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ABSTRACT A digitized analog signal often encounters a high-frequency noisy background which degrades
the signal-to-noise ratio (SNR) particularly in case of low signal strength. Despite quite a lot of hardware-
and software-based approaches have been reported to date to deal with the noise issue, it is still a challenging
task to real-time retrieve the noise-contaminated low-frequency information efficiently without degrading the
original bandwidth. In this paper, we report a modified unsharp-masking (UM)-based Graphics Processing
Unit (GPU)-accelerated algorithm to efficiently suppress a high-frequency noisy background in a digitized
two-dimensional image. The proposed idea works effectively even if noise-density is high and signal of
interest is comparable or weaker than the maximum noise level. While suppressing the noisy background,
the original resolution remains least compromised. We first explore the effectiveness of the algorithm by
means of simulated images and subsequently extend our demonstration towards a real-world life-science
imaging application. Securing a potential for real-time applicability, we implement the algorithm via
Compute Unified Device Architecture (CUDA)-acceleration and preserve a <300 µs processing time for
a 1000× 1000-sized 8-bit data set.

INDEX TERMS High-frequency noise cancellation, unsharp-masking, life-science imaging,
CUDA-acceleration.

I. INTRODUCTION
In the process of digitization of an analog signal, due to
various instrumental and environmental factors, the digitized
data set might get contaminated with high-frequency noises.
Quite a lot of analog filters [1]–[4] are available to improve
the signal quality, which however require dedicated hardware
configuration and might limit the effective bandwidth of an
acquisition system.

On the other hand, post-acquisition digital signal process-
ing is a promising idea to deal with this issue without a
need of additional electronic circuitry. In case the signal of
interest is strong enough, a global threshold can be applied to
reject the weak noisy background while passing the strong
signal as it is. One can effectively suppress weak and/or
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low-density noises by means of various low-pass filters, for
instance, gaussian blur [5], mean filter [6], bilateral filter [7],
median filter [8], wavelet threshold [9], wiener filter [10],
etc. A few methods were reported involving subtraction of a
low-pass-filtered input. An interesting report [11] computed a
median-filtered low-passed image and subtracted from input
image to minimize the background. However, such a blurred
version usually holds a weaker intensity compared to the orig-
inal one, and also contains the low-frequency structures in it.
Therefore, the noises do not reduce down to the zero level,
and the signal of interest experiences a reduction in intensity
and a possible loss of dynamic range which might tend to
worsen if the blurred version is amplified prior to subtraction.
Likewise, another report [12] obtained a smooth illumination
gradient surface by means of mean filtering and subtracted
from the original one to suppress the background. Another
report [13] utilized a top-hat based algorithm to improve
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the issue of non-uniform background illumination. Another
approach [14] for dark-area-suppression involved a regional-
maxima method which finds the brightest pixels in discrete
areas and subsequently separates them out from the dark pix-
els, however, this method alters the absolute intensity values.
A deep learning-based study [15] introduced a neural net-
workwith aU-net-type architecture for eliminating arbitrarily
structured background in an image of a point source, of course
requiring a training process accordingly. Another noteworthy
approach is rolling-ball background subtraction [16]. In this
method local average is calculated around a pixel covering
a pre-defined circular area, and subsequently this averaged
value is subtracted to suppress the background. This method
however introduces artifacts when a larger ball-radius is used.

Aside from the above methods, unsharp-masking
(UM) [17] is another widely used image-processing tech-
nique traditionally used for image-sharpening. A scaled mask
is usually added to the input image, where the mask is
obtained by either subtracting a blurred version of the input
from the input itself, or directly applying a high pass filter
to the input. The mask usually consists of edge-information
which when added to the input, helps to sharpen the struc-
tures. This algorithm however does not reduce the back-
ground noise. In fact, the mask often contains high-frequency
noise components along with edge-information, and thus can
lead to noise-amplification. Over the past several years, quite
a fewUM-inspired techniques [18]–[31] were reported which
have significantly improved the image quality and a few of
them further dealt with the noise amplification issue as well.

