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ABSTRACT The k-means algorithm with its extensions is the most used clustering method in the literature.
But, the k-means and its various extensions are generally affected by initializations with a given number
of clusters. On the other hand, most of k-means always treat data points with equal importance for feature
components. There are several feature-weighted k-means proposed in literature, but, these feature-weighted
k-means do not give a feature reduction behavior. In this paper, based on several entropy-regularized terms
we can construct a novel k-means clustering algorithm, called Entropy-k-means, such that it can be free
of initializations without a given number of clusters, and also has a feature reduction behavior. That is,
the proposed Entropy-k-means algorithm can eliminate irrelevant features with feature reduction under
free of initializations with automatically finding an optimal number of clusters. Comparisons between the
proposed Entropy-k-means and other methods are made. Experimental results and comparisons actually
demonstrate these good aspects of the proposed Entropy-k-means with its effectiveness and usefulness in
practice.

INDEX TERMS Clustering, k-means, entropy, feature weights, feature reduction, number of clusters,
entropy-k-means.

I. INTRODUCTION
Clustering is a powerful tool in data analysis. It is used
for discovering the cluster structure in data sets with the
greatest similarity within the same cluster, but the greatest
dissimilarity between different clusters. Generally, cluster
analysis became a branch of statistical multivariate analy-
sis, and it is an unsupervised learning approach to machine
learning [1], [2]. In clustering, partitional methods are the
most used. The simplest and popular partitional method was
first proposed by MacQueen [3] in 1967, called a k-means
clustering algorithm. The k-means clustering has been widely
extended and applied in various areas [4]–[9]. Bai et al. [4]
applied k-means in fast density clustering algorithm.
Liu et al. [5] considered the extended genetic k-means.
Jung et al. [6] gave a reinforce k-means for lowering data
cost. Yu et al. [7] used self-paced learning to extend
k-means. Han et al. [8] used k-means as vector quantiza-
tion and Wang et al. [9] used k-means as fault recognition
model for rotating machinery. One of extensions is to use

The associate editor coordinating the review of this manuscript and

approving it for publication was Huiling Chen .

feature weights, such as weighted k-means (WKM) [10]
and entropy-weighted k-means (EWKM) [11]. Although
these feature-weighted clustering algorithms may improve
the performance of k-means, they do not consider a feature-
reduction behavior. In general, if there exist irrelevant fea-
tures during clustering processes, the clustering algorithm
must take more computational time and even yields incor-
rect clustering results. Thus, a feature-reduction schema for
k-means clustering is very important.

On the other hand, most of these k-means algorithms are
usually affected by initializations with a given number of
clusters a priori. However, the number of clusters is generally
unknown. In this case, validity indices can be used to find
a good number of clusters. Many cluster validity indices for
the k-means clustering had been proposed in the literature.
These are Bayesian information criterion (BIC) [12], Akaike
information criterion (AIC) [13], Dunn’s index (DU) [14],
Davies-Bouldin index (DB) [15], Silhouette Index (SI) [16]
and Calinski and Harabasz index (CH) [17]. For an efficient
estimation of the number of clusters, Pelleg and Moore [18]
extended k-means to X-means by using local decisions for
cluster centers in each iteration of k-means with splitting
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themselves to get better clustering. However, users need to
specify a range of cluster numbers in which the true cluster
number reasonably lies and then a model selection, such as
BIC orAIC, is used to do the splitting process. Although these
k-means clustering algorithms can find the number of clusters
by cluster validity indices or X-means, they use extra iteration
steps outside the clustering algorithms.

Another approach for solving the optimization problem in
clustering is by considering metaheuristics algorithms such
as krill herd (KH) [19]–[21] and hybrid swarm intelligence
clustering ensemble (HSICE) [22]. The KH method was
constructed based on the best krill individual in the popu-
lation by Gandomi and Alavi [19], and then Li et al. [20]
introduced a new version of KH with elitism strategy to
improve the parameter estimation and simultaneously solve
the optimum global issue in clustering problem. HSICE
by Logesh et al. [22] combined the BrainStorm optimization
algorithm and immune genetic algorithm to generate the
diversified list of points of interest. Indeed, both KH and
HSICE can solve the optimization problem in clustering,
but their results still depend on the parameter selection and
have high time-complexity. In this sense, choosing parameter
issues and initialization assignments in clustering algorithms
are sensitives and not guarantee an improvement for final out-
puts [21]. Recently, Yang and Sinaga [23] proposed an unsu-
pervised k-means (U-k-means) clustering algorithm. The
U-k-means algorithm [23] is free of initializations, parameter
selection and also simultaneously find an optimal number of
clusters during iteration steps.

However, most extensions of k-means, including these
weighted k-means and U-k-means, do not give feature-
reduction behaviors. In this paper, we extend the U-k-means
algorithm such that it can eliminate irrelevant features with
feature reduction under free of initialization and parameter
selection with simultaneously finding the number of clus-
ters. We call it the entropy-regularized k-means (Entropy-k-
means). This is because we use several entropy-regularization
terms to create learning schemawith feature reduction behav-
iors and also automatically finding an optimal number of
clusters. Totally, our approach includes the following ways.
(i) First, we allocate all the data point as the cluster centers;
(ii) After updating the feature weights, we decide to discard
the unimportant features during clustering processes; (iii)
The important features will be implemented to determine the
number of clusters; (iv) After some iterations, our clustering
algorithm will reduce the number of clusters by using our
proposed defining criteria; (v) For the data sets in which pro-
duced some not available values for updated cluster centers in
the second iteration, we replaced the not available values with
the median of mean available values of that cluster centers.

The remainder of this paper is organized as fol-
lows. In Section II, we first review some related works.
In Section III, we first construct the learning schema
based on entropy regularization terms and then extend the
U-k-means clustering algorithm to the Entropy-k-means
based on a feature-weight entropy such that the proposed

Entropy-k-means clustering algorithm has feature-reduction
behaviors. The computational complexity of the proposed
Entropy-k-means algorithm is also analyzed. In Section IV,
experimental results and comparisons with some existing
methods using synthetic and real data sets are used to
demonstrate the effectiveness and usefulness of the proposed
Entropy-k-means clustering algorithm. Finally, conclusions
are stated in Section V.

