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ABSTRACT With the recent advancements in radar systems, radar sensors offer a promising and effective
perception of the surrounding. This includes target detection, classification and tracking. Compared to
the state-of-the-art, where the state vector of classical tracker considers only localization parameters, this
paper proposes an integrated Bayesian framework by augmenting state vector with feature embedding
as appearance parameter together with localization parameter. In context of automotive vulnerable road
users (VRUs) such as pedestrian and cyclist, the classical tracker poses multiple challenges to preserve
the identity of the tracked target during partial or complete occlusion, due to low inter-class (pedestrian-
cyclist) variations and strong similarity between intra-class (pedestrian-pedestrian). Subsequently, feature
embedding corresponding to target’s micro-Doppler signature are learned using novel Bayesian based deep
metric learning approaches. The tracker’s performance is optimized due to a better separability of the targets.
Atthe same time, the classifiers’ performance is enhanced due to Bayesian formulation utilizing the temporal
smoothing of the classifier’s embedding vector. In this work, we demonstrate the performance of the proposed
Bayesian framework using several vulnerable user targets based on a 77 GHz automotive radar.

INDEX TERMS Automotive radar, Bayesian framework, deep metric learning, integrated classification-

tracking, unscented Kalman filter.

I. INTRODUCTION

Both reliability and safety of autonomous vehicles require
a precise perception of the operating environment, which in
turn necessitates high-quality and accurate measurements of
sensors [1]-[4]. Thus, reliable sensing capabilities are the
key towards a successful implementation of automated or
self-driving vehicles. Compared to other sensing technolo-
gies e.g., camera or Lidar, radar sensors combine a lot of
advantages: they are relatively robust to bad weather con-
ditions, work in dark environments and can sense distance
and velocity of the targets simultaneously [5]. Typically,
automotive radar can detect targets up to ranges of more
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than 200 m and provide a high range-resolution of multiple
targets in its field of view. As a result, radar sensors are
widely accepted and are becoming one of the major enablers
for advanced driver assistance systems (ADASs) and fully
automated driving [6], [7]. The typical applications for ADAS
includes adaptive cruise control, forward collision avoidance
(FCA), lane change assistance, parking aid, and safety of
vulnerable road users (VRUs) [5], [8].

Automotive radar mmWave sensing has shifted from
24 GHz to 77GHz due to the larger available bandwidth
(7677 GHz for long-range and 77-81 GHz for short-range
applications), higher Doppler sensitivity and smaller anten-
nas leading to small form-factors [9]. Traditional automo-
tive radars transmit a sequence of up-chirps with low chirp
times. The typical signal processing involves a chirp pulse
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compression along the fast-time (intra-chirp time), followed
by Doppler processing along the slow-time (inter-chirp time)
and digital beamforming across the receive channels, gener-
ating a 3D data tensor. Following the 3D radar data tensor,
automotive radar processing includes target parameter (range,
Doppler and angle) estimation, followed by target tracking.
However, conventional automotive radar systems face a lot of
challenges, especially in complex urban environments, where
the sensor needs to detect, classify and track multiple targets,
e.g. VRUs like pedestrians and cyclists. While [10]-[14]
propose different methods to address these challenges sep-
arately, an overview of the traditional radar signal processing
is provided in [15]. Additionally, [16] provides overview on
target detection and tracking and [5] examined target classifi-
cation. With the recent advancement in radar systems and the
processing of high-resolution data using different concepts
of neural networks, target classification is typically done via
extracting target specific parameters such as micro-Doppler
spectrograms. Later, these spectra are fed into a classifier
such as a deep convolutional neural network (DCNN) or long
short-term memory (LSTM) networks for the classification of
the target [9], [17]. In order to classify different targets (VRUs
in our case), they need to be detected and separated first in one
of the three measurement dimensions, namely range, velocity
and angle [6]. In urban environments, different VRUs can be
closely located and have quite similar velocity magnitudes
as well, resulting in a low separability among them. E.g.
where the relative velocity of vehicles on a highway can vary
from 20m/s to 80 m/s, the velocities of VRUs typically are
within the range of 0 m/s to 10 m/s. Furthermore, the strength
of the received signal depends on the targets surface area,
visible to the radar sensor, the so-called radar cross-section
(RCS). The RCS of VRU targets are up to 20 dB lower than a
RCS of vehicles [9]. Thus, urban scenarios require an highly
sophisticated signal processing for a reliable detection and
classification of VRUs.

To increase the robustness of VRU classification and to
reduce detection false-alarms, the concept of target tracking
can be used. This helps to estimate the desired unknown
state variables from the observed noisy measurements. The
problem of target tracking, has been extensively studied in
the literature [18]—[25]. These trackers are based on various
motion models, like e.g. the constant velocity (CV) model,
constant acceleration model, current statistic model, interact-
ing multiple model and varied structure multiple model. The
most common tracking algorithms integrating such models
are the extended Kalman filter, the unscented Kalman fil-
ter (UKF), multiple hypothesis testing and particle filters.
In this paper, UKF is used as a tracker to realize the over-
all process and measurement model through the unscented
transformation that tries to approximate the distribution of
a random variable which is transformed non-linearly. The
state-of-the-art UKF algorithms in an automotive use-cases
majorly focus on single modalities by using the target’s local-
ization information as a state vector [26], [27]. However,
tracking of automotive VRUs exhibits challenges in the form
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of very distinct and different dynamic models, resulting in
multiple switches in the associated track-ID. Additionally,
an inaccurate measurement of the track association leads
to divergence in the innovation squared metric [9]. In an
attempt to solve the association problem, we propose an
integrated Bayesian framework combining target’s feature
embeddings as appearance model and localization as motion
model to simultaneously classify and track VRUs. As aresult,
the choice of feature extraction model and input data rep-
resentation plays a critical role. While the reflected signal
obtained from the radar sensor is processed for the estimation
of the detected target’s localization parameters, namely range,
angle and velocity, the features corresponding to the detected
target are estimated from the latent (embedding) space of a
deep neural network architecture.

Conventional deep learning based approaches, trained with
a cross entropy loss, requires massive amounts of data to
be trained [28]. Additionally, in the context of radar sensors
and micro-Doppler signatures, learned models often do not
generalize well on different sensors, target orientations or
inter/intra-class variations. However, for systems to work in
an open set of environments, a higher distinction among the
classes are required. To address these issues, deep metric
learning and meta-learning have gained prominence in the
literature. Deep metric learning models are optimized on cer-
tain distance metrics that aim to learn both similarity and dis-
similarity among targets/classes, such that similar targets are
grouped together, whereas dissimilar targets are far separated
in the embedding space [29]-[35]. While techniques, such as
principal component analysis or linear discriminant analysis,
also project the input data into the representational space,
deep metric learning utilizes a neural network to learn a rather
optimized representational space using various loss functions
and training approaches [36]-[42]. In [43], the authors have
proposed a Siamese network for material classification of
known and unknown materials using a 60 GHz radar sensor.
In [44], the authors proposed a triplet loss for radar-based ges-
ture sensing using 3D CNN for demonstrating the generaliza-
tion capabilities of this approach. Further in [45], authors pro-
posed a novel Euclidean softmax approach for learning both
discriminative and separability in the feature space for human
activity classification using FMCW radar sensors. Addition-
ally, recent work [46]-[48] in computer vision domain suc-
cessfully demonstrate person re-identification by leveraging
the concept of metric learning. [48] propose a concept of
adaptive weighted convolution which learns part-based rep-
resentational learning. Whereas, to the best author’s knowl-
edge, proposed framework bring novelty of combination
Bayesian features embedding inside tracker. While the latent
embedding is directly being tracked by the tracker and leads
to improvement in target classification, the learned variance
over latent embedding help in target gating (association). As a
result, framework enables an integrated full Bayesian frame-
work. This article gives a detailed analysis on advantage of
proposed framework. Additionally, similar to [48], triplet loss
function is modified to have adaptive weighting over latent
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embedding in contrast to euclidean distance. Furthermore,
instead of triplet pairs, quadruplet pairs are mined to include
both inter-class and intra-class pairs for an anchor class.

In this paper, we generate a realistic automotive radar
dataset with different target maneuvering of vulnerable road
users using MATLAB®’s phased-array toolbox, which we
describe in Section II. In Section III, we present the tradi-
tional automotive radar signal processing involving range,
Doppler, angle processing, target detection, target cluster-
ing, extraction of micro-Doppler spectra and target tracking.
Section IV introduces the target appearance model and our
dataset. In Section V, we present the various deep metric
learning approaches including loss functions, to learn the
feature embedding for the target classification problem. We
also explain our extension of adding the decoder and varia-
tional auto-encoder that improves the feature representation
to conventional triplet loss and quadruplet loss training. In
Section VI, we introduce our integrated framework which
combines the proposed metric learning embedding model to
the conventional tracker to augment its state vector to track
the target embedding vector along with the target location
parameters to achieve a Bayesian framework. We demon-
strate the superior representational learning performance of
the proposed solution by comparing it with the conventional
metric-learning counterparts in Section VII, and discuss the
classification accuracy using k-nearest-neighbor. We further
analyze the superior tracking performance of the proposed
solution compared to conventional tracker, in terms of local-
ization error and normalized innovation square metric, under
exemplary scenarios in Sec. VII.

