
lated; 2) ILKP: the reference kernel is obtained with Eq. (3) in
ILKP, and absolute PCC is calculated between the reference
and current kernels; 3) ILKP + LT: the reference kernel
is obtained with Eq. (3) in ILKP and the LT is applied to
the reference kernel to approximate the current kernel. The
absolute PCC is calculated between the reference with LT and
current kernels.

As shown in Figure 7, the average PCC is lower than
0.5 when the reference kernel is randomly selected. When
ILKP with Eq. (3) is applied, the average PCC is increased by
0.3 points. Moreover, it is shown that LT allows to approxi-
mating the current kernel very well from the reference kernel,
achieving almost 1 in average PCC. This clearly supports the
effectiveness of the proposed ILKP with LT.
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FIGURE 7. Similarity comparison in PCCs in ResNet20 trained on CIFAR10.
1) Random prediction: for all kernels of each layer in the pretrained
baseline model, reference kernel is randomly selected and the absolute
PCC values between the reference and current kernels are calculated;
2) ILKP: the reference kernel is obtained with Eq. (3) in ILKP, and absolute
PCC is calculated between the reference and current kernels; 3) ILKP + LT:
the reference kernel is obtained with Eq. (3) in ILKP and the LT is applied
to the reference kernel to approximate the current kernel; The absolute
PCC is calculated between the reference with LT and current kernels.

F. LIMITATION
Although the proposed method shows its effectiveness in
many ResNet models with identical spatial resolutions for
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all kernels, it cannot be applied to more complex models
consisting of various kernel shapes and sizes. In future work,
we will resolve this mismatch problem between reference and
current kernels.

VI. CONCLUSION

We propose a new inter-layer kernel prediction method for
efficient deep neural networks. Motivated by our observation
that the kernels between the layers tend to have high similar-
ity, we successfully build a new weight compression frame-
work using the inter-layer kernel prediction scheme. To the
best of our knowledge, this work is the first to exploit the
mutual relationship of the kernel similarities between the con-
volutional layers in the context of the inter prediction method
in modern video coding technology. Furthermore, to effec-
tively apply the conventional inter prediction method into the
weight compression scheme in neural networks, we devise
a LT and quantization scheme which significantly enhance
the compression efficiency. Our comprehensive experiments
show that ILKP-Q achieves outstanding compression effi-
ciency compared to the baseline models. As future work,
the proposed method can further be extended for wider appli-
cability by generalizing the prediction scheme for various
kernels with different sizes and shapes.
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