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ABSTRACT Recent advances in wireless communication, sensing and processing technologies are fostering
novel research and innovation opportunities in areas such as Industry 4.0, Smart Cities and Intelligent
Transportation Systems. In particular, the railway domain is envisioned to have important breakthroughs
in terms of cost-efficiency, self-management, and reliability in the operation of the rolling stocks and
infrastructures. Some of these key objectives are been addressed by the concept of Railway Virtual Coupling,
which is a promising solution where the capacity of the tracks is highly improved by means of reducing the
distance between adjacent trains, and the physical connection between train’s compositions, through accurate
Vehicle-to-Vehicle communication systems. In this work a new approach towards supporting the information
dynamically exchanged by the trains is proposed, with the design and implementation of a Solid-State LIDAR
based sensing system to provide an accurate, robust and low-latency on-board distance detection system
between trains. The combination of a long-range distance sensor, an Internet of Things (IoT) edge hardware
platform and a fuzzy clustering approach for distance detection of the object of interest allows obtaining
very accurate results to support the virtual coupling maneuvers. The system implementation has been tested
in a real railway scenario, where several coupling and distance detection maneuvers have been performed to
verify the operation of the proposed system in an actual application context. This represents one of the first
dedicated distance detection tests of this kind under real dynamic conditions documented in the literature
towards railway virtual coupling.

INDEX TERMS Edge nodes, Internet of Things, LIDAR sensing, railway application, wireless sensor
networks.

I. INTRODUCTION
The continuous advances in wireless communication, sensing
and processing technologies are opening up new research and
innovation opportunities towards cost-efficiency, sustainabil-
ity, self-management and reliability in areas such as Smart
Cities, Industry 4.0, and Intelligent Transportation Systems.
Important European initiatives [1], [2] are bringing techno-
logical solutions for improving safety and security, capac-
ity, resource efficiency and infrastructure operation in the
Railway domain. In particular, the optimization of the rail
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tracks is one of the key challenges to be faced in today’s and
future research projects, since nowadays the use of the infras-
tructures and circulation of different nearby trains is limited
by the minimum safety distance handled by the control and
protection systems.

For instance, in standard lines these distances are managed
by Train Detection Systems (TDS), where each TDS has a
minimum length of 600 m. The Traffic Management Sys-
tems (TMS) shall control that a minimum of X TDS (which
depends on the European regulations [3]) must be kept to
assure a safety breaking distance. This ultimately imposes the
capacity and the limitation of the number of trains on track.
Moreover, the issue of multiple train compositions that can
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be reconfigured during the whole journey (since some parts
of the train have different destinations) is traditionally tackled
by carrying out long stops and splitting actions, which leads
to spend resources for performing such operations.

These challenges are being faced by what is known as
Railway Virtual Coupling, in which a more Train-Centric
approach [4], [5] allows performing very precise self-
monitoring and detections between adjacent trains, in order
to carry out automatic coupling/uncoupling manoeuvres.
This will eventually allow increasing the capacity and occu-
pancy of the track, since the distance between trains can be
reduced within safety and accurate margins, and with opera-
tional cost efficiency. Moreover, physical coupling manoeu-
vres between train’s compositions are minimized, reducing
the time, resources and cost associated to such operations.
Moving from dedicated infrastructure systems towards a
decentralized and distributed approach where a direct data
exchange between trains plays a important role, the Vehicle-
to-Vehicle (V2V) communications are the primary strate-
gies to carry out the virtual coupling implementation, where
low-latency highly-reliable radio links are fundamental to
manage time-critical events.

The Secure, COnnected Trustable Things (SCOTT) Ecsel
JU European project addresses this concept, by the design and
implementation of a complete Smart Train Composition Cou-
pling architecture, and with a particular focus on the integra-
tion of Internet of Things (IoT) technologies [6]. Unlike other
works in which the virtual coupling system only relies on the
radio links between trains [7], the SCOTT project, and in par-
ticular the railway domain use case, also adds another means
of direct distance measurement with the inclusion ofWireless
Sensor Networks (WSN) in each train, whose information can
be exchanged in a distributed and real-time manner between
them. This includes data related to the train composition,
mass, weight and length properties, location, among others.
Combining the sensing capabilities of the trains with the
V2V communication links, the coupled trains will be able
to perform moving manoeuvres in a safety manner. Based
on this rationale, in this article a distance sensing system for
railway virtual coupling and its integration within the Smart
Train Composition Coupling is addressed. The main target
is to integrate a reliable and precise distance measurement
system with an IoT edge platform to accurately provide the
distance detection between virtually coupled trains.

Much effort has been dedicated in the state of the art to
develop object detection for collision avoidance systems, par-
ticularly in terms of precisely distinguishing between several
types of possible collision objects in the field of view and
classify them, considering shapes, size of the type of object,
and location information, especially for unexpected objects
on the railway tracks, or in autonomous vehicles to avoid road
accidents and crashing damages. For instance, there areworks
that classify the possible types of collisions to implement spe-
cific feature extraction techniques and algorithms to trigger
warning alarms, such as in [8]. However, in this work themain
objective is rather detect the presence of adjacent trains and

precisely determine the distance from one train to another,
so both the accuracy and range of the distance measurement
are the fundamental elements to be considered for the virtual
coupling maneuvers and the operation of the V2V system. In
this way, while different works in the literature are centered
in how accurate the detection of the type of the object is
performed, most of them do not consider the dynamic condi-
tions, composition, speed and distance required for virtually
coupled moving trains, as in case of the different maneuvers
and actual V2V coupling operations studied in the present
work.