Il. SYSTEM SIMULATION

A large amount of data is needed to train and evaluate the
proposed framework. In real scenarios, these can only be
generated at great expense, whereby cross-influences from
the environment are also always recorded and thus detailed
investigations can become difficult due to reproducibility.
Therefore, a simulative approach is primarily used, which is
described in detail in the following. This following section
introduces the simulation setups which will be the underlying
basis of the further signal processing. Therefore, radar signals
of different types of road users are simulated in consideration
of micro-Doppler signatures. As there are several approaches
of radio frequency (RF) systems and environment simulations
available, a short overview, focusing on the main advantages
and disadvantages of each approach is provided. This leads
to describing our own environment simulation framework,
regarding the used radar system model, channel model, target
models, and trajectory models.

A. STATE-OF-THE-ART RF PROPAGATION SIMULATORS

The most advanced and accurate RF wave propagation simu-
lation is a full electromagnetic (EM) simulation, e.g. as pro-
vided by COMSOL! or FEKO.? Commonly used for static

1 https://www.comsol.com/comsol-multiphysics
2https://www. altair.com/feko/
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scenarios like e.g. antenna pattern or radar-cross-section sim-
ulations, the system and target characteristics can be simu-
lated accurately. However, as it is computational expensive,
it is not well suited for large and dynamic scenarios. A
hybrid approach, based on a combination of a finite difference
time domain solver for RF wave propagation, and computer
animations for the human motion simulation, has been used
in [49] to obtain micro-Doppler signatures.

Some more efficient simulators, e.g. WinProp® or Wave-
Farer* use ray tracing in order to obtain highly accu-
rate approximations of propagation effects, like diffraction,
reflection, scattering or multipath effects in general. They
are usually based on a deterministic ray optical model, com-
bining the Fresnel equations with the geometrical theory of
diffraction (GTD) and uniform theory of diffraction (UTD)
and are commonly used for propagation channel evalua-
tions [50]-[53]. Within the simulators, scenarios and the used
materials are configurable, radar-cross-sections (RCS) and
antenna patterns can be imported from full EM simulations,
to lower computational costs. Thus, time variant and therefore
dynamic scenarios with macro movements can be simulated.
Advantages are the high accuracy and flexibility, e.g. the
evaluation grid size can be chosen arbitrarily. The main draw-
backs, however, are the time-consuming generation of scenar-
ios and the limited support for micro-movements, which are
necessary to generate micro-Doppler signatures.

Stochastic simulators, like NYUSIM [54] or MilliCar [55],
can overcome the problem of high computational costs,
as they are based on statistical channel models. These models
are derived from real measurements of certain scenarios. The
accuracy of the results, therefore, strongly depends on the
similarity of the simulated scenario and the environment of
the original measurements. Results of the stochastic simu-
lations are mainly used in the communication sector today,
e.g. in designing the physical layer of new communication
standards [56]. As the aim of the proposed work is to address
micro-Doppler radar applications, these kinds of models will
not be further evaluated here.

Low cost statistical simulations of radar target detections
are provided via the Automated Driving Toolbox > from
MathWorks®. The considered scenario is simplified to a
cubic world, where road users are approximated as cuboids,
and the detections are randomly generated. It provides a sim-
ple user interface for a fast generation of scenarios, including
configuration of targets’ trajectories or the movement of the
ego vehicle. The stochastic generation of target detections
is very fast, as the RCS patterns can be set for each road
user individually. A drawback is that the simulator just out-
puts a target list with the measurable parameters like range,
velocity or angle. Additionally, only macro-movements are
considered in the simulator setup. These properties make it a

3 https://www.altair.com/resource/altair-winprop-datasheet
4https://www.remcom.com/wavefarer-automotive—radar—software
5 https://de.mathworks.com/help/driving/ref/radardetectiongenerator.html
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FIGURE 1. Simplified FMCW radar system block diagram.

common choice for use cases like occupancy grid generation
in automotive radar [57].

In summary, a different approach is necessary to fulfill
the needs of an automotive radar micro-Doppler simula-
tion framework. Compared to the deterministic and stochas-
tic simulators, with the problem of being commercial, not
adaptable, or not addressing micro-Doppler scenes at all,
a MATLAB® based solution seems to be the best fitting
approach. Thus, we chose to further optimize the MATLAB®
approach and extend it with a micro-Doppler simulation.

B. RADAR SYSTEM SIMULATION

Automotive radar sensors typically take advantage of fre-
quency modulated continuous wave (FMCW) signal wave-
forms, as they can be used to estimate both range and velocity
of targets. In Fig. 1, a simplified block diagram of a typ-
ical FMCW radar system is shown. A waveform generator
provides a frequency ramp, also called chirp, of duration T,
with a bandwidth B at a center frequency f.. The signal is
transmitted, gets reflected by a target at a distance of r, and
then is collected by the receive antenna with a total delay of
© = 2r/cp. The received signal is amplified, down-mixed
with the original transmit signal, as well as band-pass filtered
to obtain an intermediate frequency (IF) signal. This signal is
sampled with a sampling frequency f; to obtain N; samples.
All target parameters of interest (i.e. range, velocity and
angle) can be estimated from the sampled IF signal. In the
baseband, the delay 7 is converted to a frequency shift frange of
the chirp signal. However, moving targets additionally cause
a Doppler shift on the reflected signal. Utilizing a so called
fast-chirp configuration, i.e. sending N, frequency ramps in
a sequence, the Doppler induced frequency shift fp can be
extracted. Finally, by using antenna arrays in a multiple-input
multiple-output (MIMO) configuration, the angle of arrival
can be obtained from the phase differences at different receive
antenna positions [58]. Altogether, the frequency and phase
components to be estimated, can be described as

2 Br 2vp
frange = COTc; D= T;
2kmd sin(¢)
v(m, ) = — (H

where the constant cg corresponds to the velocity of light in
vacuum, v; is the relative velocity of a target, A the signal
wavelength, k the wavenumber, and d the antenna spacing
of the virtual MIMO array. The fast-time frequency frange
gives the measured frequency shift induced by the signal
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delay, whereas the slow-time frequency fp describes the
frequency shift induced by the relative velocity v, between
the target and the radar. Finally, the spatial “frequency”
v(m, ¢) corresponds to the phase shift of the reflected sig-
nal at an azimuth angle ¢ observed at the antenna element
mel0,...,Nrx — 1].

The sum of all K; incoming signal reflections is computed
for each antenna element, down-mixed with the transmit
signal and filtered. The sampled receive signal thus consists
of a superposition of K; sinusoids with three frequency com-
ponents

K¢
STF (l’ m, n) = Z aieﬂ”(Vi(m’qbi)+fD,ich+frange,i"Ts)
i=1

+w(l,m,n), ((2)

with I = [0,...,N. — 1], m = [0,...,Nrx — 1],
n = [0,...,Ng — 1], the complex receive amplitudes
a;, and additive white circular complex Gaussian noise
w (I, m, n) [59]. The three components v;, fp, i, and frange,; COI-
respond to spatial “frequency”, relative velocity frequency
and range frequency for each target, respectively. Thus, equa-
tion (2) describes the IF signal simulated for each sample
point, chirp and antenna. The receive amplitude can be cal-
culated for each target using the radar equation

> PrxG1xGreoid?

“ (@4m) r? ©)

with a total transmit power Py, a transmit antenna gain Gy,
areceive antenna gain Gry, and the target’s RCS o; and range
r; [60].

In an attempt to model a realistic system setup while keep-
ing the computations simple, a complete radar transceiver,
similar to the one described in Fig 1, is simulated using the
Phased Array System Toolbox . We use a fast-chirp FMCW
configuration at 77.5 GHz with a bandwidth B of 1 GHz,
which corresponds to a maximum unambiguous range of
50 m, typical for mid-range radar. The radar system generates
N. = 64 consecutive linear frequency chirps, transmitted
with a peak power of Prx = 13dBm via one isotropic
transmit antenna. During the scattering of the signals at K;
targets, the respective target RCS for different road users is
used. Additionally, reflections from targets visible in line of
sight are considered in the simulation. This helps to have
partial or complete occlusion scenario. On the receiver side,
a uniform linear array (ULA) of Nrx = 8 identical receive
antennas with inter-element spacing d of exactly A/2 is uti-
lized. Receive antennas are modeled with a gain of Grx =
16 dB, while phase noise is introduced within the receiver
with a noise figure of NF = 4.5dB. All relevant system
parameters, used for simulations are summarized in Table 1.

C. SIMULATION APPROACH
A detailed radar system model, based on MATLAB®’s
Phased Array System ToolboxTM, enables the simulation of

68761



IEEE Access

A. Dubey et al.: Bayesian Framework for Integrated Deep Metric Learning and Tracking of VRUs Using Automotive Radars

TABLE 1. FMCW radar simulation parameters and resulting system
properties used throughout this work.

Parameter Abbr. Value
Ramp center frequency fe 77.5GHz
Bandwidth B 1 GHz
Sampling frequency fs 1 MHz
Number of samples/chirp N 256
Unambiguous range Tmax 50m
Range resolution T'min 15cm
Chirp duration Te 10 ps
Chirp repetition time Tec 150 us
Number of chirps/frame N¢ 64

Frame duration T¥rame 9.6 ms
Unambiguous velocity Vmax 3.9m/s
Velocity resolution Vmin 0.15m/s
Number of Tx antennas Nty 1
Number of Rx antennas Ngrx 8
Antenna element spacing d A2
Transmit power Pry 13dBm
Receive antenna gain GRrx 16dB
Receiver noise figure NF 4.5dB

different system and modulation parameters. In order to con-
sider VRUs and their micro-Doppler signatures, we had to
further extend the simulation framework. Therefore, the gen-
eration of raw radar data is achieved by using point target
scatterer simulations in combination with realistic motion
models for VRUs. In order to provide a simple and intuitive
way of generating scenarios, MATLAB®’s driving scenario
designer® is used to set up the environment, the road users
and their trajectories. From this scene, radar scattering targets
with an integrated motion model are created for each pedes-
trian and cyclist. The resulting framework yields raw radar
data in time domain, which will be used throughout this work.

