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ABSTRACT Current augmented Kalman filter (AKF)-based speech enhancement algorithms utilise a
temporal convolutional network (TCN) to estimate the clean speech and noise linear prediction coefficient
(LPC). However, the multi-head attention networkMHANet) has demonstrated the ability to more efficiently
model the long-term dependencies of noisy speech than TCNs. Motivated by this, we investigate the
MHANet for LPC estimation. We aim to produce clean speech and noise LPC parameters with the least
bias to date. With this, we also aim to produce higher quality and more intelligible enhanced speech than
any current KF or AKF-based SEA. To this end, we investigate MHANet within the DeepLPC framework.
DeepLPC is a deep learning framework for jointly estimating the clean speech and noise LPC power
spectra. DeepLPC is selected as it exhibits significantly less bias than other frameworks, by avoiding the
use of whitening filters and post-processing. DeepLPC-MHANet is evaluated on the NOIZEUS corpus
using subjective AB listening tests, as well as seven different objective measures (CSIG, CBAK, COVL,
PESQ, STOI, SegSNR, and SI-SDR). DeepLPC-MHANet is compared to five existing deep learning-based
methods. Compared to other deep learning approaches, DeepLPC-MHANet produced clean speech LPC
estimates with the least amount of bias. DeepLPC-MHANet-AKF also produced higher objective scores
than any of the competing methods (with an improvement of 0.17 for CSIG, 0.15 for CBAK, 0.19 for
COVL, 0.24 for PESQ, 3.70% for STOI, 1.03 dB for SegSNR, and 1.04 dB for SI-SDR over the next
best method). The enhanced speech produced by DeepLPC-MHANet-AKF was also the most preferred
amongst ten listeners. By producing LPC estimates with the least amount of bias to date, DeepLPC-MHANet
enables the AKF to produce enhanced speech at a higher quality and intelligibility than any previous KF or
AKF-based method.

INDEX TERMS Speech enhancement, Kalman filter, augmentedKalman filter, LPC, temporal convolutional
network, multi-head attention network.

I. INTRODUCTION
Speech corrupted by background noise (or noisy speech) can
reduce the efficiency of communication between speaker and
listener. A speech enhancement algorithm (SEA) can be used
to suppress the embedded background noise and increase the
quality and intelligibility of noisy speech [1]. SEAs are useful
in many applications where noisy speech is undesirable and
unavoidable. For example, speech communication systems,
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hearing aid devices, and speech recognition systems typi-
cally rely upon SEAs for robustness. Various SEAs, namely
spectral subtraction (SS) [2]–[4], Wiener filter (WF) [5],
minimum mean square error (MMSE) [6]–[8], Kalman filter
(KF) [9], augmented KF (AKF) [10], computational auditory
scene analysis (CASA) [11], and deep learning-based [12]
have been introduced over the decades. This paper focuses on
the AKF constructed from parameters estimated using deep
learning.

The KF is an unbiased linear MMSE estimator, which was
first introduced as a SEA by Paliwal and Basu [9]. In this
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seminal work, each frame of the uncorrupted speech signal
(i.e., clean speech) is represented by an auto-regressive (AR)
process, whose parameters include the linear prediction coef-
ficients (LPCs) and the prediction error variance. The LPC
parameters as well as the additive noise variance are intrinsic
to the KF recursive equations. For simplicity, the background
noise was assumed to be stationary and white. Given a
frame of noisy speech samples, the recursive equations of
the KF estimate the clean speech samples. As demonstrated
by Paliwal and Basu, it is difficult to accurately estimate the
clean speech LPC parameters and additive noise variance in
practice, with poor estimates resulting in enhanced speech
with low quality and intelligibility.

In [10], Gibson et al. introduced the augmented KF (AKF)
for speech enhancement in coloured noise conditions. For the
AKF, both the clean speech and additive background noise
are represented by AR processes. The clean speech and noise
LPC parameters form an augmented matrix, which is used
to construct the recursive equations of the AKF. In [10],
the AKF processes the noisy speech iteratively (usually three
to four iterations) to suppress the coloured background noise,
yielding the enhanced speech. During this, the clean speech
and noise LPC parameters for the current frame are estimated
from the corresponding filtered speech frame of the previous
iteration. Although this method demonstrated the ability to
improve the signal-to-noise ratio (SNR) of noisy speech,
the resultant enhanced speech suffered from musical noise
and speech distortion. This is because the AKF is not robust
to inaccurate LPC estimates [13], [14].

In [15], Roy et al. introduced a sub-band (SB) iterative KF
(SBIT-KF) for SEA. With the assumption that the impact of
noise in low-frequency SBs is negligible, SBIT-KF enhances
only the high-frequency sub-bands (SBs) of the noisy speech
using two KF iterations. However, low-frequency SBs can
also be impacted by noise—typically when operating in
real-life noise conditions. Moreover, the iterative process-
ing employed by SBIT-KF produces speech distortion [10].
George et al. used a robustness metric to tune the AKF for
coloured noise [13]. The authors demonstrated that inaccurate
estimates of the clean speech and noise LPC parameters
introduce bias in the AKF gain, leading to a degradation
in speech enhancement performance. Typically, the adjusted
AKF gain is under-estimated in speech regions, resulting in
distorted speech.

In recent years, deep learning-based supervised methods
have been used for speech enhancement. Many approaches
utilise a time-frequency (T-F) representation derived from
the unobserved clean speech and noise as the training tar-
get [11]. Inspired by the T-F masking of CASA [11], Wang
and Wang proposed to use a deep neural network (DNN) to
estimate the ideal binary mask (IBM) [16]. The estimated
IBM can be used to estimate the T-F components of the
clean speech. Later on, researchers found that the ideal ratio
mask (IRM) produces higher objective quality scores than the
IBM [17]. In [18], a post-processing method was employed
after masking with the IBM, IRM, or ideal amplitude mask

(IAM) [19], resulting in an improvement in objective quality
and intelligibility. In [20], Williamson et al. introduced a
complex ideal ratio mask (cIRM), which is capable to recover
both the amplitude and the phase spectrum of the clean
speech. In [21], Zheng et al. introduced a phase-ware SEA.
Here, the phase information (converted to the instantaneous
frequency deviation (IFD) is jointly used with the IAM to
form the phase sensitive mask (PSM). The clean speech
spectrum is then reconstructed using the estimated mask
and the phase information (extracted from the IFD). Unlike
masking-based methods, mapping-based methods utilise a
deep neural network (DNN) to estimate the clean speech
spectrum. In [12], Xu et al. employed a DNN to map the
noisy speech log power spectra (LPS) to the clean speech
LPS. In [22], Han et al. trained a DNN to learn a spectral
mapping from themagnitude spectrum of noisy speech to that
of clean speech.

