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ABSTRACT In recent years, convolutional neural network (CNN) has been successfully applied to
reconstruct image from the speckle, which is generated as an object passes through a scattering medium
or a multimode fiber (MMF). To reconstruct image from the speckle, the CNN must be trained with a large
number of object-speckle pairs (training dataset), and the trained CNN is capable of reconstructing image
from dataset (test dataset), which is taken in the same condition as the training dataset. However, in some
cases, data type and the scattering medium may vary with the situation. In this case, the CNN has to be
re-trained using a large number of new data taken from the new scattering media for reconstructing image.
In this paper, we develop a CNN called as Mobiledense-net (MDN) to realize the mutual transfer learning.
Specifically, the MDN is first pre-trained with a large number of object-speckle pairs taken from MMF or
scattering slab, then tuned with quite small number of object-speckle pairs from scattering slab or MMF. It
is shown that in this case the MDN can reconstruct image from the speckle with quite good quality, in which
the speckle is taken from MMF or the scattering slab. We also show that using a more complex dataset for
pre-training, the amount of data for pre-training can be largely reduced and reconstruction quality can be
further improved. Using transfer learning, the reconstruction quality is quite good, being up to 99%. The
results in this paper provide a more generalized method for studying the imaging through scattering imaging
or MMF by using CNN.

INDEX TERMS Imaging, convolutional neural network (CNN), Mobiledense-net (MDN), transfer learning,
scattering medium, multimode fiber (MMF).

I. INTRODUCTION
In recent years, there have been increasing interests in the
field of computational imaging with deep learning. It has
been demonstrated that deep neural networks can help to
deal with problems that cannot be analytically addressed
using conventional methods [1]. Thus, the deep learning
schemes are applied effectively in areas such as computer
vision, unmanned technology, and natural language pro-
cessing etc. [2], [3], [4]. With a deeper understanding and
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increased processing speed, the deep neural networks are
found to be used in the field of computational imaging. The
deep neural networks can solve many remaining problems
in fields of scattering imaging, computational ghost imag-
ing, Fourier laminar microscopic imaging, phase retrieval
and hologram data compression etc. [5]–[11]. It is shown
that as an object passes through a scattering medium or
multimode fiber (MMF), the information of the image is
deteriorated. Therefore it is difficult for us to directly obtain
the original image. In the past decade, various approaches
have been proposed for imaging through scattering media or
MMF, such as wavefront shaping, speckle correlation and
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digital phase conjugation etc. [12]–[16]. These approaches
are found to be capable of reconstructing images from
speckles. However, these approaches require very compli-
cated and precise experimental control and measurement,
and are susceptible to external disturbances. Therefore, a
slight vibration of the scattering media may largely degrade
the performance of reconstructing images. Recently many
researchers show that apart from the limitations of traditional
methods for scattering imaging, deep learning can provide a
new kind of imaging technique with more sustainability and
stability [5], [17]–[22]. Specifically, the convolutional neural
networks (CNNs) can learn the input-output relationships
effectively without prior knowledge of parameters of the
optical system and light propagation processes. However, to
achieve good imaging quality, it needs a large dataset from
a certain scattering medium to train the CNN. When we
shift to reconstruct images from speckles taken from other
scattering medium or MMF, a lot of new training dataset is
needed for training the CNN. It shows that this method is
time-consumption, in which we must take a lot of dataset and
use this dataset to train the CNN.

Fortunately, CNN is capable of extracting the spatial invari-
ant information from speckle, which can be re-used to extract
high-dimension features from new dataset. This kind of deep
learning scheme is called as transfer learning [25]. In this
paper, we design a CNN structure to perform the transfer
learning between MMF and scattering slabs. The process of
scattering can be described as y = F(x), where x is the input
of the optical system and y is the measured speckle [5]. The
role of the CNN is to reverse this process to x = F−1(y).
The advantage of using the CNN is that we can obtain
F−1(·) without knowing the process of light propagation. The
CNN performs end-to-end mapping to reconstruct images.
Once the CNN is trained by speckles form scattering slab or
MMF, the parameters of the network are well fitted to the
objective feature. For example, the CNN is pre-trained by
speckles from MMF to reconstruct handwritten digit images,
the parameters of each layer in this trained network are well
trained to extract digit structural features (such as arches,
angles, horizontal and vertical structure etc.) from speckles.
Therefore, when the pre-trained network is used to recon-
struct images through scattering slabs, we only need to tune
the parameters with much few speckles from scattering slabs.
It is apparent that this training scheme needs less training data
and saves training time.

