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ABSTRACT It is no longer an option but a necessity to enhance the efficiency of deep learning models
regarding energy consumption, learning time, and model size as the computational burden on deep neural
networks increases. To improve the efficiency of deep learning, this study proposes a lightweight spatial
shift point-wise quantization (L-SSPQ) model to construct a ResNet-like CNN model with significantly
reduced accuracy degradation. L-SSPQ adds efficiency with the last linear layer weight reduction technology
to SSPQ, which combines compact neural network design and quantization technology. To reduce weight
and optimize performance, the learning time and system-required resources in the L-SSPQ are minimized.
Accuracy could be improved with the warm-up interval and a step-size optimal value, both of which are
hyper-parameters of the cosine learning rate. A two-stage optimization method that divides quantization
learning into two steps is applied to further minimize loss. The size of the proposed L-SSPQ50 model is
only 3.55 MB with an accuracy loss rate of 2.42%. This is just 3.56% of the size of ResNet50. In addition,
the L-SSPQ50 score was 1.318 for information density, surpassing the SOTA models, including MobileNet
V.2, MobileNet V.3, ReActNet-A, and FracBNN.

INDEX TERMS Compact neural network design, quantization, lightweight modeling, convolution neural
network.

I. INTRODUCTION
The performance of deep learningmodels generally improves
as the size of the input data, depth of the model (num-
ber of layers), and width of the model (number of chan-
nels) increase. In the area of computer vision, the current
SOTA model, Res-Next-101, has 829 M (8.2 billion) param-
eters [1]. In the natural language processing field, the current
SOTA model, GPT-3 is composed of 98 layers of trans-
formers, and the total number of parameters reaches 175 B
(175 billion) [2]. Considering the ResNet50 model’s four-day
learning period [3] with 25.6 M (25.6 million) parameters
using two RTX-2080 GPUs, approximately 128 days of train-
ing will be required for the Res-Next-101 model. It takes
approximately 355 years of training for the GPT-3 model
using an Nvidia V100 GPU. Thus, it is a necessity, rather than
an option, to increase the efficiency of deep learning models
regarding energy consumption, learning duration, and model
size because the computational requirements for deep neural
networks are increasing [4]. Therefore, lightweight modeling
techniques have been developed to address this problem.
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Lightweight modeling technology can be divided along
two axes: 1) quantization and compact neural network tech-
nology that can model from scratch and 2) pruning and
knowledge distillation based on pre-trained model data. Con-
sidering the learning time and system resource requirements,
neither pruning nor knowledge distillation was used in this
study. Pruning sets the target to remove the connections
between neurons through iterative learning until optimiza-
tion while knowledge distillation requires pre-learning by the
teacher model or learning simultaneously with the teacher
model. The quantization and compact neural network design
methods, which consume learning time and system resources
relatively economically, were used for lightweight modeling
in this study.

Spatial Shift Point-Wise Quantization (SSPQ) model [5] is
a lightweight method that combines compact neural network
design and quantization technology, replacing spatial oper-
ation with shift operation and applying quantization to the
point-wise convolution. The SSPQmodel applies lightweight
technology to minimize the loss of accuracy and perfor-
mance. Spatial convolution uses a shift operation with an
inverse residual block structure, whereas point-wise con-
volution uses weights and activation functions that ensure
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convergence by calculating at 1-bit and 4-bit quantization
precision, respectively. In addition, after passing the quan-
tized activation function, batch normalization is applied to
minimize the instability of the mean and variance for each
layer that arises from quantization.

The main contribution of the proposed L-SSPQ is as
follows:

• The proposed L-SSPQ model reduces the fully con-
nected layer parameters from 8MB to 2MB by omitting
the last block of the SSPQmodel and directly connecting
it to the average pooling layer to reduce the number
of computational channels and quantize the last active
function.

• While reducing the weight and optimizing performance,
the learning time and required system resources in
L-SSPQ are minimized.

– Based on the Nesterov optimizer, the accuracy
is improved by learning the hyper-parameter
warm-up interval and step-size optimization value
of the cosine learning rate. In particular, for
the Cifar100 dataset, the SSPQ34 model shows
an improvement of 1.19% compared to the
fixed-learning rate method.

