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ABSTRACT Based on L-shaped array (LSA), a variety of algorithms for direction of arrival (DOA)
estimation have been developed in recent years. However, conventional methods are sensitive to the mutual
coupling which may cause the performance of the DOA estimation to degrade dramatically or even fail.
In order to solve this problem, a new algorithm for DOA estimation is proposed in this paper. Different from
the existing algorithms, the DOA estimation of LSAwithmutual coupling is achieved from the perspective of
sparse Bayesian learning. A hierarchical form of the Student t prior is used to enhance the sparsity of source
signal and achieve excellent performance for angle estimation. In the meanwhile, the mutual coupling effect
is compensated blindly by sacrificing some sensors as auxiliary components and the hyperparameters and
parameters updates are obtained by the expectation-maximization method. Simulation results verify that the
performance of our method is superior than that of the state-of-art methods, particularly in the scenario of
highly correlated and coherent signals.

INDEX TERMS DOA estimation, L-shaped array (LSA), mutual coupling, sparse Bayesian learning (SBL),
Student t prior.

I. INTRODUCTION
With the increasing complexity of modern signal processing
data, the direction of arrival (DOA) estimation for multiple
narrowband and wideband source has attracted widespread
attention in various military and national economic fields,
such as biomedical imaging, sonar, communication systems,
and radio astronomy [1], [2]. At present, many algorithms
for DOA estimation are proposed for uniform linear array
(ULA), but they can only offer one-dimensional angle infor-
mation [3], [9]–[11]. There are many researches on DOA esti-
mation of 2-D arrays [4]–[7] in recent years, such as circular
array, rectangular array, and cross-shaped array. Compared
with these 2-D arrays, the structure of L-shaped array (LSA)
is simpler and easy to implement [4], and it has attracted a
mushrooming number of attention [5]–[8].

However, with the miniaturization of mobile devices,
the distance between antennas becomes smaller, which may
cause the mutual coupling effect [9], [10]. It is proved that
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the mutual coupling can change the steering vector and
deteriorate the performance of DOA estimation [11], [12].
Therefore, the calibration of mutual coupling is crucial to
ensure the accuracy of DOA estimation. There are two main
approaches to estimate DOA in the presence of mutual cou-
pling, namely, the subspace approach and the sparse signal
recovery (SSR) approach. In the subspace approach, there
are three typical methods [11], [13]–[19]. The first method
is achieved by a cost function and an iterative procedure [11].
In this method, the cost function iterates alternately between
the DOA and the array error, then the estimator of DOA
and mutual coupling coefficients are obtained by minimizing
the cost function. However, the method is time consuming
owning to the high computational complexity and obtain non-
unique solutions. The second method is called rank reduction
(RARE) [13]–[15], it requires a lot of received data and mul-
tidimension search which brings a large amount of calcula-
tions. The third method is called auxiliary method [16]–[19],
which uses some elements at both ends of ULA as auxil-
iary elements [16]. Although the auxiliary array element can
weaken the influence of mutual coupling effect, it sacrifices
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the array aperture and is only applicable in the scenario of few
DOA or many array elements.

Recently, the rise of SSR has brought tremendous changes
to the field of DOA estimation [20]–[25]. Compared with
the subspace approach, it possesses many advantages. For
example, it can improve the robustness to noise and has a
wonderful performance in the case of few snapshots and
correlated source [21]. The SSR method divides the entire
spatial domain into dense grid, then the array data model is
represented in a sparse form and the source signals is obtained
by transforming the optimization problem. Sparse Bayesian
learning (SBL) [26]–[35] is a typical method of SSR, which
uses the sparse prior information of the source signals to
establish a hierarchical probability model and optimizes the
posterior probability function to obtain the reconstructed
signal. It is proved that SBL can obtain fantastic perfor-
mance compared with other SSR methods [27], [28], [34].
This method was first proposed in [30], which was
addressed to solve the mutual coupling, gain-phase uncer-
tainty, and sensor location error. However, the SBL algo-
rithms have not been applied in the LSA with mutual
coupling. Thus, it’s worthwhile to demonstrate the perfor-
mances of the SBL algorithm for LSA with unknown mutual
coupling.