II. RELATED WORKS
In this section, we give a brief review of the related works
in the literature, such as k-means, weighted k-means (WKM)
[10], entropy-weighted k-means (EWKM) [11], and unsuper-
vised k-means (U-k-means) [23] algorithms. These related
works will be also compared with our proposed Entropy-k-
means algorithm in the experiments and comparisons section.

A. THE K-MEANS CLUSTERING ALGORITHM
In this paper, matrices are written as uppercase letters and
vectors are written as lowercase letters. Let X = {x1, . . . , xn}
be a data set in a d-dimensional Euclidean space Rd , A =
{a1, . . . , ac} be the c cluster centers with its Euclidean norm
denoted by dik = ‖xi − ak‖. Let U = [µik ]n×c, where µik
is a binary variable (i.e. µik ∈ {0, 1}) indicating if the data
point xi belongs to k-th cluster, k = 1, · · · , c. The k-means
algorithm is iterated through the updating equations for clus-
ter centers and memberships by minimizing the k-means
objective function J (U ,A) =

∑n
i=1

∑c
k=1 µik ‖xi − ak‖

2 as
ak =

∑n
i=1 µikxij

/∑n
i=1 µik and

µik =

 1 if ‖xi − ak‖2 = min
1≤k≤c

‖xi − ak‖2

0, otherwise.

B. THE WEIGHTED K-MEANS CLUSTERING ALGORITHM
Furthermore, Huang et al. [10] considered an extension of
k-means by adding feature weights for data points, called the
weighted k-means (WKM). Let W =

[
wkj
]
c×d , where wkj is

the j-th feature weight in the k-th cluster center. The WKM
objective function in Huang et al. [10] is as

JWKM (U ,A,W ) =
c∑

k=1

n∑
i=1

d∑
j=1

µik (wkj)β (xij − akj)2 (1)

where β < 0 or β > 0 is a power parameter for feature
weights. They also considered to remove important variables
by choosing variables with small weights for heart disease
and Australian credit card data sets to obtain better results.
Furthermore, Jing et al. [11] considered subspace clustering
that is especially useful for high dimensional sparse data by
using a feature-weighting approach. Jing et al. [11] proposed
entropy-weighted k-means (EWKM) by adding weighted
entropy term such that it can simultaneously minimize the
within cluster dispersion andmaximize the negative weighted
entropy. Since feature weights represent the probability of a
dimensional contributing to clustering results, it is used to
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determine subsets of important dimensions in each cluster.
The EWKM objective function [11] is

JEWKM (U ,A,W ) =
c∑

k=1

n∑
i=1

d∑
j=1

µikwkj(xij − akj)2

+ γ

c∑
k=1

d∑
j=1

wkj logwkj (2)

where γ ≥ 0 is a parameter to control the size of fea-
ture weights in each cluster. They applied EWKM to high
dimensional sparse data, such as text clustering and business
transaction data, where many attributes have zero-dimension.

C. THE U-K-MEANS CLUSTERING ALGORITHM
In general, the k-means algorithm and its extensions are
always affected by initializations with a given number of
clusters a priori. To solve these drawbacks, Sinaga and
Yang [23] recently proposed the unsupervised k-means
(U-k-means) clustering algorithm. The U-k-means algorithm
extend k-means to be free of initializations with automati-
cally finding an optimal number of clusters. In Sinaga and
Yang [23], they consider the proportions αk in which the αk
term is seen as the probability of one data point belonged
to the kth class. Sinaga and Yang [23] gave the U-k-means
objective function as follows:

JU−k−means(U ,A, α)

=

n∑
i=1

c∑
k=1

µik ‖xi − ak‖2 − βn
c∑

k=1

αk lnαk

− γ

n∑
i=1

c∑
k=1

µik lnαk (3)

The U-k-means algorithm is iterated through the updating
equations for cluster centers ak , memberships µik and pro-
portions αk by minimizing the U-k-means objective function
JU−k−means(U ,A, α). If t denotes the iteration number in
the algorithm with proportions α(t+1)k and α(t)k , then β is
estimated with

β(t+1) = min

∑c
k=1 exp(−ηn

∣∣∣α(t+1)k − α
(t)
k

∣∣∣)
c

,

1− max
1≤k≤c

(
1
n

∑n
i=1 zik

)
(− max

1≤k≤c
α
(t)
k
∑c

k ′=1 lnα
(t)
k ′ )


and the parameter γ is set as γ (t) = e−c

(t)/250.
III. THE PROPOSED ENTROPY-K-MEANS CLUSTERING
ALGORITHM
To construct the k-means clustering algorithm with free of
initializations and automatically determine the number of
clusters by considering the feature reduction schema, called
unsupervised k-means with considering the feature reduction

schema, we need to consider a penalty termwith entropy con-
cept. We first consider proportions αk in which the αk term is
seen as the probability of one data point belonged to the kth
class. Hence, we use −ln αk as the information in the point
belonged to the kth class, and so −

∑c
k=1 αk lnαk becomes

the average of information. In fact, the term−
∑c

k=1 αk lnαk
is the entropy over proportions αk . When αk = 1/c, ∀k =
1, 2, . . . , c, we say that there is no information about αk .
At this point, we have the entropy achieve the maximum
value. Therefore, we add this term to the k-means objective
function J (U ,A,W ) as a penalty.We then construct a schema
to estimate αk by minimizing the entropy to get the most
information for αk . To minimize −

∑c
k=1 αk lnαk is equiv-

alent to maximizing
∑c

k=1 αk lnαk . For this reason, we will
add the penalty term

∑c
k=1 αk lnαk to the k-means objective

function.
Furthermore, to exclude some irrelevant feature compo-

nents during clustering processes, we next borrow the idea
from the paper about Feature-reduction Fuzzy clustering
algorithm (see Yang and Nataliani [24]). They considered
W =

[
wj
]
1×d be with wj as a feature weight of the j-

th feature. δj is known as the parameter to control the
feature weights. At this point, we add the feature weight
entropy (n/c)