Nevertheless, the existing techniques might not produce
satisfactory results especially when noise density is high, sig-
nal of interest is comparable or even weaker than maximum
noise level, and bandwidth-preservation as well as a high
enough processing speed become primary concerns. In this
paper, we demonstrate a modified UM-based algorithm
which unlike a traditional UM, suppresses high-frequency
noises in a background while leaving the original reso-
lution least compromised. We demonstrate the algorithm
in case of both simulated and life-science imaging exam-
ples to validate its robustness and wide-range of applica-
bility. Remarkably, the algorithm is implemented utilizing
NVIDIA’s CUDA-acceleration in order to maintain a high
processing speed of <300 µs for a 1000 × 1000-sized 8-bit
data set, justifying its potential to be applied in real-time
applications.

II. RESULTS
A. MATHEMATICAL FORMULATION OF THE PROPOSED
ALGORITHM
Conventionally, an UM algorithm can be expressed as

F (r, c) = f (r, c)+ α × (f (r, c)− GM×M ⊗ f (r, c)) (1)

where, f (r, c) and F (r, c) are the input and output data sets,
respectively; GM×M is a gaussian blur kernel withM×Msize;
and α is a multiplicative factor. In such an approach, first an
unsharp (blurred) version of the input is subtracted from the

input which provides a mask consisting of the high-frequency
components. A multiplicative factor α is used to control the
strength of this mask and subsequently the mask is added to
the original input to boost the high-frequency components.

We now demonstrate a modified UM algorithm, which is
dedicated to suppress high-frequency noises in a background
while mostly preserving useful information. Let us assume
f (r, c) and F (r, c) are the input and output data sets, respec-
tively, with a size of R × C. The modified method can be
mathematically expressed as

F (r, c) = f (r, c)− β

×

[
GM×M ⊗

(
LU (r, c)− g (r, c)

)]
; (2)

and,

g (r, c) = α × f (r, c) , (3)

g (r, c)

3×downscaling
R×C→R/×C/
−−−−−→ gD

(
r/, c/

)
, (4)

L
(
r/, c/

)
= G29×29 ⊗ gD

(
r/, c/

)
, (5)

L
(
r/, c/

) Upscaling
R/×C/→R×C
−−−−−→ LU (r, c) ; (6)

where, α and β are two amplification factors, G29×29 and
GM×M are two gaussian blur kernels with kernel sizes of
29 × 29 and M × M, respectively, ⊗ denotes a convolution
operation, r , c denote the vertical- and horizontal-axis data
points, respectively in the R × C-sized data sets, and r/, c/

denote the same for the R/ × C/-sized data sets. Fig. 1A
depicts the working principle of the algorithm with a simpli-
fied block diagram. The input data f (r, c)with R×C samples
(marked as INPUT in Fig. 1A) is amplified by multiplying
with a suitable factor α, where 1.0 < α ≤ 5.0. Its purpose is
to boost the weak low-frequency information preferably close
to saturation. The result g (r, c) in Equation (3) is denoted as
AMP1 in Fig. 1A. The next step is to obtain a smooth layer
of AMP1. A 3× downscaling is first performed preferably by
means of pixel-binning (RESIZE1 in Fig. 1A and gD

(
r/, c/

)
in Equation (4)), and a 29 × 29-kernel gaussian blur is
applied to gD

(
r/, c/

)
. The result L

(
r/, c/

)
in Equation (5)

with R/ × C/ samples is denoted as BLUR1 in Fig. 1A.
By means of a bilinear interpolation, L

(
r/, c/

)
is upscaled to

original size of R× C. The result is represented as LU (r, c)
in Equation (6) and RESIZE2 in Fig. 1A. Now, g (r, c) is
subtracted from LU (r, c) (Fig. 1A, SUB1) with a purpose
of yielding zero intensities to the noisy samples as well as the
locations of low-frequency structures, while leaving non-zero
intensities to the neighbors of the noisy samples. In order to
re-distribute the non-zero intensities, this subtraction result
is again convolved with an M × M-sized gaussian kernel
(M ≤ 7), represented as GM×M ⊗

(
LU (r, c)− g (r, c)

)
in

Equation (2) and BLUR2 in Fig. 1A. Subsequently, BLUR2
is boosted by a multiplicative factor of β, where 1.0 <

β ≤ 10.0, and a subtraction-mask is generated as β ×[
GM×M ⊗

(
LU (r, c)− g (r, c)