In this paper, we estimate the DOA of LSA in the presence
of mutual coupling by a new SBL method. Two selection
matrices are defined for eliminating the mutual coupling
effect between the two subarrays. In the proposed algo-
rithm, a hierarchical form of the Student t priors is uti-
lized to strengthen the sparsity constraint [26], [35] and
the expectation-maximization(EM) algorithm is selected to
obtain the updates of the parameters. In the scenario of low
SNR ratio and few snapshots, the proposed method yields
superior performance than the state-of-art methods. The root
mean square error (RMSE) of the subspace method is dozens
of times higher than our method when the signal is coherent,
which shows that our method can obtain exceptional DOA
estimation accuracy.

The rest of this paper is organized as follows. We first
propose the narrow signal model for LSA in Section II.
In Section III, we describe the data model from SBL view-
point and divide LSA into two parts by using blind mutual
coupling effect compensation. Then, there is an SVD step to
reduce the size of the measured matrix. Finally, we solve for
the updates of parameter and hyperparameters. To verify the
superiority of our method, some simulations is conducted in
Section IV and concluded in Section V.

In this paper, we introduce the following notations. The
uppercase bold letters (Z) and lowercase bold letters (z)
represent matrix and vector, respectively. (·)T , (·)−1 and
(·)H denote the transpose, inverse and Hermitian transpose,
respectively. (·)i·, (·)·j and (·)ij are the i-th row, jth column,
and the element at the i-th row and j-th column of the matrix,
respectively. tr(·) denotes the trace operator. E [·] indicates
the expectation and diag(·) is to form a diagonal matrix with
entries of a vector.

FIGURE 1. DOA estimation of L-shaped array.

II. DATA MODEL FOR DOA ESTIMATION
An LSA consisting of two uniform linear orthogonal
arrays is established and illustrated in Fig.1. Suppose
that there are K narrowband sources {sk (t)}Kk=1 (t =
1, . . . ,T ,where T is the snapshots) arrive at the array with
2M + 1-elements from different directions
{(θk , ϕk)}

K
k=1 (−90

◦

< θk < 90
◦

,−90
◦

< ϕk < 90
◦

). ϕk
is the elevation angle while θk is the azimuth angle of the kth
source.

Then the (2M + 1)× T array output matrix Y is given by:

Y = CAS+ N (1)

where Y = (y (1) , y (2) , . . . , y(T )) , y (t) = [y1 (t) , y2 (t) ,
. . . , y2M+1 (t)]T , S = (s (1) , s (2) , . . . , s(T )), s (t) =
[s1 (t) , s2 (t) , . . . , sK (t)]T . N = (n (1) ,n (2) , . . . ,n(T ))
denotes the noise matrix, n (t) =

[
n1 (t) , n2 (t) , . . . ,

n2M+1 (t)
]T . A = [a (θ1, ϕ1) , a (θ2, ϕ2) , . . . , a (θK , ϕK )]

is the steering matrix, a (θk , ϕk) =
[
e−j$ cos θk , . . . ,

e−j$M cos θk , 1, e−j$ cosϕk , . . . , e−j$M cosϕk
]
,$ = 2πd/λ, d

denotes the interval and λ is the signal wavelength. The
(2M + 1) × (2M + 1) mutual coupling matrix(MCM) for
LSA is denoted as C and can be given by [16]:

C =

 D g B
gT 1 gT

B g D

 (2)

where D = Toeplitz{[1, c1, . . . , cp,01×(M−p−1)]}, g can be
written as g =

[
c1, . . . , cp,01×(M−p)

]T , B is given by{
Bi,j = Bj,i, li,j ≤ pd;Bi,j = 0, otherwise

}
, li,j =

√
i2 + j2

and p is the number of mutual coupling coefficients.
To estimate the elevation and azimuth angles separately,

two selection matrices are defined

T1 =
[
0(M+1−2p), IM+1−2p,0(M+1−2p)×(M+1+p)

]
(3)