∑d
j=1 wj ln δjwj as the third penalty term for

the k-means objective function J (U ,A, α,W ). The con-
stant n/c use to control the term. Thus, we propose the
entropy-regularized k-means (Entropy-k-means) objective
function as follows:

J (U ,A, α,W ) =
n∑
i=1

c∑
k=1

µikwjδj
(
xij−akj

)2
−βn

c∑
k=1

αk lnαk

− γ

n∑
i=1

c∑
k=1

µik lnαk +
n
c

d∑
j=1

wj ln δjwj

(4)

subject to
∑c

k=1 µik = 1, µik ∈ {0, 1} ,
∑d

j=1 wj = 1,wj ∈
[0, 1] .
Here, αk presents the probability of a data point belonged

to the kth class. We know that, when β and γ in (4) are zero,
it becomes the weighted k-means. In summary, the objective
function (4) has four terms, where the first and fourth terms
in (4) consist of a weighted k-means clustering. The second
and third terms in (4) are known as primary terms in our
scenario to reveal the number of clusters. As it can be seen,
these two terms ofµik and αk are controlled by two balancing
parameters β and γ . The combination of the two parameters
is essential to accelerate the proposed entropy k-means algo-
rithm to determine the number of clusters. The fourth term
is used to find the importance of feature components. The
constant value of (n/c) is used to control the distribution of
feature components in revealing the structure of data to signif-
icantly determine an optimal number of clusters by excluding
these unimportant features during clustering processes. The
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Lagrangian of (4) is

J (U ,A, α,W , λ1, λ2, λ3)

=

n∑
i=1

c∑
k=1

µikwjδj
(
xij − akj

)2
−βn

c∑
k=1

αk lnαk − γ
n∑
i=1

c∑
k=1

µik lnαk+
n
c

d∑
j=1

wj ln δjwj

+ λ1

(
c∑

k=1

µik − 1

)
− λ2

(
c∑

k=1

αk − 1

)

− λ3

 d∑
j=1

wj − 1

 (5)

By considering (5), the updating equations for member-
ships, cluster centers, and mixing proportions can be found.
The updating equation for the Entropy-k-means objective
function J (U ,A, α,W ) with respective to αk is as follows:

ak =
∑n

i=1
µikxij

/∑n

i=1
µik (6)

By taking the partial derivative of (5) with respect to µik , and
setting them to be zero. Thus, the updating equation for µik
is obtained as follows:

µik =



1, if
d∑
j=1

δjwj ‖xi − ak‖2 − γ lnαk

= min
1≤k≤c

d∑
j=1

δjwj ‖xi − ak‖2 − γ lnαk

0, otherwise.

(7)

Similiarly, we have ∂ J̃
∂αk
= −βn (lnαk + 1) − γ

∑n
i=1

µik
αk
−

λ2 = 0. By multipying with αk , we obtain

−βnαk (lnαk + 1)− γ
∑n

i=1
µik − λ2αk = 0 (8)

and then −
∑c

k=1 nβαk lnαk −
∑c

k=1 nβαk − γ
∑c

k=1∑n
i=1 µik −

∑c
k=1 λ2αk = 0. We get

λ2 = −nβ
∑c

k=1
αk lnαk − nβ − nγ (9)

By substituting (9) to (8), we have −βnαk (lnαk + 1) −
γ
∑n

i=1 µik −
(
−nβ

∑c
k=1 αk lnαk − nβ − nγ ) αk = 0.

Thus, the updating equation for αk can be obtained as follows:

α
(new)
k =

1
n

n∑
i=1

µik+
β

γ
α
(old)
k

(
lnα(old)k −

c∑
s=1

α(old)s lnα(old)s

)
(10)

We should mention that (10) is important for our proposed
Entropy-k-means clustering method in calculating the opti-
mal number of clusters. In (10),

∑c
s=1 αs lnαs is the weighted

mean of lnαk with the weights α1, . . . , αc. For the kth mix-
ing proportion α(old)k , if lnα(old)k is less than the weighted
mean, then the new mixing proportion α(new)k will become
smaller than the old α(old)k . That is, the smaller proportion

will decrease and the bigger proportion will increase in the
next iteration, and then competition will occur. This situation
is similar as the formula (11) in Figueiredo and Jain [25].
If αk ≤ 0 or αk < 1/n for some 1 ≤ k ≤ c(old), they are
considered to be illegitimate proportions. In this situation,
we discard those clusters (or set those proportions as zero)
and then update the cluster number c(old) to be

c(new) = c(old) −
∣∣∣{α(new)k

∣∣∣α(new)k < 1/(n× (n− 1)),

k = 1, . . . , c(old)
}∣∣∣ (11)

where |{}| denotes the cardinality of the set {}. After updating
the number of clusters c, the remaining mixing proportion αk ′
and corresponding µik ′ need to be re-normalized by

αk ′ = αk ′

/∑c(new)

s=1
αs (12)

µik ′ = µik ′

/∑c(new)

s=1
µis (13)

A new problem is how to learn the values of the param-
eters γ for the penalty terms

∑n
i=1

∑c
k=1 µik lnαk and∑c

k=1 αk lnαk , respectively. By considering some decreas-
ingly learning rates, such as e−c

∗

, e−c
∗/300, e−c

∗/600, and
e−c

∗/900, we know that e−t decreases faster but e−t/600 and
e−t/900 decreases slower. Since

∑n
i=1

∑c
k=1 µik lnαk has

effect on membersips µik , wj and mixing proportions αk ,
we assume that γ is not set to decrease too slow or too fast.
Therefore, we set γ as

γ (t) = e−c
∗/300 (14)

Similarly, by taking the partial derivative of (5) w.r.t wj,

we obtain the equation ∂ J̃
∂wj
=

c∑
k=1

n∑
i=1
µikδj

(
xij − akj

)2
+

n
c(

ln δjwj + 1
)
+ λ3 = 0. Thus, the updating equation for wj

can be obtain as follows:

wj =
1
δj
exp


−c

c∑
k=1

n∑
i=1
µikδj

(
xij − akj

)2
n


/

d∑
q=1

1
δq

× exp


−c

c∑
k=1

n∑
i=1
µikδq

(
xiq − akq

)2
n

 (15)

