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ABSTRACT Nowadays, there is a need for wireless communications to operate over a variety of scenarios,
including high mobility multiple-input multiple-output (MIMO) applications, that bring along a challenging
problem. In channels where Doppler spread and delay spread are high, complexity of coherent detectors and
pilot overhead are both raised. This work proposes a non-coherent reception technique, easily scalable to any
number of antennas for the MIMO case, using simple coding and decoding structures which take advantage
of channel diversity addition in three domains: time, frequency and space, by using virtual trajectories along
with space time block-coding. Coarse analytics on the system performance in terms of the bit error rate are
computed using Chernoff Boundaries as a function of the channel diversity and the order of the differential
modulation, validating the efficiency of the proposed receiver.

INDEX TERMS Differential modulation, doubly selective channels, invariance, MIMO, non-coherent
receivers, space-time coding.

I. INTRODUCTION
Requirements for New Radio (5G and beyond) mobile com-
munication systems include establishing communication in
Doubly Selective Channels (DSC). This posses some key
challenges for system design that need to be faced, as seen
in [1].

1) Fast time-varying fading: The fast time variations
of the channels must be taken into consideration, because
a large Doppler spread can result from this phenomenon.
Wireless communications are designed to operate at certain
frequencies and for high-mobility scenarios, the Doppler shift
can even reach the thousands of Hz order.

2) Channel estimation errors: In high mobility environ-
ments, the fast changing of the channel response, makes the
channel estimation process a quite challenging task. Obtain-
ing the Channel State Information (CSI) is no longer a viable
option, particularly, if the multiple-input, multiple-output
(MIMO) case is considered, it could result in an even
worse scenario, where the useful payload will be diminished
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because of the great amount of a priori information needed to
perform the channel estimation.

3) Doppler diversity: Fast time-varying channels are rich
in Doppler diversity, which is difficult to exploit by a coherent
receiver without an accurate estimation algorithm.

This work focuses mainly on the mitigation of the
aforementioned problems. The solution incorporates dif-
ferential phase modulation over a system that exploits
the doubly-selective channel orthogonalization using the
so-called virtual trajectories [2]–[4]. Moreover, the approach
in this work relies on a low-complexity incoherent detector
that provides simple scalability with the number of antennas
in the MIMO array.

Most of the work related to overcoming highly
time-varying MIMO channels focuses on the coherent recep-
tion [5]–[8]. However, in the upcoming generations of com-
munications systems, the common assumption of having
accurate CSI will not hold up [1].

On the other hand, non-coherent reception is a viable
solution given that no CSI is necessary, which can save
processing time at the receiver and alleviate the need for pilot
symbols.
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By choosing a proper signal shape (modulation and cod-
ing) it is possible to neglect the influence of the chan-
nel ‘‘imperfections’’ at the desired signal reception. One
of the opportunistic trends is the application of Differential
Modulation methods, particularly Differential Phase Shift
Keying (DPSK) modulation [9]–[11].

DPSK offers attractive characteristics against channel dis-
tortions, which depend on the differential order of modula-
tion; particularly, invariance (strictly speaking, conditional
invariance) to certain impairments of the channel can be
achieved [9]. It is well known that DPSK of the first order
presents invariance to the initial phase introduced by the
channel, and the second order offers invariance to the Doppler
shift effect in Single-Input Single-Output (SISO) communi-
cation channels [9], [12]. In addition to phase invariance,
DPSK offers simple detection bymeans of the autocovariance
algorithm.

There are several works that consider DPSK applica-
tions. In [13], a differential modulation for the SISO case
over Rayleigh channels is proposed, taking advantage of
non-coherent receivers. In [14] a diversity-encoded Differ-
ential Amplitude Phase Shift Keying (DAPSK) for Orthogo-
nal Frequency Division Multiplexing (OFDM) is used; other
applications of differential modulation include [15]–[18]
and [19]. It is worth mentioning that none of these references
take into consideration DSC. In [3] a non-coherent receiver
is proposed, considering only the SISO case.

For the MIMO case, a differential space time modulation
for a 2 × 2 antenna array is proposed in [11]. Later on, [10]
presents a double differential space-time block coding for
time-selective fading channels that also use unitary group
coding matrices, which can be scaled to a desired N × N
MIMO antenna arrangement; however, it has the limitation
of using a sub-optimal Maximum Likelihood (ML) detector,
which highly increases the complexity at the receiver. In [20],
a differential encoding is proposed for Orthogonal Space
Time Block Coding (OSTBC) using the MIMO case and
different decoding methods. Recently, results from apply-
ing first order DPSK incoherent reception in high-mobility
double-selective channels are presented in [4], with the partic-
ular application of a differential block code on a 2×2 MIMO
system along with other coherent receivers.