We divide the environment model of an automotive sce-
nario into multiple parts: channel model, target model and
trajectory model. In the following, these will be described in
detail.

1) CHANNEL MODEL

In general, the propagation of RF signals induces a phase shift
on the receive signal. Additionally, the signal is attenuated,
we model this so-called path loss and the range dependent
phase shift by a two-ray free-space propagation channel,
assuming narrowband signals. This is a common assumption
in automotive fast-chirp radar signal processing, and greatly
simplifies the Doppler frequency estimation [8]. The chosen
two-ray channel is essentially a very simple model of a
multi-path channel with just a line-of-sight component plus
a single ground reflection.

2) TARGET MODEL

In order to obtain an accurate receive signal including
micro-Doppler components, the simulation also needs to take
into account several scattering points of a human body or a
bicycle. For the human motion model, an implementation of
the so called Eigenwalker model is used [61]. It has some

6https://de.mathworks.com/help/driving/ref/drivingscenariodesigner—
app.html
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FIGURE 2. Dynamic VRU point target models for a pedestrian and a
cyclist. The pedestrian joint positions are displayed as light blue circles,
while static points of the cyclist model are shown by yellow diamonds
and dynamic points are highlighted as blue dots. All scattering positions
are marked as red crosses.

important benefits, such as a more realistic gait pattern in
comparison to the MATLAB® default human motion model,
as well as the possibility to alter the motion characteristics
with respect to gender. Simulation data is generated using
female, male, and the average human gait motions. Motions
are calculated based on the joint positions of all extremities,
whereas the middle point between two joints is considered as
a radar scattering point. The full pedestrian model is shown
in Fig. 2, where joints are depicted as light blue circles,
whereas the scattering points are illustrated as red crosses.
To the right of the pedestrian, the cyclist model is dis-
played, where points with linear velocity are marked by yel-
low diamonds and dynamic points with rotational velocities
are marked by blue circles. We use a modified version of the
default MATLAB® motion model for cyclists, with overall
less scattering points (marked by red crosses), to reduce the
computational load and obtain less cluttered micro-Doppler
spectra. The wheels are modeled with 5 wheel spokes, while
just a small subset of the total available points in the model
are picked as reflection points. The upper body, as well as the
bike frame are kept “‘static”, i.e. they only move linearly with
the total velocity of the cyclist. In contrast, the wheels and
pedals follow a circular motion, while the riders legs are fixed
to the pedal and hip joint positions and thus experience an
oscillating motion. Examples of relative velocities obtained
from the described motion models are shown in Fig. 3, both
road users move with constant velocities along a linear tra-
jectory towards the radar sensor. The velocities in Fig. 3a are
obtained from a male (solid lines) and a female (dashed lines)
pedestrian model. The pedestrians are walking with 1.0ms™!
towards the radar sensor, noticeable by the oscillating pattern
around this velocity value. Differences from the gender based
gait are visible as distortions as well as different maximum
velocities. However, the absolute differences are relatively
small and only in the order of 0.1 ms~!. Apart from that,
Fig. 3b shows the different radial velocities of the cyclists’
scattering points, with a constant velocity of v = 3.0ms~! of
the frame and body, as well as faster radial velocities for the
wheel spokes, pedals and legs. Different cyclist models are
obtained by using different subsets of scattering points from
the total available motion points. Figure 3b shows the effect
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FIGURE 3. Relative velocities of the VRU scattering points for a
female (dashed) and a male (solid) pedestrian (a) walking with 1.0m /s
and two different cyclists (b), both with a constant speed of 3m /s.

on the simulated velocities for two different cyclists (solid
lines vs. dashed lines) for two different subsets of scattering
points. Overall the pedestrian model uses 14 scattering points,
while the bicycle model uses 11 scattering points.

In the next step, the radar cross-sections for both VRU
targets are derived using a simplified model. For the pedes-
trian model, the average RCS for the respective operating fre-
quency is determined and then divided by the total number of
scatterers to obtain the individual scattering point’s RCS. For
77 GHz, an average RCS in azimuth of opeq = —8.1dB m?
is used, in agreement with [62]. The same principle holds for
the cyclist model, but the model uses a measured RCS pattern
at 77 GHz from [63].

3) TRAJECTORY MODEL

To have a complete automotive scenario, road users and the
ego car equipped with the radar sensor need additionally
to be moving along some trajectory. For this purpose, non-
linear motions for all VRUs, with constant velocities, are
defined. Their trajectories are interpolated from individual
waypoints as a piecewise clothoid curve, in order to obtain
smooth motions. However, in reality there is an unaccount-
able amount of possibilities and permutations for the number
and classes of targets, their individual motion, velocity and
trajectory, as well as other physical and environmental param-
eters, e.g. radar modulations or channel characteristics. Thus,
training a machine learning model on an equal distribution of
possibilities from the entire space of input data is not feasible.
Instead, we aim to include different features of targets and
environments in our database and try to get the network to
learn these features separately. Consequentially, the network
should be able to infer the correct class of targets based on
individual features and not on a combination of them.

For the combined target tracking and classification,
we generate different scenarios of VRU targets following
predefined trajectories. The scenario used to extract single
target micro-Doppler signatures is shown in Fig.4a. The ego
vehicle, equipped with the radar sensor, is kept stationary.
The sensor position is depicted by a red cross. The target
follows a trajectory with an ’eight’ shape, as the actual view
angle of the pedestrians and cyclists has a strong impact on
micro-Doppler based classification [64]. Therefore, we want
to make sure to include all the variations in our training data.
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FIGURE 4. Simulation scenarios with one target (T1) used for training

(a) and two (T1, T2) or three (T1, T2, T3) targets used for testing (b), with
their respective trajectories. The radar sensor position is marked by a red
cross.

To capture the whole set of variations, the ’eight’ shaped
trajectory is in addition rotated along the y-axis with an angle
of 45°. For the testing data, we use a scenario with multiple
road users and crossing trajectories, limited to a maximum
of three targets. In Fig. 4b, three targets (T1-T3) with their
individual trajectories, highlighted in different colors, are dis-
played. Each target can be either a pedestrian or a cyclist, with
the aforementioned properties. All possible permutations of
pedestrian and cyclist combinations are used for these two
and three target scenarios.

Ill. AUTOMOTIVE RADAR SIGNAL PROCESSING

The previously described simulation framework outputs raw
sensor data, which needs to be further processed in order to
obtain the target estimates for each data frame. This chapter
gives a summary of the necessary automotive radar signal
processing chain, with a special focus on the generation of
micro-Doppler signatures. According to (2), the received IF
signal contains all the information about the target’s radial
distance, relative velocity besides the spatial information
in azimuth dimension. As indicated in Fig. 1, the sampled
signal of a single receive channel is stored in a matrix-like
format. Combining the time-domain data of multiple receive
channels, a radar data cube with three dimensions, namely
samples, chirps and antennas, is obtained. For a target classi-
fication and target tracking, all targets need to be successfully
identified and separated in the receive signal. Thus, targets
have to be resolved in either of the three available dimensions:
range, velocity or angle [6]. Additionally, the extraction of a
micro-Doppler signature is done based on target reflections
from a specific range and, in turn, requires a target detection
in the range domain.

A. RANGE-DOPPLER-ANGLE PROCESSING

As a first step, a mean subtraction is applied along the
samples and chirps, to suppress Tx-Rx leakage as well as
reflections from stationary targets, also referred to as clutter.
This clutter removal is also known as moving target indica-
tor (MTTI) processing [65]. In order to resolve targets, the cor-
responding frequencies from (1) need to be estimated from
the pre-processed signal. This is accomplished by using a
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TABLE 2. Radar signal processing parameters used throughout this work.

Parameter Abbr. Value
CFAR threshold PFA le—5
Number of FFT points (fast-time) NFFT; 256
Number of FFT points (slow-time) NFFTy 256
DBSCAN Epsilon neighborhood € 4
DBSCAN Minimum number of neighbors minPoints 6
Sliding window size Nyin 200
Sliding window overlap No 48
Number of STFT points NsTFT 512

3D fast-Fourier transform (FFT) along the respective dimen-
sions, effectively converting the samples dimension to the
fast-time, the chirps dimension to the slow-time, and the
antennas dimension to the azimuth angle, respectively [58],
[59]. The resulting 3D spectrum is referred to as range-
Doppler-angle (RDA) cube. Two targets can be resolved from
any dimension in the resulting RDA cube, e.g. if they are sep-
arated by at least 7y, Or vin in range or velocity dimension
(compare the exact parameter values in Table 1).

B. TARGET DETECTION AND CLUSTERING

Following the FFT processing, the targets’ range and veloc-
ity can be extracted by searching for local maxima in the
magnitude spectrum. Usually the detection is carried out in
either the range-Doppler (RD) or in the range-Angle (RA)
domain. The actual detection is achieved by using a constant
false alarm rate (CFAR) algorithm, as it provides a better per-
formance, compared to applying a constant threshold, under
varying noise levels. It benefits from an adaptive thresh-
old depending on each individual cell’s signal-to-noise ratio
(SNR). More specifically, the ordered statistics (OS)-CFAR
algorithm is used in our work, as its performance is supe-
rior for closely spaced targets [65]. Applying the OS-CFAR
algorithm for the peak detection, requires a clustering to
group all detections of the same individual target. Therefore,
a density-based spatial clustering (DBSCAN) is used [66].