There are important challenges and requirements to deal
with when considering the distance sensing between trains,
in order to provide a feasible and accurate value to feed the
virtual coupling system. In particular, a long range detec-
tion, a high resolution in the measurement, and a short time
response are key to cope with safety requirements. These
constraints are to be combined with reliability, low noise in
the measurement, and robustness. As a result, in this work
a very promising technology is explored: the Solid-State
LIDAR (Light Detection andRanging, or also known as Laser
Imaging Detection and Ranging) sensing, which provides a
combination of accurate measurement results and high reso-
lution with robustness, since no mechanical moving parts are
integrated in the sensor as in case of traditional LIDARs. This
is a very critical aspect in the railway domain, since vibrations
and train movements are to be considered for minimizing
on-board system failures.

While rotational LIDARs can provide a 360◦ view to per-
form object detection tasks, the Solid-state LIDAR is limited
to a narrow field of view focusing on a target region, to detect
with very high precision the distance to an object of inter-
est from short to long ranges, and with considerably lower
costs than the former ones. The information provided by the
LIDAR sensor is fully exploited to perform the detection
of the object of interest by using a fuzzy-clustering based
approach, which is one of the primary objectives of the
work. The main contributions of this work are summarized
as follows:
• Implementation of a long-range highly accurate distance
sensing system for train virtual coupling, based on the
integration of IoT edge technologies and Solid-state
based LIDAR sensing in the railway domain.

• Design and embedded integration of fuzzy clustering
strategies to further process and tune the distance detec-
tion to the object of interest, which is the adjacent cou-
pled trains, based on the information provided by the
LIDAR sensor. The proposed adaptation of FCM (Fuzzy
C-Means) algorithms allows providing more adjusted
distance detection results of the objects within the field
of view of the sensor.

• Based on the aforementioned contributions, the experi-
mentation and proof of concept of the proposed system
has been carried out within a real railway scenario with
different train coupling and moving manoeuvres, to ver-
ify the functionalities provided by the distance sensing
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platform with actual trains, and in dynamic operational
conditions. This is a very valuable and one of the first
distance detection tests of this kind documented in the
literature towards railway virtual coupling.

The rest of the article is organized as follows: Section II
presents an overview of the main trends in the state of the
art related to LIDAR systems, object detection and clustering
algorithms, and how these technologies are employed in dif-
ferent application domains. Section III is devoted to detail the
proposed solid-state LIDAR based distance sensing system,
and the description of the specific hardware elements inte-
grated in its design and implementation. The implemented
embedded fuzzy clustering algorithms for distance detection
of the objects of interest within the field of view is also
presented in this section. A set of experimental tests consid-
ering a first characterization and then a verification of the
implemented system in a real railway domain use case is
reported in section IV. Finally, conclusions and future work
are highlighted in Section V.

II. RELATED WORK
A. OVERVIEW OF LIDAR SYSTEMS
One of the areas in which LIDAR sensors are being widely
used is the automotive sector, where they can offer informa-
tion about the obstacles of the surrounded scenario. This type
of sensors can be found in all types of vehicles, from road
vehicles [9]–[11] such as cars, trucks or buses, to autonomous
land vehicles [12].

All the previous cases share the same particular character-
istic: the LIDAR is mounted on a mobile platform. In situa-
tions in which it is intended to perform a detection of moving
objects, commonly known as DATMO (DetectionAnd Track-
ing of Moving Objects), it may imply several challenges.
To be able to distinguish and classify the objects, the fact
that the sensor is in motion increases the complexity, since
objects that are actually static, and might not be of interest,
may appear moving relatively to the sensor.

Vehicle-mounted LIDARs can also be used to map a sce-
nario that is a priori unknown. In addition to mapping, if the
objective of the vehicle is also to position itself for navigation
through the target environment, these types of problems are
often referred to as SLAM (Simultaneous Localization And
Mapping). A type of vehicles on which the sensor is often
mounted to perform the SLAM are called Unmanned Ground
Vehicles (UGV), as in [13], [14] where the environment
explored in these cases is the interiors of buildings.

LIDAR-based systems can also be found in aerial vehicles
to scan the terrain, vegetation, or any other objective, from
a top perspective. In [15] the height of forest vegetation is
obtained exclusively from a LIDAR, mounted on an aircraft,
to assess the state of the target area. In [16] a low cost system
is proposed, in which other types of sensors and cameras are
mounted on an Unmanned Aerial Vehicle (UAV) in addition
to a LIDAR, to obtain the maximum information available
in different situations such as the study of roads, trees and
forests, and snowy areas. LIDAR sensors are also employed

in other areas besides vehicles. Sometimes the scanning of
objects and scenarios is not done on a mobile platform,
but by a group of people, taking samples of the points of
interest. This is the case of [17], where an operator is able
to take the measurements obtained from a LIDAR to get
a three-dimensional map of a cave. Or as in [18], where
the system gets characteristics of two types of forests from
different static landmarks on land, by using the sensors.

B. OVERVIEW OF OBJECT DETECTION SYSTEMS AND
ALGORITHMS
One of the purposes of using LIDAR sensors is to distinguish
objects from a set of distance measurement points (known as
point cloud). Artificial vision systems capable of distinguish-
ing patterns and shapes from among all available pixels in an
image have been developed in recent decades. In addition to
the image of a camera (which provides a flat projection of the
field of view), the information provided by a LIDAR sensor
can be used to offer distance measurements in the joint field
of view of the camera and the sensor. Several techniques used
in the detection and tracking of objects from video images
are compiled in [19]. To track an object in an image, it must
first be identified, either by its shape, or by its movement
(or absence thereof). Once the object has been identified
and characterized, the monitoring is carried out through the
information of past moments, with which the trajectory of the
object can be obtained until the present instant.

The existing methods for the detection of elements can
be divided into two groups: A first group, based on models
(model-based) in which the detection of objects relies on pre-
defined characteristics already known from the body/object.
These characteristics are usually related to the shape or size of
the body that is being detected. The second group, by contrast,
lacks an object model (model-free) and seeks to distinguish
it from the rest of the environment using other characteris-
tics, mainly movement, and discarding objects that are static.
In this second group, the shape or size of the object is not
restricted, but any element that is not moving is ignored.