After an analysis of the state of the art, a great opportunity
is presented, given that there are few approaches available
focusing their efforts on DSC, which are practically unavoid-
able in modern communication scenarios.

The aim of this work is to provide a generalized solution
with a simple non-coherent receiver, which can be imple-
mented in any N × N MIMO system. Invariance to the
influence of the doubly selective channel is achieved by an
autocovariance detector along with the implementation of
a virtual trajectories receiver with space-frequency-Doppler
energy addition.

The results in terms of noise immunity evaluation of the Bit
Error Rate (BER) probability, using Chernoff Boundaries, are
presented. The analysis shows its capability for predicting the

FIGURE 1. Transmitter.

performance for the SISO and MIMO cases with acceptable
accuracy using DPSK and the virtual trajectories addition
method.

Additional time and frequency diversity is exploited by the
application of well-known channel coding
methods in [12], [21].

The structure of this paper is as follows: Section II presents
the generalization for the transmitter, receiver and the system
model for the MIMO case; Section III develops the upper
Chernoff boundaries for the noise immunity in the SISO and
MIMO cases, generalized for any DPSK order. In Section IV,
the simulation and results are presented. Final conclusions of
the proposed approach are presented in Section V.

The notation that is going to be used through this work can
be seen hereafter: Bold lower (upper) case letters are used
to denote vector (matrices); (·)T and (·)H denote transpose
and Hermitian, respectively; 〈·〉N denotes modulusN number
evaluation.D(x) denotes a diagonal matrix with entry x. A† is
the Moore-Penrose pseudoinverse of matrix A, while [H]k,l
is the l − th element in the k − th row of matrix H.

II. SYSTEM MODEL. DPSK FOR THE MIMO CASE
Let the diagram in Fig. 1 present the transmitter architecture.
For the first stage (coder), the information arrives as bits. The
coding method is left to the user, depending on the system
requirements.

In the second block, the mapping of the symbol is depen-
dent on the constellation cardinality as:

log2(M )bits ↔ si ∀i ∈ [0,M − 1]. (1)

In order to form the STBC of size Nt × Nr , Nt of the
constellation symbols are taken into consideration, where Nt
andNr are the number of transmitting and receiving antennas,
respectively, and for this case Nt = Nr . These symbols will
form the matrix

1b =

sNt (b+1)−1 · · · 0
...

. . .
...

0 · · · sNt (b+1)−1

 , (2)

where b represents the variable to index the matrix containing
Nt × Nt symbols. [sNt (b+1)−1 · · · sNt (b+1)−1 ] are the symbols
associated with the matrix 1 in the time instant indexed as
b.
The matrix in equation (2) is used to perform a differential

modulation; it can be of any order, but the first order is
presented as:

ϒ1
b = ϒ

1
b−11b, (3)
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whereϒ1
b is the differentially modulatedmatrix, 1 is the order

of the DPSK, and as initial condition ϒ1
0 = I or it could be

an orthonormal matrix (the Fourier matrix, e.g.) or any other
that fulfills the condition PPH = I. Matrix ϒ1

b is defined as:
ϒ1
b = [υTb,1,υ

T
b,2 · · ·υ

T
b,Nt ], where υ

T
b,Nt are the columns of

the differentially modulated matrix. High-order differential
modulation is performed with the concatenation of the matrix
structure in (2) and, if a whole matrix is to be used to gather
diversity, the last concatenated differential modulator must
contain the orthonormal matrix as the initial condition.

Each of the rows in equation (3) are sent to a differ-
ent antenna; this will allow an interchangeable modulation
scheme to be used as desired (Single Carrier (SC), OFDM,
Virtual Trajectories (VT), etc.).

After going through the channel, the complex base band
model of the signal arriving to the ρ-th antenna of the receiver
for a single block, indexed by b, is described as:

yρ[n] =
Nt−1∑
ι=0

Ltap−1∑
l=0

h[ι, ρ; n, l]υι
[
〈n-l〉N

]
+ ξρ[n], (4)

where n = 0, · · · ,N − 1, ρ = 0, · · · ,Nr − 1, υι[n] is the
signal from the ι-th transmitter antenna, Ltap is the number
of channel taps, and ξρ[n] is the additive Gaussian noise
with a circular complex delta correlation function on the ρ-th
receiving antenna. Then, a compact matrix-vector form of (4)
can be presented as:

yρ =
Nt−1∑
ι=0

H(ι, ρ)υι + ξρ (5)

where

yρ =
[
yρ[0] yρ[1] · · · yρ[N − 1]