– To minimize the quantization loss, the method in
the SSPQ model is used. In addition, a two-stage
optimization that divides quantization learning is
applied, but the accuracy is improved by 0.48% by
adding only one epoch to reflect the final learning
rate of the first learning session during the second
training of L-SSPQ50 on the ImageNet dataset.

• The proposed L-SSPQ50 model shows an accuracy
loss rate of 2.42% with only 3.55 MB, which is
3.56% of the number of ResNet50’s parameters and
with 36.28% fewer parameters is 0.26% better than
the SSPQ50 model. In addition, the L-SSPQ50 score
of 1.318 surpasses the SOTA models, including
MobileNet V.2 [6], MobileNet V.3 [7], ReActNet-A [8],
and FracBNN [9] models regarding information
density.

This paper is organized as follows. In Section II, the main
concepts of the compact neural network, quantization, and
the optimized training of quantization neural networks are
introduced. In Section III, the structure and limitations
of the SSPQ model, the structure of the neural network block
of the proposed L-SSPQ model and the optimized train-
ing of the quantized neural network method are explained.
Section IV describes the experimental results, and Section VI
concludes the paper.

II. RELATED WORK
This section summarizes recent studies on deep learning and
the lightweight modeling technology to be achieved through
this study, i.e., compact neural network design, quantization,
and the learning method to optimize deep learning quantiza-
tion modeling.

A. COMPACT NEURAL NETWORK DESIGN
In 2015, ResNet [3] employed an identity connection for a
convolution operation, in which an output map is a result of
adding an input map and residual. The bottleneck block [10]
is a structure inwhich the number of channels can be adjusted.
Unlike general convolutional configuration block, the num-
ber of channels is reduced by adding eachmap in the direction
of the channel through a 1 × 1 point-wise operation in the
block. A convolution operation is then performed with this as
the input. Subsequently, the number of channels is expanded
through a 1× 1 point-wise operation to match the number of
input and output channels and form the same connection. The
inverted residual block [6] structurally reduces the amount
of computation and improves accuracy. For this, it connects
the layers with a small number of channels and increases
the number of channels of the convolution operation in the
block instead of connecting the layers with a large number of
channels in the identity connection.

By reinterpreting the general convolution operation,
the depth-wise separable point-wise convolution shifts the
multiplication operation calculated with the kernel for each
channel by placing it in sequence (point-wise convolu-
tion operation) to set the order of operations. This has
the advantage of reducing the amount of computation and
enabling computational acceleration through parallel compu-
tation [11].

ShiftNet is another reinterpretation of convolution opera-
tions. The convolution operation result of a kernel whose one
value is 1 and the remaining values are 0 among 3×3 kernels
is equal to the result of shifting the input map into a specific
direction. Instead of multiplication, the spatial convolution
is replaced by a memory shift operation by dividing the
channels into groups and randomly determining the direction
of the shift [12]. To apply the gradient operation to the direc-
tion optimized for each channel movement, the active shift
operation replaces the shift operation and adds sophistication
by increasing the accuracy of the shift convolution opera-
tion [13]. Quantization of the channel movement is applied
in the sparse shift operation to reduce the load of the memory
shift operation through the channel shift operation [14].

B. QUANTIZATION
Quantization reduces the number of calculation bits, thus
reducing the amount of calculation and the footprint size
of the learning parameter, thereby improving the calculation
speed. In deep learning lightweight modeling, quantization
can be applied to weights, activation functions, and gradients.
In particular, for binary quantization, the signum function
(clip function) is used in the forward operation to convert the
value above the reference value to 1 and convert the remain-
ing value to −1 (or 0). In the backpropagation operation of
binary quantization, gradient operation is impossible by dif-
ferentiating the clip function. In this regard, by applying the
straight-through-estimate method [15], which approximates
the signum function using the derivative of the hard tanh
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FIGURE 1. The ratio of learning parameters per layer of ResNet50, SSPQ50, and L-SSPQ50. The five types of layers are (1) [3 × 3] spatial conv. layer;
(2) [shift] spatial conv. layer, (3) [1 × 1] point-wise conv. layer, (4) [fct] fully connected layer(linear layer), and (5) [bn] batch normalization layer. (the unit
of the learning parameters in the figure is KB).