C. MICRO-DOPPLER SPECTROGRAM

Even though, reflections from VRUs contain multiple veloc-
ity components due to the micro-motions of the different
extremities, most of these components can not be separated in
the RD spectrum, as their range or velocities are very closely
spaced. To extract the micro-Doppler components of a single
target, just the FFT along the short time dimension has to be
computed over the raw data s;r cube. Doing so, the range
spectrum S, (7, t) is obtained for each chirp. Then, a specific
target range rge; is selected to obtain the signal S, (rget, t)
with an effective sampling rate equal to the chirp-to-chirp
duration 7¢.. Finally, a short-time Fourier transform (STFT)
is performed, which can be described as a Fourier transform
applied within a sliding window pattern of the signal, result-
ing in overlapping windows

[e.]

STFT(r, w) = / Sy (Fdet, OW*(t — t)e_j“”dt, 4)

—00
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FIGURE 5. Simulated micro-Doppler signatures of a male pedestrian
(a) and a cyclist (b) from the same scenario as used for Fig. 3.

This operation results in a Doppler frequency spectrum over
time, which is usually visualized as the micro-Doppler spec-
trogram by taking its square magnitude [17]. Applying a
smaller window function w*(+ — t) will result in a bet-
ter time resolution at the cost of frequency resolution and
vice-versa [67]. Adapting this trade-off between time and
frequency resolution dynamically, is still an open point in the
current research. However, it could be addressed by using
the concept of a wavelet transform or even learning win-
dow parameters using neural networks [68]. In this work,
the STFT of the micro-Doppler signatures for both pedestrian
and cyclist are estimated using a Kaiser windowing function
with a sliding window size of Nyi, = 200 and an overlap of
48 samples. The number of FFT points Nstrt for STFT is set
to twice the window size Nyin Which is a factor of 2" i.e 512.

By combining the previously described simulation frame-
work and this radar signal processing chain, we are now able
to obtain micro-Doppler signatures for arbitrary scenarios.
In order to verify the framework from chapter II, we use
the same scenario like in Fig. 3, where road users are walk-
ing with a constant velocity towards the radar sensor. We
extract the micro-Doppler signatures in a time window of 1 s,
by using the described STFT approach. The results, obtained
with an effective sampling time of 1507us for the pedes-
trian scenario and 100 ps for the cyclist scenario, are shown
in Fig. 5. The individual frequency components, resulting
from scattering points with different relative velocities, are
visible. Note the strong agreement of the overall frequency
characteristics with Fig. 5, as well as the fluctuations in the
total received amplitudes, resulting from the used multi-path
channel.

D. TARGET TRACKING

Conventional radar signal processing usually applies a track-
ing algorithm after the clustering, to filter measurements over
time, and to create object detections and tracks of individual
targets. False detections are usually also eliminated during the
tracking. In order to avoid decreasing the measurement accu-
racy as well as the introduction of inherent noise, the usage
of recursive filters is preferred in literature. The most widely
used tracking algorithms are Kalman filters. The performance
of Kalman filters relies on the state vector (i.e. the parameters
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to be tracked), measurement noise, process noise and the
transition from measurement to the state space.

In our case of tracking radar detections, the state vector
can be described as x = [px pyv G]T, where px, py, v, 0 are
the position coordinates along the x- and y-axis, the radial
velocity and the azimuth angle, respectively. Due to low vari-
ations in the spatial dimension, azimuth information is also
used as part of the state vector and improves the robustness
of the target localization. We use the Root MUSIC’ algo-
rithm for direction of arrival (DoA) estimation. Generally,
heading angle and turn-rate bring additional information for
a dynamic target with non-linear motion.

However, as VRUs may have very high variations in their
heading, parameters such as orientation angle, turn-rate etc
are not considered in definition of the state vector. Addi-
tionally, the variance corresponding to each of the estimated
localization parameters (range, Doppler, azimuth) are calcu-
lated for each detection. While SNR of each detection is used
for variance over range and Doppler, variance over azimuth
angle is calculated as the ratio of maximum power of the
beamformer over the noise around the corresponding bin in
the RD-map. Considering a radar system which is stochastic
in nature and observations are either prone to noise or incom-
plete, a recursive Bayesian estimation algorithm becomes the
popular choice. This helps to periodically predict the poste-
rior density of the system state for every new observation.

For most general real-world (nonlinear, non-Gaussian)
systems, the multi-dimensional Bayesian recursion becomes
intractable and therefor, approximations have to be used. This
includes methods such as Gaussian approximations (extended
Kalman filters), hybrid Gaussian methods (score function
EKF, Gaussian sum filters), direct and adaptive numerical
integration (grid-based filters), sequential Monte Carlo meth-
ods (particle filters) and variational methods (Bayesian mix-
ture of factor analyzers). Especially, the extended Kalman
filter (EKF), a sub-optimal approximation of the recursive
Bayesian framework, applied to a Gaussian random vari-
able (GRV) of a non-linear state, is widely used. It approx-
imates and propagates the state distribution through the
first-order Taylor series linearization, which expands the
non-linear state around a single-point. As a result, the EKF
is not able to capture the uncertainty of the distribution,
introducing large errors in the estimation of the true pos-
terior mean and covariance, respectively. Alternatives can
be unscented Kalman filters (UKF), which use deterministic
sampling filters, i.e a sigma-point Kalman filter (SPKF),
to approximate the GRV by a minimal set of sample points.
These sample points can capture the true mean and covariance
of the GRV. While Fig. 6 gives a visual overview on the
prediction and update operation of the UKF to track mean
(Xx—1) and covariance (P;_,) of the input state vector at a
time instance k — 1, the algorithm 1 gives a mathematical
understanding on its implementation.

7 https://www.mathworks.com/help/phased/ref/musicdoa.html
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FIGURE 6. Graphical representation of predict and update stage for an
UKF where mean and variance is estimated at each stage by
approximation over sigma point matrix.

1) UNSCENTED TRANSFORMATION

The state-of-the-art tracking algorithms for automotive
use-cases mainly focus on single modalities by having
target’s localization information as a state vector [26],
[27]. Additional target parameters such as Doppler spectra
are either ignored or computed separately. In this paper,
the authors use both the localization and appearance model
for the tracking of detected targets, by augmenting the
state-vector target features.

To develop UKF, UT is applied at both prediction and
update steps, which includes non-linear state transformation
based on f and h, respectively. As input, state vector x_i
of dimension n, with mean fc,i'l)k_l and covariance Pj(‘ k-1 is

given. At prediction stage, sigma points fc,i’)_”k_l are gener-
ated which is goes under UT (f(.)) to estimate predicted mean
Xkjk—1 and covariance P;‘(l ¢ Of state vector. Since predicted
mean and variance changed, a new set of sigma point matrix
is calculated due to its dependency on mean and variance.
Afterwards, the new sigma point matrix is transformed into
measurement space using A(.) as transformation function.

A constant-velocity (CV) system is considered with the
localization state vector X. A non-linear measurement model
h(-) accounts for the transformation of the state vector into
the measurement domain. Mapping part of the localiza-
tion parameters (radial range and azimuth angle) from the
tracker’s state vector to the measurement domain follows
a non-linearity (Cartesian to Spherical), whereas mapping
the radial velocity and augmented parameters (appearance
embedding) corresponds to an identity mapping between
state vector and measurement domain. However, the overall
non-linear transformation in the process model xF = g(xq)
and the measurement model ¥ = h()cf,D ) can be achieved
through unscented transformation, using so-called ’sigma
points’. These are generated to approximate the statistical
properties of the state distribution [27].

In addition, due to high similarity within input space
(Doppler spectra), it would be hard for tracker to discrim-
inate between different appearance embedding of VRUs.
It is important to note that the original dimension of the
micro-Doppler spectra is very large and thus, will increase
computational complexity for the tracker to estimate the
new state vector. As a result, the choice of feature extractor
becomes very critical to bring unique appearance modalities
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into the tracker and get a better discrimination between the
targets. Additionally, tracker takes variance as input noise
over observed input state vector. This further imposes another
challenge to find variance over extracted appearance embed-
ding for the integration of appearance model into tracker’s
state vector. The details about different data processing tech-
niques, feature extraction architecture together with mak-
ing it compatible with Bayesian framework and the differ-
ent optimization functions are addressed in the following
Section IV and V, respectively.

IV. TARGET APPEARANCE MODEL

In general, the appearance model of a target in computer
vision consists of statistical information about the target’s
shape, size or motion characteristics. In order to uniquely
identify the target between similar looking targets, the target’s
motion characteristics are considered in this paper. Therefore,
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different features, in our case micro-Doppler signatures of
each target, are extracted to learn a unique statistical model
of the target’s appearance. However, the characteristics of
the extracted features depend on the choice of the applied
feature extractor and especially on the used data-sets. In
consequence, the data preparation and the feature extraction
as the two major stages are needed, which are discussed in
the following.