]T (6)

ξρ =
[
ξρ[0] ξρ[1] · · · ξρ[N − 1]

]T (7)

υι = [υι[0] υι[1] · · · υι[N − 1]]T (8)

[H(ι, ρ)]n,n′ = h[ι, ρ; n,
〈
n− n′

〉
N ], (9)

where n′ = 0, · · · ,N − 1, 〈·〉N denotes modulus N number
evaluation, and the channel impulse response h[ι, ρ; n, l]
for the ι-th transmitter antenna to the ρ-th receiver antenna
is assumed to be a random process with zero mean and
unknown second order statistics.

In narrowband channels,H(ι, ρ) is a diagonal matrix; in the
general case, the time and frequency selectivity makeH(ι, ρ)
a banded non-circulant matrix that introduces interference in
both domains.

In [4], the Basis Expansion Modeling (BEM) is developed
in detail.

The compact I/O model can be defined as:

yρ =
∑

ι,ρ,r,q∈S

γι,ρ,r,qG(r, q)Tsι + ξρ, (10)

where, γa,b,r,q are the coefficients for the basis expansion, S is
the multi-index space for variables a, b, r and q.Tn,i = [ti[n]]
is the transmitted scheme used, and s = [s1, s2, · · · , sN ] is a

vector containing the transmitted symbols. Now, the channel
response of Tx − Rx coupling is defined as:

[G (r, q)]n,n′ = φ
I
q[n]φ

II
r
[〈
n− n′

〉
N

]
, (11)

where φIq[n] and φIIr [n] are the basis functions for the
time-delay and time respectively. The prolate basis fits well
in both the Doppler and delay domains [4], with the number
of coefficients used for the delay and Doppler domains set by
Mτ and MD respectively.

The transmitter has the basic structure of MIMO-OFDM,
with orthogonal complex exponential functions:

ti[n] = exp (j2πkin/N ) , (12)

and the carrier allocation rule ki = iMD − N/2. Then,
the observation equation becomes

υρ[n] =
Nt−1∑
ι=0

MD−1∑
q=0

N−1∑
i=0

ϑ iι,ρ,qλ
i
q[n]+ ξρ[n], (13)

where

ϑ iι,ρ,q = sι,i
Mτ−1∑
r=0

γι,ρ,r,qϕ
i
r , (14)

ϕir =

Ltap−1∑
l=0

φIIr [l] exp (−j2πkin/N ) , (15)

λiq[n] = φ
I
q[n]ti[n]. (16)

Now, equation (13), can be written in matrix-vector nota-
tion

υρ =

Nt−1∑
ι=0

3�(ι, ρ)sι + ξρ (17)

where the virtual transfer functions are encapsulated as:

�(ι, ρ) =
[
D(0)γ ι,ρ,0, · · · ,D(0)γ ι,ρ,MD−1

]T
. (18)

where [0]i,r = φir , and γ ι,ρ,q = [γι,ρ,q,0, · · · , γι,ρ,q,Mτ−1]
T .

Double selectivity of each SISO channel is captured in the
deterministic matrix:

3 =
[
30,31, · · · ,3MD−1

]
, (19)

where [3q]n,i = λiq[n].
Then, applying a pseudo inverse of the deterministic matrix

3:

3†
=

(
3H3

)−1
3, (20)

provides the observation model:

ϑ̂ρ = 3
†yρ ≈

Nt−1∑
ι

�(ι, ρ)sι + ξ̂ρ . (21)

Now, the received subcarriers in the VTs of the ρ-th
receiver-mode and q-th Doppler-mode can be rewritten as:

ϑ̂ρ,q =

Nt−1∑
ι=0

D(0)γ ι,ρ,qsι + ξ̂ρ,q. (22)

67778 VOLUME 9, 2021



G. Ramirez-Arredondo et al.: Invariant Incoherent MIMO Reception Over DSC

FIGURE 2. Receiver.

This observation model with diagonalized gains on the
transmitted symbols is equivalent to the MIMO-OFDM fre-
quency domain I/O relation in time-invariant channels.

Taking into consideration three possible modulation
schemes, SC, OFDM and VT in the diagram in Fig. 2 if
3 = I, then SC is used; if 3 = F, OFDM is used (F is the
Fourier Matrix); if3 = 3† in equation (20), then VT is used.
This provides high flexibility due to the lack of change in the
structure at the receiver for different modulation schemes.