T2 =
[
0(M+1−2p)×(M+p), IM+1−2p,0(M+1−2p)×p

]
(4)
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Applying T1, T2 to (1), respectively, it can be rewritten
as [17]

X = T1Y = Ax1xS+ Nx (5)

Z = T2Y = Az1zS+ Nz (6)

where1x=diag
{
δx1, δ

x
2,. . . ,δ

x
K

}
,1z=diag

{
δz1, δ

z
2, . . . , δ

z
K

}
,

δxk = e−jp2πd/λ cos θk +
∑p

l=1[
cp−l+1e−j2πd/λ(l−1) cos θk + cle−j2πd/λ(p+l) cos θk

]
, and δzk =

e−jp2πd/λ sinϕk +
∑p

l=1

[
cp−l+1e−j2πd/λ(l−1) sinϕk

+cle−j2πd/λ(p+l) sinϕk
]
. Through the above steps, the mutual

coupling effect between the subarrays can be eliminated.
Then, the SVD method is utilized to reduce the size of the

receiving data:

X = US3SVH
S + Un3nVH

n (7)

where US = U(:, 1 : K ), Un = V (:,K + 1 : M ), VS = V (:
, 1 : K ) and Vn = U(:,K + 1 : M ), Let XSV = XVS , which
possesses most of the signal power, then we have:

XSV = Ax1xSSV + Nx
SV (8)

In order to apply sparse Bayesian learning algorithm to
DOA estimation, θ̃n (n = 1, . . . ,N ) which uniformly covers
the DOA range is introduced and (8) can be rewritten as:

XSV = Ãx1̃x S̃SV + Nx
SV (9)

where Ãx = [ax (θ1) , ax (θ2) , . . . , ax (θN )] , 1̃x =

diag (δ) = diag
{
δz1, δ

z
2, . . . , δ

z
N

}
, and S̃SV is an N × K

complex matrix. The problem to be solved by SBL is to
estimate S̃SV based on the known XSV and Ãx .

III. SPARSE BAYESIAN ALGORITHM USING
EXPECTATION-MAXIMIZATION APPROACH
In this section, the updates of parameters and hyperparame-
ters are obtained from the perspective of SBL on the basis of
the above methods. First, the prior distribution of the source
signal and noise are presented, then the posterior probabil-
ity density function p

(
S̃SV |XSV , β, γ ; 1̃x

)
is derived, and

finally the estimation of parameters and hyperparameters
have been obtained via the EM algorithm.

A. PRIOR DISTRIBUTION ASSUMPTION
S̃SV is only non-zero in the true DOA and zero for other
redundant rows, so it is of row sparse. Supposed that each
row of S̃SV has a complex Gaussian distribution with zero
mean, and the inverse variance vector is denoted by γ =
[γ1, γ2 . . . , γN ]T . Let 0 = diag (γ ), we have

p
(
S̃SV |γ

)
=

∏K

k=1
CN

(
s̃SVk |0N×1,0

−1
)

(10)

where s̃SVk is the k-th column of S̃SV and 0m×n is an m × n
zero matrix. Due to the Gamma hyperprior is conjugate to the
Gaussian distribution, we assign Gamma distribution for the
hyperparameters γ :

p (γ ) =
∏N

n=1
0 (γn; 1, o) (11)

where o is a small positive constant. When o approaches 0,
the probability density p (γ ) reaches its peak at the origin.
Therefore, the two hierarchical priors are sparse priors that
satisfy most rows of S̃SV is 0. In the presence of Gaussian
noise, we found that most γ i tend to infinity and the rows of
S̃SV corresponding to these infinity γ i tend to zero. thus the
DOA can be estimated by searching the index where the small
γ i is located. Assumed that each elements inN has a complex
white Gaussian distribution with a common variance σ 2, i.e.,
p
(
N i,j

)
= CN

(
N i,j|0, β−1

)
, where β = σ−2 denotes the

noise precision. In general, the variance σ 2 and the precision
β are unknown. Hence, β is modeled as a Gamma hyperprior:

p (β) = 0 (β; a, b) (12)

where a and b are set close to zero. Thus we have

p
(
XSV |S̃SV , β; 1̃x

)
=

∏K

k=1
CN

(
xSVk |Ãx1̃x s̃SVk , β−1IM−2p+1

)
(13)

where xSVk denotes n-th column of XSV , Im×n denotes m× n
identify matrix.