Furthermore, in order to retain the constraint
∑d (new)

j′=1 wj′ = 1,
we adjust wj′ by

wj′ = wj′
/∑d (new)

q=1
wq (16)

Under competition schema setting, the Entropy-k-means
algorithm can automatically determine the optimal number of
clusters with considering the feature reduction schema. In our
Entropy-k-means clustering algorithm, the parameter β can
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help us to control the competition. We discuss the variable β
as follows. We can derive that

−e−1 ≤ αk lnαk < 0 (17)

If 0 < αk ≤ 1, ∀k = 1, 2, . . . , c, and let

E =
c∑

s=1

αs lnαs < 0 (18)

Then we have

αkE = αk
c∑

s=1

αs lnαs < 0 (19)

Using (17) and (19), we have that

−e−1β < βαk (lnαk −
c∑

s=1

αs lnαs) < β(−αkE) (20)

Under the constraint
∑c

k=1 αk = 1, and only when αk < 1/2,
we can have that (lnαk−

∑c
s=1 αs lnαs) < 0. To avoid the sit-

uation where all αk ≤ 0, the left hand of inequality (20) must
be larger than −max{αk |αk < 1/2, k = 1, 2, · · · , c}. We
now have an elementary condition of β as follows:−e−1β >
−max{αk |αk < 1/2, k = 1, 2, · · · , c}. Thus, we have

β < max{αke|αk < 1/2, k = 1, 2, · · · , c} < e/2 (21)

Therefore, to prevent β from being too big, we can use
β ∈ [0, 1]. Furthermore, if the difference between α(new)k and
α
(old)
k is small, then β must become large in order to enhance

its competition. If the difference between α(new)k and α(old)k is
large, then β will become small to maintain stability. Thus,
we define an updating equation for β as

β =

∑c
k=1 exp{−ηn|α

(new)
k − α

(old)
k |}

c
(22)

where η can be set to be min
{
1, tbt/2−1c

}
, where bac denotes

the largest integer that is no more than a.
Furthermore, we need to consider the restriction

of max
1≤k≤c

α
(new)
k ≤ 1. However, max

1≤k≤c
α
(new)
k ≤

max
1≤k≤c

(
1
n

∑n
i=1 µik

)
+
β
γ

max
1≤k≤c

α
(old)
k

(
ln max

1≤k≤c
α
(old)
k −

∑c
s=1

α
(old)
s lnα(old)s

)
and max

1≤k≤c

(
1
n

∑n
i=1 µik

)
+

β
γ

max
1≤k≤c

α
(old)
k(

ln max
1≤k≤c

α
(old)
k −

∑c
s=1 α

(old)
s lnα(old)s

)
< max

1≤k≤c

(
1
n

∑n
i=1 µik

)
+β

(
−

(
max
1≤k≤c

α
(old)
k

∑c
s=1 α

(old)
s lnα(old)s

))
. Thus, if max

1≤k≤c(
1
n

∑n
i=1 µik

)
− β max

1≤k≤c
α
(old)
k

∑c
s=1 α

(old)
s lnα(old)s ≤ 1,

then the restriction will be held. It follows that

β ≤

(
1− max

1≤k≤c

(
1
n

∑n
i=1 µik

))
(
− max

1≤k≤c
α
(old)
k

∑c
s=1 α

(old)
s lnα(old)s

) (23)

By combining (22) and (23), we obtain

β = min

∑c
k=1 exp(−ηn

∣∣∣α(new)k − α
(old)
k

∣∣∣)
c

,

1− max
1≤k≤c

(
1
n

∑n
i=1 µik

)
(− max

1≤k≤c
α
(old)
k

∑c
k ′=1 lnα

(old)
k ′ )

 (24)

Because the β can jump at any time, we let β = 0 when
the cluster number c is stable. When the cluster number c
is stable, it means c is no longer decreasing. In our setting,
we use all data points as initial means with µk = xk , i.e.
cinitial = n, αk = 1/cinitial,∀k = 1, 2, . . . , cinitial, as initial
mixing proportions, and we use wj = 1

/
d , ∀j = 1, . . . , d .

Another problem is how to estimate the value of δj in (4).
δj is a measure on selecting unimportant feature of feature
components. Largest values of δj will affect smallest feature
weights, while smallest values of δj will affect largest feature
weights. We first borrow the idea of coefficient of variance
(CV) in statistic that is defined asCV = σ

/
µ. The reciprocal

of CV is also known as signal-to-noise ratio (SNR) that is
widely used in quality engineering to evaluate the perfor-
mance of a system. SNR is defined as the ratio of average
received signal value to standard deviation of noise back-
ground, i.e. SNR = µ

/
σ (see [26]). Furthermore, in physics,

Fano factor (FF) [27], which can be seen as a similar CV, had
been proposed and defined as FF = σ 2

/
µ. If we consider

the reciprocal of Fano factor, that is similar as SNR being
the reciprocal of CV, then we have µ

/
σ 2, i.e. (mean/var).

In other words, the reciprocal of FF (i.e. the ratio of mean to
variance) can be used to describe the degree of clustered data.
The smaller dispersion represents the data would be closer
to the cluster center, while larger dispersion represents the
data is far from the cluster center. For sufficiently clustering
processes the larger dispersion is identified as unimportant
features which can be discarded to reduce feature dimensions
for more efficient clustering. To guarantee the ratio of mean
to variance for a data set being always positive, its absolute
value is taken. Therefore, we consider the estimate for δj as
follows:

δj =

∣∣∣∣mean(x)
var(x)

∣∣∣∣
j

(25)

To create a feature-reduction schema in our proposed
Entropy-k-means algorithm, we need to select the irrelevant
features via automatically adjust the feature weights during
clustering processes. In our construction, we use a threshold
to determine which feature(s) will be selected and discarded.
It is known that the data set has n data points, d dimension
of features, and c number of clusters. In our Entropy-k-
means schema, we consider (26) as a suitable threshold for
discarding these irrelevant features in the data set.

w(t)
≤ 1

/√
ncd (26)
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Otherwise, to discard those clusters in our Entropy-k-means
schema, we use (27) to adjust α(t) as

α(t) ≤
1

n (n− 1)
(27)

To be detailed, the γ and δj will be discussed in the next
section by using some experimental design.