(hyperbolic tangent) function, BinaryNet [16] showed mean-
ingful performance by quantizing the weights and activation
functions. Quantization modeling incurs a loss of accuracy.
In particular, among the binary quantization models, XNOR-
Net [17] incurs 18.1% accuracy degradation in ImageNet
dataset compared to ResNet18. As evidenced by recent anal-
ysis [18], when the number of quantization modeling bits
falls below four, an error occurs, which makes it difficult
to maintain robustness while quantizing. As the difference
increases, stable convergence cannot be achieved, resulting
in a significant loss of accuracy.

C. OPTIMIZED LEARNING OF QUANTIZED NEURAL
NETWORKS
Several learning methods to improve the quantization loss
have been studied. Zhuang et al. verified that the 4-bit quan-
tization model is more competitive than the full-precision
model by applying three methods: two-stage optimization
(TS), progressive quantization (PQ), and transfer-learning
(guided) [19]. Recently, Martinez et al. confirmed improved
performance in binary models similarly by sequential learn-
ing method from full precision state to binary bit state. [20].
TS is learned by performing only weight quantization and
then simultaneously learning while performing active func-
tion quantization using the learned weight values as initial
values. The quantization model that mixes the three methods,
TS, PQ, and guided, outperforms the full-precision model.
However, compared to the general model, the training time
is 2× for TS, 4× for PQ, and 3× for guided. In addition,
the guided method is subject to a restriction that requires
more than twice the system resources simultaneously. There-
fore, in this study, only the TS method with a low learning
time and system requirements was applied, but when the
trained parameters and the final learning rate of the first
learning were used for the second learning, the performance
was improved with only one epoch of learning. Recently,

ReActNet [8] and FracNet [9] showed improved performance
even in binary networks by applying the learning method
of Martinez [20] with the modified activation function to
achieve the convergence of this data distribution.

This study differs from the above ones since it enhances
performance using compact neural network design technol-
ogy, quantization, and its learning method improvement con-
currently. This paper proposes a two-stage learning method
that reduces quantization errors while adjusting the variation
in the learning rate to the warm-up length and step size
with low precision. In addition, the proposed model achieved
superior performance to the above models based on the infor-
mation density metric.

III. OPTIMIZING LIGHTWEIGHT SPATIAL-SHIFT
POINT-WISE QUANTIZATION MODEL
In this section, we describe the lightweight technology and
optimization technology of the proposed L-SSPQ model.
First, the structure and limitations of the SSPQ model,
the predecessor of the L-SSPQ model, are examined.

A. LIMITATIONS OF SSPQ MODEL
Figure 1 shows the ratio of learning parameters per layer
of the ResNet50 and lightweight models. Figure 1(b) shows
the characteristics of each layer compressed via the SSPQ
model. The fully connected layer, i.e., the last linear layer, has
much room for additional compression. Figure 1(c) shows the
size of the learning parameters for each layer of the L-SSPQ
model presented in this study. Through additional lighten-
ing of the linear layer, L-SSPQ confirms that the accuracy
classification performance improved by 0.26% compared to
that of the SSPQ model for the ImageNet dataset with a
size of 36.28% of the SSPQ model. That is, for the Ima-
geNet dataset, the L-SSPQ50 model confirms an accuracy
of 73.92%, which is improved by 0.26% to the 3.55 MB
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FIGURE 2. Light-weighting the last stage of SSPQ model. (a) and (b) depicts the final stage and the bottleneck block of SSPQ model,
respectively. (c) describes the final stage of the L-SSPQ which omits the last bottleneck block and applys quantization to the last linear
layer.

learning parameter size, which is 36.28% the size of the
SSPQ50 model and 3.56% the size of the ResNet50 model.