B. PARAMETER AND HYPARAMETER ESTIMATION
Since the posterior probability density function
p
(
S̃SV |XSV , β, γ ; 1̃x

)
cannot be expressed explicitly,

the EM algorithm is used for Bayesian inference.

1) E-STEP
Utilizing the Bayes rule and treating S̃SV as a hidden variable,
the posterior distribution of is also a complex Gaussian:

p
(
S̃SV |XSV , β, γ ; 1̃x

)
= p

(
XSV |S̃SV , β; 1̃x

)
· p
(
S̃SV |γ

)
/p
(
XSV |β, γ ; 1̃x

)
=

∏K

k=1
CN

(
s̃SVk |µk ,6

)
(14)

where µk is k-th column of µand

µ = β61̃
H
x Ã

H
x xSV (15)

6 =
(
β1̃

H
x Ã

H
x Ãx1̃x + 0

)−1
(16)

The estimates of β, γ and 1̃x are updated by maximizing
〈ln p(XSV , S̃SV , β, γ ; 1̃x)〉E (i) , which can be expressed as:{
β(i+1), γ (i+1), 1̃

(i+1)
x

}
= arg max

β,γ ,1x
〈ln p(XSV , S̃SV , β, γ ; 1̃x)〉E (i) (17)

or, equivalently:{
β(i+1), γ (i+1), 1̃

(i+1)
x

}
= arg max

β,γ ,1x
〈ln p(XSV , S̃SV , β, γ ; 1̃x)p(S̃SV |γ )p(β)p(γ )〉E (i)

(18)

the superscript (·)i represents the i-th iteration.
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2) M-STEP
In this subsection, each unknown variable β, γ , and 1̃x are
optimize by calculating (18).

i. For β, ignoring the independent terms, (18) can be sim-
plified to:

〈ln p(XSV , S̃SV , β, γ ; 1̃x)p(β)〉E(i)

= 〈ln p(XSV , S̃SV , β, γ ; 1̃x)〉E(i) + p (β) (19)

Differentiating the above formula and setting its derivative
with respect to β to zero, it can be obtained: ii. For γ , ignoring
the terms irrelevant of γ , (18) becomes:

〈ln p(S̃ | γ )p(γ )〉E (i) =

〈
ln p

(
S̃SV | γ

)〉
E (i)
+ 〈ln p(γ )〉E (i)

(21)

Differentiating (21) with respect to γ , setting these deriva-
tives to zero. the updates of γi can be given by

γ (i+1)n =
K

o+
∑K

k=1

[
4

(i)
k

]
nn

, n = 1, 2, . . . ,N (22)

where 4(i)
k = µ

(i)
k

(
µ
(i)
k

)H
+6(i)

◦

iii. For 1̃x , ignoring the independent terms, (18) can be
written as:

〈ln p(XSV , S̃SV , β, γ ; 1̃x)〉E(i)

= −β
∑K

k=1

∥∥∥xSVk − Ãx1̃(i)x µ(i)k ∥∥∥22
−βK tr

[
Ãx1̃

(i)
x 6

(i)
(
Ãx1̃

(i)
x

)H]
+ const. (23)

For the purpose of taking the derivative of the above equa-
tion with respect to 1̃x , the following lemma is utilized.
Lemma 1 (see [11]): For N × N complex matrix E which

is diagonal and N × 1 complex vector X , we can obtain
E · X = Q1(X) · e, where ei = Eii, i = 1, 2, . . . ,N ;{
[Q(X)]ij = X i, i = j; [Q(X)]ij = 0, otherwise

}
,

i = 1, 2, . . . ,N , j = 1, 2, . . . ,N .
Due to the application of Lemma 1, there are:∥∥∥xSVk − Ãx1̃(i)x µ(i)k ∥∥∥22
=