The CNN used in this work is built based on U-net
[26], dense-net [27] and mobilenet [28], and is called as
‘‘Mobiledense-net (MDN)’’. The U-Net architecture is first
proposed for biomedical image segmentation and then be
used in variety of image relevant tasks. It has been shown
that, the U-Net is of high efficiency in end-to-end image
processing tasks. The dense-net encourages feature reuse
and the mobilenet is often used in mobile and embedded
vision applications, which is lightweighted. The experimental
results indicate that the MDN has strong robustness and few
parameters, making the training process effectively. In the

experiment, we pre-train the MDN with a lot of object-
speckle pairs from MMF, and then use a few speckles taken
from scattering slab to tune the pre-trained model. Likewise,
we pre-train the MDN with a relatively large number of
speckles taken from three different scattering slabs respec-
tively. The pre-trained models are then tuned by a small
number of speckles taken from MMF. It is shown that these
trained MDNs is capable of reconstructing object images
from speckles taken from both scattering slabs and MMF.We
define this kind of transfer learning as the mutual transfer
learning. It will be shown that the mutual transfer learning
through scattering slab or MMF can reconstruct images from
speckles with high fidelity.

II. MATERIALS AND METHODS
A. NETWORK STRUCTURE
The network structure is consisted of U-net [26] and dense
blocks [27]. Specifically, each dense block contains a
depthwise separable convolution from Mobilenet [28]. The
architecture diagram is shown in Fig. 1, which follows
the symmetrical path of encoder and decoder [29], [30] of
the U-net and replaces part of the convolutional layers in
typical U-net with dense blocks. The dense block contains
several sets, each consisting of a depthwise separable con-
volution, a batch normalization layer, a rectified linear unit
activation, a convolutional layer, and a dropout layer. Among
these layers, depthwise separable convolution is proved to
possess less parameters compared with a standard convolu-
tion, thus it is often used in some lightweight networks, such
as MobileNetV1, MobileNetV3 [31]. Here we apply it to
each dense block in our network for reducing the number of
parameters.

The input of the CNN is a processed 64×64 speckle inten-
sity image. The image is first encoded through 4 dense blocks,
each followed by a max pooling layer for down-sampling
and the feature maps become a 4 × 4 low-solution image
on the bottom. Then, the feature maps are decoded through
4 up-sampling convolutional layers and dense blocks. The
skip connection helps to avoid pixel loss. The corresponding
spatial scale feature information in encode and decode path
are tunneled through skip connection. Finally, the network
output is obtained after two convolutional layers.

The CNN is trained by using our experimental data and
the trained CNN can reconstruct images from speckles. In
Fig.2, we show the visualization of internal activation maps
between the layers (the letter G is taken as example). The
feature extracted from each layer is gradually shown to be
representative as the layers go deeper, demonstrating the
network’s ability to extract spatial statistical characteristics
from highly complex speckles.

B. EXPERIMENTAL SETUP
Figure 3 is the experimental setup, in which the object pat-
terns are displayed on a phase-only spatial light modulator
(SLM, 1920 × 1080 pixels, Pluto-Vis, Holoeye). The laser
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FIGURE 1. The diagram of the proposed MDN architecture, which is consisted of a general U-net and dense blocks behind
convolution. Each dense block consists of multiple subblocks that each is made up of depthwise
conv+BN+Relu+conv+dropout. The input speckle goes through the encode and decode path to generate a one channel
reconstructed image pixel by pixel.

FIGURE 2. Visualization of internal activation maps. The layers shown here are the last layer in dense blocks (Db1-Db9, which are marked in blue
color in Fig. 1). The spatial information of CNN input is gradually resembled as it flows through the encode-decode path. The final output is
obtained after an additional convolution layer (O1).