B. STRUCTURE OF THE SSPQ MODEL
The SSPQmodel [5] uses a lightweightmethod that combines
a compact neural network design and quantization technol-
ogy. As a method of applying a lightweight technique but
minimizing the loss of accuracy and performance, the basic
block of the SSPQ model is composed of similar inverted
residual bottleneck blocks [6]. As shown in the red square
frame in Figure 2(a) and Figure 2(b), the 3× 3 convolutional
function of the two layers was replaced by one shift layer [13].
Only the 1 × 1 point-wise convolution part was quantized.
SSPQ uses Dorefa-Net [21] for quantization, which supports
multi-bit quantization and has the advantage of flexibility
in obtaining quantization derivatives as it is composed of a
differentiable hyperbolic-tangent equation. The quantization
size is set one bit for weights and four bits for the activation
function for which convergence is guaranteed [18]. After
passing through the quantized activation function, batch nor-
malization is applied to minimize the instability of each mean
and variance layer caused by quantization.

C. LIGHTWEIGHT SPATIAL-SHIFT POINT-WISE
QUANTIZATION MODEL
As explained in Section III-A, SSPQ has room to reduce the
last linear layer. In L-SSPQ, to reduce the last linear layer,
we adopt the transformation of the linear layer proposed in

MobileNet V.3 [7]. The model is further reduced by applying
quantization. Through this, the proposed L-SSPQ confirms
that the accuracy improves by 6.47% using only 38.17%
of the learning parameter size compared to the MobileNet
v.3 small model.

The basic block of the SSPQ model is composed of sim-
ilar inverted residual bottleneck blocks [6]. In all layers,
the number of channels of each block is [64, 128, 256, 512],
and the number of block hierarchies of the corresponding
channel number is [3, 4, 6, 3], and this doubles the channel for
each block. In addition, it is a bottleneck block structure that
expands the channel four times within the block. The output
of the block immediately before the last linear layer (fully
connected layer) becomes an output map of 2,048 pixels with
512 channels expanded by a factor of four. The last block and
linear layer of the SSPQ are shown in Figure 2(a), and the
final stage of the L-SSPQ with the lighter weight is depicted
in Figure 2(c).

As shown in Figure 2, in the L-SSPQ, the last block that
consists of four layers is omitted. The 2,048-output channel,
which is the output of the previous block, is received as an
input, and a 1 × 1 convolution is calculated based on the
low-precision weight that has passed through a one-bit quan-
tization function. After normalization, the result of the ReLU
activation function passing through the four-bit quantization
function becomes the number of the 512 channels, which is
1/4 the number of the 2,048 channels passed to the previ-
ous average integration process. After the average pooling
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process using these 512 channels as the input, after passing
the activation function again, it performs four-bit quantiza-
tion and connects to the fully connected layer, ImageNet
1,000 classes. In L-SSPQ, similar to SSPQ, the quantization
function uses DorefaNet [21].

By transforming the last layer of SSPQ and applying
additional quantization to the fully connected layer, L-SSPQ
has been reduced to 36.38% of the SSPQ model training
parameter size. In general, a reduction in the size of a learning
parameter causes a loss of accuracy. Therefore, in the next
section, we explore a trainingmethod optimized for quantized
neural networks.

D. OPTIMIZING LIGHTWEIGHT SPATIAL-SHIFT
POINT-WISE QUANTIZATION MODEL
The optimized result of the change in the learning rate, in the
form of a half-cycle of the cosine function over the entire
learning period without periodically repeating the change
in the learning rate, can be obtained from the experimental
results in Loshchilov’s study [22]. In general, the optimal
learning rate must be determined through various learning
rate changes. Conversely, the cosine learning rate has the
advantage of finding the optimal condition because it adjusts
the learning rate, where the learning rate initially is set to a
large value and then reduced to a small value when learning
reaches convergence. In this study, the cosine learning rate
is optimized using the Nesterov optimizer. During the range
where epoch e is the warm-up period Tw, i.e., (et < Tw),
ηt = ηmax(= 0.1) is set. When the step size S is reached,
ηt is periodically updated using Equation (1). The minimum
value of ηt is set as ηmin to prevent the problem of not being
updated because it is too small.