If OFDM or SC is selected, the diagram in Fig. 2 can be
followed directly, but when VT is used, it must be taken
into account that every virtual trajectory must perform the
operations inside the dotted circle, which consists of a buffer
that allows an Nr × Nr matrix to be formed as

9
k,q
b =


ψ
b,k,q
1,1 · · · ψ

b,k,q
1,Nr

...
. . .

...

ψ
b,k,q
ρ,1 · · · ψ

b,k,q
ρ,Nr

 , (23)

where

ψb,k,q
ρ [n] = ϑ̂bρ,q[n], (24)

ϑ̂bρ,q[n] are the symbols associated with the indexed time b
and k is the DPSK order.

Then, an extension of the autocovariance demodulator is
calculated in the block labeled DD. The matrix form of the
demodulator allows all the information to be gathered among
the antennas, if the orthonormal matrix was used as initial
condition at the transmitter. By doing this, the diversity in
time, frequency and space can be exploited. The reception
process is described as:

1̂
q
b = (91,q

b )(91,qH

b−1 ), (25)

where 1̂
q
b is the estimated transmitted matrix over a b time

interval and q is the q-th virtual trajectory. This provides a
direct extension of an autocovariance demodulator but for the
MIMO case. If only a diagonal matrix were sent as useful
information, as in equation (2), then the equation would be
modified; in this way, the other antennas do not provide

TABLE 1. Complexity comparison.

any additional information to the receiver. Then, it can be
presented as:

1̂
q
b = (I ◦91,q

b )(I ◦91,qH

b−1 ), (26)

where ◦ represents the Hadamard product.
Up to this part, if VT was used, every single one of the

virtual trajectories must go through each one of these steps
inside the small dotted box in the diagram. So, after all of
them have completed the process, a combining is performed,
where each symbol of the diagonal is added to its counterpart
in the other virtual trajectories, as:

1̂b = D(1̂
1
b)+ D(1̂

2
b) · · ·D(1̂

q
b). (27)

This will provide the gathering of diversity and all the
benefits that VT has to offer. If no VT were used, then
this addition would be omitted. Note that when applying
incoherent combining for all possible diversity branches, one
quickly encounters the effect of channel hardening [22],
which drastically simplifies the problem of channel encoding
(decoding); actually, it shifts it into a routine encoding for
constant channels, practically without memory, in order to
diminish BER and energy losses [12]. The choice of a con-
crete code for such a scenario is well established [12]; see the
simulation results as well. That is why hereafter this problem
will not be considered in detail.

The last part of the diagram consists of the Phase Shift
Keying (PSK) demapper and the channel decoder block, that
provides the final estimate of the received bits.

A. COMPUTATIONAL COMPLEXITY
Since working with an optimum or sub-optimum receiver
is questionable for real time implementation [10], the auto-
covariance receiver comes as a good proposal in order to
improve computational complexity.

There is a change in the complexity of the processing
algorithm, which can be seen in Table 1.

In the previous table, AC represents the Auto Covariance
receiver proposed in this work, AC-VT is the Auto Covari-
ance with a Virtual Trajectories receiver, the SO-ML is the
SubOptimum - Maximum Likelihood algorithm used in [10],
Ncod is the number of bits that the decoder needs,M is the size
of the constellation, Nblock is the size of the block needed to
perform the Sub-optimum ML decoder, Nr is the number of
receiving antennas and kc represents a complexity constant
that is defined as kc = Ncod/(Nr × log2(M )).
The sub-optimum system in [10] states that N must be at

least of size Nr ; this will result, in the best-case scenario, in a
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TABLE 2. Number of operations, with ‘‘k’’ standing for thousands (kilos).

complexity of O((5N 3
r + N 2

r )M ). In Table 2, the number of
operations required for different sizes of antennas and two
different sizes of constellationsM = 4, 8 are presented. With
the proposed method, a clear advantage can be seen over
the sub-optimum proposal, especially with a high number of
receiving antennas, where ‘‘(P)’’ stands for ‘‘Proposed’’.

B. GENERALIZATION
Due to the invariance properties that it provides, it is worth
generalizing differential modulation and demodulation for
the MIMO case for any order, not only DPSK-1 and DPSK-
2 as found in the literature. The following lemma will serve
for that purpose:
Lemma 1: Let 1b be a space-time modulated matrix of

size n×n, which represents the possible transmitted data in a
certain time interval b, and letϒk

b be a differential modulated
matrix of order k , defined as

ϒk
b = fw(ϒk−1) = fw−1(ϒk−2) = · · · = f2(ϒ1) = f1(1).