∥∥∥xSVk − ÃxQ (µ(i)k ) δx∥∥∥22 (24)

tr
(
Ãx1̃

(i)
x 6

(i)
(
Ãx1̃

(i)
x

)H)
=

∥∥∥Ãx1̃(i)x G(i)∥∥∥22
=

N∑
n=1

∥∥∥Ãx1̃(i)x g(i)n ∥∥∥2
2
=

N∑
n=1

∥∥∥ÃxQ (g(i)n )
δx

∥∥∥2
2

(25)

where G(i) (G(i))H is a Cholesky decomposition of 6(i) and

g(i)n is the n-th column of G(i). Substituting (24) and (25)
into (23), calculating the derivative of δx and setting these
derivatives to zero, the updates of δx can be given by:

δx =

{
K∑
k=1

[
ÃxQ

(
µ
(i)
k

)]H
ÃxQ

(
µ
(i)
k

)

+K
N∑
n=1

[
ÃxQ

(
g(i)n

)]H
ÃxQ

(
g(i)n

)}−1

·

{ K∑
k=1

[
ÃxQ

(
µ
(i)
k

)]H
xSVk

}
(26)

The EM algorithm is carried out by repeating (20), (22),
and (26) until the error reaches a certain value. Once the
algorithm is valid, theDOAcan be estimated from the updates
γ . It is observed that most γ tend to infinity, and the indexes
of small γ correspond to the real DOAs. The estimation of the
elevation angles of z-axis is the same as the one of the azimuth
angles of x-axis and the angle pair-matching can be done by
using the method of [33], it does not be derived additionally
in this paper.

C. COMPUTATIONAL COMPLEXITY COMPARISON
After the previous derivations, the computational com-
plexity of the proposed algorithm is analyzed. In this
paper, the data is complexed. As the complexity of com-
plex multiplication is greater than that of complex addi-
tion, we only discuss the complexity of multiplication.
According to Section III.B, it is known that the complex-
ity of our method is mainly determined by (15), (16),
(20), (22), (26), and the SVD process. The complex-
ity of the calculation of the multiplication of Ãx1̃x is
O
{
N 2 (M − 2p+ 1)

}
. Then, the computational complexity

which includes the calculation of µ and 6 in (15) and (16)
is:O

{
N 3
+
(
2N 2
+ NK

)
(M − 2p+ 1)

}
; the construction of

β, γ , and δx in (20), (22), and (26) is: O
{
N 3
+ 2N 2

+ 3N 2

(M − 2p+ 1)+ N (M − 2p+ 1) (M − 2p+ 2)}; and the
complexity of the SVD in (7) is:
O
{
(M − 2p+ 1)3

}
.

For the conventional SBL method without SVD, the com-
putational complexity of µ and 6 is O{N 3

+ (2N 2
+

NT )(M − 2p + 1)} which is larger than the proposed
algorithm. The computational complexity of calculating
other updates is the same as those of the algorithm in
this paper. In (26), the parameter K is replaced by T .
As T � K , the conventional SBL method is more time-
consuming than our algorithm. Under normal circumstances,
N � M � K for 2-D DOA estimation. Therefore,
the total computational complexity in this paper can be
approximated asO

{
2N 3
+ 6N 2 (M − 2p+ 1)

}
per iteration.

In addition, the computational complexity of the augmented
PM in [18] is aboutO

{
4(M − 2p+ 1)2T + 28(M − 2p)2K

}
.

