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ABSTRACT Solar radiation intensity is intermittent and uncertain under the influence of meteorological
conditions. Clustering them and obtaining high-precision and reliable probabilistic forecasting results play
a vital role in the planning and management of solar power. In this study, a novel K-means time series
clustering (K-MTSC) algorithm is first proposed to cluster solar radiation intensity and compared with
astronomy method and K-means. Then, different feature inputs for different categories of solar radiation
intensity are screened. Afterwards, the different kernel functions of Gaussian process regression (GPR) are
compared and optimal kernel function is selected in terms of deterministic forecasting and probabilistic
forecasting for different categories. Finally, the case study in Tibet province, China are performed to verify
the validity and practicability of this research model and method. In this experiment, the average accuracy of
GPR is 44% higher than that of Artificial Neural Network ANN, and 17% higher than that of Support Vector
Regression. The experiments show that (1) the clustering results obtained by the K-MTSC algorithm have
a larger inter-group distance and a smaller intra-group distance, and at the same time, it will not destroy
the continuity of the time series. (2) The probability forecast results obtained by GPR are reliable and
high-accuracy.

INDEX TERMS Solar radiation intensity, K-means time series clustering, probabilistic forecasting, Gaussian
process regression.

I. INTRODUCTION
With the increasing depletion of traditional fossil energy
and the environmental problems, photovoltaics, as a renew-
able and clean energy, have received attention from all over
the world [1]. However, solar power is affected by natural
climate conditions, and its output power is unbalanced in
space and unstable in time, showing strong randomness,
volatility and intermittent characteristics [2]. The randomness
and uncertainty of solar energy resources make it difficult
for independent photovoltaic systems to continuously output
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stable power [3], which not only aggravates the pressure of
peak and frequency modulation of the power grid, but also
affects the safe and stable operation of the power system,
thereby seriously restricting the power grid’s ability to absorb
solar power [4]. Therefore, obtaining solar radiation inten-
sity deterministic forecasting results with high accuracy and
probabilistic forecasting results with high reliability are very
important for the application of solar power.

Solar radiation intensity prediction methods can be
mainly divided into two categories: physical process driven
method and data driven method [5]. Based on meteorolog-
ical data and satellite images, the physical process driven
method builds mathematical and physical equations to
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simulate the change process of solar radiation intensity at
a certain regional or global scale [6], such as Numerical
Weather Prediction (NWP) [7]. Typical NWPmodels include
European Centre for Medium-Range Weather Forecasts
(ECMWF) [8], Fifth-generationMesoscaleModel (MM5) [9]
and Weather Research and Forecasting (WRF) [10].
Mathiesen and Kleissl [11] evaluated the numerical forecast
of daytime solar radiation intensity in the United States.
The study used SURF-RAD ground measurement data to
verify the prediction performance of North American Model
(NAM), Global Forecast System (GFS) and ECMWF [11].
The physical process driven method has the advantages of
high accuracy and strong interpretability while it has the
disadvantages of difficult data collection, complex modeling
and time-consuming solution [12].

The data driven methods looks for relevant factors from
historical data to predict solar radiation intensity, such as
time series models, machine learning models and deep
learning models [13]. Time series models mainly include
Moving Average model (MA), Auto-regressive model (AR),
Auto-regressive Moving Average model (ARMA) and their
variants [14]. Data stationarity assumption is the precondition
of these time series models [15]. Machine learning models
such as Support Vector Regression (SVR) and Artificial Neu-
ral Network (ANN) has been used to predict solar radiation
intensity [16]. Deo et al. [17] integrated SVR and discrete
wavelet transformation algorithm for short- and long-term
global solar radiation forecasting, and the case study in
Australia verified the prediction performance of the hybrid
model. Amrouche and Pivert [18] combined ANN and spatial
modelling techniques for daily global solar radiation fore-
casting and the model’s forecasting results were compared
to measured data for the two locations. In recent years,
deep learning methods [19] have shown excellent perfor-
mance in image recognition and natural language processing.
Deep learning methods such as Recurrent Neural Network
(RNN) [20] and Convolutional Neural Network (CNN) [21]
are gradually being used to predict solar radiation inten-
sity. Ghimire et al. [22] proposed a hybrid model based on
CNN and Long Short-term Memory (LSTM) network for
solar radiation forecasting. In their model, CNN is used to
extract features while LSTM is used for prediction, and the
experiment shows the accuracy of the hybrid deep learning
model. Deterministic forecasting model cannot quantify the
uncertainty of forecasts.