Within the first group (model-based), the work proposed
in [20] is able to detect people through a model obtained
by means of a self-learning algorithm (Adaptive Boosting),
which extracts the main characteristics of the readings that
the LIDAR carries out of the legs of people in different cir-
cumstances. Once a set of measurement points is associated
with a pair of legs, the position of that person is monitored
by a tracking algorithm. Another example is that of [21],
where cars are modeled as rectangles, and the set of typical
measurements that are obtained from a LIDAR in the defined
geometric form are sought. For the simultaneous detection
and tracking of the object, an MCMC (Markov Chain Monte
Carlo) algorithm is used.

In the second group, there are solutions such as in [10],
[11], [22], [23], where there is no restriction on the type
of objects that can be detected in the set of measurements.
In [11], from a set of segments (groups of measurements
close to each other) special characteristics are extracted based
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on their form, which are used to locate the segment and
detect its movement. Then, it will become an object that
will be subsequently monitored. In [22], a process similar to
the previous one is followed, where special characteristics
that are independent of the perspective obtained (corners)
are sought, and the set of points with such characteristics
is monitored. In this case, the environments are restricted to
freight ports. In [10] and [23], the segments are compared
over time, and they are classified as static, which would be
part of the environment, or in motion, so that they would
become an object of interest.

In both groups a pre-processing is performed prior to
the selection of objects of interest, namely segmentation.
This segmentation consists in grouping the points detected
by proximity in sets of points close to each other. In [11],
if a point is at a distance less than a predetermined thresh-
old from the set, then that measurement point is included
within it. In [22] a similar procedure is followed based on
the distance between points. However, instead of defining
a constant threshold, the threshold is determined based on
the distance of the measuring points to the sensor. This pre-
vents over-segmentation (many groups with few points) on
distances far away from the sensor.

One of the challenges that segmentation algorithms must
manage is the occlusion problem. When a small obstacle
appears in the line of sight between the LIDAR and the object
that is being detected, it can segment the set of measurements
assigned to that object, and thus divide it into two or more
groups, losing its real position.

There are also works in the state of the art regarding object
detection for autonomous driving and railway collision avoid-
ance systems, mainly using image processing and feature
extraction techniques from cameras, and also point-cloud
projection methods from LIDAR sensors [24]. Depending on
the type of data processing and object detection strategy they
use, higher computational resources are needed to cope with
the complexity and requirements of the training stage and
the runtime execution of the algorithms. In [8] authors use
feature extraction mechanisms from a camera installed in the
train to distinguish between different types of objects in the
field of view (in particular pedestrians in the track). In [25]
different direct and indirect collision scenarios are taken into
account to avoid accidents particularly with animals. Authors
use computer vision strategies with a camera and they study
the possibility of calculating the distance to the object of
interest by correlating the depth of the object in pixels once it
is detected, for short-range distances (20 meters maximum).

However, the use of cameras might reduce drastically the
accuracy in case of difficult weather and light conditions,
or for detecting long-range distance objects, which can com-
promise the safety requirements depending on the target
application context.

C. FUZZY CLUSTERING
Fuzzy Logic emerges as an alternative to binary logic [26],
in which the variables instead of being limited exclusively to

values of zero or one, can have an intermediate value between
binary limits. As seen in the previous subsection, for the
detection of objects the segmentation of spatial information is
widely used, either from video information or obtained with
LIDAR sensors.With segmentation, a series ofmeasurements
or pixels are grouped into segments based on distance, bright-
ness, or other variables. In this way, a series of measurements
or pixels is grouped in a binary and exclusive way, and there-
fore, each of them can only belong entirely to one segment.
It is in this technique where it is possible to apply fuzzy logic,
so that the division between segments is not drastic.

To achieve this, FCM algorithms (Fuzzy C-Means Clus-
tering) [27], [28] can be used. This type of algorithms allows
blurring the degree of belonging of each element to a cluster,
given some segments or clusters already defined. The belong-
ing degrees are distributed among the rest of the clusters,
depending on the distance of the element to the centroid of
each segment. Based on that, in the borders between segments
the degrees of belonging of the elements in those borders are
divided between the clusters present in those limits, espe-
cially in cases in which the segments or clusters are close.

This algorithm can be used to make fuzzy clusters of any
multi-variable data type. In particular, this type of technique
has been mostly used for image analysis, such as in [29],
[30], where images of the brain and the skull obtained from
magnetic resonance imaging are employed to perform image
segmentation, and thus facilitate health diagnosis. Moreover,
FCMhas been recently used in diverse areas such as spectrum
sensing, human genome analysis, and image segmentation in
geometric modelling [31]–[33].

III. PROPOSED SYSTEM
The core of the vehicle-to-vehicle distance detection system
for railway virtual coupling is mainly composed of an Internet
of Things Edge processing platform and a solid-state LIDAR
sensor. While the later is in charge of taking the distance mea-
surements within its field of view, the first one will process
the LIDAR segments to finally obtain the distance from the
sensor to the object of interest, in this case from one train
to the other. Fig. 1 depicts a schematic view of the proposed
system, where the main hardware and software elements are
highlighted.

A. LIDAR SENSOR
The LIDAR used for the proposed system is the Leddar
Vu8 from LedarTech [34], which is a solid-state based
small-size LIDAR technology, so no moving parts for
mechanical rotation of the beams are used. The model used in
this work has a configuration of a narrow field of view (FoV)
of 20◦ in a plane. The maximum detection distance of the
LIDAR is 185 m. Within the field of view, there are eight
measurement segments, from which distance and amplitude
data is obtained for each one of them. Table 1 summarizes the
main characteristics of this LIDAR.

Unlike 3D rotational LIDARs, the amount of data provided
by this sensor is certainly limited, although the later has a
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FIGURE 1. General architecture of the proposed system, with the integration of the Solid-State LIDAR sensor and the IoT edge
platform.