The computational complexity of the method in [19] is
aboutO

{
2(M − 2p+ 1)2T + 2(M − 2p)2K

}
, and that of the

RAREmethod in [14] is calculated asO
{
(2M + 1)2T + 2N θ

Nϕ(p+ ζ + 1)(2M + 1)2
}

(where N θ and Nϕ represent
the search times of azimuth and elevation, we often set
them equal to N ). As N � M and the SBL method
requires about 50 iterations, the computational complexity
of the proposed method is larger than that of the other
methods.
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IV. SIMULATIONS AND DISCUSSION
In this section, several simulations are carried out in order
to illustrate the superiority of our method in comparison with
the RAREmethod in [14], the augmented PM in [18], and the
method in [19]. Unless stated otherwise, o = 0.01, a = b =
0.001. The iteration is stop when

∥∥γ̂i+1 − γ̂i∥∥2 / ∥∥γ̂i+1∥∥2 < ε

or the proposed method reaches the maximum number of
iterations, where ε represents the convergence threshold. ε
is set to 0.001 and the maximum number of iterations is
set to 1000. The grid interval is chosen as r = 1◦. The
interval of adjacent element of the LSA is d = λ/2. The
power of each source is equal to σ 2

s and the signal to noise
ratio (SNR) is equal to 10log10

(
σ 2
s /σ

2
n
)
. The search range of

angle is
[
0◦, 180◦

]
. To verify the overall performance of DOA

estimation, the RMSE of 2-D angle estimation is given as

RMSE =

√√√√ 1
KP

W∑
w=1

K∑
k=1

((
θ̂
(w)
k − θk

)2
+

(
ϕ̂
(w)
k − ϕk

)2)

where W denotes Monte Carlos trials. In all simulations, M
is fixed atM = 8. The mutual coupling coefficients are c1, c2
and c3 with distances d , 2d ,

√
2 d . The settings of the mutual

coupling coefficients is limited by the following rules:
i. As the distance of the array element increases, the mutual

coupling coefficient gradually decreases and it can be approx-
imated to zero when the distance exceeds a certain threshold.

ii. If the distance between the adjacent elements is equal,
the mutual coupling coefficient between the neighboring ele-
ments with same distance is almost the same.
Experiment 1: DOA estimation of different methods
First, the estimated DOAs of the proposed method is com-

pared with the RARE method in [14], the augmented PM
method in [18], and the method in [19]. The sources are
placed at (20◦, 25◦) and (50◦, 45◦) with SNR = 10dB and
T = 100. The mutual coupling coefficients are c1 = 0.2 −
0.2i, c2 = 0.1+ 0.09i and c3 = 0.1− 0.2i.

As shown in Fig.2 (a), Fig.2 (c) and Table 1, it is shown that
the PM method has the largest error in DOA estimation. The
RARE method, the augmented PM method and the method
in [19] can estimate elevation and azimuth angle jointly. The
RARE method gives a three-dimensional spatial spectrum,
which requires a 2-D spectral peak search while the aug-
mented PM method and the method in [19] does not need.
Although the RARE method and our method can estimate
DOA perfectly, the RARE method will produce false peaks,
which proves that our method has a more exceptional esti-
mation performance than the other methods. Then, the DOA
estimation of the SBL algorithm is also studied for a single
beam in Fig.2 (b). The source is placed at (20◦, 25◦) and other

FIGURE 2. Spatial spectrum of different methods.

settings are the same as before. The result shows that our
method can estimate DOA accurately.

β(i+1) =
KM + (a− 1)

b+
∑K

k=1

∥∥∥xSVk − Ãx1̃(i)x µ(i)k ∥∥∥22 + K tr
[
Ãx1̃

(i)
x 6

(i)
(
Ãx1̃

(i)
x

)H] (20)
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TABLE 1. Estimated DOAs.

Experiment 2: estimated performance vs. the mutual cou-
pling

In this experiment, some researches about the effect of
mutual coupling on spatial spectrum are done in Fig.3. The
sources are placed at (20◦, 25◦) and (50◦, 45◦)with T = 300
and SNR = 10dB. The mutual coupling coefficients are
c1 = 0.1 − 0.1i, c2 = 0.04 + 0.03i, c3 = 0.06 − 0.04i
in Fig.3(a), which represents the mutual coupling effect is
weak. The mutual coupling effect is medium with c1 =
0.2 − 0.2i, c2 = 0.1 + 0.1i, c3 = 0.2 − 0.1i in Fig.3(b).
As shown in Fig.3(c), the effect is strong and c1 = 0.9−0.4i,
c2 = 0.5+ 0.5i, c3 = 0.7− 0.5i.