Deep learning methods have also been proposed to
improve the performance of statistical model-based SEAs,
such as the MMSE short-time spectral amplitude (MMSE-
STSA) estimator [6],MMSE log-spectral amplitude (MMSE-
LSA) estimator [7],WF [1], and square-rootWF (SRWF) [1].
Generally, the performance of these SEAs relies upon the
accuracy of the a priori SNR estimate. In [23], Nicolson
and Paliwal proposed Deep Xi—a deep learning framework
to estimate the a priori SNR. In [24], Zhang et al. pro-
posed the DeepMMSE framework for noise power spectral
density (PSD) estimation. DeepMMSE uses the Deep Xi
framework with a residual network (ResNet) temporal con-
volutional network (ResNet-TCN) to estimate parameters for
the MMSE-based noise periodogram estimator. DeepMMSE
was able to demonstrate better noise PSD tracking than other
benchmark methods in various noise conditions.

In [25], an attention-based network was investigated for
speech enhancement, namely the multi-head attention net-
work (MHANet). This was motivated by the ability of
multi-head attention to more efficiently model long-term
dependencies than recurrent neural networks (RNNs) and
TCNs [26]. The experimental results demonstrated that
MHANet was able to attain significantly higher objective
quality and intelligibility scores than a TCN and a long
short-term memory (LSTM) network. This indicated that
multi-head attention is more apt at modelling the long-term
dependencies of the clean speech and background noise
present in noisy speech than that of RNNs and TCNs.

Deep learning has also been employed for time-domain
speech enhancement. In [27], Fu et al. proposed raw
waveform-based speech enhancement using a fully convolu-
tional neural network (RWF-FCNN). The FCNN maps noisy
speech time-domain frames to clean speech time-domain
frames. Different from noisy speech spectral mapping [22],
RWF-FCNN maps each frame of the noisy speech waveform
to the clean speech waveform. By estimating time-domain
samples, RWF-FCNN also estimates the phase—spectral
magnitude estimation methods [12]. In [28], the authors
claimed that the discontinuities present at the boundaries of
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framed speech are detrimental to the enhancement process
in [27]. Motivated by this, the authors proposed end-to-
end utterance enhancement using an FCNN (EEUE-FCNN).
In this SEA, an FCNN directly maps the noisy speech
to the clean speech. It was shown that EEUE-FCNN [28]
produces more intelligible enhanced speech than that of
RWF-FCNN [27].

Deep learning has also been used for LPC estimation—
a key stage for KF and AKF-based SEA [9], [10]. In [29],
Pickersgill et al. proposed an LPC estimation method using a
DNN. One drawback of this study is that results weren’t given
for lower SNR levels (below 10 dB). Moreover, only six noise
recordings were used for training, reducing its generalisation
capabilities for unseen noise conditions. For the KF SEA
in [30], Yu et al. utilised a DNN to estimate LPC param-
eters from noisy speech frames. For training, only 10, 720
examples constructed from 670 speech recordings, four noise
recordings, and four SNR levels were used. This limits the
number of conditions observed by the DNN during training,
thus reducing its generalisation capabilities to unseen condi-
tions. Also, the additive noise variance is computed from the
first noisy speech frame by assuming that there is no presence
of speech. However, this does not account for conditions that
have time-varying amplitudes. In [31], Yu et al. adopted a
fully-connected feed-forward DNN (denoted as FNN) and
an LSTM network to estimate the clean speech and noise
LPCs, respectively, as well as multi-band spectral subtraction
(MB-SS) post-processing [3] for coloured-noise AKF-based
speech enhancement (FNN-CKFS, LSTM-CKFS). To esti-
mate the prediction error variances for the AR processes of
the AKF, the authors employed a maximum likelihood (ML)
approach [32]. However, FNN-CKFS and LSTM-CKFS lack
the ability to accurately estimate LPCs in various noise
conditions—leading to the use ofMB-SS for post-processing.
This could be due to the small amount of training data used
when fitting the FNN and LSTM networks.

Motivated by the performance improvement that Deep Xi
offers to statistical model-based SEAs [23], the AKF in [14]
employed the Deep Xi framework to estimate its parame-
ters (named Deep Xi-AKF). Improving upon Deep Xi-AKF,
the KF in [33] utilised the DeepMMSE framework [24] to
estimate its parameters (named Deep Xi-KF, as DeepMMSE
uses Deep Xi). This was motivated by DeepMMSE’s ability
to significantly reduce MMSE-based noise PSD estimation
bias. Deep Xi-AKF and Deep Xi-KF also used significantly
larger training sets than previous methods. For Deep Xi-AKF
and Deep Xi-KF, the noise parameters are computed from the
estimated noise PSD derived from Deep Xi and DeepMMSE,
respectively. However, Deep Xi-AKF and Deep Xi-KF do
not directly estimate the clean speech LPC parameters from
the noisy speech. Rather, a whitening filter is constructed
with its coefficients computed from the estimated noise
PSD. The whitening filter is then applied to each noisy
speech frame, yielding pre-whitened speech, from where the
speech LPC parameters are computed. This leads to biased
clean speech LPC estimates—thus impacting the quality

and intelligibility of the enhanced speech produced by the
AKF and KF.

Recently, a deep learning framework was proposed to
estimate the clean speech and noise LPC power spectra
(LPC-PS), called DeepLPC [34]. The clean speech and
noise LPC-PS estimates are then used to the LPC estimates
required to construct the AKF. As a result, DeepLPC pro-
duces clean speech LPCs with significantly less bias than
the aforementioned methods. This leads to the production
of the highest quality and most intelligible enhanced speech
amongst current KF and AKF SEAs—outperforming Deep
Xi-KF while using the same training set. However, a ResNet-
TCN [24] was used to estimate the clean speech and noise
LPC-PS (DeepLPC-ResNet-TCN). Asmentioned previously,
a ResNet-TCN is suboptimal for modeling the long-term
dependencies of noisy speech.