TABLE 1. Main characteristics of the Solid-State LIDAR sensor.

considerable lower cost (approximately an order of mag-
nitude). After the pre-processing performed on the sensor,
the available data correspond to the segments. Therefore,
there are only eight distance measurements, each correspond-
ing to a field of view of one eighth of the 20 degrees.
Comparing the data provided by this sensor with others
in the literature, which rarely have less than 100 measure-
ment points, this LIDAR has a low resolution. Nevertheless,
themain benefit comes from a precise long-distancemeasure-
ment in combination with the processing of the FoV segments
to detect the presence of the object of interest, which is the
aim of the proposed system.

Another difference with other sensors is that the mea-
surements do not correspond to a point, but to a fraction
of the FoV. Therefore, each segment covers its own FoV,
and the corresponding measurement takes into account all
surfaces within it. This means that if two surfaces share a
segment’s FoV, the distance measured by that segment will
be an intermediate value of the two distances from the sensor
to the surfaces. The contribution to the final distance from
each surface will be proportional to its degree of occupation
of the segment’s FoV.

B. IoT EDGE PLATFORM
The proposed system relies on the use of an IoT Edge node for
Wireless Sensor Networks, called Cookies [35], [36]. It is an
IoT hardware platform developed at the Center of Industrial
Electronics (CEI-UPM) where the concept of modularity,
flexibility and reliability is maximized. Its main feature is the
capability of modifying the hardware setup in a modular way,
integrating and reusing different layers that perform different
functions (namely processing, communication, sensing and
power supply layers). Fig. 1 also shows a general view of
the Cookie node, where the modular hardware layers can
be seen. Each layer can be adapted and redesigned to the
particular characteristics and requirements of the target appli-
cation, that is, from ultra-low power processing layers to
high performance computing capabilities on the Edge, or the
integration of a variety of different sensor and communication
technologies.

The version of the processing layer to be used in this
work provides a trade-off solution between Edge embedded
computing and power consumption. It is based on an ARM
Cortex-A5 processor, the ATSAMA5D36 from Microchip
(formerly Atmel) [37], and 256 MB of RAM with a clock
speed of 536 MHz, in addition to having USB, UART,
SPI, I2C connection interfaces for external connections with
other hardware components, such as in case of the Leddar
Vu8. It runs a embedded Linux Operating System (Debian
9 stretch), upon which the LIDAR control API and the devel-
oped algorithms are implemented and executed.

C. SENSING PROCESSING ALGORITHMS
The main objective of the developed algorithms is to obtain
the distance of the object of interest closer to the sensor, which
corresponds to the distance to the nearby on-track train. It also
seeks to take advantage of all the information provided by
the sensor to know and characterize as much as possible the
environment under detection.
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FIGURE 2. Field of View (FoV) of the solid-state LIDAR, with the
representation of the 8 segments, and two different objects within the
FoV.

First, a segmentation of the field of view will be performed
to group the eight measurements according to the distance
between them. From now on, instead of calling this process
segmentation, in this work it will be called ‘‘clustering’’,
to make a distinction between the segments provided by the
Leddar Vu8 and the processing performed on the Edge plat-
form. After clustering, the nearest cluster can be designated
as the object of interest, and its distance and relative speed to
the LIDAR can be obtained.

1) INITIAL CLUSTERING
As explained before, the Leddar Vu8 sensor has an eight
segment resolution for its 20 degree FoV. Fig. 2 shows a
representation of how the FoV is divided into eight segments.
Each segment covers approximately 2.5◦ of the FoV. The
distance will be taken for each segment that reaches the object
within the FoV (in this case the wall and the middle object).
The objective of the clustering algorithm is to group the
given segments, considering that each group corresponds to
a detected object, being able to distinguish between several
objects in the LIDAR’s FoV. In case of a single surface
in the FoV (for instance the wall without the object in the
middle) the algorithm should join all segments into a single
cluster.

Now consider that an additional object would be intro-
duced in the LIDAR detection field, as shown in Fig. 2.
In this case more than a single cluster shall be detected.
By having a new object in the field of view, the algorithm
must be able to group all the segments that detect it into
one cluster, and the rest of the segments will be divided into
other two clusters, the two corresponding to the object on
the background. In order to group the segments provided by
the sensor, the distance between each segment will be first
acquired. Determining this distance is simple to calculate,
making the difference between the distance vectors from the
segment to the sensor, and obtaining the module, as can be
seen in Fig. 3. It will be the result of subtracting both distance
vectors from the pair of segments. The module of the vector
obtained in this operation will be that distance.

FIGURE 3. Illustration of the distance calculation between segments.

If the distance between segments is lower than a certain
threshold, those segments become part of a group. In this
way, the distance between all adjacent segments is compared
to each other. If the segments are close to their adjacent
ones, they will belong to the same cluster. Otherwise, they
will become part of another cluster of segments. Up to eight
different clusters can be created, in case each segment is
sufficiently separated from the two adjacent ones at each
side.

The threshold for considering that two segments are close
enough to each other will be calculated based on the distance
at which the sensor segments are. The greater this distance is,
the greater the threshold will be. Since the segments keep a
constant angle of 2.5◦ to each other, as the distance they are
from the sensor grows, the minimum distance between them
will also grow. Taking into account this, the threshold will
be obtained from the theoretical minimum distance between
two segments depending on the distance to the sensor. This
theoretical minimum separation is computed by applying
trigonometry calculation.

Obviously, the threshold will have to be slightly larger
than the minimum separation in order to group segments.
For this reason, the minimum separation is multiplied by a
factor that is configurable. The larger this factor is, the lower
the threshold will be, and therefore, the clusters may include
more separate segments between them. Therefore, the proper
adjustment of this factor is essential, so that neither segments
that correspond to different objects are grouped, nor segments
belonging to the same object are divided into different groups.
Because the threshold depends on the distance of each seg-
ment to the LIDAR, it must be calculated for each of the eight
segments available.