ηt = ηt−1 · (ηmin + 1
2 (1− ηmin)(1+ cos(

et−Tw
Tm−Tw

π )))
(1)

In Equation (1), Tm is the maximum period (max epoch),
Tw is the warm-up epoch length, and et is the epoch of the
current tth learning. To find the optimal learning condition,
we conducted a comparative experiment based on the differ-
ence in learning accuracy according to the warm-up length
Tw and step size S conditions. Figure 3 provides an example
of a change in the learning rate according to Tw, S and Tm.

As verified by the research of Zhuang et al. [19] and
Martinez et al. [20], a complete, well-learned method of
reducing the loss through quantization and obtaining the per-
formance before quantization is introduced in Section II-C.
After only quantizing the weights, quantization is performed
on both the weight and activation function based on the
trained parameters, as described in Algorithm 1. Unlike the
algorithm proposed by Zhuang et al. [19], after learning for
all epochs in the first step (quantization for weights only)
of TS, the trained parameters and hyper-parameters (learning
rate) of the first learning are used to learn an additional Ts2
epoch. The number of Ts2 epochs is affected by the learning
rate, ηmin. In the case of 1e-6, where the learning rate is low

FIGURE 3. Example of change in learning rate during warmup Tw and
step size S in the whole epoch Tm.

Algorithm 1 Two-Stage Quantization Algorithm
Input: Training data (xi, yi); full-precision L-SSPQ model
Output: low-precision L-SSPQmodel with weightsW as qw-
bit and activations A as qa-bit (Wqw,Aqa)
Stage1, Quantize Wqw
1: for e = 1, ..,Tm do
2: if e%S == 0 then
3: ηt update by Equation (1)
4: end if
5: for t = 1, ..,L do
6: Randomly sample mini-batch data; learning

L-SSPQ with Wqw and A32 precision states
7: end for
8: end for

Stage2, Quantize Aqa andWqw
1: Initialize W , A and learning rate η as Stage1 results
2: for e = 1, . . . ,Ts2 do
3: for t = 1, . . . ,L do
4: learning L-SSPQwithWqw and Aqa precision states
5: end for
6: end for

and the additional learning content is hardly reflected, one
epoch is sufficient. In the case of 1e-3, where the learning
rate affects the change in learning content, it converges to
20 epochs.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENT ENVIRONMENT
In this study, we configured the hardware of an Intel Core
i7 computer with NVME SSD, 64 GB RAM, and two RTX
2080 GPUs (the GPU RAM was 24 GB each, 48 GB in
total). Tensorflow 1.15.3 version was installed as the source
level on a Linux Ubuntu 16.04 OS. For the experimental data
set, Cifar10, Cifar100, and ILSVRC2012-ImageNet datasets
were used with classes of 10, 100, and 1,000, respectively,
which are widely utilized for image classification perfor-
mance evaluation. Table 1 provides a detailed description
of each dataset. In the Cifar10 and Cifar100 datasets, the
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TABLE 1. Three datasets for evaluating the L-SSPQ.

average value of the three experiments was used to increase
the reliability of the performance for each hyper-parameter
experiment. The max epoch Tm in Algorithm 1 was set to
105 in the ImageNet dataset and 200 in the Cifar10 and
Cifar100 datasets. The batch size was set to 256 in the Ima-
geNet and Cifar100 datasets and 128 in the Cifar10 dataset.

For the Cifar10 dataset, the proposed L-SSPQ model cal-
culates the weights and activation functions with 4-bit pre-
cision for the depth 20 (L20-W4A4) and the depth 20-wide
(L20-wide-W4A4) model that expanded the channel. The
channel size for each depth 20 layer (L20) is [16, 32, 64,128],
and the number of allocated blocks for each channel size is
[2, 2, 3, 2]. For the wide model (L20-wide) by increasing
the number of channels, as proposed in [23], the number of
channels per block and the number of allocated blocks are
[64, 128, 256] and [3, 3, 3], respectively.

For the Cifar100 dataset, the proposed L-SSPQ model
calculates the weights and activation functions with 8-bit
precision for the depth 34 (L34-W8A8) and depth28-wide
(L28-wide-W8A8) model that expanded the channel. The
channel size for each depth34 layer (L34) is [16, 32, 64, 128],
and the number of allocated blocks for each channel size is
[3, 4, 6, 3]. For the wide model (L28-wide) by increasing
the number of channels, as proposed in [23], the number of
channels per block and the number of allocated blocks are
[64, 128, 256] and [4, 6, 3], respectively.