FIGURE 3. Experiment setup for realizing imaging based on deep
learning, in which the object images pass through MMF or scattering
slabs. (a) The light with object information couples into MMF, and the
speckle is collected by O2 and lens (L) (b) the light with object
information passes through three scattering slabs, respectively. The
output speckles are obtained by CCD. P is a polarizer and SF is a spatial
filter.

beam of He-Ne laser passes through a spatial filter (SF)
and a horizontal polarizer (P), and illustrates the SLM. As
the light beam with object information passes through MMF
(62.5µm core diameter, NA of 0.25, Thorlabs), the speckle
is recorded by a CCD (Chameleon 3, 1024 × 1280 pixels,
Mono, Point Grey). A lens (L) is used to collect scattered

light in the front of the CCD. The change of the object will
result in slight change of the speckle. We program the SLM
to load object patterns one by one and collect a lot of object-
speckle pairs for training our network. We replace the MMF
by scattering slabs of three different thickness (the thick-
ness of the scattering slabs are 150µm, 200µm and 250µm,
respectively), and the speckle is obtained as a light beam with
object information passes through a scattering slab. Similarly,
the datasets with a lot of object-speckle pairs can be obtained
through scattering slabs, for training the network.

Here, handwritten digits from MNIST [32], handwritten
letters from NIST [33], CIfar-10 [34] and Fashion-mnist [39]
are used as object patterns. Before loaded onto the SLM,
all object patterns are resized into 512 × 512 pixels and
handwritten digits and letters are binarized. The correspond-
ing speckles with the same size are collected. We collect
a lot of object -speckle pairs in experiment, which are as
following:

M1 : The object patterns are handwritten digits, and the
CCD collects 11,000 speckle images as the objects pass
through MMF.
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M2 : The object patterns are handwritten letters, and the
CCD collects 6000 speckle images as the objects pass through
MMF.

M3 : The object patterns are Cifar-10 images, and the CCD
collects 2000 speckle images as the objects pass through
MMF.

M4 :The object patterns are Fashion-mnist images, and the
CCD collects 4000 speckle images as the objects pass through
MMF.

S1 : The object patterns are handwritten digits, and the
CCD collects 11000 speckle images as the objects pass
through scattering slab with thickness of 150µm.

S2 : The object patterns are handwritten digits, and the
CCD collects 11000 speckle images as the objects pass
through scattering slab with thickness of 200µm.

S3 : The object patterns are handwritten digits, and the
CCD collects 11000 speckle images as the objects pass
through scattering slab with thickness of 250µm.

S4 : The object patterns are Fashion-mnist images, and the
CCD collects 4000 speckle images as the objects pass through
scattering slab with thickness of 150µm.

III. DATA PROCESSING
All the speckle images of different datasets are divided ran-
domly into training sets and test sets. The training speckles
are downsampled to 64×64 pixels, normalized between 0, 1.
Images of digits and letters are thresholded by setting all the
nonzeros to 1 and also resized into 64× 64 pixels. The pixel
value of each image after processing is the classification cat-
egory of corresponding speckle pixel point, namely, 0, and 1.
During training, the model optimizer is Adam [35], and the
loss function is binary cross-entropy. We introduce Pearson
correlation coefficient (PCC) [36], Peak Signal to Noise Ratio
(PSNR), and Structure Similarity (SSIM) [37] etc. to evaluate
the imaging quality.

PCC is used to calculate the similarity between features
and categories to determine whether the extracted features
and categories are positively correlated, negatively correlated
or not correlated. PCC formula is defined as follows [36]:

PCC

=

∑H
i=1

∑W
j=1 ŷ(i, j)−µŷ)(y(i, j)−µy)√∑H

i=1
∑W

j=1 (ŷ(i, j)−µŷ)2
√∑H

i=1
∑W

j=1 (y(i, j)−µy)2
,

(1)

where H , W represent the height and width of the image,
ŷ(i, j) and y(i.j) represent the pixel value of row i, column j
of reconstructed image and the object image respectively. µŷ
and µy refer to the average gray-value of the reconstructed
image and the object image.

PSNR is a widely used method for calculating similarity
between images, and it is defined as [37]:

PSNR = 20 log10
2n − 1
√
MSE

(2)

MSE =
1

H∗W

∑H

i=1

∑W

j=1
(ŷ(i, j)− y(i, j)), (3)

TABLE 1. Average PCC, PSNR, and SSIM of test results for M1, M2, and
M1_M2.

where n is the number of bits per pixel of the image, here is 8,
that is, the gray scale of the pixel is 256.