(28)

Then for demodulation, estimated data 1̂b can be
calculated as

1̂b = fz+1(Y) = fz(9k ) = · · · = f2(92) = f1(91), (29)

where 9k is the received space modulated matrix regardless
of the order of k .
Proof of the lemma can be found in Appendix A.

C. SIGNAL CONSTRUCTION AND RECEPTION
In the differential modulation model proposed in this work,
construction of the functions fw(ϒk ) and fz(9k ) is the main
issue.

The structure of these matrices is based on the binomial
coefficients. Function fw(ϒk ) will take the case when (a+c)r

and function fz(9k ) when (a− c)r .
For the modulation case, the binomial coefficients are

presented in equation (30), as shown at the bottom of the
page and for the demodulation, they are stated by equation
(31), as shown at the bottom of the page, where κ+r and κ−r

are the vectors containing the coefficients for constructing the
matrices for modulation and demodulation, respectively. The
coefficients will represent the number of times a matrix is
multiplied by itself and the position of the coefficient in the
vector κ+r and κ−r will indicate the time instant.

Any function fw(ϒk
b) can be constructed with matrices of

the lowest order k = 1. To do this, κ+r and κ−r must be
calculated when r = k , so that the coefficients represent the
necessary multiplications of matrices ϒ1, which is presented
in equation (32), as shown at the bottom of the page.

The substitution can be done directly and construct any
order of differential modulation with a function of the matrix
of symbols sent in STBC. If there is a need to calculate the
representation of fw(ϒk ) in terms of some matrix ϒk−p, then
r = p+ 1 is used to calculate the coefficients in κ+r .

For the demodulation, the same process occurs; once the
coefficients κ−r are calculated, a matrix of estimated data 1̂b
for a k order of differential modulation can be achieved with
a function

fz(9k ) = fz−1(Y), (33)

where Y is the received data matrix in each antenna during a
certain period of time. Then, with some mathematical work
it can be seen that

1̂b = fz(9k ). (34)

When a representation is desired with 91, the condition
r = k must hold for the calculation of coefficients κ−r ,
just with the observation that the negative elements of this
vector, imply that the matrices to be multiplied are conju-
gated in the time instant that they represent, which leads to

if (a+ c)r → κ+r =
[
κ+1 , κ

+

2 , · · · , κ
+

k−1, κ
+

k

]
κ+ =

[(
k
0

)
,

(
k
1

)
,

(
k
2

)
, · · · ,

(
k

k − 2

)
,

(
k

k − 1

)
,

(
k
k

)]
; (30)

if (a− c)r → κ−r =
[
κ−1 , κ

−

2 , · · · , κ
−

k−1, κ
−

k

]
κ− =

[(
k
0

)
,−

(
k
1

)
,

(
k
2

)
, · · · ,

(
k

k − 2

)
,−

(
k

k − 1

)
,

(
k
k

)]
; (31)

fw(ϒk
b) =

(
ϒ
k−p
b,κ+1

)(
ϒ
k−p
(b−1),1ϒ

k−p
(b−1),2 · · ·ϒ

k−p
(b−1),κ+2

)
· · ·(

ϒ
k−p
(b−k−1),1ϒ

k−p
(b−k−1),2 · · ·ϒ

k−p
(b−k−1),κ+k−1

)(
ϒ
k−p
(b−k),κ+k

)
, (32)
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equation (35), as shown at the bottom of the page. If there
is a need to calculate fz(9k ) in terms of a matrix 9k−p, then
r = p+ 1 is used to calculate the coefficients in κ−r .

Equations (32) and (35) for modulation and demodulation,
respectively, are very similar; in the modulation because of
the way the DPSK signals are constructed, and in the demod-
ulation because of the use of an auto-covariance detector.

III. CHERNOFF BOUNDARIES
The noise immunity analysis presented below is developed
for the MIMO case. The calculation of the exact theoret-
ical curves is really complicated for a higher-order DPSK
even for the SISO scenario, and even more for the multiple
antenna scenario [12]; this is why a rough approximation
of an upper bound for BER is chosen. A rather accurate
approximation will be provided, with the possibility of using
it for higher-order DPSK and diversity addition application.

The bound proposed is based on the idea of Chernoff
boundaries (see, for example, [12]).

The probability of the error for DPSK-1 with an autoco-
variance detector, for the binary case, can be seen in [9], [12],
and it can be approximated (upper bound) as:

PDPSK1 =
1
2
exp

(
−h2

)
, (36)

where h2 is the SNR. Equation (36) shows almost 3db losses,
compared with the coherent demodulation.