Motivated by the shortcomings of previous deep
learning-based KF and AKF SEAs (presented in Table 1),
we propose DeepLPC-MHANet for AKF-based speech
enhancement. DeepLPC-MHANet aims to produce clean
speech and noise LPC parameters with the least bias to date.

TABLE 1. Summary of existing deep learning-based LPC estimation
methods for the KF as well as AKF.
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With this, we also aim to produce higher quality and more
intelligible enhanced speech than any KF or AKF-based
SEA. DeepLPC is selected as it avoids the issues associated
with previous deep learning frameworks for KF and AKF
SEAs, including the use of whitening filters, post-processing,
and small training sets. MHANet is selected as it is better
suited than TCNs for modelling the long-term dependencies
of noisy speech. Together, DeepLPC and MHANet form an
improved map from the noisy speech to the clean speech and
noise LPC parameters.

The structure of this paper is as follows: background
knowledge is presented in Section II, including the AKF
for speech enhancement, an overview of DeepLPC frame-
work, and MHANet. In Section III, we describe the proposed
DeepLPC-MHANet. Following this, Section IV describes
the experimental setup. The experimental results are then
presented in Section V, along with a discussion. Finally,
Section VI gives some concluding remarks.

II. BACKGROUND
A. AKF FOR SPEECH ENHANCEMENT
In this section, we overview the AKF for speech enhance-
ment. First, we describe the signal model. The noisy speech
y(n), at discrete-time sample n, is given by:

y(n) = s(n)+ v(n), (1)

where s(n) is the clean speech and v(n) is assumed to be uncor-
related additive coloured noise. Next, a 32 ms rectangular
window with 50% overlap is used to convert y(n) into frames,
denoted by y(n, l):

y(n, l) = s(n, l)+ v(n, l), (2)

where lε{0, 1, . . . ,L−1} is the frame index with L being the
total number of frames, and nε{0, 1, . . . ,N − 1} where N is
the total number of samples within each frame. For simplicity,
the frame index is omitted from the following AKF recursive
equations.

Each frame of the clean speech and noise signal in Equa-
tion (2) can be represented by pth and qth order AR models,
as in [35, Chapter 8]:

s(n) = −
p∑
i=1

ais(n− i)+ w(n), (3)

v(n) = −
q∑

k=1

bkv(n− k)+ u(n), (4)

where {ai; i = 1, 2, . . . , p} and {bk ; k = 1, 2, . . . , q} are the
LPCs, and w(n) and u(n) are Gaussian-distributed excitation
noises with zero mean and variances σ 2

w and σ 2
u , respectively.

Equations (2)-(4) form the augmented state-space
model (ASSM) of the AKF [10], given by:

x(n) = 8x(n− 1)+ rz(n), (5)

y(n) = c>x(n). (6)

In the above ASSM,

1) x(n) = [s(n) . . . s(n − p + 1) v(n) . . . v(n − q + 1)]T

is a (p+ q)× 1 state-vector,

2) 8 =
[
8s 0
0 8v

]
is a (p + q) × (p + q) state-transition

matrix with:

8s =


−a1 −a2 . . . −ap−1 −ap
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 , (7)

8v =


−b1 −b2 . . . −bq−1 −bq
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 , (8)

3) r =
[
rs 0
0 rv

]
, where rs =

[
1 0 . . . 0

]>, rv =[
1 0 . . . 0

]>,
4)

z(n) =
[
w(n)
u(n)

]
, (9)

5) c> =
[
c>s c>v

]
, where cs =

[
1 0 . . . 0

]> and cv =[
1 0 . . . 0

]> are p× 1 and q× 1 vectors,
6) y(n) is the noisy measurement at sample n.
For each frame, the AKF recursively computes an unbiased

linearMMSE estimate x̂(n|n) at sample n, given y(n), by using
the following equations [13]:

x̂(n|n− 1) = 8x̂(n− 1|n− 1), (10)

9(n|n− 1) = 89(n− 1|n− 1)8> + Qnrr
>, (11)

G(n) = 9(n|n− 1)c(c>9(n|n− 1)c)−1, (12)

x̂(n|n) = x̂(n|n− 1)+G(n)[y(n)− c>x̂(n|n− 1)], (13)

9(n|n) = [I − G(n)c>]9(n|n− 1), (14)

where Qn =
[
σ 2
w 0
0 σ 2

u

]
is the process noise covariance.

For a noisy speech frame, the error covariances
(
9(n|n −

1) and 9(n|n) corresponding to x̂(n|n − 1) and x̂(n|n),
respectively

)
and the Kalman gain G(n) are continually

updated on a samplewise basis, while ({ai}, σ 2
w) and ({bk},

σ 2
u ) remain constant. At sample n, g>x̂(n|n) gives the output

of the AKF, ŝ(n|n), where g =
[
1 0 0 . . . 0

]> is a (p+q)×1
column vector. As in [13], ŝ(n|n) is given by:

ŝ(n|n) = [1− G0(n)]ŝ(n|n− 1)+ G0(n)[y(n)

−v̂(n|n− 1)], (15)

where G0(n) is the 1st component of G(n), given by [13]:

G0(n) =
α2(n)+ σ 2

w

α2(n)+ σ 2
w + β

2(n)+ σ 2
u
, (16)

where

α2(n) = c>s 8s9s(n− 1|n− 1)8>s cs, (17)
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and

β2(n) = c>v 8v9v(n− 1|n− 1)8>v cv, (18)

are the transmission of a posteriori error variances of the
speech and noise augmented dynamic model from the pre-
vious sample n− 1, respectively [13].
Equation (15) reveals that G0(n) has a significant impact

on ŝ(n|n). In practice, inaccurate estimates of ({ai}, σ 2
w) and

({bk}, σ 2
u ) introduce bias into G0(n), which impacts ŝ(n|n).

In our previous work, we proposed the DeepLPC frame-
work [34] to estimate ({ai}, σ 2

w) and ({bk}, σ 2
u ) for the AKF,

as described in following section.