A. DATA PREPARATION

As the accuracy and generalization of the feature-learning
algorithm depends highly on the quality of data-sets and
the information variability, preprocessing becomes essential.
Different techniques of preprocessing, followed by a data
augmentation, resolve these issues. Nevertheless, data pre-
processing is critical as it forms the basis of subsequent
feature extraction methods. In general, suitable methods are
selected based on the characteristics of the used datasets
and the problem definition, respectively. In real radar mea-
surement scenarios, radar cross-sections will be inherently
smaller for VRUs, i.e. as opposed to vehicles, resulting in
a lower signal-to-noise ratio, which in consequence leads
to weaker signatures. Additionally, varying viewing angles,
as discussed in Section II-C3, also distort the signatures of
VRUEs, resulting in deformed or missing micro-Doppler com-
ponents. Therefore, the most common techniques of prepro-
cessing, like noise removal, morphology and transformation
correction, are not very well fitting for the radar domain.
That’s why, in this paper, the preprocessing stage is split into
three consecutive steps. First, the signatures are converted
from a linear to a log scale, which strengthens the weaker
Doppler components of the VRUs. Afterwards, the extracted
signatures are standardized to have a zero mean, right before
the extracted signature magnitudes are normalized to the
range of O to 1 in the last step.

However, in reality, the sample distribution (mean) over the
training set p (x; | 6) is not large enough in comparison to the
actual distribution (population mean) p (x; | #). This influ-
ences the model uncertainty (epistemic) [69] and therefore,
the concept of data augmentation next to data preprocessing
is required. Additionally, this also addresses the bias-variance
trade-off by balancing the distribution over a class. As a
result, mainly two data-augmentation techniques from the
literature [70] are exploited in the paper. This includes on the
one hand an addition of artificial (Gaussian) noise, which can
emulate superimposed clutter noise on the received echo sig-
nal. On the other hand vertical flips are used, to consider also
varying Doppler frequencies caused by different directions of
target’s motion (towards or away) relative to the radar sensor.

A visual summary for each stage in data-processing and
data-augmentation is given by Fig. 7. Here an arbitrary exam-
ple of a cyclist micro-Doppler signature is considered. While
Fig. 7(a) shows the Doppler spectrum of one target in linear
scale, Fig. 7(b-c) corresponds to a data preprocessing step,
where the linear-scale is converted to logarithmic-scale first,
followed by the normalization of the spectrum. Moreover,

VOLUME 9, 2021



A. Dubey et al.: Bayesian Framework for Integrated Deep Metric Learning and Tracking of VRUs Using Automotive Radars

IEEE Access

1
o
I
['b
N
i

;\\I
)\
i\\I
)\
i\
)
,/'/
0
)

|

FIGURE 7. Visual illustration of Doppler signatures in (a) linear-scale and
(b) logarithmic-scale and the normalization (c) as data preprocessing
step. Additionally, (d) and (e) shows vertical flip and augmented Gaussian
noise.

TABLE 3. Similarity indices (SSIM) for simulated micro-Doppler spectra of
inter and intra classes for different VRU targets.

mPed fPed nPed Cycl Cyc2 Cyc3

mPed 1.0 0.71 0.68 0.57 0.60 0.61
fPed - 1.0 0.70 0.64 0.62 0.66
nPed - - 1.0 0.61 0.61 0.63
Cycl - - - 1.0 0.52 0.55
Cyc2 - - - - 1.0 0.53
Cyc3 - - - - - 1.0

Fig. 7(d-e) show vertical flips and augmented Gaussian noise
as part of the data-augmentation techniques. Additionally,
the signatures are resized to 64 x 64 and used as a gray-scale
for training the network to reduce computational cost. Thus,
a total of 476 samples for each class of pedestrian and 680
samples for each class of cyclist is created.

B. FEATURE EXTRACTION

Using the processed data, the goal of feature extractor is
now to find reduced sets of parameters that can be used
as key features. These should contain information to define
and differentiate between different available classes, being at
the same time robust to environmental changes (e.g. regard-
ing the target view points or motions). This is done by pro-
jecting the input space into a latent space dimension. With an
increasing size of the input dimensions, however, the com-
plexity of the problem statement grows exponentially. As a
result, feature extractors tend to over-fit easily to the training
data. In order to avoid over-fitting, different regularization
methods (L1, L2) are used together with the feature learning
methods. This helps by applying penalties to learned model
parameters and weight coefficients.

Prior to the evaluation of the feature extraction methods,
the structural similarity index measure (SSIM) over all per-
mutations of sample classes are calculated. SSIM values
closer to 1 indicate a high similarity between two images,
and is in contrast to e.g. MSE more robust to noisy vari-
ations of the image [71]. Results on our dataset show a
strong visual similarity among intra-class samples as well
as between inter-class targets, as indicated in Table 3. Most
similarity indices lie around 0.5-0.7, without noticeable dif-
ferences between cyclist and pedestrian class combinations.
In general this demonstrates the complexity of the problem
and the importance of finding the optimum feature embed-
dings, which can be used for distinct appearance modeling of
targets.

The history of feature extraction and selection methods in
literature is substantial. The optimal choice for the feature
extractor for this work was done via a systematic evaluation of
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TABLE 4. Test accuracy on Doppler classification using different feature
extractor.

PCA ICA LDA LLE CNN
Test
A 24.14% 16.09% 22.99% 26.44%  42.5%
ccuracy
Encoder (q4) . Decoder (pg)
h/\’\

I Input/Prediction

] Conv+LReLu

[] DeConv +LReLu

[ Sampled Feature Embedding [] BatchNorm +MaxPool I  Standard Deviation Vector

FIGURE 8. A summary of CNN based feature extractor illustrating
different layers used for metric learning (1), Bayesian inference (1 and
2) and image reconstruction (4).

available and most commonly used methods such as principle
component analysis (PCA), independent component analysis
(ICA), linear discriminant analysis (LDA) and locally linear
embedding (LLE). Additionally, with a huge popularity of
deep learning in vision techniques in the last decades [28] and
the recent interest in radar applications, a convolutional neu-
ral network (CNN) based architecture is also evaluated. In this
work, CNN is trained by using the cross-entropy loss, similar
to the concept of image classification. Therefore, an encoder
based architecture is used during training, gradually reducing
the size of layers. Table 4 shows the test accuracy of different
feature extractors, comparing CNN against the PCA, ICA,
LDA and LLE. The test accuracy of CNN based approaches
gives a clear indication on choice of feature extractor over
PCA, ICA, LDA and LLE. Additionally, it is interesting to
observe that CNN performance is still less than 50% which
indicates the strong correlation within pedestrian and cyclist
sub-class as well as between pedestrian and cyclist class,
similar to as indicated by SSIM measure in Table 3. Fur-
thermore, the CNN-encoder based classification architectures
are good to learn global learning based on spatial dimension.
Whereas, it fails to provide robust local representation cor-
responding to input spatial dimension for unique identifica-
tion of target class. This indicates on better choice of CNN
architecture and different optimization function. As a result,
an encoder-decoder based architecture is evaluated for the
appearance modeling. Additionally, the make learned fea-
tures follow Bayesian representation with mean and variance
and the concept of variation inference is applied. Fig. 8 gives
an overview of the structure of the network architecture used
for the later experiments.

The design-space of the CNN architecture involves large
number of parameters which makes it hard to find the opti-
mum architecture for the given problem definition. Thus,
the choice of the architecture design hyper-parameters is
mainly inspired from [66], where the authors used a similar
architecture for the target detection on sparse radar RD-maps.
Both encoder and decoder have a 3-layered convolution layer
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with a rectified linear unit (ReLu) as the non-linearity func-
tion. Considering the nature of the pre-processed input data,
additional concepts like, batch-normalization or leaky ReLu,
were not considered. While only the encoder part is integrated
inside the tracker, both encoder and decoder are used during
the network training.

C. VARIATIONAL AUTO-ENCODER (VAE)

The design of VAE architecture combines concept of
auto-encoder (AE) and variational inference. While the
auto-encoder (AE) is used for learning the identity map-
ping function by reconstructing the input from its reduced
representation, variational part helps to provide regularity
and interpretability knowledge over latent space by learning
corresponding mean and variance. This in return helps the
architecture to generate new data. The architectures contain
an encoder ¢g(.) network and a decoder network f(.) parame-
terized by ¢ and 6, respectively. The encoder network acts as
a dimension-reduction by translating the higher input dimen-
sion (x) into the feature latent space (z = g4(x)). Afterwards,
it is reconstructed back to the input space by the decoder
x' = py (q¢(x))). In consequence, the performance of the
network depends on finding the optimal identity function
such that X’ ~ x, which relies on an extracted feature in the
latent space. Thus, network parameters (¢, 8) are optimized
using the cross-entropy loss (CE) instead of the mean square
error (MSE) to avoid the vanishing gradient problem due to
the non-linear sigmoid nature of the output [72].

Often, identity mapping functions are prone to the prob-
lem of over-fitting, specially in case of a high-dimensional
input with a high redundancy (e.g. images). However, noisy
augmented data helps to avoid over-fitting, as noisy data can
be interpreted as a regularizer by randomly dropping (cor-
rupting) input data, which is similar to a dropout [73]. Addi-
tionally, VAE based architecture applies a constraint (prior)
over the latent space by mapping the latent to the distribution
instead of the fixed latent vector. The prior on encoding
vector also acts as a regularizer. To avoid intractable inte-
grals in the process of estimating the true posterior distribu-
tion, a re-parameterization trick is used, which restricts the
encoded distribution to be normal distributed. Eq. 5 shows
the reparameterization, where © is an element-wise product.

zZ~ gy (z | x(i)) =N (Z; n®, 02(i)1> ,
Zz=pn+0 O¢€, wheree ~N(@O,I) ,(5)

As aresult, the VAE architecture invokes an additional loss
function, i.e. the Kullback-Leibler (KL) divergence, which
brings continuity and completeness in the latent space. The
total loss function is summarized as a linear combination of
the CE and the KL, as depicted in Eq. 6.