For the ImageNet dataset, the channel size for each
depth50 layer (L50) is [64, 128, 256, 512], and the number
of allocated blocks for each channel size is [3, 4, 6, 3]. The
inverted residual bottleneck blocks are used, as explained in
Section III-C.

B. PERFORMANCE COMPARISON OF L-SSPQ WITH
OTHER MODELS IN IMAGENET DATASET
As shown in Figure 2, the SSPQ model is additionally com-
pressed by transforming the linear layer. Therefore, as shown
in Figure 1, the fully connected layer (linear layer), which
has 82% of the learning parameters of the SSPQ50 with
a size of 8 MB, decreases to 56% of the total parameters
from L-SSPQ50 to 2 MB. In addition, L-SSPQ applies the
optimization technique of the algorithm 1 learning method.
As shown in Table 2, the L-SSPQ model, which incorporates
lightweight technology and learning optimization technol-
ogy, demonstrates an accuracy of 73.92% in the ImageNet
dataset.

Information density is a method for measuring how well
information is condensed and utilized by observing the
accuracy rate versus the size of the learning parameter,

TABLE 2. Performance comparison among the SSPQ50 v.2 and other
comparative models in the ImageNet dataset.

TABLE 3. Performance comparison between SSPQ and L-SSPQ according
to dataset.

as expressed by Equation (2) [24].

ID(m) = log
Accuracy(m)

Size of Parameters(m)
(2)

The information density metric reveals that the point
in the upper right corner of Figure 4(b) is the most effi-
cient condensation of information per bit. As shown in
Figure 4(b), the SSPQ50 v.2 (L-SSPQ50) model shows the
best performance in terms of information density compared
to MobileNet V.2 [6], MobileNet V.3 [7], ReActNet-A [8],
and FracBNN [9].

C. COMPARISON OF L-SSPQ MODEL PERFORMANCE
CHANGES ACCORDING TO OPTIMIZATION
Table 3 shows the model size and learning accuracy of the
SSPQ and L-SSPQ models. The L-SSPQ flr is the result of
learning by applying a fixed learning rate to the learning
rate change in the same manner as is SSPQ. That is, for
the Cifar10(C10) and Cifar100(C100) datasets, training was
performed with the momentum optimizer with a value of
[0.1, 0.01, 0.001] for the epoch [0, 100, 150] with a fixed
learning rate. For the ImageNet(I1000) dataset, the epoch [0,
30, 60, 90, 100] for each of the results of Nesterov learning
was compared by setting the learning rate to a value of×0.1,
starting at 0.1. Thus, ηmin is set as 1e-3 and 1e-6 for the
Cifar and ImageNet datasets, respectively. Therefore, for the
step2 epoch Ts2, 1 and 20 epochs were used in the experiment
for the ImageNet and Cifar datasets, respectively.

As explained in Table 3, the L-SSPQ model reduces
the number of training parameters compared to the SSPQ
model, and thus the accuracy performance decreases.
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FIGURE 4. Performance comparison between the proposed model L-SSPQ50 and lightweight models, and it can be confirmed through the figure on the
right that the L-SSPQ50 shows the best performance in terms of information density.

TABLE 4. Performance comparison of L-SSPQ between flr and clr
according to dataset.

Accordingly, Table 4 shows the results of the experiment
of the SSPQ, L-SSPQ flr, and L-SSPQ clr by finding the
optimized warm-up Tw length and step size S of the cosine
learning rate.

In particular, Table 4 presents the experimental results of
combining the Nesterov algorithm and the cosine learning
rate and applying the two-stage algorithm of Algorithm 1
and applying sequential quantization. As shown in Table 4,
the experimental results using L-SSPQ clr improved accuracy
from at least 0.28% to at most 1.19% compared to L-SSPQ
flr. Compared to the SSPQ model, the L-SSPQ clr model has
improved accuracy except for the 20 layer wide model of the
cifar10 dataset. In particular, in the case of the 28 layer wide
model for the cifar100 dataset, the accuracy performance was
improved by 1.52%.