Using Chernoff Boundaries, the approximation for an
upper bound using the autocovariance receiver is

PChernoff−DPSK−k = exp
(
−αkh2

)
, (37)

where αk is a parameter calculated for a k order of difference
modulation. For DPSK-1, α1 = 1

4 , so equation (37) becomes

PChernoff−DPSK−1 = exp
(
−h2/4

)
. (38)

Similarly, α2 = 1/8 and α3 = 1/16 for DPSK-2 and
DPSK-3, respectively.

For the MIMO case, applying a Quadratic Addition for
homogeneous diversity branches, one gets [12]:

Pe =
L!

L∏
i=1

(
i+ αkh2

) , (39)

where L is the order of diversity; For this work, L will be
considered to be equal to the number of receiving antennas,
real or virtual. For inhomogeneous cases the solution could
also be found at [21].

The parameter αk and the calculation development of this
upper bound, can be seen in Appendix B.

FIGURE 3. Chernoff boundaries for DPSK-1,2 and 3.

IV. SIMULATIONS AND RESULTS
In this section, the simulations and results are presented.

A. EXPERIMENT ONE
It is worth proving the theoretical boundaries proposed in the
previous section by means of simulation experiments. That
is why a Single Carrier SISO channel scenario is proposed.
Based on equation (53), there is a change of value for αk
depending on the order of DPSK desired, and by performing
simulations over an additive white Gaussian noise (AWGN)
channel; since there is only one antenna, the diversity order
L = 1 and figure 3 is obtained.

In Fig. 3, it can be seen that for every simulation that
represents a different order of DPSK, there is a corresponding
curve with an upper bound. The difference between them,
at BER = 10−4 is not more than 3dB, which means that it can
be considered acceptable, as an upper bound. It can be seen
that the curves are getting closer when the differential modu-
lation order is growing; this is not a coincidence, because an
approximation in the statistics is made instead of calculating
the exact value.

Now, for the MIMO case, the experiments are divided into
2 types: in type A the data matrix is defined as (1 = sI),
where s is the same symbol along the diagonal, and type B a
full matrix is used with different symbols along the diagonal
and no zeros on its diagonal. It is worth mentioning, that
the type A is not gathering the diversity along the frequency
domain, but the type B is gathering it from time, frequency
and space domains.

B. EXPERIMENT TWO
In order to see the behavior of DPSK-1 and DPSK-2 against
different Doppler frequencies, in Fig. 4 a type-A experi-
ment is considered for a 4 × 4 MIMO case on a Rayleigh
channel with no power delay profile, a constellation size of
M = 8 and bandwidth of 10MHz. The difference, for

1̂ = fz+1(9k
b) =

(
9
k−p
b,κ−1

)(
91

(b−1),19
k−p
(b−1),2 · · ·9

k−p
(b−1),κ−2

)
· · ·(

9
k−p
(b−k−1),19

k−p
(b−k−1),2 · · ·9

k−p
(b−k−1),κ−k−1

)(
9
k−p
(b−k),κ−k

)
. (35)
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FIGURE 4. Chernoff boundaries and invariance for DPSK-1 and DPSK-2.

FIGURE 5. Comparison with [10].

DPSK-1, between a Doppler shift of 10kHz and 70kHz,
is visible in the performance curves. Remembering that the
diversity L, will be equal to the number of receiving anten-
nas. Thus, it can be seen that the system can counteract the
Doppler effect, and for DPSK-2 it is actually invariant. It is
important to point out that Chernoff bounds are also a good
approximation for this case.

C. EXPERIMENT THREE
As can be seen in section II-A, there is a gain in complexity
with the proposed method if it is used instead of the one
in [10], but in order to evaluate performance, the same con-
ditions are used for both of them, i.e., only using Doppler
shifts with AWGN. The experiment is considered for a Single
Carrier 2×2 scenario, and two different STBCwere taken into
consideration: The first one is when only the diagonal of the
STBC matrix is used, this can be found in Fig. 5 as ‘‘Diag’’
and will be presented for both methods, the one proposed
by Hughes and the one proposed in this work. The other
scenario is where the whole STBC matrix is used, written
as ‘‘Non-Diag’’ in the same figure, also for both methods.
Non frequency shift and frequency shifts are considered for
the test. These results are presented in Fig. 5. It can be seen
that the proposed method in this work yields the same results
if the full STBC matrix is used and not only the diagonal.
Meanwhile, with the method in [10] there is a difference if
not only the diagonal is used. This means that with a larger
MIMO arrangement, not all the possible diversity could be
exploited. This difference can be seen in this same simulation
when there is an absence of Doppler shift, where there is a
clear difference in favor of the work proposed in this paper.

FIGURE 6. Improvement using error correcting codes.