The randomness and uncertainty of solar radiation inten-
sity make it difficult to be fully forecasted accurately. There-
fore, probabilistic forecasting can provide more abundant
information for dispatching decision-makers. Estimating the
solar radiation intensity prediction interval corresponding
to a certain degree of confidence is an idea of quantifying
uncertainty [23]. Huang andWei [24] proposed a daily-ahead
probabilistic photovoltaic power forecasting method based
on an improved quantile CNN and obtained the upper and
lower interval corresponding to 90% confidence levels. Prob-
abilistic forecasting is a more comprehensive method than

interval method, such as Bayesian theory and Gaussian
process regression (GPR) [25]. Liu et al. obtained the spa-
tiotemporal probabilistic forecasting results of solar radia-
tion intensity based on deep learning method and Bayesian
inference [26]. Yang et al. used GPR to obtain the proba-
bility density function (PDF) of solar power output, which
can provide a reference for decision-makers to avoid future
risks [27]. GPR has the theoretical derivation support and
the advantage of strong reliability, which is widely used in
probabilistic forecasting.

The solar intensity radiation is affected by meteorological
conditions and has different characteristics in different sea-
sons. The astronomy division method [28] uses the height
of the sun at noon and the length of day and night as the
basis for seasonal changes, but it is difficult to adopt a set
of seasonal boundaries to finely divide the four seasons of
the world. Therefore, for a specific area, how to use historical
data for clustering is the first focus of this study. K-means [29]
is a good clustering method, but its classification results will
destroy the continuity of the time series. A new K-means
time series clustering (K-MTSC) algorithm is proposed for
solar radiation intensity clustering. On the other hand, GPR
has many kernel functions. Comparing the performance dif-
ferences of different kernel functions on different categories
can provide reference for decision-makers to choose kernel
functions, which is conducive to obtaining more reliable and
accurate probability prediction results. This is the second
focus of this research.

The main contributions are summarized as follows:
(1) A novel time series clustering algorithm called

K-MTSC is proposed for solar radiation intensity clustering,
whose clustering results have a larger inter-group distance
and a smaller intra-group distance, and it doesn’t destroy the
continuity of the time series.

(2) Selecting the optimal kernel function for GPR are
conducive to improving the probabilistic prediction accuracy
and reliability.

The remainder of this paper is organized as follows.
In Section 2, the implementation details of methods in this
study are introduced. In Section 3, performance evaluation
metrics are explained. In Section 4, K-MTSC and GPR are
applied to solar radiation intensity case study in Tibet, China.
In Section 5, the work of this paper is summarized and our
conclusions are given.

II. METHODOLOGY
A. K-MEANS TIME SERIES CLUSTERING ALGORITHM
When K-means clustering algorithm is applied to time series
problem, the continuity of data will be destroyed. Therefore,
this research proposes the K-means time series clustering
(K-MTSC) algorithm. The common clustering criteria for
K-means and K-MTSC are as follows: (1) the number of
category is K; (2) the distance between the centers of different
categories should be as large as possible; (3) the average dis-
tance from each sample in the same category to the center is as
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FIGURE 1. Diagram of K-means and K-MTSC.

small as possible. Compared with K-means, K-MTSC needs
to satisfy the constraint that the sample points in the same
category should be continuous. The diagram of K-means and
K-MTSC is shown in FIGURE 1. The meaning of K-MTSC
is to divide K categories for a year. Using different feature
inputs for different categories is more conducive to improving
accuracy than using one input for all datasets. K-MTSC does
not filter the features, but only classifies the dataset. The
feature selection is performed by correlation coefficients.

K-means time series clustering can be regarded as an
optimization problem. The sequence to be clustered is rep-
resented by X = [x1, x2, · · · xi, · · · , xN ], where x1 is the i-th
sample vector andN is the number of samples. The objectives
of K-means time series clustering are as follows:

fobj,1 = max{DO} = max{
K∑
i=1

K∑
j=i+1

DO,i,j} (1)

fobj,2 = min{DI } = min{
1
K

K∑
i=1

DI ,i} (2)

where DO and DI are the distance between the centers of
different categories and the average distance from each sam-
ple in the same category to the center, respectively. K is the
number of categories.