SSIM is an index for measuring the structural similarity
between two images, which is more in line with the observa-
tion law of human eyes on natural things. SSIM formula is
written as:

SSIM =
(2µyµŷ + c1)(2σyŷ + c2)

(µ2
y + µ

2
ŷ + c1)(σ

2
y + σ

2
ŷ + c2)

, (4)

where, σŷy is the covariance between reconstructed image and
original object. σŷ and σy represent the standard deviation of
reconstructed image and object image, respectively. c1 and c2
are constants.

IV. EXPERIMENTAL RESULTS
A. IMAGE RECONSTRUCTION THROUGH MMF
First of all, we apply the MDN to reconstruct images from
speckles through MMF. The training steps and results are
presented as follows:

1) The trained MDN is used to reconstruct digitals from
speckles. We train the MDN by using 10k speckles of
M1 and test it by 1k speckles from M1. Representative
examples of the speckles and reconstruction pairs are
shown on the left column of Fig. 4(a).

2) The trained MDN is used to reconstruct letters from
speckles. We train the MDN with M2 training set of 5k
speckles and test it by using 1k test speckles. The test
results are presented on the right column of Fig. 4(a).

3) We apply transfer learning to do the reconstruction
task. We use the trained MDN (from step 1), which has
been trained by 10k speckles of digits, as prior model.
Then we tune it by using only 1k speckles of letters and
test the final model performance on 1k speckles of let-
ters. Figure 4(b) presents the reconstructed letters from
the speckles. It shows that, even we train the network
with a few (1k) speckles of letters, the reconstructed
images are of high-quality. It is due to that the MDN
has the prior knowledge in which it has been trained
using a lot of speckles of digits.

These results indicate that the MDN can extract and
classify the information from the highly complex speckles
throughMMF, to reconstruct object imageswith good quality.
Table 1 illustrates the average PCC, SSIM, PSNR of the test
results of the above three experiments. During training, the
MDN makes pixel-wise classification, learning the per-pixel
input-output relation. Accordingly, the results demonstrate
superior generalization of the MDN and the model obtained
after transfer learning retains good performance, just as the
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FIGURE 4. MDN test results through MMF. (a) The left column: M1
(digits), the right column: M2 (letters). In each column, from the left to
the right: ground truths images, corresponding speckles and test results,
(b) the performance of the transfer learning, in which the MDN is trained
by 10 K speckles of digitals, and tuned by 1K speckles of letters. The
trained MDN can reconstruct letters with quite good quality. The PCC
value is given in yellow color (other figures are the same).

MDN does when it is directly trained by a lot of speckles of
M2.

B. MUTUAL TRANSFER LEARNING BETWEEN MMF AND
SCATTERING SLABS
Now we want to demonstrate that the MDN does have the
characteristic of mutual transfer learning between MMF and
scattering slabs. The experimental results are presented as
follows:

1) First of all, we prove the transfer learning from MMF
to scattering slabs for reconstructing images as the
objects pass through three different scattering slabs. In
the experiment, we take a large number of speckles
(10k) from M1 (MMF dataset) for pre-training the
MDN, then take a small number of speckles from S1,
S2, and S3 (1k speckles from each scattering slab)
for tuning the MDN, respectively. To test the obtained
model generalization ability, 10k speckles from each
S1, S2, and S3 are used as test set respectively, in
which these test data are never used in training. The test
results are shown in Fig. 5(a). Since the weights used to
initialize the pre-trainedmodel is the optimal onewhich

FIGURE 5. The performance of the trained MDN for achieving the transfer
learning from MMF to scattering slabs. The MDN has been pre-trained by
using each 10k object-speckle pairs from MMF (M1), and each 1k
speckles from each scattering slab Si (i = 1,2,3) are used for tuning the
pre-trained MDN. (a) The performance of the reconstructed images from
speckles from S1, S2 and S3, respectively, (b)the schematic diagram of
training process.

TABLE 2. The average PCC, PSNR, SSIM values of the transfer learning
M1_S1, M1_S2, M1_S3, S1_M1, S2_M1, S3_M1, and Mix_M1, respectively.
The average PCC, PSNR, SSIM values are calculated by using 10k test data.

is obtained after training M1, the speckle features of
the tuning data can be well extracted based on the
pre-trained model. Therefore, the desired new model
can be obtained quickly, within a few minutes. The
training process is displayed in Fig. 5(b). The average
PCC, PSNR and SSIM of the test results are shown in
Table 2. It is shown from Table 2 that the fidelity of
reconstructing image is quite high.