Thus, the proposed Entropy-k-means clustering algorithm
can be summarized as follows:

Entropy-k-means algorithm
Fix ε > 0. Give initial c(0) = n, α(0)k = 1/n, a(0)k = xi,

wj = 1
/
d and initial learning rates β(0) = 1. Set t = 1.

Step 1: Compute δ(t)j using data points X by (25).
Step 2: Compute γ (t) by (14).
Step 3: Compute µ(t)ik using a(t−1)k , α(t−1)k , c(t−1), γ (t), δ(t)j ,

w(t−1)j by (7).

Step 4: Update w(t)j using δ(t)j , µ(t)ik , c
(t−1), and a(t−1)k

by (15).
Step 5: Discard the total dr number of these j features for
w(t) with w(t) ≤ 1

/√
ncd and set d (new) = d − dr .

Step 6: Adjust w(t) by (16).
Step 7: Update α(t)k with β(t−1), γ (t), µ(t)ik and α

(t−1)
k

by (10).
Step 8: Compute β(t) with µ(t)ik , α

(t)
k and α(t−1)k by (24).

Step 9: Update c(t−1) to c(t) by discard those clusters with
α
(t)
k ≤ 1/n (n− 1) and adjust α(t)k and µ(t)ik by (12) and (13).

IF t ≥ 60 and c(t−60) − c(t) = 0, THEN let β(t) = 0.
Step 10: Update a(t)k with c(t) and µ(t)ik by (6).
Step 11: Compare a(t)k and a(t−1)k .

IF max
1≤k≤c(t−1)

∥∥∥a(t)k − a(t−1)k

∥∥∥ < ε, THEN Stop.

ELSE t = t + 1 and return to Step 1.

IV. EXPERIMENTS AND COMPARISONS
In this section, we evaluate the performances of different γ
and δj to simultaneously find the optimal number of clus-
ters c with the feature reduction behavior by using some
experiments. We firstly generating three artificial data sets in
experiment 1 and simulating those three artificial data sets
to see the effectiveness our proposed Entropy-k-means in
improving the final clustering results. Then, eight real-world
data sets in experiment 2, such as SPECTF Heart, Flea,
Soybean small, Dermatology, Zoo, Soybean large, LSVT, and
Yale base 64×64 are used in the comparison studies. In those
two experiments, the performances of four validity indices
are described i.e., DU [14], DB [15], SI [16] and CH [17].
We compare the proposed Entropy-k-means to four validity
indices by using the original k-means. We further compare
the proposed Entropy-k-means to WKM [10], EWKM [11]
and U-k-means [23]. For measuring clustering performance,
accuracy rate (AR) with AR =

∑c
k=1 n (ck)

/
n is generally

used, where n (ck) is the number of data points that obtain
correct clustering for the cluster k , and n is the total number
of data points in the data set. The larger AR is the better
clustering results.

FIGURE 1. (a) A 2-D data set 1 (b) A 2-D data set 2 (c) A 2-D data set 3
(d) Data set 1 with a 2-D manifold plane and an embedded 1-D uniform
(e) Data set 2 with a 2-D 3-spherical planes and an embedded 1-D (f) Data
set 3 with a 2-D 10-spherical planes and an embedded 1-D uniform.

Experiment 1: In this experiment, we generated three arti-
ficial data sets as shown in Fig. 1. Fig. 1(a) has two manifold
clusters and a total of 900 points, namely as data set 1.
Fig. 1(b) has three spherical clusters, and a total number
of points are 800, namely as data set 2. While Fig. 1(c)
has ten spherical clusters, and a total number of points are
1200, namely as data set 3. To create the feature reduction
scheme, we add one more dimension in each dataset by
using uniform distribution. Without loss of generality, the
one-dimensional generated by uniform distribution stretch-
ing the two-dimensional datasets into three-dimensional data
sets, so that the additional feature component known as the
unimportant feature. For data set 1, we displayed a mixture
of two manifold and one-dimensional uniform distribution
in Fig. 1(d). For data set 2, we displayed a mixture of three
spherical clusters and one-dimensional uniform distribution
in Fig. 1(e).While for data set 3, we displayed amixture of ten
spherical clusters and one-dimensional uniform distribution
in Fig. 1(f). The important feature components for data set 1,
data set 2, and data set 3 coordinated as x1, and x2, while
unimportant feature coordinated as x3.
Simulation 1 (Entropy-k-Means Under Different γ and

δj): This simulation used to study the different γ and δj
implementation in Entropy-k-means clustering algorithm.
Table 1 summarizes the effectiveness of different γ and
δj to cluster the data sets in Experiment 1 by using the
Entropy-k-means clustering algorithm. The result shows that
the AM-VR and e−c

∗/300 gives the best performance to simul-
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TABLE 1. Simulation results at various and by Entropy-k-means for the data sets 1, 2, and 3.

taneously determine the optimal number of clusters c with
considering the feature reduction schema. For data sets 1,
2, and 3, FF estimates un-valid unimportant feature com-
ponents in which affects the estimation number of clusters.
For data set 1, by using FF in four different γ, Entropy-
k-means overestimate c∗ = 5. For the data sets 2 and 3,
FF underestimated the number of clusters c∗ = 2 and c∗ = 3,
respectively. By implemented AM-VR in different γ, we
found that γ = e−c

∗/300 perform better in recognizing the
important feature components to find the optimal number of
c during the clustering processes. Thus, we set the parameter
γ with γ = e−c

∗/300 that is used as an estimate of γ in (14).
Furthermore, we present some clustering processes by the