B. DeepLPC FRAMEWORK
In this section, we review the DeepLPC framework [34].
DeepLPC was able to produce speech and noise LPC esti-
mates with significantly less bias than previous methods by
avoiding the use of a whitening filter, as used in earlier
methods [14], [33]. This was accomplished by using deep
learning to jointly estimate the clean speech and noise LPC-
PS, denoted as λ̂s(l) = {λ̂s(l, 0), λ̂s(l, 1), . . . , λ̂s(l,M − 1)}
and λ̂v(l) = {λ̂v(l, 0), λ̂v(l, 1), . . . , λ̂v(l,M − 1)}, respec-
tively, where M is the total number of discrete-frequency
bins.

The DeepLPC framework is shown in Figure 1. DeepLPC
is fed as input the single-sided noisy speech magnitude spec-
trum |Y (l)| = {|Y (l, 0)|, |Y (l, 1)|, . . . , |Y (l,M − 1)|}. This
is computed from the noisy speech in Equation 1 using the
short-time Fourier transform (STFT):

Y (l,m) = S(l,m)+ V (l,m), (19)

where Y (l,m), S(l,m), and V (l,m) denote the complex-
valued STFT coefficients of the noisy speech, clean
speech, and noise, respectively, for time-frame index l and
discrete-frequency bin m. The Hamming window is used for
analysis and synthesis.

FIGURE 1. Block diagram of the DeepLPC framework.

DeepLPC then estimates the clean speech and noise
LPC-PS in two stages. For the first stage, a DNN jointly
estimates a mapped version of the speech and noise LPC-
PS, ζ l = {λ̄s(l); λ̄v(l)}, of size M × 2, where {·; ·} denotes
the concatenation operation, and λ̄s(l) and λ̄v(l) are computed
from λs(l) and λv(l), respectively, by using a mapping func-
tion. As in [34], the cumulative distribution functions (CDF)
of λs(l) and λv(l) are used as the mapping functions to com-
pute λ̄v(l) and λ̄s(l), respectively. A description of how λ̄v(l)
and λ̄s(l) are computed is provided in Appendix A. In [34],
a ResNet-TCN was used to estimate ζ̂ l . For the second stage,

ζ̂ l is first split into the mapped clean speech and noise LPC-
PS, ˆ̄λs(l,m) and ˆ̄λv(l,m), respectively. Next, the inverse map-
ping of ˆ̄λs(l,m) and ˆ̄λv(l,m) yields λ̂s(l,m) and λ̂v(l,m). The
inverse mapping is described in Appendix B.
The |IDFT| of λ̂s(l,m) and λ̂v(l,m) yields an estimate of

the autocorrelation matrices, R̂ss(τ ) and R̂vv(τ ), where τ is
the autocorrelation lag. As in [34, eq. (26)-(27)], we construct
Yule-Walker equations with the estimated R̂ss(τ ) and R̂vv(τ ).
These are solved using the Levinson-Durbin recursion [35,
Chapter 8], giving ({âi}, σ̂ 2

w) (p = 16) and ({b̂k}, σ̂ 2
u ) (q = 16)

for constructing the AKF.

C. MHANet
The MHANet proposed in [25] is overviewed from input to
output in this section. For a detailed description of MHANet,
we refer the reader to [25]. MHANet is shown in Figure 2
(left). The first layer is used to project the input to a size of
dmodel , and is realised as follows: max(0,LN(|Y |W I

+ bIs)),
where LN is frame-wise layer normalisation [36]

(
W I
∈

RM×dmodel and bIs ∈ Rdmodel
)
. Next, the positional encod-

ing from [25] is added after the first layer, where the
time-frame index indicates the position. The position encod-
ing is learned using weight matrix Wp, with a maximum
length of 2048 time-frames (i.e.Wp ∈ R2048×256). This is fol-
lowed B cascading blocks identical to those from the encoder
of the Transformer [26], except that masked multi-head atten-
tion (MHA) is employed, to ensure causality.

Each block includes an MHA module, a two-layer
feed-forward neural network (FNN) [12], residual connec-
tions [37], and frame-wise LN [36]. The MHA module
of each block is shown in Figure 2 (middle). The MHA
module takes three inputs belonging to a set of L queries
(Qs ∈ RL×dmodel ), keys (K s ∈ RL×dmodel ), and values (V s ∈

RL×dmodel ), where L is the number of frames, and dmodel is
the size of each query, key, and value. Each MHA module
includes a total of H heads of masked scaled dot-product
attention, where h = {1, 2, · · · ,H} is the head index. For
head h, Qs, K s, and V s are linearly projected as: QQQh =

QsW
Q
h , KKKh = K sWK

h , and VVVh = V sWV
h , where W

Q
h ∈

Rdmodel×dk , WK
h ∈ Rdmodel×dk , and WV

h ∈ Rdmodel×dv are
learned weight matrices. The projected queries and keys are
of size dk , and the projected values are of size dv, where
dk = dv = dmodel/H . Figure 2 (right) shows the masked
scaled dot-product attention mechanism for head h, which
takes as input QQQh, KKKh, and VVVh. Masked scaled dot-product
attention is computed as:

Attention(QQQh,KKKh,VVVh) = softmax
(
M s +

QQQhKKK>h
√
dk

)
VVVh. (20)

The outputs from all of the heads are then concatenated
and linearly projected using the learned weight matrixWO

h ∈

RHdv×dmodel , forming the final output of the MHA module:

MHA(Qs,K s,V s) = concat(A1,A2, · · · ,AH )WO. (21)

A residual connection is applied from the input to the
output of the MHAmodule, which is followed by frame-wise
LN.
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FIGURE 2. (left) DeepLPC-MHANet, (middle) multi-head attention (MHA) module, and (right) masked scaled dot-product attention.

The second half of the block includes a two-layer FNN:

FNN(Z) = max(0,ZW1
+ b1s )W

2
+ b2s , (22)

where Z ∈ RL×dmodel is the input, W1
∈ Rdmodel×df , b1s ∈

Rdf , W2
∈ Rdf×dmodel , and b2s ∈ Rdmodel . Hence, the inner

layer has a size of df . A residual connection is applied from
the input to the output of the FNN, which is followed by
frame-wise LN. The last block is followed by the output
layer, which is a sigmoidal feed-forward layer. For an anal-
yses regarding the behavior of the attention weights of the
MHANet during speech enhancement, we refer the readers to
[25, Figure 5].