Taking into account this procedure, the clustering algo-
rithm must first obtain the separations between each pair of
segments, then calculate and verify the threshold boundaries
for each pair of segments, and finally group each segment
into a cluster depending on whether the distance between that
segment and its adjacent ones are below the threshold. Fig. 4
shows a diagram that depicts the procedure performed by the
algorithm.

For the example of Fig. 2, the result obtained would be
three clusters, the two ends corresponding to the background
wall, and the central cluster that belongs to the object of
interest. Fig. 5 illustrates the result applying the described
algorithm.
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FIGURE 4. Schematic representation of the clustering algorithm.

FIGURE 5. Illustration of the clustering results for the example of two
different objects in the FoV.

A possible limitation is that if a small object is interposed
between a larger one and the LIDAR, the larger object will
have to be divided into two clusters, so it cannot be assumed
that a cluster belongs unambiguously to an object or surface,
as happens with the background wall of the figure. In this
case, it might be considered as a single object based on the
distance to the object, although it could happen that two
different objects are at the same distance from the sensor.
In case of the closest cluster to the sensor, it can be assumed
that it is a single object or, at least, a set of objects very close
to each other, which can be considered as the same entity.

As explained in the previous section, another phenomenon
that might also happen is that in the same segment two
surfaces coexist at two considerably different distances (as
represented in Fig. 6). Depending on the threshold value,
it may occur that a separate cluster is created just for that
intermediate segment. Because the intention of the clustering
algorithm is to generate a cluster for each present object,
having an independent cluster that does not belong to any of
the two existing objects is a problem that must be managed.
This type of results are solved with the solution proposed in
the following section, which tries to provide a closer outcome
to the real existing objects within the FoV of the LIDAR
sensor.

FIGURE 6. Illustration of the unrelated segment phenomenon.

2) FUZZY CLUSTERING
With the initial clustering method it is possible to divide the
sensing measurements into different groups, being able to
distinguish objects according to the distance. However, each
measurement can only belong to one of all possible clusters
that have been obtained. In other words, for each cluster,
the measurement may or may not belong to it, which is a
purely binary distinction.

By using fuzzy logic, such a differentiation may not be
so radical. Its utilization can be very useful especially in
cases where the belonging of a measurement to a cluster is
determined even if it exceeds a threshold by a very small
margin. In these borderline cases, membership to one cluster
or another may become arbitrary depending on the chosen
threshold.When the distance between twomeasurements that
actually corresponds to the same object is slightly greater
than the threshold considered to group them, there would
be two measurements that should be grouped together when
detecting the same body, but the clustering algorithm would
separate them into two different clusters as the distance
between them is greater than the threshold.

The objective of the ‘‘fuzzification’’ of the clusters is to
ensure that the membership of the measurements to each
cluster is not binary. That is, a distance measurement can
have a degree of belonging to several clusters at the same
time. In this way, the error due to a wrong assignment of a
measurement to a cluster to which it should not belong to
is considerably minimized. At the same time, this process
will be able to ensure that the measurements that do corre-
spond to that of an object in the measurement space have a
clear belonging degree to the cluster corresponding to that
object.

To achieve this optimization goal, in this work the FCM
(Fuzzy C-means clustering) algorithm is used. It employs
the results obtained in the previous clustering process as the
initial data, according to which each measurement will have
a degree of belonging equal to 1 for the cluster assigned to it,
and 0 for the rest of existing clusters. In this way, one or more
arrays of belonging, that is, a membership matrix initialized
by the clustering algorithm will be available. An example of
the membership matrix initialization can be seen in Fig. 7.
Each row represents the degree of belonging of the eight
measurements from the LIDAR to each cluster obtained by
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FIGURE 7. Membership matrix relating the LIDAR segments with the
clustering detection.

the algorithm. As it can be seen, the degree of belonging is
binary.

With the information generated by the initial clustering
process, the centroid position of each cluster will be calcu-
lated based on the position of each measurement, as well as
its degree of belonging to that cluster, as shown in equation 1,
where the degree of belonging is represented by u and the
position of the measurement by x.

Cj =

∑8
i=1 uij.xij∑8
i=1 uij

(1)

Then, the membership matrix will be updated, recalculating
for all the measurements their belonging to the initial clusters.
This is done through equation 2.

Uij =
1∑C

k=1(
‖xi−cj‖
‖xi−ck‖

)
2

m−1

(2)

As shown in this expression, the result of the newmembership
of the measurement i to the cluster jwill be made based on the
distances between the position of the measurement i and the
rest of the clusters’ centroids. The m factor, which should be
greater than one, will determine how diffuse the distribution
of belonging to each cluster is. The largerm, the more diffuse
the belonging will be, that is, they will be more distributed
among the clusters, moving away from extreme values such
as one or zero.

This process is iterative. Therefore, with the new matrix of
belonging, the position of the centroids will be recalculated,
and then a new matrix of belonging will be obtained again,
reiterating this process as many times as necessary. In Fig. 8
a general diagram of the ‘‘fuzzification’’ algorithm is sown.
With each iteration of the process, the variation between
the old matrix and the new one will be smaller each time.
Therefore, after a number of iterations the fuzzification algo-
rithm will quit the loop. It is certainly possible to calculate
this variation, and leave the loop when it is smaller than

FIGURE 8. General diagram of the runtime fuzzification iteration process.

a determined value. However, to simplify the calculations
and give consistency in the processing time of each series
of measurements, the number of iterations has been set to
be fixed. Consequently, the variation between matrices (the
module of the difference between the old and the new one)
should not be calculated, and the execution time of this part
of the processing will be more similar for different sets of
data. Moreover, this avoids that a bad choice of the limit value
between the differences causes the process to remain stuck in
an infinite loop.