Entropy-k-means. To be noted, every time we ran the data
sets by the Entropy-k-means clustering algorithm, the data
points are known as cluster centers. Figs. 2(a)-(f) shows the
processes of the Entropy-k-means clustering algorithm for
data set 1 in iteration 1, 3, 5, 10, 16 and 18, respectively. The
number of feature components d discarding from 3 to 2. After
some times, the number of c also decreases from 425 to 2. For
data set 1, the Entropy-k-means clustering algorithm gives a
correct number of c = 2 with consistently existing the two
important features, as shown in Fig. 2(f). Figs. 3(a)-(f) shows
the processes graphs by the Entropy-k-means for the data set
2 in iteration 1, 6, 12, 22, 51 and 56, respectively. As can
be seen, the numbers of c decreases become 343, 20, 13, 8,
4, and 3. The proposed Entropy-k-means algorithm also able
reduced the unimportant feature x3 and consistently existing
the two important features until it gives the correct number
of c = 3, as shown in Fig. 3(f). Figs. 4(a)-(f) shows the
clustering graphs for data set 3 in iteration 1, 9, 18, 27, 33 and
52, respectively. Similarly, as previous results, for data set 3,
the proposed Entropy-k-means algorithm able to simultane-
ously reduced the unimportant feature x3 and gives the correct
number of c = 10, as shown in Fig. 4(f). The Entropy-
k-means decreased the number of clusters from 1200 to
1000, 696, 258, 26, and 6, respectively. As we expected,
the Entropy-k-means clustering algorithm performs well in

FIGURE 2. (a)-(e) The clustering result for data set 1 in iterations 1, 3, 5,
10 and 16 by Entropy-k-means (f) The final clustering result of data set 1
in iteration 18 by Entropy-k-means.

these experiments. The proposed Entropy-k-means clustering
algorithm simultaneously can reduce the unimportant feature
and determine a correct number of c without depend on any
initialization of cluster centers.
Simulation 2 (Cluster Structure): Next, we made a com-

parison between the proposed Entropy-k-means, k-means,
WKM, and EWKM clustering algorithms. Four validity
indices also made by using k-means, WKM, and EWKM.
The four validity indices will be used in these comparisons
are DU [14], DB [15], SI [16] and CH [17]. In order to
investigate our feature reduction schema to find the optimal
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TABLE 2. Experimental results on artificial data set with d = 2 and d = 3.

TABLE 3. Number of clusters obtained by the Dunn, DB, SW and CH validity indices, using the k-means, WKM, and EWKM algorithm.

TABLE 4. Total running time (TRT) using the k-means, WKM, EWKM, and Entropy-k-means clustering algorithms.

number of clusters c, we examined the data sets in experiment
1 with d = 2 (2-important features) and d = 3 (2 important
features + 1 unimportant feature) by using k-means, WKM,
and EWKM clustering algorithms. We reran the k-means,
WKM, and EWKM with 25 different initial random seeds.
The obtained accuracy rates of these algorithms are shown
in Table 2. For the clustering performances results, we show
the worst, the average, and the best ARs. Bold values in
the Tables indicate the clustering algorithm with best perfor-
mance in terms of the accuracy rate. From Table 2, it can
be seen that the k-means, WKM, and EWKM obtained the
different results when it ran with d = 2 (2-important features)
and d = 3 (2 important features + 1 unimportant feature).
The ARs increasing when it ran in 2-D data sets. This result
is to be expected, since unimportant features still exist during
clustering processes will be affected the clustering result
tends to be poor.

Table 3 presents the obtained number of clusters by imple-
menting the four validity indices using the k-means, WKM,
and EWKM. We show the percentage (%) for the correct
number of clusters. For data set 1, four validity indices by
using the WKM and EWKM has been successfully estimated
c = 2, while CH and DB indices by using k-means overesti-
mated c= 4. For data set 2, four validity indices by using the
k-means, WKM, and EWKM estimated c = 3. For the data

set 3, DB and SI by using k-means estimated c = 10; DU
and CH overestimated c = 5 and c = 12, respectively. While
for the WKM and EWKM, only one of the validity indices,
namely SI estimated c = 10 (4%).
Overall, Entropy-k-means give the best accuracy rates

for data set 1, data set 2, and data set 3 among these
algorithms. Overall, Entropy-k-means performs better than
k-means,WKM, and EWKM.To demonstrate their efficiency
of algorithms, we also consider the total running times of
these algorithms for data sets 1, 2, and 3. These are shown
in Table 4. From Table 4, we find that the proposed Entropy-
k-means have the least running time among these compared
algorithms.
Experiment 2: In this clustering experiment we test

the performance of our Entropy-k-means algorithm under
8 different real data sets, in which 6 of 8 data sets
are collected from UCI repository [28]. These data sets
namely as Single proton emission computed tomogra-
phy (SPECT), Flea [29], Soybean small, Dermatology,
Zoo, Soybean large, LSVT, and Yale base 64 × 64 (as
shown in Fig. 5) [30]. Table 5 summarizes the data
sets.
Simulation 2: We evaluate the performance of our

Entropy-k-means clustering algorithm and compared it with
the k-means, WKM, and E-WKM clustering algorithms.
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TABLE 5. Total running time (TRT) and class wise distribution using the k-means, WKM, EWKM, and Entropy-k-means clustering algorithms.

FIGURE 3. (a)-(e) The clustering result for data set 2 in iterations 1, 6, 12,
22 and 51 by Entropy-k-means (f) The final clustering result of data set
2 in iteration 56 by Entropy-k-means.

The clustering results is evaluated based on the accuracy
rate (AR). Four validity indices also present by using the
k-means, WKM, and EWKM clustering algorithms. Unlike
k-means, WKM, and EWKM, our proposed Entropy-k-
means algorithm is free from initial cluster centers. Our
Entropy-k-means algorithm first initialize the number of

FIGURE 4. (a)-(e) The clustering result for data set 3 in iterations 1, 9, 18,
27 and 33 by Entropy-k-means (f) The final clustering result of data set
3 in iteration 52 by Entropy-k-means.

clusters equal to the number of data points. After some iter-
ation, our Entropy-k-means recognizing those features with
large dispersion and discarding it. The clustering processes of
Entropy-k-means only demonstrated the important features to
find the optimal number of clusters. As we know, WKM
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FIGURE 5. 75 face images of Yale database.