2) The second experiment will demonstrate the transfer
learning from each of three different scattering slabs
to MMF for reconstructing images as the objects pass
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FIGURE 6. The performance of the trained MDN for achieving the transfer
learning from scattering slabs to MMF. The MDN has been pre-trained by
using each 10k object-speckle pairs from S1, S2, and S3, respectively, or
9k mixture of S1, S2, and S3. 1k speckles from MMF are used for tuning
the pre-trained MDN. (a) The performance of the reconstructed images
from speckles taken from MMF (M1). The PCC value in yellow color is
marked, (b)the schematic diagram of the training process.

through MMF. In the experiment, each 10k speckles
from S1, S2, and S3 respectively, and a totally 9k
speckles frommixture of S1, S2, S3 (each 3k speckles),
are used for pre-training the MDN. 1k speckles from
M1 are used for tuning the pre-trained MDNs. The
training process is displayed in Fig. 6(b). The trained
MDN is then tested by 10k speckles fromM1, in which
these test data have never been used in training. The
test results are shown in Fig. 6(a), and the average PCC,
PSNR and SSIM of the reconstructed images are shown
in Table 2.

It can be seen from the results that both transfer learning
tasks do have high imaging fidelity. The results indicate that
using a lot of speckles from scattering slab or MMF to train
the MDN as a prior model, we can reconstruct images from
speckles of other scattering slab or MMF. From Table 2,
we find that the imaging quality for transfer learning from
MMF to scattering slab is slightly better than that for transfer
learning from scattering slab to MMF. This is due to the
difference of intensity distribution between the pre-training

FIGURE 7. Examples of Cifar-10 images and the corresponding speckles
for the objects passing through MMF.

FIGURE 8. Transfer learning results, in which the MDN is pre-trained by
using M3(Cifar-10 images). The letters are the test results on transfer
learning task within MMF from M3(natural images) to M2 (letters).

TABLE 3. Average PCC, PSNR, SSIM values for transfer learning M3_M2,
M3_S1, M3_S2, and M3_S3, respectively.

dataset and tuning dataset. We will further discuss this prob-
lem in Section IV-D.

C. TRANSFER LEARNING WITH OTHER DATASETS
1) IMPROVEMENT OF MUTUAL TRANSFER LEARNING
In order to further reduce the amount of pre-training data, we
use M3 (2k) (image-speckle pairs as shown in Fig. 7) for pre-
training the MDN. It is shown that these images are more
complex than digit, letter and Fashion-mnist images. Using
these relatively complex data to pre-train the CNN can help
us reduce data requirement [38].

The loss function for pre-training the MDN is MSE. After
pre-training, 1k speckles from M2, S1, S2, and S3, respec-
tively are used for tuning the model with loss function binary-
crossentropy. The test results are shown in Fig. 8, and the
performance of the transfer learning is evaluated by PCC,
PSNR and SSIM, which are presented in Table 3.

Compared with Table2, the results in Table3 indicate that
the pre-trained model using M3 possesses stronger general-
ization ability than that using M1, showing better imaging
quality. Accordingly, with the method of transfer learning,
the MDN is capable of reconstructing objects of different
classes. Moreover, the data requirement to pre-train theMDN
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FIGURE 9. Examples of Cifar-10 images and the corresponding speckles
for the objects passing through MMF.

FIGURE 10. Mean-variance diagram of the six datasets.

for reconstructing objects through scattering media or MMF
is notably reduced. This method provides great convenience
for object reconstruction in cases that the scattering medium
turns to another different one or MMF.

2) RECONSTRUCTING GRAYSCALE OBJECT IMAGES
The mutual transfer learning can be used to reconstruct
grayscale object images between scattering slab and MMF.
Nowwe show the transfer learning fromMMF to a scattering
slab. To do this, we use 4k speckles of M4 for pre-training,
and randomly select 1k speckles of S4 for tuning. The rest 3k
speckles of S4 are used for testing. For the transfer learning
from a scattering slab to MMF, we use 4k speckles of S4
for pre-training, and randomly select 1k speckles of M4 for
tuning. The test results are shown in Fig 9. It is shown from
Fig. 9 that the test results are of high PCC value, indicating
that the MDN can reconstruct almost the texture information
of the images. Compared to digit and letter images, these
gray images are more complex, indicating that the MDN can
build more complex mappings of object-speckle pairs for
reconstruction.