After obtaining the membership matrix, the characteristics
of the clusters (size, position) will be calculated so that each
measurement has a contribution to the characterization of the
cluster proportional to its degree of belonging in the corre-
sponding cluster. Thanks to this algorithm it will be possible
that in borderline cases in which the measurement has been
included in a cluster by very reduced margins, it has the
chance of distributing its information among several adjacent
clusters depending on its distance from them. This result will
be more faithful to reality.

Taking the previous example of the initialization of the
membership matrix, the result of the final membership matrix
should have values similar to those shown in Fig. 9. As it can
be seen, the matrix of belonging does not vary significantly,
since the objects have a considerable separation, and there-
fore the initial matrix sufficiently conforms with the reality
of the FoV.

However, in case the object corresponding to cluster C2 is
closer to the wall detected before, it would be possible that
initially the measurements of the ends between C2 and the
other two clusters could become part of C1 and C3. After
the fuzzy clustering, the contribution of these measurements
would be distributed among the clusters, as shown in Fig. 10.

Although this algorithm allows solving the problem that
arises in this type of cases, the initial clustering algorithm
and thus the generation of the initial membership matrix is
critical, since it is the one that determines the total number
of clusters, and therefore the number of objects detected.
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FIGURE 9. Membership matrix relating the LIDAR segments with the
fuzzy clustering results.

FIGURE 10. Membership matrix relating the LIDAR segments with the
cluster detection and fuzzy clustering results, for the example of nearby
objects.

Consequently, if there are problems to differentiate objects
that are sufficiently separated, the parameters of the algorithm
shall be readjusted, since the fuzzy clustering algorithm will
not be of great help if the generation of clusters is inaccurate
from the start. In cases in which a partial occupation of a
segment by two surfaces occurs, the fuzzification algorithm
will distribute the ownership of the intermediate segment
between the other two clusters, then adjusting the clustering
to this particular situation.

It has been considered in this work that the object of interest
will be the cluster closest to the LIDAR sensor. This criterion
has beenmainly chosen because it is the one that offers higher
guarantees in terms of safety, since the closest object can
be considered as the most potentially dangerous. But also,
because the distance of the cluster is the most robust attribute
of all available. The object of interest can be also chosen in
relation with certain size. The problem with this criterion is
that, due to the limited field of view of the LIDAR, sometimes
the size cannot be accurately characterized, since there is a
possibility that the object only enters the field partially. Also,

TABLE 2. Distance measurement results obtained from the LIDAR
segments, for each indoor test.

the problem that arises when a small object is interposed
between a larger one, which can cause the larger segments
to be divided into several groups. Nevertheless, a correla-
tion of several criteria can be performed to better adapt the
algorithm to the detection of the object of interest. The result
of this distance detection to the object of interest feeds the
Smart Train Composition Coupling system, which ultimately
combines this information with the data exchanged by the
V2V communication between the coupled trains during the
different manoeuvre stages.

IV. EXPERIMENTAL TESTS
A. PRELIMINARY ANALYSIS
A series of preliminary experiments have been first carried
out to test the operation of the overall system implementation
and verify that the clustering outcomes correspond to the
objects and distances that are within the FoV. Firstly, the anal-
ysis of the clustering detection and membership computation
is highlighted for every test, and then the results comparison
of several distance detection methods based on the informa-
tion obtained from the clustering process is discussed.

Fig. 11a shows a representation of the first test, where an
object has been placed between the distance detection system
and awall. Table 2 includes the distancesmeasured by each of
the 8 LIDAR segments. It is expected that the measurements
of the middle segments would be grouped into a single cluster
that corresponds to that of the object, and that there would
be two other clusters that comprise the lateral measurements
of the background. Fig. 12a depicts the initial membership
matrix obtained during the test.

The membership matrix is composed of three clusters. The
first two measurements, which are almost three meters away,
would belong to the first cluster; the next five measurements,
of more than two meters, to the second cluster of the object;
and finally the last one that marks a distance similar to
those of the first cluster belongs to the third cluster. Fig. 12b
represents the matrix of belonging after the fuzzification
process. Membership values have not changed significantly
with respect to the initial matrix, which implies that the sep-
aration between the clusters is large enough that the degrees
of belonging in the boundary measurements are not blurred.

Fig. 12a and 12b also shows the degree of belonging of
each LIDAR segment measurement to each cluster for the
results obtained in this first preliminary scenario (before and
after fuzzy clustering, respectively).

A slightly different situation is shown in Fig. 11b for
the second test. In this case there is still an object in the
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FIGURE 11. Representation of the scenario for tests 1, 2, and 3, showing the field of view of the LIDAR sensing
system.

FIGURE 12. Representation of the membership matrices and the degree
of belonging of each cluster for the preliminary test 1.

middle, but in a position much closer to the background
wall. Table 2 contains the distances measured by each of the
8 LIDAR segments, while both the initial and fuzzification
matrix are plotted in Fig. 13.

There are still three clusters, although as expected fewer
segments detect the object since it is farther away from the
LIDAR sensor, thus it occupies less space in the FoV. It can
be seen that the degrees of belonging of the segment number
five is more diffuse, since its measurement is the distance
between the distance from the background and that of the

FIGURE 13. Representation of the membership matrices and the degree
of belonging of each cluster for the preliminary test 2.

object. This situation is better reflected with the fuzzification
matrix outcomes, encountering it by the calculated degrees of
belonging. Fig. 13a and 13b represents the degree of belong-
ing of each LIDAR segment measurement to each cluster for
the results obtained in this second test case (before and after
fuzzy clustering, respectively).

In the third situation shown in Fig. 11c for this prelimi-
nary test, the object is partially introduced into the LIDAR’s
FoV. Table 2 contains the distances measured by each of the
8 LIDAR segments, while both the initial and fuzzification
matrix for this case are shown in Fig. 14.
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FIGURE 14. Representation of the membership matrices and the degree
of belonging of each cluster for the preliminary test 3.