TABLE 6. Average of performance results of the k-means, WKM, EWKM, and Entropy-k-means algorithms.

and EWKM algorithms also based on one user define param-
eter. As comparisons, for WKM algorithm, we set β = 10.
For EWKM, we set γ = 10. Table 6 compares the accuracy
rate performance of our Entropy-k-means algorithm with
k-means, WKM, and EWKM algorithms. From Table 6,
we clearly indicated that our Entropy-k-means clustering
algorithm performed the best accuracy rate, compared with
other clustering algorithms. Our Entropy-k-means improved
the accuracy rates over eight data sets and successfully
identified the correct number of clusters c with considering
the feature reduction schema (see Table 7). The k-means,
WKM, and EWKM simulated over 25 different cluster cen-
ters initializations.

To be more detailed, Table 8 and Table 9 presents the
behavior of our Entropy-k-means clustering algorithm in each
iteration. As can be seen, for the LSVT data set, the number
of features decreasing rapidly from originally 309 into 69, 35,
19, 12, 5. This clustering processing performed a different
amount of features in each iteration. In other words, our
Entropy-k-means clustering algorithm always tries to esti-
mate the unimportant features from the remaining features in
each iteration. So that the number of dimensions that will be

TABLE 7. The class wise distribution by Entropy-k-means clustering
algorithms.

evaluated in the next iteration affecting the different number
of clusters. For the LSVT data set, our Entropy-k-means
clustering algorithm reduced the number of c from initially
126 into 95, 31, 5, 2, 2, 2. As can be seen in Table 8, our
Entropy-k-means was able to detect the correct number of c
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TABLE 8. The details of performance of Entropy-k-means for LSVT data set in each iteration.

TABLE 9. The details performance of Entropy-k-means for Yale base 64× 64 data set in each iteration.

starting from iteration 4 with AR = 0.5000. The Entropy-k-
means clustering algorithm is also increasing the ARs val-
ues of LSVT data set until it reached AR = 0.6667. For
Yale base 64 × 64 data sets, our Entropy-k-means reduced
the number of features from originally 4096 into 459, 443,
441, 440, 433, 408, 403, 401, 401, 395, 394, 327, 316, 315.
At the same time, by demonstrating those feature compo-
nents during the clustering processes, the number of c also
decreasing from originally 75 into 45, 43, 40, 40, 38, 38, 37,
36, 34, 34, 15, 15, 15, 15. As can be seen in Table 9, our
Entropy-k-means was able to detect the correct number of
c by iteration 12 with AR = 0.3867. The Entropy-k-means
clustering algorithm also reduces some unimportant feature
components. The Entropy-k-means clustering algorithm is
increasing the ARs value of Yale base data set until its AR =
0.6133. The experiment results of K-means, WKM, EWKM,
and Entropy-k-means in terms of clustering performances for
LSVT and Yale data sets are also made, shown in Table 10.
As we can see, our proposed Entropy-k-means performed

the best results, showing the effectiveness of our proposed
idea of reducing the uninformative features does not hurt the
clustering performance but increased. Table 11 presents the
validity indices with DU [14], DB [15], SI [16] and CH [17]
implemented by using k-means, WKM and EWKM. For each
validity index, the best result on 25 runs is taken. From all
results, the proposed Entropy-k-means clustering algorithm
performs better to find the correct number of clusters without
initialization of cluster centers and with the feature reduction
behavior.
Experiment 3: In this clustering experiment, we test the

performance of our Entropy-k-means algorithm under 8 dif-
ferent real data sets, which 4 data sets are from the previous
experiment, and four additional sets summarized in Table 12.
We used these 8 real data sets to compare our proposed
Entropy-k-means with k-means + DU, clustering by fast
search (C-FS) [31], and U-k-means [23] clustering algo-
rithms. The experimental results in terms of cluster number
estimation are summarized in Table 13. As can be seen,
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TABLE 10. The accuracy rate and total running time by using k-means, WKM, EWKM, and Entropy-k-means algorithm.

TABLE 11. Number of clusters obtained by the Dunn, DB, SW and CH validity indices, using the k-means, WKM, and EWKM.

TABLE 12. The characteristics of the data sets in experiment 3.

DU indices underestimate the number of clusters c∗ = 2
for Fisher Iris and c∗ = 2 for Soybean small. C-FS under-
estimates the number of clusters c∗ = 1 for Bupa, c∗ = 2
for Flea, c∗ = 3 for Soybean small, and c∗ = 3 for Zoo.
U-k-means overestimates the number of clusters c∗ = 15
for Flea, c∗ = 6 for Soybean small, and underestimates
the number of clusters c∗ = 3 for Zoo. The Entropy-k-
means can provide satisfactory results in estimating the cor-
rect number of clusters for these 8 data sets. Furthermore,
the detailed performance of Entropy-k-means in terms of
feature behavior are summarized in Table 14. The result
proved the effectiveness of the proposed Entropy-k-means

clustering algorithm in reducing uninformative features and
still estimates the correct number of clusters. The experiment
of k-means, U-k-means, and Entropy-k-means in terms of
clustering performances and total running time (TRT) for
Fisher Iris, Bupa, Flea, Pima, LSVT, and Australia data
sets are also made. In this experiment, except AR, we also
use more evaluations for clustering performance. These are
RI (Rand Index) [32], FMI (Fowlkes-Mallows-Index) [33],
NMI (Normalized Mutual Information) [34], and JI (Jaccard
Index) [35]. LetC = {C1,C2, · · · ,Cc} be the set of c clusters
for the given data set and C ′ =

{
C ′1,C

′

2, · · · ,C
′
c
}
be the

set of c clusters generated by the clustering algorithm. Let

VOLUME 9, 2021 67747



K. P. Sinaga et al.: Entropy K-Means Clustering With Feature Reduction Under Unknown Number of Clusters

TABLE 13. Number of clusters obtained by the k-means with true c, C-FS, U-k-means, and Entropy-k-means algorithms.

TABLE 14. The details performance of Entropy-k-means in terms of feature reduction behavior for the data sets in Experiment 3.