DO,i,j = d(x̄i, x̄j) (3)

DI ,i =
1
m

∑
xz∈Ci

d(x̄i, xz) (4)

where DO,i,j is the distance between the centers of i-th and
j-th categories. x̄i is the center vector of i-th category (Ci).
x̄i = 1

m

∑
xz∈Ci

xz. xz and m is a sample and the number of Ci,

respectively. d(x̄i, x̄j) is the function for calculating Euclidean
distance. DI ,i is the average distance from each sample (xz)
in i-th category (Ci) to the i-th center (x̄i).
The constraints of K-means time series clustering are as

follows:
L(Ci) = K (5)

xz ∈ Ci and xz+1 ∈ Ci+1 if xz is the last element of Ci
(6)

where L(Ci) is the number of all categories.

To solve this optimization problem, a K-means time
series clustering algorithm based on Genetic Algorithm (GA)
is proposed. The steps of K-MTSC algorithm are as
follows:
Step 1: randomly generate K different integers on

the interval [1, N] and sort them with ascending
order;
Step 2: use these integers as the starting indexes for dif-

ferent categories; perform classification operations according
to the index to obtain the clustering results and calculate the
cluster centers;
Step 3: calculate the distance (DO) between cate-

gories and the distance (DI) in the same category;
fitness = 0.5∗ DI − 0.5∗ DO;
Step 4: repeat steps 1 to 3 using genetic algorithm

until the clustering result corresponding to the optimal fit-
ness is selected. The pseudo code of K-MTSC is shown
in FIGURE 2.

B. GAUSSIAN PROCESS REGRESSION
A series of continuous random variables subject to the
Gaussian distribution constitute the Gaussian process. In the
case of discrete Gaussian process, deriving the Gaus-
sian distribution parameters of unknown samples based
on known sample information is Gaussian process regres-
sion (GPR). Gaussian process regression [27] assumes
that each sample obeys the Gaussian distribution, and
any linear combination of samples obeys the joint Gaus-
sian distribution. The schematic diagram of GPR is shown
in FIGURE 3.

A common form of regression model is represent as
follows:

Y = f (X )+ ξ (7)

where Y , X and ξ are observations, features and noisy (ξ ∼
N (0, σ 2

n )). N (0, σ 2
n ) represents a Gaussian distribution with

mean (µ) and standard deviation (σ 2
n ).

According to the definition of GPR, prior distribution of
observations Y is as follows:

Y ∼ N (0,K (X ,X )+ σ 2
n In) (8)
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FIGURE 2. Pseudo code of K-MTSC.

FIGURE 3. Diagram of Gaussian process regression.

And the joint prior distribution of observations Y and
predictions y can be obtained:

[
Y
y

]
∼ N

(
0,
[
K (X ,X )+ σ 2

n In K (X , x)
K (x,X ) K (x, x)

])
= N

(
0,
[
K KT

∗

K∗ K∗∗

])
(9)

where X , Y , x and y represent the training set features and
observations, validation set features and predictions, respec-
tively. K (X ,X ) = (κij) is a symmetric positive definite
covariance matrix, whose element κij measures the correla-
tion betweenXi andXj through a kernel function κ .K (X , x) =
K (x,X )T is the covariance matrix between the validation set
x and training set X , abbreviated as K∗ and KT

∗ . K (x, x) is the
covariance matrix of the validation set itself, abbreviated as
K∗∗. In is an n-dimensional unit matrix.

The posterior conditional distribution of the validation set
predictions y can be obtained as follows:

y|Y ∼ N (ȳ, σ 2
y ) (10)

ȳ = K∗K−1Y (11)

σ 2
y = K∗∗ − K∗K−1KT

∗ (12)

where ȳ and σ 2
y are validation set prediction mean and Gaus-

sian distribution variance, respectively.
Therefore, the deterministic predictions of GPR are y and

the interval predictions corresponding to 95% confidence
level are [ȳ − 1.96σy, ȳ + 1.96σy]. The probability density
function (PDF) of i-th predictions is as follows:

p(yi) =
1

√
2πσy,i

exp(−
(yi − ȳi)2

2σ 2
y,i

) (13)

C. KERNEL FUNCTION
There are many alternative kernel functions for GPR after a
long period of development.

(1) Squared Exponential Kernel

k(xi, xj) = σ 2
f exp[−

1
2
r2

σ 2
l

] (14)

where σl is the characteristic length scale, and σf is the signal

standard deviation. r =
√
(xi − xj)T (xi − xj) is the Euclidean

distance between xi and xj.
(2) Exponential Kernel

k(xi, xj) = σ 2
f exp(−

r
σl
) (15)
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FIGURE 4. Research area.