£vae = Ereconstruction + EKL
= _Eqd,(z\x)(l()gp@(x | 2))
+KL(g¢(z | ©)[Ip(2)), (6)
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FIGURE 9. Illustration of the strong correlation between the sub-class of
pedestrian (0, 1, 2) and cyclist (3, 4, 5) using a t-SNE plot for (a) AE and
(b) VAE over feature embedding.

The network training is optimized in an iterative scheme
for 10 epochs. Adam is used as stochastic optimizer with
a learning rate of 0.0004 and keeping a default value for
other hyper-parameters. After the training and to evaluate
the classification accuracy, k-nearest neighbors (k-NN) algo-
rithm [74] is used on the learned latent feature embedding.
k-NN was chosen because of its non-parametric nature. How-
ever, one could also use a linear classifier such as the sup-
port vector machine (SVM). Due to constraints over the
latent dimension, VAE shows an average test accuracy of
56.9% in contrast to AE having 55.25% test accuracy. To
better understand the confusion between inter and intra-class,
feature embedding clusters are visualized in a 2D plane
using a t-distributed stochastic neighbor embedding (t-SNE)3
tool. t-SNE helps to project the high dimensional (original)
data space into the desired dimension space (2D or 3D)
by projecting samples close to each other, if samples were
inherently related to each-other in original space. As shown
in Fig. 9(a),(b), both AE and VAE architectures fail to learn
and extract distinct features for each target class. Fig. 9
shows that the both AE and VAE networks were able to
cluster all sub-groups of cyclist (3, 4, 5) and sub-groups of
pedestrians (0, 1, 2) close to each other, but unable to learn
distinct features between each target sub-class like female,
male and neutral labeled as 0,1 and 2 respectively. As a result
and in contrast to the representation learning via CE, MSE
or KL-divergence loss, a loss function is defined for learning
of a similarity function, using a distance metric learning [75].
The details about different network architecture together with
loss function and training environment are described in the
next section.

V. DEEP METRIC LEARNING

Deep metric learning is well studied for images, speech and
language tasks and recently applied in the domain of radar
sensor data. Several deep metric learning models use Siamese
framework, where two or more weight shared sub-networks
respectively are trained to learn distance metrics during train-
ing. The input data is projected into the embedding space
via the learned model during inference. The idea is to use an
anchor example, which is fed into one of the neural network

8https ://scikit-learn.org/stable/modules/generated/sklearn.manifold.
TSNE.html
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and learn the pair-wise or tuple-wise relationship to other
examples that are fed to the other neural network during
training [34]. Some challenges of training such networks are
online data mining that ensures a representative dataset while
training to ensure loss decreases with progressing epochs.
Some of these issues are addressed through multi-class N-pair
loss, constellation loss, structured loss or magnet loss in liter-
ature which not only learn relations to two or three examples
per class but rather all the classes together ensuring a better
representational space. In terms of distance metrics, distances
such as Euclidean, cosine and Kullback-Leibler have been
introduced in literature, which aim to learn the non-linear
relation among data in the representational space. On the
other hand, several modifications to the softmax classifier
have been proposed in literature to achieve discriminative
capabilities. Different techniques introduce a margin between
the classes, whereas in [76] the softmax is disentangled into
an individually optimizable inter- and intra-class objective.
Further, Dsoftmax loss shows improved results compared to
the margin based softmax approaches and center loss [77]
proposes to combine the softmax objective with the Euclidean
spread of the samples of a class.

In this paper, the authors combines the idea of variational
inference over latent embedding in combination with met-
ric and representational learning. This helps the network
to learn both the feature embedding and the variance over
it. As a result, the learnt input noise can be integrated
inside a tracker, which further helps during the data asso-
ciation. Details about its usage and advantage are given
in Section VI and VII, respectively. The green numbered
blobs, shown in Fig. 10, indicate different layers, which are
used to design a loss function specific for different training
approaches. While blob 1’ is responsible for the metric
learning, blob ’4’ optimizes the image reconstruction error.
Both °1’ and 2’ blobs help the network to have Bayesian
inference. Further, to have a fair comparison and similar-
ity between the different approaches for feature extraction,
Fig. 10 is illustrated to summarize different architectures.
The encoder and decoder network parameters are kept same
throughout all the experiments, but are trained with different
loss function and additional hyper-parameter optimizations.
Additionally, the training environment, like the data prepa-
ration and performance metric used for the evaluation of
the network, is kept identical throughout the training pro-
cess. Details about the different optimization functions cor-
responding to the chosen network architecture are mentioned
in the following subsections. Additionally, code for model
definition and loss function is made available on Github
respository.”

A. TRIPLET NEURAL NETWORK (TNN)

The concept of siamese neural network [78] is used to
design a training framework that consists of three identical
sub-networks. The architecture is optimized using a triplet

9https:// github.com/ananddb90/IntegratedBayesTracking
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FIGURE 10. An overview of evaluated architectures and their relation to
each other. While all architecture follows k-NN classifier over mean
embedding for target classification, the variational inference brings
additional Bayesian knowledge over extracted mean using (b) TVAE
architecture in contrast to (a) TNN. With introduction of additional
negative sample from similar class-group, (c) QVAE improves distinct
feature learning. This is done by learning the distance between feature
embedding using MLP in contrast to usage of normal L2-Norm.

loss [34]. The encoder network from the AE framework is
considered as sub-networks, keeping the same configuration
as used in the AE. Prior to the network training using the
triplet loss, triplet pairs are selected. These pairs consist of
anchor sample (x,), i.e. any random sample, positive sample
(xp), which is from the same class as the anchor, and a
negative samples (x;), which is a sample from any different
class in comparison to the anchor class. The loss function is
computed over feature embedding, i.e. the latent space (z),
as shown in Eq. 7.

Luipler = max([lgp(a) — g (p)I1* = g (a) — gpCe)lI*
+COmargin, 0), @)

The network is trained following a min-max distance learn-
ing between the triplet pairs. While the distance between
the anchor and negative samples is maximized by mak-
ing d(%(xa), q¢(xp)) + ®margin less than d(CId)(xa)v Q¢(xn))»
the distance between the anchor and positive samples is
minimized forcing d(gy(xa), g4(xp)) to 0. Here, amargin is
a hyper-parameter which defines the boundary condition
between the similar and dissimilar pairs. For this process,
a Euclidean distance function is considered from the available
similarity metric function [75].

The choice of the input triplet pair plays an important
role in learning the feature embedding. Considering the
spatial complexity and similarity between training exam-
ples, the mining of input triplet pairs is done con-
sidering hard examples, i.e triplets, where the negative
sample is closer to the anchor than to the positive
(d(g(xa), 4p0n)) < d(gp(xa). 44(xp))) and semi-hard
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FIGURE 11. Sample example of (a) semi-hard and (b) hard triplet pairs of
Doppler spectrum extracted during network optimization (online).

triplets, where d(%(xa), q¢(xp)) < d(%(xa), q¢(xn)) <
d(qp(xa), G¢(Xp)) + Cmargin. The triplet mining is done in an
online approach i.e. during the network training.

In Fig. 11(a-b) examples of semi-hard and hard triplet
pairs selected during network training are displayed. Similar
to the AE and the VAE, a k-NN classifier is used on the
feature embedding to measure the classification accuracy.
The network shows an improvement in feature learning by an
average test accuracy of 71.2%. The t-SNE plot for TNN over
feature embedding is summarized in Section VII similar to
the ones illustrated in IV-C. The similar approach is followed
for remaining experiments.

B. TRIPLET-BASED VARIATIONAL AUTO-ENCODER (TVAE)
While deep metric learning is optimal for encoding the data
representation and for measuring data similarity, it cannot
enable probabilistic inference for the model. On the other
hand, the VAE performs an approximate Bayesian inference
efficiently by having continuous feature information, as dis-
cussed in subsection IV-C. In [79], the authors combined
both approaches and proposed a hybrid network architecture,
called TVAE, where the network is optimized by minimizing
the upper-bound on the expected negative log-likelihood of
the data together with the triplet loss (Lgipier). Eq. 8 gives
a mathematical overview on the total loss which is a linear
combination of the CE loss, KL-divergence and the triplet
loss.

L1vaE = 0.7 * Lreconstruction + 0.3 * (LxL + ﬁtriplet)» (®)

At the end of the network training, the classification accu-
racy is evaluated on the mean embedding vector using a k-NN
classifier. The average classification accuracy of 73.85%
shows the dominance of the training framework over the VAE
and the triplet standalone. Simultaneously, this leads to a
Bayesian inference by enabling mean and standard variance
over feature embedding.

C. QUADRUPLET VARIATIONAL AUTO-ENCODER (QVAE)

Besides the increased classification accuracy in TVAE, triplet
loss, however, suffers from two major drawbacks. First,
the distance metric function for an anchor is optimized with
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FIGURE 12. Sample example of (a) semi-hard and (b) hard quadruplet
pairs of Doppler spectrum extracted during network optimization (online).

respect to the positive and negative samples. As a result, there
is no discriminator part in the triplet loss function which can
help to push target samples from an intra-class. This problem
is avoided by including another negative sample, belonging to
the same group as the first negative sample. This helps the net-
work to have a better inter and intra-class distance by adding
an extra parameter optimization to separate the negative class
from each other. The resulting new loss function is termed as
Quadruplet loss (Lquadrupler) [80] and can be summarized by
Eq. 9. It includes another hyper-parameter o which is kept
to 0.5 during the training. While sample s; and s; belong to
the same class and represent an anchor and positive sample,
s, and s; belong to two different classes, which are also not
an anchor class.