(
Xi,Xj

)
be a given pair of points in the data set. Let a be

the number of pairs of points if both points belong to the
same cluster in C and the same cluster in C ′, b is the number
of points if the two points belong to the same cluster in C
and to two different clusters in C ′, and d be the number
of pairs of points if the two points belong to two different
clusters in C and to the same cluster in C ′. RI is defined as
RI = (a+ d)

/
(n (n− 1) /2) where n is the number of data

points. FMI can be defined as FMI = a/
√
(a+ b) (a+ d).

NMI can defined asNMI = 2 I (X :Y )/ [H (X )+ H (Y )] where
I (X :Y ) is the mutual information between the class labels
H (X ) and the cluster labels H (Y ). JI is commonly used
to measures the similarity between two data points and is
defined as the size of the intersection divided by the size of the
union of the two data points. These AR, RI, FMI, NMI, and
JI ranges from 0 to 1, where 1 indicates a higher similarity
between cluster solutions. We implement the k-means with
true c∗ over 25 different random initializations and shown
the average AR, RI, FMI, NMI, and JI after 25 runs. The
results are presented in Table 15. According to Table 15,
Entropy-k-means is superior compare to k-means and U-k-
means clustering algorithms.
Experiment 4: In this clustering experiment, we test

the performance of our Entropy-k-means algorithm on

digit recognizer. We use the most challenges and pop-
ular MNIST (Modified Institute of Standards and Tech-
nology) database of handwritten digits [36]. The MNIST
database is collected by Yann Lecun and openly accessible
at http://yann.lecun.com/exdb/mnist/index.html website. The
MNIST database contains 70,000 28 × 28 black and white
images representing the digits ranging from zero to nine. The
data is split into two subsets, with 60,000 images belonging
to the training set and 10,000 images belonging to the testing
test. We subsampled 501 of 70,000 images to compose our
data set, and they belong to 10 classes. Specifically, we ran-
domly implemented 501 samples and training 100 multi-way
from the MNIST database. Each digit is a gray-level image
with 784 pixels in total as the features. Some examples are
shown in Fig. 6.

Since the original dimensions are quite sparse, we first
extract an image of dimensions 28 × 28 by conducting a
pre-processing step over the samples using principal compo-
nents. We thus processing the extracted features of principle
components into our proposed Entropy-k-means algorithm.
In this case, PCA normalizes all the grey-level pixels from
the image and reduce its size to fit with 500 pixels in total
as the features. A comprehensive summary of the results
for Entropy-k-means and U-k-means is given in Table 16.
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TABLE 15. Clustering performances and total running time (TRT) by using k-means, U-K-Means, and Entropy-k-means algorithms.

TABLE 16. Result of Entropy-k-means and U-k-means algorithms for the 501 samples for the MNIST data base of handwritten digits.

TABLE 17. Clustering performances of Entropy-k-means and k-means with true c algorithms for the 501 samples for the MNIST data base of handwritten
digits over 5 simulations.

Table 16 shows that the proposed Entropy-k-means algorithm
estimates the correct number of clusters c∗ = 10 with 35%
of 100 training for every 501 samples. Also, entropy-k-means
estimates 22% of samples with c∗ = 8, 35% of samples with
c∗ = 9, and 8% of samples with c∗ = 11. In this exper-
iment, we also provide the clustering performances of the
proposed Entropy-k-means in terms ofAR, RI [27], FMI [28],
NMI [29], and JI [30]. Table 17 presents the details about the
Entropy-k-means clustering performance over five different

simulations. As can be seen, our proposed Entropy-k-means
have reached the goals to simultaneously estimate the correct
number of clusters and discard the uninformative features.
To compare the proposed algorithm, we ran the k-means
clustering algorithmwith the correct number of clusters under
25 random initializations over 5 data simulations and reported
the average in Table 17. Aswe can see, our proposed Entropy-
k-means performed the best results, showing the effective-
ness of our proposed idea of reducing the uninformative
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FIGURE 6. Sample images from the MNIST data base of handwritten
digits.

features does not hurt the clustering performance but
increased.

V. CONCLUSION
The k-means algorithm is generally the most used method
in clustering. However, the k-means is always affected by
initializations with equal importance for feature components
under a given number of clusters. In this paper, we con-
sider a mechanism in determining the number of clusters
with feature-reduction behavior under unknown number of
clusters for k-means clustering, named as Entropy-k-means.
This clustering algorithm provides an alternative technique
to find an optimal number of clusters with a feature reduction
schema. Furthermore, the Entropy-k-means can also reduce
computational times. This is due to the fact that feature
reduction schema during clustering processes is successfully
worked for finding the optimal number of clusters. For exam-
ining the efficiency of the proposed Entropy-k-means clus-
tering algorithm, it is compared with the original k-means,
WKM, EWKM, C-FS, and U-k-means clustering algorithms.
The comparisons are alsomade by implementing four validity
indices in the original k-means, WKM, and EWKM. The
comparison results show that the proposed Entropy-k-means
algorithm has better performance and can simultaneously
find the optimal number of clusters with feature-reduction
behaviors. However, the proposed Entropy-k-means algo-
rithm can only handle single view data. Since internet
of things (IoT), social media, and big data grow rapidly,
multi-view data become more popular. Thus, extensions of
clustering algorithms tomulti-view clustering become impor-
tant. For multi-view clustering, sharing information between
different views is also essential. In our future work, we will

extend the proposed Entropy-k-means algorithm for cluster-
ing multi-view data sets with sharing information between
different views and also automatically finding an optimal
number of clusters without any parameter selection under free
of initializations. On the other hand, except the methods used
in the paper, some computational intelligence algorithms can
be used to solve clustering problems, such as monarch butter-
fly optimization (MBO) [37], earthworm optimization algo-
rithm (EWA) [38], elephant herding optimization (EHO) [39],
moth search (MS) algorithm [40], Slime mould algorithm
(SMA) [41], and Harris hawks optimization (HHO) [42].
The MBO, EWA, EHO, MS, SMA, and HHO algorithms
are generally used for tackling optimization issues in terms
of choosing an optimal parameter via operator selection for
clustering algorithms. However, they cannot automatically
determine the optimal number of clusters. We will further
study these computational intelligence algorithms such that
they can automatically find the optimal number of clusters
with free of parameter selection.
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