D. DATA ANALYSIS AND NETWORK DISCUSSION
1) DATA ANALYSIS
Transfer learning is used to enhance the generalization ability
of a trained network across different datasets. Therefore, the
difference of data distribution between source domain and

FIGURE 11. Comparison of validation loss curves of MDN and dense-net.
(a) trained on M1, (b) trained on M2. (c), (d) and (e) are validation loss
curves of transfer learning from MMF to scattering slabs. (f), (g) and (h)are
validation loss curves of transfer learning from scattering slabs to MMF.

target domain [25] will affect the network performance. We
analyze the influence of the distribution of speckle intensity
on the MDN test results. We randomly select 200 speckles
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from each of the six datasets (M1∼M3, S1∼S3), and calcu-
late their averagemeans and variances respectively. Figure 11
presents the diagram of variance as a function of mean. It
can be seen that the distributions of speckles from S1, S2
and S3 are relatively close, and their distributions are far
different from those of M1∼M3. It seems that the intensity
distribution of speckles for pre-training and tuning are signifi-
cantly different. Moreover, the distribution ofM1 is relatively
concentrated, so it is more difficult for the MDN to perform
pixel-wise classification and to reconstruct image. While the
speckle distributions of S1, S2, and S3 are more uniform,
making it easier for the model to do classification. In other
words, the MDN performs better when it is pre-trained with
data that is hard to be classified and then tuned with data that
is easy to be classified. So, the average evaluation values of
transfer learning from MMF to scattering slab in Table 2 is
better than that from scattering slab to MMF. Based on this
reason, M1 and M3 are both chosen for pre-training.

2) NETWORK DISCUSSION
Our MDN uses depthwise separable convolution and dense
blocks to help reduce training parameters and improve net-
work stability. For comparison, we remove the depthwise sep-
arable convolution from the dense block, so that the network
becomes ‘‘dense-net’’, and we use the method of training
MDN to train this new network. The validation loss curves
during training are recorded and shown in Fig. 11. The curves
of Fig. 11(a) and (b) indicate the validation losses of the
MDN and dense-net trained by M1 and M2 respectively.
The curves from Fig. 11(c) to Fig. 11(h) are the transfer
learning validation losses of MDN and dense-net, where
Fig. 11(c) to Fig. 11(e) indicate transfer learning from MMF
to scattering slabs, Fig. 11(f) to Fig. 11(h) indicate transfer
learning from scattering slabs to MMF. It can be seen from
the curves that the MDN is more stable than dense-net during
training, since the curves of dense-net oscillates severely.
These curves show that MDN achieves faster loss decrease
and lower loss value than dense-net. We also replace all the
dense blocks by standard convolutional layers to make it a
typical U-net, which has parameters over 30-million [24].
Compared to the typical U-net, the number of parameters of
our network is reduced by nearly 63%, which improves the
training efficiency. Therefore a pre-trained MDN can realize
transfer learning to reconstruct images quickly from different
kinds of speckles from MMF or scattering medium.

V. CONCLUSION
In this paper, we designed a CNN structure to realize the
mutual transfer learning between MMF and scattering slabs.
The CNN is built based on U-net, dense-net and mobilenet,
and is called as ‘‘Mobiledense-net (MDN)’’. The MDN is
pre-trained using a large number of object-speckle pairs from
MMF, then tuned with quite small number of object-speckle
pairs from scattering slab. This trained network can recon-
struct images with high fidelity from the speckles taken from
MMF or scattering slabs. Conversely we can pre-train the

MDN with a large number of object-speckle pairs from the
scattering slabs, and tune the network with quite small num-
ber of object-speckle pairs fromMMF. It has been shown that
the trained MDN can recover images from the speckles taken
from MMF with high fidelity. It was also shown that training
the MDN with a relatively complex dataset can help enhance
network’s transfer learning ability, and greatly reduce the
training data. These results in this paper may provide a more
generalized method for the study of scattering imaging and
improve the quality of imaging across MMF and scattering
media using CNN.
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