V. DISCUSSION
In this paper, we can achieve the best performance in the
metric of information density by reducing the size of learning
parameters combining compact neural network technology
and quantization method and by improving the accuracy
using optimized training techniques for quantization neural
networks.

A. DIFFERENCE BETWEEN SSPQ AND L-SSPQ FOR
COMPACT NEURAL NETWORK DESIGN
In SSPQ, to reduce the number of learning parameters,
the spatial convolution of the inverted residual block was
replaced by shift convolution and the quantization operation
was applied to the point-wise convolution. In addition, SSPQ
minimizes the loss of accuracy while reducing the size of the
quantizationmodel. The quantization bit size of the activation
function and the quantization bit size of the weight were
set to 4bit and 1bit, respectively for both of accuracy and
model size. When the number of quantization bits decreases,
the point-wise convolution is relatively robust to the prob-
lem of unstable convergence during learning compared to
spatial convolution, and quantization is applied to point-wise
convolution except shift convolution. [18]. For quantization,
we adopt Dorefa-Net, which supports a multi-bit quantization
function which mapped a differentiable hyperbolic-tangent
function [21].

The layers of the SSPQ model were compared in terms of
the learning parameter compositions, revealing that the last
linear layer hadmore room for further learning parameter size
reduction, as shown in Figure 1.

In L-SSPQ, to additionally reduce learning parameter,
the last layer is transformed by omitting the last bottle-
neck block and applying quantization to the last linear layer
and 6MB can be decreased as described in Figure 1 and
Figure 2. In order to improve the accuracy even when the
learning parameter is reduced, L-SSPQ applied a two-step
learning strategy optimized for quantization, and presented
a method to find the optimized performance according to
the hyper-parameter Tw and S of the cosine learning rate as
Equation (1).
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B. FINDINGS IN OPTIMIZED TWO-STAGE LEARNING
METHOD FOR QUANTIZED NEURAL NETWORK
Zhuang’s research [19] is a technique for optimizing the
quantization model, and by combining the three methods TS,
PQ, and Guided, we confirmed the improved performance
than the full-precision model. However, the TS, PQ, and
Guided methods have a limitation that increases the learning
time by more than 4 times. This study applied the Two
Stage (TS) strategy, but found a way to further save learn-
ing time. It reduces the learning epoch when the first stage
of learning is completed and the second stage of learning
commences. When the size of the learning rate reaches 1e-6,
there is almost no learning update, so an additional 1 epoch
can be used to obtain optimized performance. Since the size
of 1e-3 has a training update, it was found that approximately
20 epochs can be additionally trained to obtain optimized
performance.

C. APPLICATION AND LIMITATION OF THIS STUDY
Recently, various IoT devices, including drones and robots,
are attempting to apply deep learning models that process
video, voice, and natural language for accuratemovement and
judgment under the limited computing power and memory of
the embedded environment. In such a limited environment,
the weight reduction of the enormous deep learning model
is not an option, but a necessity. In this study, the size of
the model is estimated by assuming the quantization bit.
Therefore, the limitations of this study are limited in dis-
cussing the exact weight reduction size and inference speed.
When a lightweight model is uploaded directly in the FPGA
environment, the difference of the weight reduction size and
the inference speed can be discussed.

VI. CONCLUSION
The L-SSPQ model combines compact neural network tech-
nology, quantization technology used in the SSPQ model,
lightweight technology, and optimization technology. The
experiment shows that the L-SSPQ50 model achieves an
accuracy of 73.92%, which is improved by 0.26%when using
36.28% of the total training parameter size compared to the
SSPQ50 model. Using a learning parameter size of 3.56%
compared to the ResNet50 model, we confirmed an accuracy
loss of 2.42%. The expected future work related to this study
is the speed optimization of cuda-based novel shift convolu-
tion including stride operation. In the future, CPU and GPU
operators that support four-bit quantization models will be
standardized, and binary quantization models are expected
to be supported in the next five years. It is expected that
the role of lightweight deep-learning models will increase
significantly through the availability of hardware supporting
quantization models.
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