III. PROPOSED DeepLPC-MHANet
Current deep learning-based AKF methods employ a
TCN, for example, Deep Xi-KF, Deep Xi-AKF, and
DeepLPC-ResNet-TCN-AKF. However, TCNs demonstrate
deficiencies when modeling the long-term dependencies of
noisy speech—unlike attention-based networks [25]. Hence,
we investigate if an attention-based network can produce
clean speech and noise LPC estimates with less bias and
obtain higher quality and intelligibility scores than cur-
rent deep learning-based KF and AKF SEAs. To this end,

we compare the ResNet-TCN to the MHANet within the
DeepLPC framework, as it has shown to outperform all other
KF and AKF deep learning frameworks to date [34].

The MHANet was first investigated within the Deep Xi
framework (DeepXi-MHANet) [23], [25]. Specifically, Deep
Xi-MHANet was used to estimate the a priori SNR from
the noisy speech magnitude spectrum for statistical esti-
mators, such as the MMSE-STSA estimator [6]. Our pro-
posed method differs from Deep Xi-MHANet by jointly
estimating the clean speech and noise LPC-PS instead of
the a priori SNR. Simply, the differences between Deep
Xi-MHANet and DeepLPC-MHANet is the training target.
Deep Xi-MHANet estimates the a priori SNR for statisti-
cal estimators and DeepLPC-MHANet jointly estimates the
clean speech and noise LPC-PS for the AKF. The novelty
of our proposed method lies in the fact that it will be the
first deep learning-based KF or AKF SEA to utilise an
attention-based network.

The block diagram of the proposed SEA, DeepLPC-
MHANet-AKF, is shown in Figure 3. It can be seen that
DeepLPC-MHANet estimates ζ = {λ̄s; λ̄v} from |Y |. The
hyperparameters for DeepLPC-MHANet are the same used
in [25]: B = 5, df = 1 024, dmodel = 256, H = 8, and
0 = 40 000. The training strategy as well as a complexity
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FIGURE 3. Block diagram of the proposed SEA.

and convergence analysis of MHANet are detailed in
Sections IV-B and IV-C.

IV. SPEECH ENHANCEMENT EXPERIMENT
A. TRAINING & VALIDATION SET
The noisy speech for the training and validation sets are
formed from clean speech and noise recordings. For the
clean speech recordings, the train-clean-100 set of the Lib-
rispeech corpus [38] (28 539), the CSTR VCTK corpus [39]
(42 015), and the si∗ and sx∗ training sets of the TIMIT
corpus [40] (3 696) were used, giving a total of 74 250 clean

speech recordings. To form the validation set, 5% of the
clean speech recordings (3 713) are randomly selected. Thus,
70 537 of the clean speech recordings are used for the training
set. For the noise recordings, the QUT-NOISE dataset [41],
the Nonspeech dataset [42], the Environmental Background
Noise dataset [43], [44], the noise set from the MUSAN cor-
pus [45], multiple FreeSound packs (https://freesound.org/),1

and coloured noise recordings (with an value ranging from
2 to 2 in increments of 0.25) were used, giving a total of
16 243 noise recordings. For the validation set, 5% of the
noise recordings (813) are randomly selected. The remaining
15 430 noise recordings are used for the training set. All the
clean speech and noise recordings are single-channel with a
sampling frequency of 16 kHz. To create the noisy speech for
the validation set, each of the 3 713 clean speech recordings
are corrupted by a random section of a randomly selected
noise recording (from the set of 813 noise recordings) at
a randomly selected SNR level (−10 to +20 dB, in 1 dB
increments). The noisy speech for the training set was created
using the method described in Section IV-B.

B. TRAINING STRATEGY
The following training strategy was employed to train
DeepLPC-MHANet:
• Mean squared error is used as the loss function.
• The Adam optimiser [46] with β1 = 0.9, β2 = 0.98,
and ε = 10−9 is used for stochastic gradient descent
optimisation, where the learning rate, αr , is controlled
over the course of training as in [26]:

αr = d−0.5model ·min(γ−0.5, γ · 0−1.5), (23)

where γ is the training step and 0 is the number of
warmup steps.

• Gradients are clipped between [−1, 1].
• The number of training examples in an epoch is equal
to the number of clean speech recordings used in the
training set, i.e., 70 537.

• A mini-batch size of 8 training examples is used.
• The noisy speech signals are generated on the fly as fol-
lows: each clean speech recording is randomly selected
and corrupted with a randomly selected noise recording
at a randomly selected SNR level (-10 to +20 dB, in 1 dB
increments).

• During training, we employ early stopping which mon-
itors the validation loss with a patience of 30 epochs.
Using this strategy, training was terminated at epoch 180
(where epoch 150 was used for testing).

C. COMPLEXITY AND CONVERGE ANALYSIS OF
DeepLPC-ResNet-TCN
The complexity of a DNN usually depends on the number
of training parameters, where MHANet has 4.27 million
parameters and ResNet-TCN has 2.1 million parameters [34].

1Freesound packs that were used: 147, 199, 247, 379, 622, 643, 1 133,
1 563, 1 840, 2 432, 4 366, 4 439, 15 046, 15 598, 21 558.
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However, the computational complexity of self-attention lay-
ers is less than convolutional layers [25, Table 1]. As a result,
the amount of time taken to complete a single training epoch
for the MHANet is 30 minutes, compared to 40 minutes for
ResNet-TCN (using an NVIDIA GTX 1080 Ti GPU on the
Deep Xi dataset) [25].

Next, we analyse the convergence of the mean squared
error between the predicted and true values for the training
and validation sets of DeepLPC-MHANet on the Deep Xi
dataset, as shown in Figure 4. It can be seen that the mean
squared error reduces for the training set as well as the
validation set after each epoch, until converging at around
epoch 150. As the early stopping criterion with a patience
of 30 is used, epoch 150 is chosen for testing.

FIGURE 4. Mean squared error between the predicted and true values for
the training and validation data sets of DeepLPC-MHANet.