Fig. 5 presents clearly the advantage of using a full matrix
to transmit information. It can be seen that the gathering of
diversity along the three domains provides really good results
and that it is worth continue exploring this path, in contrast to
the approach presented in [10].

D. EXPERIMENT FOUR
Asmentioned, the autocovariance receiver could bring signif-
icant losses due to the increment of noise. Error-correcting
codes are a plausible solution to this problem; this work
considers BCH(31-16) coding. The considered scenario is a
Single Carrier, Type-B experiment, Rayleigh channel, with
no delay dispersion, Doppler frequency of 5kHz, bandwidth
of 10MHz, in a 4 × 4 MIMO array and different values of
spectral efficiency.

Thus, in Fig. 6, the square marker represents a realization
with no error correcting codes and a constellation of size 2.
The diamond and circle markers have the same parameters,
both transmitted using a constellation of size 4; just one is
being coded and the other is not.

The results show that the gain using error correcting-codes
with the same parameters is almost 10dB, while the difference
with a smaller constellation is 5dB. Therefore, the use of
error-correcting codes represent a good solution to improve
BER for DPSK-k, and the low complexity of the proposed
receiver confirms that is a correct path to follow. Not leaving
aside the fact that the error-correcting codes will have a direct
impact in the effect flow of data, since redundancy bits are
added and decoded at the receiver.

In Fig. 6, it can be seen that both lines, with markers
square and diamond, have almost the same Spectral Effi-
ciency, but there is a 5dB difference between them. This is
due to the error-correcting code used. There is always a trade-
off, and what we are increasing here is the computational
complexity in order to have a better performance in the BER.
So, error-correcting codes could be very helpful to improve
performance in a non-coherent receiver, if the computational
complexity is not an issue.

E. EXPERIMENT FIVE
Finally, transmission over a doubly selective channel is tested.
It is worth mentioning that never before has a scalable scheme
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FIGURE 7. Rayleigh channel with multipath delay dispersion and
error-correcting codes.

for multiple antennas been presented that uses a simple auto-
covariance receiver that could obtain a favorable result over
DSC.

Thus, in Fig. 7 a multipath channel is proposed, with the
Doppler shift set to 1.5kHz, an FFT= 64, MIMO 4 × 4,
with paths scattered by 1µs each, and a virtual trajectory
receiver. A type-B experiment is considered, and also BCH
codes with a different coding ratio.

It can be seen that while the selectivity increases, the per-
formance falls, which is why the use of error-correcting codes
together with the diversity addition of the virtual trajectories
proves to be a good option for the system design.

Even though the spectral efficiency is low, the important
part to point out is that Fig 7 shows a completely non-coherent
4 × 4 system over a doubly selective channel, using only an
autocovariance receiver and an error correcting code, which
has never been presented in the literature.

There is an error floor in Fig. 7. This can be explained by
the fact that DPSK requires continuous symbols to demod-
ulate. So, if the first symbol is lost, all the related symbols
that depend on it will have an error when the demodulation
is done. Since there is selectivity in the three domains, time
and frequency, it is impossible to get a better performance by
only increasing the SNR, so a technique to reconstruct the lost
information should be considered. A better error-correcting
code could be a solution, such as Turbo codes.

V. CONCLUSION
This paper has proposed the generalization of a MIMO
non-coherent DPSK receiver which takes advantage of diver-
sity over time, frequency and space. This generalization
exploits the space-time block codes and at the same time the
invariance properties to channel distortions and the capability
of using a simple auto-covariance receiver scheme, which
results in a communication system of lower complexity, when
compared to previous approaches presented in the literature.

The simulation results under doubly selective channels
demonstrates the operability of this technique under highly
dispersive channels. Furthermore, simulations and Chernoff
upper boundaries have shown the invariance properties that
DPSK offers; for example, being invariant to Doppler shifts
for the second order and showing that for the DPSK-1, it is not

completely invariant but it could counteract at some degree
this undesired effect. This technique represents an opportu-
nity for the upcoming massive MIMO systems, as it keeps
the complexity almost linear with the number of employed
antennas.

APPENDIX A
PROOF OF LEMMA
Proof of Lemma 1:

For DPSK-1, the space time modulated matrix is formed
by

ϒ1
b = 1b1b−1. (40)

For the second order:

ϒ2
b = ϒ

1
bϒ

1
b−1 = 1b1b−11b−11b−2. (41)

Now, using mathematical induction for DPSK-k we have
the following equation:

ϒk
b = fw(ϒk−1) = fw−1(ϒk−2) = · · · = f2(ϒ1) = f1(1),

(42)

and for DPSK-(k + 1):

ϒk+1
b = fw+1(ϒk ) = fw(ϒk−1) = · · · = f2(ϒ1) = f1(1).