TABLE 1. Algorithm parameters.

(3) Matern 3/2 Kernel

k(xi, xj) = σ 2
f exp(1+

√
3r
σl

) exp(−

√
3r
σl

) (16)

(4) Matern 5/2 Kernel

k(xi, xj) = σ 2
f exp(1+

√
5r
σl
+

5r2

3σ 2
l

) exp(−

√
5r
σl

) (17)

(5) Rational Quadratic Kernel

k(xi, xj) = σ 2
f (1+

r2

2ασ 2
l

)−α (18)

where α is a kernel parameter, and other variables have the
same meaning as before.

Exploring the differences of different categories of solar
radiation intensity datasets on different kernel functions and
selecting the optimal kernel function is one of the key points

of this research, which is of vital importance to improve the
prediction accuracy.

III. EVALUATION METRICS
A. DETERMINISTIC FORECASTING EVALUATION METRICS
Deterministic forecasting results are evaluated by mean abso-
lute error (MAE) and root mean square error (RMSE) [30] in
this study, as follows:

MAE =
1
Te

Te∑
i=1

|yi − Yi| (19)

RMSE =

√√√√ 1
Te

Te∑
i=1

(yi − Yi)2 (20)

where yi and Yi are i-th prediction and observation, respec-
tively. Te is the number of validation set. The smaller the
MAE or the RMSE, the higher the prediction accuracy.
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FIGURE 5. Clustering results.

TABLE 2. Average distance within the same category.

B. PROBABILISTIC FORECASTING EVALUATION METRIC
Probabilistic forecasting results are evaluated by continuous
ranked probability score (CRPS) [31], as follows:

CRPS =
1
Te

Te∑
i=1

∫
+∞

−∞

[F(yi)− H (yi − Yi)]2dyi (21)

F(yi) =
∫ yi

−∞

p(x)dx (22)

H (yi − Yi) =

{
0 yi < Yi
1 others

(23)

where p(yi) and F(yi) are probability density function and
cumulative distribution function of i-th probabilistic predic-
tion. The smaller the CRPS, the better the comprehensive
performance.

C. INTERVAL FORECASTING EVALUATION METRICS
Interval forecasting results are evaluated by reliability eval-
uation (RE) criterion and sharpness evaluation (SE) crite-
rion [23], as follows:

RE = (
ξ (1−α)

Te
− (1− α))× 100% (24)

TABLE 3. Average distance between categories.

SE =
1
Te

Te∑
i=1

(Ub1−α − Lb1−α) (25)

where ξ (1−α) is the number of times that observation points do
indeed lie within the α level prediction intervals. Ub1−α and
Lb1−α are the lower and upper bound of the α level prediction
interval.

IV. CASE STUDY
A. CASE INTRODUCTION
Solar radiation intensity data used in this study is collected
from the station (92.25◦E, 28.95◦N) in Tibet province, China,
as shown in FIGURE 4. The total time span of the data is from
January 1, 2010 to December 31, 2010. The step length of a
period is one hour.

In this case, there are five tasks to be completed:
(1) Perform time series clustering and compare different

clustering algorithm;
(2) Construct datasets and filter feature inputs for different

categories;
(3) Deterministic forecasting results comparison;
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FIGURE 6. Centers of four categories.

(4) Probabilistic and interval forecasting results
comparison;

(5) Display the probabilistic forecasting results.

B. EXPERIMENT RESULTS AND DISCUSSION
1) CLUSTERING COMPARISON
K-MTSC algorithm is proposed to perform time series clus-
tering and compared with astronomy method and K-means.
The parameters in K-MTSC are shown in TABLE 1. The
time boundaries of the four seasons are defined as March 22,

June 22, September 23 and December 22 in astronomy,
which can be regarded as a time series clustering method
(K = 4). Clustering results of three algorithms are shown
in FIGURE 5. The four time boundaries of K-MTSC are
January 28, May 10, July 7 and November 10, respectively.
The K-means clustering result destroys the continuity of time
series variables.