D. TEST SET
For the objective experiments, 30 clean speech recordings
belonging to six speakers (three male and three female)
are taken from the NOIZEUS corpus [1, Chapter 12]. The
noisy speech for the test set is formed by mixing the clean
speech with real-world non-stationary (voice babble, street)
and coloured (factory and f16) noise recordings selected from
[43], [44] at multiple SNR levels varying from −5dB to
+15 dB, in 5 dB increments. This provides 30 examples per
condition with 20 total conditions. All clean speech and noise
recordings in the test set are single channel with a sampling
frequency of 16 kHz.

The NOIZEUS corpus was chosen to evaluate the pro-
posed SEA as it has been used to evaluate many other deep
learning-based KF and AKF SEAs [14], [33], [34]. An impor-
tant attribute of the NOIZEUS corpus is that the clean speech
recordings are phonetically balanced. This ensures that all
phonemes are included in the evaluation. The NOIZEUS
corpus and the selected noise recordings also guarantee an
unbiased evaluation as they are different from those used in
the training and validation sets.

E. SD LEVEL EVALUATION
The frame-wise spectral distortion (SD) (dB) [47] is used
to evaluate the accuracy of the LPC estimates produced by
DeepLPC-MHANet. Specifically, the estimated clean speech
LPCs are evaluated. SD for l th frame, Dl (in dB) is defined

as the root-mean-square-difference between the LPC-PS esti-
mate in dB, λ̂s(l,m)[dB], and the oracle case in dB, λs(l,m)[dB]
as [47]:

Dl =

√√√√ 1
M

M−1∑
m=0

[
λs(l,m)[dB] − λ̂s(l,m)[dB]

]2
. (24)

F. OBJECTIVE QUALITY AND INTELLIGIBILITY MEASURES
Objective measures are used to evaluate the quality and
intelligibility of the enhanced speech with respect to the
corresponding clean speech. The objective quality and intel-
ligibility measures used in this paper are given in Table 2.
We also analyse the enhanced speech spectrogram of the pro-
posed SEA, to determine if it causes speech distortion, if any
background noise is not suppressed (i.e. residual background
noise), and if it introduces any musical noise.

TABLE 2. Objective measures, what each assesses, and the range of their
scores. For each measure, higher is better.

G. SUBJECTIVE EVALUATION
The subjective evaluation was carried out through a series of
blind AB listening tests [4, Section 3.3.4]. To perform the
tests, we generated a set of stimuli by corrupting recordings
sp05 and sp27 from the NOIZEUS corpus [1, Chapter 12].
The reference transcript for recording sp05 is: ‘‘Wipe the
grease off his dirty face’’, and is corrupted with voice babble
at 5 dB. The reference transcript for recording sp27 is: ‘‘Bring
your best compass to the third class’’, and is corrupted with
factory at 5 dB. Utterance sp05 and sp27 were uttered by a
male and a female, respectively. In this test, the enhanced
speech produced by seven SEAs, as well as the corresponding
clean speech and noisy speech signals, were played as stimuli
pairs to the listeners. Specifically, the test is performed on a
total of 144 stimuli pairs (72 for each of recording) played in
a random order to each listener, excluding the comparisons
between the same method.

The listener gives the following ratings for each stimuli
pair: perceptual preference for the first or second stimuli,
or a third response indicating no preference. For pairwise
scoring, a score of 100% is given to the preferred method,
0% to the other. A score of 50% is given to both methods
when there is no preference. The participants were able to
re-listen to the stimuli pair if required. Ten English speaking
listeners participate in the blindAB listening tests.2 Themean

2The AB listening tests were conducted on the approval of Griffith Uni-
versity Human Research Ethics: database protocol number 2018/671.
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TABLE 3. Average SD (dB) level comparison for each of the LPC
estimation methods. The boldface represent the lowest SD level. The used
test set is described in Section IV-D.

subjective preference score (%) is used to compare the SEAs,
which is the average of the preference scores given by the
listeners.

H. SPECIFICATIONS OF THE COMPETITIVE SEAs
The performance of the proposed SEA is compared to the fol-
lowing SEAs (the following notation is used for convenience:
(p, q) : is the order of {ai} and {bk}, (σ 2

w, σ
2
u ) are the prediction

error variances of the speech and noise AR models, wf is
the analysis frame duration (ms), and sf is the analysis frame
shift (ms)).

1) Noisy: speech corrupted with additive noise.
2) AKF-Oracle:AKF, where ({ai}, σ 2

w) and ({bk}, σ
2
u ) are

computed from the clean speech and the noise signal,
where p = 16, q = 16, wf = 32 ms, sf = 16 ms, and a
rectangular window is used for framing.

3) LSTM-CKFS [31]: AKF constructed using ({âi}, σ̂ 2
w)

and ({b̂k}, σ̂ 2
u ) computed using an LSTMandML-based

approaches, where p = 12, q = 12, wf =
20 ms, sf = 0 ms, and a rectangular window is
used for framing. LSTM-CKFS utilises multi-band SS
post-processing [3].

4) EEUE-FCNN [28]: End-to-end utterance enhance-
ment using a fully convolutional neural network.

5) Deep Xi-KF [33]: KF-based SEA, where σ̂ 2
v is esti-

mated using the DeepMMSE framework [24] and ({âi},
σ̂ 2
w) are computed from pre-whitened speech corre-

sponding to each noisy speech frame, where p = 10,
wf = 32 ms, sf = 16 ms, and a rectangular window is
used for framing. Specifically, the ResNet-TCN from
[34] was used for DeepMMSE.

6) Deep Xi-ResNet-TCN-MMSE-LSA: The ResNet-
TCN from [34] is used to form Deep Xi-ResNet-TCN
[24]. Deep Xi-ResNet-TCN estimates the a priori SNR
for the MMSE-LSA estimator [7], where wf = 32 ms,
sf = 16 ms, and a square-root-Hann window is used
for analysis and synthesis.

7) DeepLPC-ResNet-TCN-AKF [34]: AKF constructed
with ({âi}, σ̂ 2

w) and ({b̂k}, σ̂ 2
u ) derived from DeepLPC

framework, where p = 16, q = 16, wf = 32
ms, sf = 16 ms, and a rectangular window is used
for framing. The ResNet-TCN used for DeepLPC is
described in [34].