(43)

From equations (42) and (43), it can be seen that for any
order of difference modulation, the modulated matrix ϒk

b
can be represented as a function f1(1b) of the transmitted
symbols.
For the demodulation case, DPSK-1, the following stands:

1̂b = YbYb−1 = 9
1
b9

1
b−1. (44)

For DPSK-2 we have a similar representation as,

1̂b = YbYb−1 = 9
2
b9

2
b−1 = 9

1
b9

1
b−1 9

1
b−19

1
b−2. (45)

Then, using mathematical induction for receiving data
using DPSK-k we have:

1̂b = fz+1(Y) = fz(9k ) = · · · = f2(92) = f1(91). (46)

Receiving data using DPSK-(k + 1) can be expressed as

1̂b = fz+2(Y) = fz+1(9k+1) = · · · = f2(92) = f1(91).

(47)

From (46) and (47), the estimated data can always be
represented, in the end, by functions of f1(91).
Then, for the modulated and demodulated signals, a gen-

eralization for any order of DPSK can be made using the
proposed structure.
Table 3 gives an example of the two first orders of dif-

ference modulation and gives an idea of why the matrix
construction presented in this work is useful.
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TABLE 3. MIMO DPSK-k demodulated symbol for STBC.

APPENDIX B
CHERNOFF BOUNDARIES
The principle for this bound is stated by the following expres-
sion [12]:

E [X ≥ δ] = exp (−νδ)E
[
exp (νx)

]
for δ > E [X ] ,

(48)

where the parameter ν maximizes equation (48), and it is
found by solving the following equation:

E
[
X exp (νx)

]
= δE

[
exp (νx)

]
. (49)

Once the parameter ν calculated in equation (49) is found,
the following step substitutes for it in equation (48).

The diversity case uses the same calculation for maxi-
mizing parameter ν but the bound in equation (48) is stated
differently, as in:

E [Y ≥ δ] = exp (−nνδ)
[
E
[
exp (νx)

]]n
, (50)

where Y = 1
n

∑n
i=1 Xi is a sum of n iid random variables.

For DPSK-1 from [9] the first two statistical moments can
be obtained, which is the mean µ and the variance σ 2. In this
case µ = 0.

In order to calculate the Chernoff Bound, the value ν must
be firstly found; then, using equation (49), it can be found
that:

ν =
δ

σ 2 . (51)

Also, in [9], the following equivalences can be found:
1 = 2Ps h2 = 1/σ 2, σ 2

= N0/2T and δ = 2, where 1
is the variable for the power and h2 is the SNR.
Thus, equation (48) becomes

E [X ≥ δ] = exp
(
−
δ2

2σ 2

)
. (52)

For generalization purposes, equation (52) turns into equa-
tion (37), so we have:

PChernoff−DPSK−k = exp
(
−αkh2

)
, (53)

where α is a variable defined by δ and σ 2, which will change
for every order k of DPSK.
If σ 2 from [9] is considered to be the variance of a random

variable, the number of times this variance will increase

depends completely on the reception method; in this paper
the choice was the autocovariance receptor.

Equation (31) can determine the number of times the
matrices, for demodulation, have to be multiplied by them-
selves. Considering this, the number of times the variancewill
increase for different orders is the sum of the absolute values
of the vector in equation (31). According to this, we have

βk = 2
k+1∑
i=1

|κ−i |, (54)

where k is the order of the difference modulation and β is the
number of times the variance increases, so it can be expressed
by

σ 2
k = βkσ

2, (55)

where σ 2
k is the value of the variance for a k order difference

modulation and σ 2
= 1/h2 was taken from [9].

A. MIMO CASE
The previous analysis for the SISO case and the calculation
of parameter αk can be taken into consideration, and now
for the MIMO case it can be seen from [9] that there is
an approximation for the non-coherent case over a Rayleigh
channel with L order of diversity. This is expressed as

Pe =
1
2

L!
L∏
i=1

(
i+

1
2
h2
) . (56)

Equation (56) is the result of the probability of the error for
DPSK-1 with an autocovariance reception stated by equation
(36) and the supposition of a Rayleigh channel. If equation
(53) and parameter αk are assumed, equation (56) can be
rewritten as equation (39),

Pe =
L!

L∏
i=1

(
i+ αkh2

) ,
giving an approximation for Rayleigh channels with L order
of diversity. And for this particular case, the diversity will be
considered as the number of receiving antennas in the system,
real or virtual.
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