In order to further compare the differences between dif-
ferent clustering algorithms, centers of four categories are
shown in FIGURE 6. The average distance within the same
category and the average distance between categories are
listed in TABLE 2 and TABLE 3, respectively. The results
are analyzed as follows:

(1) Centers of category 2 to 4 of astronomy method are
too close to distinguish these categories. Astronomy method
are only a rough classification of the changes in the four
seasons around the world, and cannot achieve very accurate
classification of all specific areas.

(2) The four centers of K-means are obviously different,
however it destroys the continuity of time and is not suitable
for time series variables.

(3) K-MTSC combines the advantages of the two methods.
On the one hand, the classification has continuity, and on the
other hand, the cluster centers are obviously different.

(4) The average inner distances of astronomy andK-MTSC
are 448.55 and 436.02, which shows that the latter samples
are more concentrated in the same category. The average
outer distances of astronomy and K-MTSC are 286.30 and
327.40, which shows that the latter has a better ability to
distinguish different categories.

(5) The difference between astronomy and K-MTSC is that
the former is a fixed classification for each year, but the latter
can be based on dataset dynamic classification, the result is
more refined.

2) CONSTRUCT DATASETS AND FEATURE SELECTION
According to the divided categories, four datasets are con-
structed, whose total length is 15 days, 15 days, 20 days
and 20 days, respectively. Detailed statistical information is
shown in TABLE 4, where T, Ta and Te represent the size of
total samples, training set samples and validation set samples.

In order to improve the forecast accuracy, the correla-
tion coefficient is used to filter the feature input of the
four datasets. Historical features are used as candidate fea-
tures [32]. The input features are historical solar radia-
tion intensity. F23 represents the solar radiation intensity
23 periods ago. F24 represents the solar radiation intensity
24 periods ago. In this study, F1-F96 were selected as candi-
date features, and feature factors with correlation coefficients
greater than 0.85 were left as feature inputs. Absolute value
of feature correlation coefficient radar charts are plotted in
FIGURE 7. Correlation coefficient varies from 0 to 1 from
the center point to the external. The purple line represents
the correlation coefficient of each feature, the orange line
represents the 0.85 standard line, and the green dot represents
the features that are left as input. Correlation coefficients of
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TABLE 4. Statistical information of four datasets.

TABLE 5. Correlation coefficients of feature inputs.

FIGURE 7. Feature correlation coefficient radar chart.
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FIGURE 8. Deterministic forecasting metric (MAE) comparison.

feature inputs are listed in TABLE 5. Therefore, feature inputs
of four datasets are [F1, F23, F24, F48, F72, F96], [F1, F24,
F25, F48, F72, F96], [F1, F24, F48, F72, F96], [F1, F23, F24,
F25, F47, F48, F49, F71, F72, F73, F95, F96], respectively.

3) DETERMINISTIC FORECASTING RESULTS COMPARISON
In order to verify the predictive performance of GPR,
it was compared with ANN and SVR. The kernel func-
tions in SVR are linear, polynomial and rbf kernels. The
kernel functions in GPR are squared exponential, exponen-
tial, matern32, matern52 and rational quadratic kernels. The
hyper-parameters of these models are shown in TABLE 1.
The number of input layer nodes is equal to the number of
feature inputs. The number of hidden layer nodes is optimized
by random search. They are 16, 32, 64 and 32 on four datasets
after optimization. The number of output layer nodes is 1. The
activation function used in ANN is ReLU.

Deterministic forecasting metrics are listed in TABLE 6
and shown in FIGURE 8. The results can be analyzed as
follows:

(1) In comparison of different models, the overall pre-
diction accuracy of GPR is higher than that of SVR
and ANN.

(2) In datasets 1 and 2, MAEs of GPR-exponential are
24.57W/m2 and 47.24W/m2, which is the smallest metric
among all models, indicating that the exponential kernel
function of GPR is the best on these two datasets. Similarly,
the squared exponential and rational quadratic functions of
GPR are the best performing kernel functions on datasets
3 and 4, respectively.