It can be seen a phenomenon that may not be infrequent.
Segment 5 is measuring an intermediate distance between
the distance of the first cluster and that of the last one, and
therefore the clustering algorithm has assigned a specific
cluster to it. This occurs when the object only covers a part of
the angle of the field of view corresponding to the segment,
and therefore the resulting distance will be an intermediate
value between the two that coexist in that space. Thanks to
the fuzzy clustering, the belonging of that segment that is
giving a non-real measurements can be divided between the
two adjacent clusters, which will make the final results closer
to reality. Fig. 14a and 14b represents the degree of belonging
of each LIDAR segment measurement to each cluster for the
results obtained in this third test case (before and after fuzzy
clustering, respectively).

Having a more adapted membership matrix based on the
fuzzification process will ultimately allow calculating the
target distance from the LIDAR sensor to the object of interest
with higher accuracy, by applying the corresponding criteria,
namely, a weighted mean function where the influence (i.e.
the degree of belonging) of each segment within the cluster
is considered to compute the distance; the average value
in relationship with the membership of a segment in each
cluster; a minimum value relative to the cluster detection; and
a general average calculation in relationship with the overall
segments. In order to compare these methods, Fig. 15 shows
the results of the distance deviation with respect to the real

FIGURE 15. Comparison of the distance deviation results with respect to
the actual distance of the sensing system to the object of interest.

distance to the object of interest, for the three test cases.
It can be clearly seen the benefit of applying the fuzzy-based
weighted function to obtain a value very close to the actual
distance (which are 2.2, 2.6 and 2.3 meters for test 1, 2,
and 3, respectively), achieving 0.9, 1.4 and 0.8 percent of
error, respectively. It can be also highlighted that the vari-
ation between the first method and the rest of strategies is
more predominant in situations where the fuzzy clustering
and the calculation of the degree of belonging takes more
significance, with a difference of almost 14% in accuracy in
case of test 3. Therefore, the fuzzy-clustering based approach
reports very-high accurate results for the distance detection in
these situations with respect to the other methods.

B. RAILWAY USE CASE
The proposed system implementation has been verified in
a real railway demonstrator scenario as part of the SCOTT
project pilots [2], to measure and analyse the virtual cou-
pling manoeuvres between trains under actual operational
conditions. The distance measurement system based on the
solid-state LIDAR sensor has been integrated within a hetero-
geneous Smart Train Composition Coupling platform, which
also includes Vehicle-to-Vehicle communication and Wire-
less Sensor Networks for runtime virtual coupling and train
integrity sensing tasks.

Apart from the integration of the proposed approach with
the overall virtual coupling platform in terms of runtime
sensing and data exchange, the project demonstrator allowed
testing how the proposed distance detection system can be
capable of providing information in compliant with the timing
constraints requirements, and the consistency of the measure-
ments with respect to the train manoeuvres under evaluation.
The results of these verification objectives are the ones shown
in this experimental use case section.

The location of the real demonstrator was a regular opera-
tion track for tourist purposes between Retz and Drosendorf,
in Austria. The track has a total length of 40 km with a speed
limit of 60 km/h. Two different trains have been used to carry
out the tests. The first one was a six-wagon composition and
the second one a rail coach, which are referred to as train
A and train B, respectively. Pre-defined zones throughout
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FIGURE 16. Implementation of the proposed distance detection system
for virtual coupling in the target scenario, where the physical installation
and location in both trains is highlighted.

the track have been used to perform the virtual coupling
maneuver experiments.

In this way, the proposed system implementation has been
deployed in both trains, as shown in Fig. 16. It can be seen the
installation of the LIDAR sensors together with the modular
wireless sensor nodes in an adapted mechanical box on rear

and front platforms, respectively, to have a proper direct sight
of the proximity detection zone. Initial experiments were
carried with separation tests from 0 to 20 meters first and
then from 20 to 100 meters, in slow movement conditions
and measuring the actual distance, to firstly confirm the
correct operation of the system in the real scenario prior to go
the dynamic condition tests, obtaining consistency detections
outcomes from the LIDAR sensing system with errors below
1 meter with respect to the actual separation distance.

Based on this configuration, different journeys for distance
testing have been performed, distinguishing short distance
approximation and detection, short-to-long range operation
and detection, coupling distance and tracking between trains,
and mix route operation with curves and long-range distance
points detection on the field of view. The measurement cam-
paign took place between the 6th and 10th of July 2020.
During the dynamic operational conditions the results have
been compared with the inferred V2V distance calculated
from the geo-positioning of the trains in movement, provided
by the WSN integrity sensing system installed on them. This
value had a tolerance of ±10 meters, which corresponds to a
higher error than those obtained with the proposed system.

In the following representative tests the proximity detec-
tion has been properly verified based on the LIDAR sensing
system, in which the distance processed and provisioned by
the sensor node is consistent with the experimental scenario
under test. Fig. 17 depicts the results for a virtual coupling
scenario between train A and train B, where both trains are
moving one after another with a separation distance varying
between 10 and 14 m. This distance is detected by the sensor
and represented in the plot. Trains were moving with a speed
between 40 and 60 km/h. Fig. 17a also shows a picture of one
of the instants during this virtual coupling test, taken from
train A.

It can be seen in Fig. 17a the data associated with the
processed LIDAR segments, which contains information of
the field of view, so more objects apart from the fundamental
distance can be acquired in the view. It can be realized that
since the distance between both trains is reduced (almost the
whole FoV corresponds to the object of interest), the dis-
persion of the different segments is also reduced, allow-
ing a precised detection of the object based on the closest
and central computed cluster. Based on the clustering and
post-processing functions on the sensor node, the proximity
detection is obtained, providing the results shown in Fig. 17b.
The inferred distance curves are also represented in Fig. 17b
to clearly see the tendency matching between the LIDAR
based sensing and the localization based sensing. It can be
also highlighted the stability of the measurements provided
by the LIDAR sensing system.