As shown in these figures, no matter the mutual coupling
effect is weak, medium or strong, our method can still esti-
mate DOA accurately. It indicates that the proposed algorithm
is robust to mutual coupling effects, since we can estimate δx
and DOA estimation is hardly affected by mutual coupling.
Experiment 3: estimated performance vs. the initial value
Here, the simulation explores the influence of the initial-

ization of the EM algorithm on the DOA estimation. The
settings are the same as Experiment 1 except for the initial
values of SBL algorithm. In Fig.4(a), a = 0.001,b = 0.001,
and o = 0.01. As shown in Fig.4(b), a = 0.1,b = 0.001,
and o = 0.01. a = 0.001, b = 0.1, o = 0.01 in Fig.4(c)
and a = 0.001, b = 0.001, o = 0.1 in Fig.4(d).
As shown in these figures, if b and o are close to zero, the

proposed method can estimate the DOA effectively when a,
b, or o changes. Otherwise, 6 is non-positive definite and
the algorithm is fail to work. In addition, if all elements of
γ are equal to 0, the Cholesky decomposition of 6 cannot be
obtained, which causes the interruption of the iteration.
Experiment 4: estimated performance vs. SNR
Then, the performance of the four method against SNR

under uncorrelated signals is investigated. The incident
angles are (20◦, 25◦) and (50◦, 45◦). The snapshots is
T = 100 and SNR is set from −5dB to 10dB, the mutual
coupling coefficients are c1 = 0.2 − 0.2i, c2 = 0.1 + 0.09i
and c3 = 0.1− 0.2i and the Monte Carlo trials is set to 100.
Fig.5 shows the RMSEs of the three method.

This figure demonstrates that the proposed method pos-
sesses the most excellent performance at low SNR and the
RMSE converges to zero fastest. The RMSE of out method is
close to zerowhen the SNR is−3dB. This is becausewemake
use of the Student t prior with a hierarchical form, which
can enhance the sparsity of source signals, and we utilize the
SVD method to speed up the SBL procedure and reduce the
sensitivity to noise.

FIGURE 3. Spatial spectrum with different mutual coupling.

Experiment 5: estimated performance vs. snapshots
Here, the 2D DOA estimation performance versus the

snapshots is examined. SNR is set to 0dB and the snapshots
ranges from 100 to 1000 with 100 Monte Carlos trials. Other
settings are the same as those in Experiment 4. The result
is shown in Fig.6. It is indicated that our method retains a
perfect estimation performance and is still outstanding than
RARE method, the augmented PM method and the method
in [19] though the loss in array aperture.
Experiment 6: estimated performance vs. correlation factor
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FIGURE 4. Spatial spectrum with different initialization.

In this experiment, a simulation about the relationship
between the correlation coefficient ρ and the RMSE of DOA
estimation is done. The correlation coefficient ranges from 0

FIGURE 5. RMSE of the DOA estimation against SNR.

FIGURE 6. RMSE of the DOA estimation against Snapshot.

FIGURE 7. RMSE of the DOA estimation against correlation coefficient.

(uncorrelated) to 1 (coherent) and the other settings are sim-
ilar to those in Experiment 4 except that SNR is set to 5dB.
The results are illustrated in Fig.7.

It is noticed that SBL algorithm is more robust than the
other three methods when the signals are strongly correlated
(ρ = 0.9). What’s more, when the signals are coherent
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(ρ = 1), the proposed method can still estimate DOAs
effectively while the other methods cannot work.

V. CONCLUSION
In this paper, the paper propose a new method to estimate
DOA for L-shaped with unknown mutual coupling. It is
achieved by using SBL algorithm. Two select matrices are
used to split the LSA into two ULAs and to eliminate
the mutual coupling between the subarrays. In comparison
with the state-of-art methods, the RMSE of our algorithm is
smaller, and it is more robust to noise and more suitable in the
scenario of few snapshots. Simulation results have verified
the efficiency of the proposed algorithmwith different mutual
coupling effect and demonstrated that it can handle highly
correlated and coherent signals.
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