8) Proposed DeepLPC-MHANet-AKF: Proposed SEA,
where AKF is constructed from ({âi}, σ̂ 2

w) and ({b̂k},
σ̂ 2
u ) computed using DeepLPC-MHANet, where p =

16, q = 16, wf = 32 ms, sf = 16 ms, and a rectangular
window is used for framing.

V. RESULTS AND DISCUSSIONS
A. SD LEVEL COMPARISON
The average SD levels (found over all frames for each
test condition) attained by the proposed method are given
in Table 3. It can be seen that for both real-world non-
stationary (voice babble and street) and coloured (factory and
f16) noise conditions, the proposed method produced lower
SD levels than DeepLPC-ResNet-TCN [34]. This demon-
strates that an attention-based network is able to produce
clean speech LPC estimates with less bias. This indicates that

TABLE 4. Mean objective scores on the NOIZEUS dataset in terms of CSIG, CBAK, COVL, PESQ, STOI, SegSNR, and SI-SDR. Apart from AKF-Oracle,
the highest score amongst the methods for each measure is given in boldface.
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FIGURE 5. PESQ score for each SEA for each condition specified in
Section IV-D.

attention-based networks are more apt for clean speech LPC
estimation than TCNs. This also indicates that the AKF con-
structed from the clean speech LPC estimates of the proposed
method will produce enhanced speech at a higher quality and
intelligibility than the competing methods.

B. OBJECTIVE EVALUATION
In this section, we evaluate the objective quality and intelli-
gibility scores attained by the proposed method. The mean
objective scores attained by each SEA on the NOIZEUS
corpus are shown in Tables 4. It can be seen that AKF-Oracle

FIGURE 6. STOI score for each SEA for each condition specified in
Section IV-D.

produces the highest scores for all measures, which can be
thought of as the upper boundary of performance. Noisy
speech produced the lowest scores for all measures, indicat-
ing the lower boundary of performance. When comparing the
proposed method to DeepLPC-ResNet-TCN-AKF, it can be
seen it attains higher score for each objective measure. This
demonstrates that the MHANet is better suited for the AKF
than the ResNet-TCN. The proposed method also achieves
higher objective scores than any of the competing methods,
showing that it is currently the leading AKF in the literature.
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FIGURE 7. Spectrograms of: (a) clean speech (recording sp05), (b) noisy speech ((a) corrupted with 5 dB of voice babble noise), (c)-(i) enhanced speech
produced by each SEA.

Figures 5 and 6 show the PESQ and STOI scores, respec-
tively, of each SEA for multiple conditions. The proposed
method produced higher PESQ and STOI scores than the
competing SEAs for each condition. This demonstrates that
the proposed method is able to produce higher objective qual-
ity and intelligibility scores than the competing methods—
acrossmultiple SNR levels and noise sources. The results also
indicate that the performance of the MHANet is better able to
generalise to different conditions than ResNet-TCN.

C. SPECTROGRAM ANALYSIS
In this section, we analyse the enhanced speech spectrograms
produced by each SEA. Figure 7 (a) shows the spectrogram of
the clean speech recording (male recording sp05). The clean
speech is corrupted by voice babble noise at an SNR level
of 5 dB to create the noisy speech shown in Figure 7 (b).
This is a particularly tough condition for speech enhancement
since the background noise exhibits characteristics similar to
the speech produced by the target speaker.

The enhanced speech produced by LSTM-CKFS is shown
in Figure 7 (c). It can be seen that LSTM-CKFS signif-
icantly reduced the amount of background noise in the
noisy speech, although, it produced a significant amount
of speech distortion. Figure 7 (d) shows the enhanced
speech produced by EEUE-FCNN. This method produced
less distorted speech than LSTM-CKFS (Figure 7 (c)),
however, residual background noise remains. Less back-
ground noise is present in the enhanced speech produced by
Deep Xi-KF (Figure 7 (e)) than the enhanced speech pro-
duced by EEUE-FCNN (Figure 7 (d)), however, the speech
is more distorted. Deep Xi-ResNet-TCN-MMSE-LSA pro-
duced less distorted speech (Figure 7 (f)) than that of Deep
Xi-KF (Figure 7 (e)). The enhanced speech produced by

the DeepLPC-ResNet-TCN-AKF is shown in Figure 7 (g).
It can be seen that the enhanced speech of DeepLPC-ResNet-
TCN-AKF has less residual background noise and speech
distortion than that of Deep Xi-ResNet-TCN-MMSE-LSA
(Figure 7 (f)). The enhanced speech produced by the pro-
posed method is shown in Figure 7 (h). It can be seen that
there is less residual background noise in the enhanced speech
than that of DeepLPC-ResNet-TCN-AKF (Figure 7 (g)).
Finally, the enhanced speech produced by the AKF-Oracle
method is shown in Figure 7 (i). The enhanced speech
of AKF-Oracle is most similar to the clean speech in
Figure 7 (a). This is due to AKF-Oracle using the clean
speech and noise LPC parameters (which are unobserved in
practice).

D. SUBJECTIVE EVALUATION
The mean subjective preference score (%) for each SEA
is shown in Figures 8-9. The non-stationary (voice babble)
noise experiment in Figure 8 reveals that the proposedmethod
is widely preferred (72.23%) by the listeners to that of the
competing methods, apart from the clean speech (100%) and
the AKF-Oracle method (82.86%). DeepLPC-ResNet-TCN-
AKF is found to be the most preferred method (68.43%)
amongst the competing SEAs. Amongst the remaining SEAs,
the listeners preferred the enhanced speech produced byDeep
Xi-ResNet-TCN-MMSE-LSA (62.22%) the most, followed
by Deep Xi-KF (53.71%), LSTM-CKFS (40%), and then
EEUE-FCNN (38%). LSTM-CKFS was preferred by the lis-
teners more than EEUE-FCNN, even though EEUE-FCNN
attained higher objective scores. This may be due to the fact
that LSTM-CKFS demonstrates superior noise suppression in
regions of speech than EEUE-FCNN, as indicated in [13].
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FIGURE 8. The mean preference score (%) comparison between the
proposed and benchmark SEAs for the recording sp05 corrupted with
5 dB non-stationary voice babble noise.