N
2
Lquadruplet = Z [61 (xi,x7)" — q (xi, X + 061]
ik
. N 2 2
+Zi,j,k,l [q (i )" = q Ga, 00" + 012] ;
Si = Sj, S 7 Sk, 8i F 81,85 # Sk 9

Similar to the triplet pairs, quadruplet pairs consist of
semi-hard and hard examples, which are sampled during the
training of the network. Additionally, the choice of both neg-
ative samples plays an important role for network learning.
As a result, SSIM score between samples were calculated
for each epoch. The samples from different class than anchor
class with the highest SSIM score are considered for negative
samples. Fig. 12 shows a sample example of quadruplet pair
with two negatives.

The distance metric is computed with a L2 norm (euclidean)
which compares the feature embedding vectors element wise
with an uniform weighting to each values. Considering the
nature of the training data, i.e micro-Doppler based signatures
from VRUs, small changes in Doppler frequency from the
intra-class lead to an unique identification of target. At the
same time, uniform weighting fails to find outliers within
a small difference of the feature embedding which is usual
the case for intra-class VRUs. Thus, the distance function
is learned during the network training. For this purpose,
a 3 layered multi-layer perceptron (MLP) based architecture
is designed and optimized using the principle of siamese
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FIGURE 13. A detailed illustration of the inference phase of the proposed
framework having an integrated classification and tracking algorithm
combined with the Bayesian knowledge over learned mean and variance
over feature embedding.

networks. The ¢(.) function in Eq. 9 is the latent output
from encoder. Further, the network’s classification accuracy
and confusion matrix are evaluated in the same way as
before, using a k-NN classifier over the mean embedding.
The network achieves an average accuracy of 85.04%.

It is also evident to note that the nature of clusters follows
the nature of classes and sub-classes. Where corresponding
data from the cyclist model follows the strong correlation
between each other, it makes it hard to push their cluster
apart from each other (3,4, 5). Additionally, the Bayesian
approximation at the latent space makes learned embedding
continuous. This regularizes the metric loss function, relaxes
the distance learning and restricts the granularity between the
class clusters.

While L2 — norm based metric is used to calculate the
distance between the class-embedding for TNN and TVAE,
a pre-trained metric neural network is used for QVAE.
Section VI describes the details about the proposed integrated
framework for a continuous classification and tracking of the
target. To show the advantage and robustness of integrating
feature embedding as an appearance model, different learned
embeddings (TNN, TVAE, QVAE) are used. The results are
described in Section VII in detail. It is important to note that
the design and choice of the feature extraction could further
be improved using different architectures or optimization
functions. Additionally, instead of approximating Bayesian
inference from a point-estimate NN, a probabilistic NN can
be used. However, this paper demonstrates advantage of the
proposed integrated framework in terms of robustness of
target tracking and improved accuracy of target classification
over different feature extractor.

VI. PROPOSED INTEGRATED FRAMEWORK

Fig. 13 illustrates an overview of the proposed framework for
a continuous localization and classification of the detected
target. This is done by augmenting the state vector of the
tracker by a target’s feature embedding as appearance model
in combination with the target’s localization as motion model,
described in Section VI-A. In consequence, false alarms are
suppressed by using both detection and classification gating.
In addition, the framework also enables a complete Bayesian
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inference by using the mean and variance over detection,
as described in Section III and corresponding target’s fea-
tures, as mentioned in Section V. As a result, the robustness of
the framework is further improved by leveraging the Bayesian
information associated with the input and predicted state vec-
tor and by performing data association, as discussed in sub-
section VI-B. The framework includes multiple processing
blocks of which target detection block provides measurement
data on the target’s localization (Z™(u, o)) to the tracker.
The encoder block (g(¢)) extracts appearance embedding
(E™(u, 0)) and augments the tracker state vector with it for
each frame. The tracker (an UKF in our case), uses these
information to estimate the new position of the target and
classifies the target into the defined category using a k-NN
classifier. The integration of the appearance model together
with the gating and data association are described below.

A. STATE VECTOR AND FILTERING

Unlike a point estimate based encoder, the variational encoder
maps the Doppler spectrogram as input to a distribution
over a plausible latent embedding (i.e a feature embedding).
Thus, it returns both mean (confidence El’f) and variance
(uncertainty E]') over the feature embedding. The variance
over the embedding vector is used for updating the state
uncertainty corresponding to the appearance in the Kalman
filter, as explained in algorithm 1. The UKF assumes a Gaus-
sian random variable for the distribution of the state vector.
Thus, the integration of the classifier output into the tracker
facilitates the processing in obtaining not only the value of
the current state of the classification but also the uncertainty
associated with the state. Considering u; as the mean embed-
ding of class i with M as the total dimension of the assumed
embedding vector, the modified augmented state vector (x,;)
of the tracker can be represented as Eq. 10.

T
Xa=[Px Py v Az un  p2 mim]
T

gxa) = [pf  py VAL un” win”]

(10)

Target’s localization parameter is represented by lateral (Py),
longitudinal position (Py), velocity (v) and azimuth angle
(Az). Even though Az can be estimated from P, and Py, Az
is choosen to be part of state vector [25]. This is due to fact
that the tracker estimate is not a point estimate but a Gaussian
distribution with mean and variance. As a result, to estimate
Az, the formulation need to use unscented transformation
(using sigma points) or Taylor expansion (as in EKF) from the
distribution of both P, and P,. The process model accounts
for the state transition or the prediction into the next time
step. The process model transformation for x is dictated by
the CV model and the augmented parameters are obtained by
applying the non-linear process model transformation g(-).

B. TARGET ASSOCIATION
The problem of data association plays a critical role in
the suppression of false alarms by associating the uncertain
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measurements to certain tracks. As a result, a gating opera-
tion is defined before updating the prediction for the current
measurement. This involves a track creation, maintenance
and deletion for single or multiple targets. The accuracy of
data association relies on the choice of the distance met-
ric which can be grouped into Bayesian or non-Bayesian
based on the nature of the data. Both, measurement (y,(;‘)kfl)

and sigma-point transformed prediction (x,i'l)kfl) follow a
Gaussian distribution, having a mean (9, x) and a covari-
ance (Pi| 1" P"k| ©_1)» respectively in algorithm 1. Therefore,
the variance over posterior and observation is used for the data
association.

Additionally, due to the nature of the state vector (distribu-
tion than point), a Mahalanobis distance as the association
metric is used for the computing distance. This acts as a
multivariate Euclidean norm which is described in Eq. 11. It
shows that the Mahalanobis distance is a function of both the
mean and covariance of the predicted state vector.

d= \/(5‘18|)k—1 _yl(<l|)k—1)TPZl|k—1 l(;clg?k—l _yl(cll)k—l)’ (I
Here, )AC/(<Z|)1<—1 is the current measurement and yx—1, Pi‘l i1
are the mean and process covariance model of the predicted
state vector at a particular time step. The distance d is
chi-square distributed with n, degrees of freedom, where n,
is the dimension of the state vector which is 4 for localization
and 16 for feature embedding. The measurement is associated
with a particular track state only if the Mahalanobis distance
is lesser than a chosen threshold. The new augmented state
brings two different modalities (motion and appearance) into
consideration. Thus, different thresholds for each modality
are modelled which in return improves the gating operation.
Overall, a threshold of 0.75 for the localization and 2.5 for
the appearance model is considered. This helped to remove
noisy outliers for target’s localization and feature embedding
(used for classification) from being associated to the states of
the tracker.

VII. RESULTS AND DISCUSSION

Considering the accuracy and the ability to learn distinct clus-
ters for each class over the embedding space, the QVAE based
training framework gives a clear indication for the choice
of the feature extraction approach. Whereas, to get a better
understanding on the advantages of the proposed framework
over a conventional multi-target tracking (MTT) framework,
all the feature extractors (TNN, TVAE, QVAE) are evaluated
in an integrated framework. The extractors are thereby opti-
mized using the metric learning. Additionally, a pre-trained
feature extractor is evaluated on the micro-Doppler signatures
for a particular target over a distinctly different non-linear
trajectory, as described in Fig. 4(b).

Due to high variability in the nature of the training envi-
ronment (architecture, data-sets, hyper-parameters), a direct
comparison of the proposed framework with different meth-
ods described in the literature is not feasible. As a result,
a direct bench-marking of the framework is evaluated for
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FIGURE 14. t-SNE plot over the feature embedding using (a) TNN,

(b) TVAE and (c) QVAE based feature extractor. The left column clusters
refer to latent appearance embedding from feature extractor and the
right column shows an improvement in the appearance embedding for
corresponding extractor when integrated inside the tracker.

inference phase using a NVIDIA Quadro P2000 GPU-based
system. While the encoder part of the network requires 4.7 ms
to extract the Gaussian latent feature embedding, the inte-
grated tracker takes 3.5 ms for the estimation of new state
vector. The evaluation of the integrated framework is done
for three (homogeneous and heterogeneous) target classes,
containing either all pedestrian or cyclist or a mixed class.
During the simulation, the initial position of the targets is
adjusted in such a way that each target faces partial or com-
plete occlusion from either one of the targets, resulting in
miss-detections. This helped to analyze the robustness of
the integrated appearance model over the stand-alone motion
model. A constant velocity model for pedestrian and cyclist
classes are used through the experiments. The performance of
the tracker is evaluated in three folds: the classification accu-
racy, localization precision and target association. Each of
them is evaluated and discussed in the following paragraphs.