(3) The metrics MAE and RMSE are related to the mean of
the dataset. Themean of dataset 2 is larger than other datasets,
so the MAE and RMSE are larger than other datasets, which
is normal.
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FIGURE 9. Probabilistic forecasting metric (CRPS) comparison.

TABLE 6. Deterministic forecasting metrics.

(4) On the evaluation metric RMSE, compared with
ANN model, GPR improved the accuracy of the four
datasets by 46%, 25%, 31% and 75%, respectively.

Compared with SVR model, GPR improved the accu-
racy of the four datasets by 20%, 9%, 25% and 13%,
respectively.
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FIGURE 10. Interval prediction results of four validation sets.

4) PROBABILISTIC FORECASTING RESULTS COMPARISON
The probabilistic forecasting results of GPR with differ-
ent kernel functions are compared. Probabilistic forecasting
metrics are listed in TABLE 7 and shown in FIGURE 9.
In datasets 1 and 4, the CRPS of rational quadratic kernel
function are 19.58 and 8.54, which are the smallest metrics,
indicating that it is the best on these two datasets. The kernel
functions with best probabilistic prediction performance on
datasets 2 and 3 are exponential and squared exponential
functions, respectively.

The interval forecasting results are shown in TABLE 8.
In dataset 1, the RE and SE of GPR with rational quadratic
kernel function are 0.83% and 92.06W/m2, respectively.
It has a large coverage and a narrow prediction range, and is

TABLE 7. Probabilistic forecasting metrics.

the most appropriate kernel function for interval prediction
results in the experiment. The kernel functions with best
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TABLE 8. Interval forecasting metrics.

FIGURE 11. PDF of GPR- exponential on dataset 1.

interval prediction performance on datasets 2 to 4 are expo-
nential, squared exponential functions and rational quadratic,
respectively. The comparison results of different kernel func-
tions in probabilistic prediction and interval prediction are
similar.

5) DISPLAY THE PROBABILISTIC FORECASTING RESULTS
Taking GPR-exponential as an example, interval prediction
results of four validation sets are shown in FIGURE 10. The
prediction line is very close to the observation line, indicating
that the prediction accuracy is high. Most observation points
are in the 95% interval, indicating that the prediction is
reliable. PDFs of GPR- exponential on dataset 1 are shown in
FIGURE 11. These PDFs are full, and no curve is excessively
high or low,wide or narrow,which indicates the obtained PDF
is suitable. The observation lines in some periods (14, 34 and
43) are near the center of curve while others (10, 19, and
38) are a little far from the center, which just indicates
that the probabilistic forecasting is reliable. The prediction

accuracy of the period of sudden change will be lower, and
it may be out of the confidence interval. In the probabilistic
forecasting, there must be some observations that are not in
the interval, which just shows that the forecast is reliable. If
all the observations are within the interval, it means that the
interval loses its significance in probability. The confidence
interval of the period when the forecast accuracy is high is
narrower, and vice versa, which is in line with the general
law of probabilistic forecasting.

V. CONCLUSION
Obtaining reliable high-quality solar radiation intensity
prediction results is very important for the planning and
application of solar energy. Solar radiation intensity has dif-
ferent characteristics in different seasons. Clustering solar
radiation intensity in a year is helpful to grasp the forecast
characteristics in a targeted manner. Firstly, a novel time
series clustering algorithm (K-MTSC) is proposed to clus-
ter solar radiation intensity and compared with astronomy
method and K-means. Next, Feature selection is performed
for different categories. Finally, GPR is applied for solar
radiation intensity probabilistic forecasting and compared
with different models and different kernel functions. The
experiment results of a case study in Tibet province, China
show that:

(1) The clustering results obtained by the K-MTSC
algorithm have a larger inter-group distance and a smaller
intra-group distance, and at the same time, it will not destroy
the continuity of the time series.

(2) Selecting different features for different categories of
solar radiation intensity can obtain more accurate prediction
results. The probability forecast results obtained by GPR are
reliable.

(3) In this experiment, the average accuracy of GPR is 44%
higher than that of Artificial Neural Network ANN, and 17%
higher than that of Support Vector Regression.

The main contribution of this research is to propose the
K-MTSC algorithm, which can complete the clustering of
time series variables. At the same time, the GPR model can
obtain reliable and high-precision solar radiation intensity
forecasting results. It is one of the future research work to
complete the multi-step ahead probabilistic forecasting of
solar radiation intensity.
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