FIGURE 9. The mean preference score (%) comparison between the
proposed and benchmark SEAs for the recording sp27 corrupted with
5 dB coloured factory noise.

For the coloured (factory) noise experiment (Figure 9),
the listeners again preferred the proposed method (75%) over
the competing SEAs, with only clean speech (100%) and
AKF-Oracle (84.86%) being more preferred. As in the previ-
ous experiment, DeepLPC-ResNet-TCN-AKF was the most
preferred amongst the competing methods (71.41%), with
Deep Xi-ResNet-TCN-MMSE-LSA being the next most pre-
ferred (67.22%), followed by Deep Xi-KF (58.71%). As with
the scores in Figure 8, the enhanced speech of LSTM-CKFS
was preferred (42%) more than that of EEUE-FCNN (41%).
In light of the blind AB listening tests, it is evident to say that
the enhanced speech of the proposed method exhibits the best
perceived quality amongst all tested methods for both male

and female recordings corrupted by real-life non-stationary
as well as coloured noises.

VI. CONCLUSION
In this study, we investigate if an attention-based network
is more appropriate for AKF-based speech enhancement
than a TCN. To this end, we replaced the ResNet-TCN
used in the DeepLPC framework with the MHANet. Com-
pared to DeepLPC-ResNet-TCN, the proposed method,
DeepLPC-MHANet produces LPC estimates with less bias.
Moreover, the AKF constructed with the clean speech and
noise LPC parameters estimated from DeepLPC-MHANet
is able to attain higher quality and intelligibility scores.
We also compared the proposed method to all other deep
learning-based KFs and AKFs, and DeepLPC-MHANet-
AKF performed best.

The proposed method performs speech enhancement in the
presence of additive background noise. However, in practice,
speech can be corrupted by background noise and reverber-
ation from surface reflections (or noisy-reverberant speech).
Therefore, our future research direction is onKalman filtering
for speech enhancement in the presence of noisy-reverberant
speech. Such a Kalman filter will be constructed from param-
eters estimated using the MHANet.

APPENDIX A
DeepLPC TRAINING TARGET
Here, we describe the training targets for DeepLPC [34].
The clean speech and noise LPC-PS, denoted as λs(l,m) and
λv(l,m), respectively. During training, λs(l,m) and λv(l,m)
are computed as in [35, Chapter 9]:

λs(l,m) =
σ 2
w∣∣∣∣1+∑p

i=1 aie
−j2π im/M

∣∣∣∣2
, (25)

λv(l,m) =
σ 2
u∣∣∣∣1+∑q

k=1 bke
−j2πkm/M

∣∣∣∣2
, (26)

where ({ai}, σ 2
w) (p = 16) and ({bk}, σ 2

u ) (q = 16) are
computed from the clean speech, s(n, l) and the noise signal,
v(n, l) using the autocorrelation method [35, Chapter 8], and
mε{0, 1, . . . ,M − 1} (M = 257). As in [34], we used
the speech and noise LPC order; p = 16 and q = 16,
respectively.

Next, the dynamic range of λs(l,m) and λv(l,m) are
compressed to the interval [0, 1] by using the cumulative
distribution function (CDF) of λs(l,m)[dB] and λv(l,m)[dB],
where λs(l,m)[dB] = 10 log10(λs(l,m)) and λv(l,m)[dB] =
10 log10(λv(l,m)) [34]. As shown in Figures 10 (a) and (c),
λs(l, 64)[dB] and λv(l, 64)[dB] follow a Gaussian distribu-
tion. Hence, we assume that λs(l,m)[dB] and λv(l,m)[dB] are
distributed normally with mean µs and µv, and variance
σ 2
s and σ 2

v , respectively
(
λs(l,m)[dB] ∼ N (µs, σ 2

s ) and
λv(l,m)[dB] ∼ N (µv, σ 2

v )
)
.
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FIGURE 10. The distribution of (a) λs(l,64)[dB] and (c) λv (l,64)[dB]. The
CDF of (b) λs(l,64)[dB] and (d) λv (l,64)[dB], where the sample mean and
variance were found over the sample of the training set.

The statistics of λs(l,m)[dB] and λv(l,m)[dB],
i.e., (µs, σ 2

s ) and (µv, σ 2
v ) for each frequency bin,

m were found over a sample of the training set.
2 500 randomly selected clean speech recordings were mixed
with 2 500 randomly selected noise recordings from the
training set (Section IV-A) with SNR levels ranging from
−10 dB to +20 dB in 1 dB increments, giving 2 500 noisy
speech signals. For each frequency bin, m, the sample mean
and variances, (µs, σ 2

s ) and (µv, σ 2
v ) were computed from

2 500 concatenated clean speech recordings and scaled noise
recordings, respectively. This sample was also used as the
sample for Figure 10.
The CDF of λs(l, 64)[dB] over the sample is shown in

Figure 10 (b), and is used to compress the dynamic range
of λs(l, 64)[dB]. Similarly, the CDF of λv(l, 64)[dB] over the
sample is shown in Figure 10 (d), and is used to compress the
dynamic range of λv(l, 64)[dB]. The CDFs of λs(l,m)[dB] and

λv(l,m)[dB] are defined as [34]:

λ̄s(l,m) =
1
2

[
1+ erf

(
λs(l,m)[dB] − µs

σs
√
2

)]
, (27)

λ̄v(l,m) =
1
2

[
1+ erf

(
λv(l,m)[dB] − µv

σv
√
2

)]
. (28)

APPENDIX B
DeepLPC INFERENCE
During inference, ζ̂ l is first split into

ˆ̄λs(l,m) and ˆ̄λv(l,m).
The LPC-PS of the clean speech and the noise signal are then
computed from ˆ̄λs(l,m) and ˆ̄λv(l,m) as:

λ̂s(l,m) = 10((σs
√
2erf−1(2 ˆ̄λs(l,m)−1)+µs)/10), (29)

λ̂v(l,m) = 10((σv
√
2erf−1(2 ˆ̄λv(l,m)−1)+µv)/10). (30)

Next, ({âi}, σ̂ 2
w) and ({b̂k}, σ̂

2
u ) are computed from λ̂s(l,m)

and λ̂v(l,m), as described in [34].
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