A. CLASSIFICATION ACCURACY
As mentioned in Section V, the target classification accu-
racy is evaluated using a k-NN classifier. In addition to the
feature embedding over measurement Doppler spectra, target
classification is also evaluated over the tracker’s estimated
feature (augmented) state vector.

As the first 20 frames are used for a feature initialization
buffer, the classification accuracy is evaluated from the 20th
frame using the principle of a sliding window over each
radar frame. For targets having a miss-detection, the Doppler
embedding is taken over from the last predicted value of
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TABLE 5. Detailed quantitative analysis on the quality of the clustering
and the feature embedding. It is estimated from the feature extractor and
the corresponding integrated tracker framework.

Clustering Feature Triplet TVAE QVAE
Metric (TNN)
Silhouette Embedding 0.25 0.23 0.37
score
Proposed 0.38 0.39 0.71
Tracker
Davies- Embedding 1.56 1.47 1.07
Bouldin
score Proposed 0.99 0.94 0.38
Tracker

the tracker. A similar approach is also applied during the
localization estimation, as discussed in paragraph VII-B.

Together with the classification accuracy, both a visual and
quantitative analysis is done over the measurement and esti-
mated feature embedding. Fig. 14 gives a visual illustration
of the separation between the target classes using a t-SNE
over the feature embedding. While the left column of the
plot shows the 2D feature clusters from a pre-trained feature
extractor over a new trajectory, the right column shows esti-
mated features from the tracker, leading to an improvement in
the clustering. In consequence, also the target classification
is improved. The target classes within the pedestrian group
(female, male, neural) and cyclist (cyclist1, cyclist2, cyclist3)
are indicated by a color coding, using blue, purple, light
red and dark-red, dark-green and light-green, respectively.
These target classes are numbered as 0, 1, 2, 3,4, 5,, see the
legend of Fig. 14. As mentioned before, the low variations in
between the clusters, i.e between pedestrian (0,1,2) or among
cyclist (3,4,5), show correlation between their appearance
model. Additionally, the cyclist clusters (3,4,5) show stronger
correlation in contrast to the pedestrian ones. This is due
to limitations on the dynamics of its physical model and
the contained reflection points out of the Matlab. Illustrating
the relative improvement on distinct clustering of feature
embedding by tracker in comparison to feature extractor,
Fig. 14 helps to understand the generalization of the inte-
grated tracker performance for a given feature embedding.

Additionally, a quantitative analysis over the feature clus-
ters of Fig. 14 is evaluated. In this paper, silhouette and
Davies-Bouldin coefficients are used to measure the clus-
tering scores. The silhouette coefficient gives a similarity
measure between a sample and its own cluster (cohesion)
in comparison to other clusters (separation). The silhouette
coefficient lies in the range of —1 to 1. Higher values indicate
a better match of the sample to its own cluster. On the other
hand, the Davies-Bouldin coefficient indicates the distance
between clusters by estimating the distance of a sample
between with-in and the neighboring clusters. A typical value
for the Davies-Bouldin score lies in the range of 0 to 1, where
lower values indicate a better clustering.

Similar to the visual understanding, Table 5 shows
a quantitative improvement in target classification. Both,
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TABLE 6. Detailed quantitative analysis on the accuracy of target
classification using feature embedding estimated from the feature
extractor and the corresponding integrated tracker framework.

Clustering Feature Triplet TVAE QVAE
Metric (TNN)
Classification Embedding  71.2%  73.85%  85.04%
Accuracy
Proposed 79.2% 89.01% 99.22%
Tracker

the Davies-Bouldin and silhouette scores presented in Table 5
are an average value over all target class for all the test sam-
ples. The silhouette scores for estimated embedding (from
tracker) for Triplet is improved by ~ 50% i.e. from 0.25 to
0.38. Similarly, TVAE based tracker shows an improvement
by ~ 70% which is from 0.23 to 0.39. Further, following
similar behavior, QVAE also shows an improvement of ~
90% in silhouette score and leading to 0.71 from 0.37. In
addition to it, the Davies-Bouldin coefficients for Triplet and
TVAE are reduced by ~ 35%. Similarly, the Davies-Bouldin
coefficients for QVAE based estimated feature embedding is
reduced from 1.07 to 0.38 i.e. by ~ 65%. This indicates a
better separability in the target features, resulting in improved
classification accuracy, as shown in Table 6.

As seen from Fig. 14 and Table 5, the detailed evaluation
on the confusion matrix together with the localization and the
association error is done using QVAE as a feature extrac-
tor in an integrated framework. Fig. 15(a) gives a deeper
insight on inter- and intra-class accuracy together with the
false-alarm over the feature calculated from the QVAE. In
contrast, Fig. 15(b) shows the improvement in accuracy by
avoiding miss-classification with-in the target classes.

B. LOCALIZATION ACCURACY

The tracker’s state vector brings both target features for
classification and target’s motion for localization. In order
to access and compare the localization accuracy of the pro-
posed framework for a multi-target tracking (MTT) sce-
nario, the similarity between the estimated and the ground
truth (from simulation environment) is evaluated by using
an Euclidean norm. Considering the pedestrian sub-group
as a target class, Fig. 16(a) displays the localization error
between the ground truth and the estimated target’s position.
While the localization error for male-pedestrian class gets
higher between the frames 25-35 and 110-—120, whereas
female and neutral-pedestrian class shows higher localization
error between 130— 140 frames. This is due to the fact that
measurement data for estimated target was missing due to
occlusion during cross-over.

In contrast to this, the proposed framework with an inte-
grated augmented feature embedding does not fluctuate much
and therefore, helps the tracker to better associate with new
measurements. This can be seen in Fig. 16(b), where the
state vector (combined localization and embedding) error of
the frames between 25-35, 110-120, 130—-140 remained
within a range of 0.1-0.2.
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FIGURE 15. Confusion matrix to illustrate the improvement in the miss
classification from (a) QVAE based on feature extractor in comparison to
(b) proposed;QVAE integrated framework.

C. ASSOCIATION
The error for tracker depends, intuitively, on the target esti-
mation besides the cost of missed or false target associations.
The advantage of an integrated appearance model is to avoid
such situations, especially in case of a cross-over where a
target is occluded or miss-detected. Fig. 17 illustrates a com-
parative analysis of the target association with and without
the augmented state vector. The ground truth of the target
trajectory is plotted using a circle (o) and the estimated trajec-
tory is shown using a star (). The targets female-male, male-
pedestrian, and neutral-pedestrian with their initial class-ID
0, 1, 2 are highlighted in orange, purple and yellow color,
respectively.

Although the tracker’s motion state vector is modeled in
polar coordinates, the trajectory is visualized on 2D Cartesian
coordinates. The x-axis represents the lateral position Py of
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FIGURE 17. A comparative visual understanding on the data association
from the (a) conventional tracker with the motion model and the

(b) proposed integrated framework having the motion and appearance
modality.

the target and the y-axis represents the longitudinal position
Py of the target. Fig. 17(a) shows the estimated trajectory and
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target association for a conventional tracker having only the
motion model. As a result, during the cross-over, multiple
false associations occurred between male-pedestrian (purple)
- female-pedestrian (orange) and neutral-pedestrian (yellow)
- male-pedestrian (purple). In contrast to this, Fig. 17(b),
shows the estimated trajectory and its associated target using
our proposed integrated framework which helps to suppress
the false associations during the cross-over situation. Unlike
in conventional tracker where only localization state vector
is considered for association, the proposed framework uses
3-stage target association formulation. It considers localiza-
tion, embedding and combined augmented state vector for
calculation of Mahalanobis distance matrix. Later, all three
matrix are combined using OR operation. In case of multiple
association, distance based ranking is used to reduce false
assignment. In consequence as illustrated before in fig. 17(b),
the proposed integrated framework can be seen as an efficient
and robust framework for a continuous target localization
and classification with an improved classification accuracy
compared to the conventional approaches.

D. SUMMARY

The article proposes a novel framework to integrate both
motion and appearance modalities of the target into the
tracker. This is done by modifying state vector with fea-
ture embedding together with localization (x-range, y-range,
velocity and angle) parameters. The target of interest consid-
ered throughout the experiment are pedestrian and cyclist as
they face lot of challenges in reliable detection (due to smaller
RCS) and classification (due to high correlation between
their signatures). As a result, in this article author used the
concept of distance metric learning applied over a latent
feature vector. This helped the network distinguish and learn
distinct features for each class. Moreover, the concept of
variational inference is applied together with metric learning,
making feature extraction fully Bayesian. The Bayesian infer-
ence from the feature extractor helped to integrate detection,
classification and tracking into once framework. The contin-
uous estimation of the features from the tracker helped to
improve the classification accuracy by temporal smoothing
over embedding. Additionally, during cross-over situation
having partial or complete occlusion of target, framework
helps to suppress false association between detection and
estimation.

The entire work is done in a simulation environment to
demonstrate the applicability of novel proposed framework.
The framework uses micro-Doppler signatures as raw input
data for the feature learning. As the estimation of Doppler
spectra suffers from a time-frequency resolution trade-off,
this approach gets challenging for scenarios with targets
having very high varying Doppler frequency components.
Those require either an adaptive sampling frequency or a
wavelet transform. On the other hand, the Doppler spec-
tra directly depend on the detection of micro-motions from
the target, which then inherently depends on the pose and
the view angle of the target w.r.t the radar. As a result,
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the diversity within Doppler spectra for a particular target
class becomes very large and gets very challenging in reality.
However, learning the temporal information over Doppler
spectra could help to learn and model more optimized appear-
ance model.
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