The results in Fig. 18 show the test case where the dis-
tance detection between trains is obtained for a manoeuvre
where there is a progressive separation between them. Both
the distance segments detection from the LIDAR’s field of
view and the data processing outcomes are depicted to show
how the LIDAR is capable of detecting different objects,
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FIGURE 17. Distance detection results for the first virtual coupling test.

and then the sensor node provides a filtered and processed
data for the proximity information entity related to the object
distance detection. As highlighted in Fig. 18a (which provides
a unified sampling view of the distance segments), several
object detections are concurrently performed, although the
target separation distance between trains is properly obtained,
as shown in the plot of Fig. 18b. The inferred distance curves
are also represented in Fig. 18b to clearly see the tendency
matching between the LIDAR based sensing and the local-
ization based sensing. Detections go from 18 to 90 m in this
experimental case. Fig. 18a also shows a picture of one of the
instants during this proximity test, taken from train A.

Fig. 19 shows the test case of a proximitymanoeuvrewhere
trains are progressively getting closer to assess the operation
of the approaching detection. The LIDAR based sensor nodes
obtained and processed at runtime the distance measurements
providing the detection data of the approaching curve repre-
sented in the plot, going from 39 meters (and approximately
16 km/h) to 8 m of separation between trains, with a gradual
slowing speed during the approximation. It clearly shows
how the processed information provides a consistent outcome
for the distance detection. Fig. 19 also shows a picture of
one of the instants during the above-described approaching
manoeuvre between both trains, taken from train B.

Table 3 shows the comparison of the parameters that have
been considered as the target requirements for the testing
scenario, and the implementation outcomes of the proposed
distance detection solution, obtaining 63.8% of reduction in

FIGURE 18. Distance detection results for the second virtual coupling test.

FIGURE 19. Distance processing results for the virtual coupling
approaching manoeuvre, and photo of one of the instants of the
proximity test between train A and train B.

TABLE 3. Parameters’ requirements versus implementation outcomes for
the use case scenario.

terms of response time, and one order or magnitude of higher
accuracy with respect to the minimum required distance pre-
cision, for the distance detection range of 100 meters. More-
over, the system has been able to properly detect distances
up to 120 meters, which is a 20% higher than the requested
maximum value for the use case scenario.

VOLUME 9, 2021 68105



G. Mujica et al.: IoT in the Railway Domain: Edge Sensing System Based on Solid-State LIDAR and Fuzzy Clustering

C. FURTHER OPERATING CONSIDERATIONS
The measurement campaigns and the experimental outcomes
allowed verifying the proposed sensing system under a real
railway context and its feasibility to be integrated in the
overall railway smart train paradigm. From the point of view
of the ultimate deployment of the sensing system within
long-term commercial railway operation, there are several
additional considerations to cope with. Although the LIDAR
sensors may have a degradation in the measurement in some
environmental conditions, it is not as pronounced as in case
of cameras, where the object detections are prone to have
a significant loss in accuracy, readability and feasibility of
the processing outcomes. The railway operators and inte-
grators involved in this type of use case have been inter-
ested in integrating and fusioning different technologies and
particularly the LIDAR sensing approach to provide robust
and safety conditions where the virtual coupling maneu-
vers between trains can be performed. In this regard, three
levels of safety conditions are distinguished to dynamically
decide whether the maneuver can be carried out or, instead,
the integrity and virtual coupling mission has to be aborted,
in accordance with the different levels of redundancy pro-
vided by the overall Smart Train Composition Coupling
architecture.

First, since the LIDAR sensing system is deployed in both
trains, the segment detections as well as the fuzzy clustering
outcomes are distributed between them to dynamically com-
pare if the mismatches in terms of distance detections to the
object of interest are above a safety threshold (for instance,
in the case of adverse weather conditions). If so, the LIDAR
based detection would not be used during the redundancy
verification process of the virtual coupling conditions. Then,
even if the threshold is not exceeded, a second redundancy
stage is performed to guarantee that both independent LIDAR
measurements are not corrupted. This second level relies
on the V2V radio measurements that allow inferring the
distance through the wireless communication between the
adjacent trains, and this is also combined with the inference
of the relative distance between them calculated from the
geo-positioning information provided by the Wireless Sensor
Network. These parameters are interchanged between the two
sensing systems, so that if the verification between the three
independent sources of measurement produces a mismatch
value above a safety threshold the mission is not triggered or
is ended.

The third consideration to guarantee that a virtual coupling
operation can be safely carried out is based on the definition
of zones in the railway track for accomplishing the maneu-
vers, as well as meeting specific conditions of train opera-
tions that may also include the possibility to restrict them
for safety reasons due to external factors (such as weather
hazards or a probability of occurring possible damaging situ-
ations). Therefore, in case the measurement is compromised
for internal or external reasons, the redundancy stages and the
operating conditionswill also take place to decidewhether the
virtual coupling can be carried out.

V. CONCLUSION AND FUTURE WORK
The implementation, integration, and testing of the solid-state
LIDAR sensor wiith the modular Cookie edge sensor plat-
form and the results regarding the presented experimental
railway demonstrator allowed showing the potential of the
proposed distancemeasurement and detection system to serve
as a dual redundancy solution, which shall be combined with
V2Vwireless communication between trains to provide accu-
rate and safety solutions towards railway virtual coupling.
Although the preliminary railway tests correspond to a system
verification stage, they provide a contextualized vision of
solid-state based LIDAR sensing system, obtaining consistent
results to be further explored in future implementations and
exploitation of the virtual coupling solution. As future lines of
work, it is envisioned to carry out further measurement cam-
paigns in middle-speed controlled railway pilots, to test addi-
tional reliability and safety conditions. In this direction, auto-
matic virtual coupling and uncoupling manoeuvre tests will
allow analysing the combination of the distance detection sys-
tem and the V2V communication technology to assure timing
and accuracy compliance in such a next constrained level.
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