)]
in Equation (2), and AMP2

or MASK in Fig. 1A. Finally, the MASK is subtracted
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FIGURE 1. Working principle of the algorithm. (A) Block diagram representation, where, INPUT is a noise-affected data set,
AMP1 is α-times amplification of INPUT, RESIZE1 is 3× downscaled AMP1, BLUR1 is 29×29-kernel gaussian blurred RESIZE1,
RESIZE2 is upscaled version of BLUR1, SUB1 is subtraction of AMP1 from RESIZE2, BLUR2 is M×M-kernel gaussian blurred SUB1,
MASK or AMP2 is β-times amplification of BLUR2, and FINAL or SUB2 is subtraction of MASK from INPUT, (B) pixel-level
illustration of the crucial intermediate steps with a small 10×10-sized 8-bit grayscale input image, where INPUT, SUB1, MASK,
and FINAL follow the same notations as in (A). The yellow-marked noise pixel in INPUT is reduced down to zero in FINAL, while
preserving the low-frequency information contents.

from the INPUT, i.e., f (r, c) to produce the final result
F (r, c) as represented by Equation (2) and SUB2 or FINAL
in Fig. 1A.

Fig. 1B provides a pixel-level illustration of the crucial
intermediate steps with a small 10× 10-sized 8-bit grayscale
image as INPUT. With α = 2.0, AMP1 is obtained. A 3×
downscaling is performed to produce 3×3-pixeled RESIZE1.
Subsequently, a 29 × 29-kernel gaussian blur is applied to
produce a uniform layer BLUR1 with intensity of 115 in this
case, which is interpolated to 10 × 10 pixels as RESIZE2.
In this example, INPUT size is much smaller than blur-kernel
size. Therefore, all pixels in BLUR1 and RESIZE2 attain a
value of 115. For a larger INPUT size, RESIZE2 is essentially
a smooth layer of the AMP1. Now, SUB1 is obtained by
subtracting AMP1 from RESIZE2. Let us consider a high-
frequency-noise pixel in INPUT (Fig. 1B), f (9, 2) = 127,
i.e., the yellow-marked pixel surrounded mostly by darker

pixels. In SUB1 (Fig. 1B), this noise pixel has become zero,
i.e., fSUB1 (9, 2) = 0, while its neighbors attain non-zero
values, for instance fSUB1 (9, 1) = 115. Additionally, the
low-frequency structure in the central-region is now filled
with zeros. Note that each negative subtraction result is
replaced with a zero. A 3 × 3-kernel gaussian blur (M = 3)
is applied to SUB1 to redistribute the non-zero intensities
with the purpose of making fSUB1 (9, 2) non-zero which is
essentially the noise location. The resultant image BLUR2
is multiplied by β = 2.0 to strengthen the non-zero values so
as to obtain a layer of strong enough pixels corresponding
to the noisy-background regions. This β-amplified image
is depicted as MASK in Fig. 1B, where fMASK (9, 2) has
now attained a value of 156 which is indeed higher than
f (9, 2). Finally, after subtraction of MASK from the INPUT,
fFINAL (9, 2) is reduced down to zero, while preserving the
low-frequency structure at the center.
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FIGURE 2. Demonstration of background-noise suppressing ability of the algorithm with simulated 8-bit grayscale image.
(A)-(D) Noise-affected INPUTs added with random numbers in the ranges of (A) 0-75, (B) 0-100, (C) 0-125, and (D) 0-140, respectively,
(E)-(H) background-noise-suppressed images corresponding to (A)-(D), respectively, where α = 3.6 in each case, and β & M are varied
as (E) β = 3.0, M = 5, (F) β = 3.5, M = 5, (G) β = 4.0, M = 7, and (H) β = 5.0, M = 7, (I)-(L) red & green curves in each case represent
intensity profiles along the red & green-dashed lines in the respective noise-affected (A)-(D) & noise-suppressed (E)-(H) images.
Weak-intensity circle at the center was recovered in each case. Barely visible white-arrow-marked texts in (D) become recognizable in
(H) after noise-suppression. (M)-(P) Intensity profiles along the cyan & orange-dashed lines in the respective noise-affected (A)-(D)
and noise-suppressed (E)-(H) images. In each case, resolution remains least compromised.

B. EFFECT OF THE CONTROL PARAMETERS
The effectiveness of the proposed algorithm can be con-
trolled with 3 parameters in Equation (2). First one is the
pre-amplification factor α, which helps to boost the weak-
intensity information preferably close to saturation. Ideally,
α can be chosen as inverse of minimum intensity of interest
multiplied by 255.0 (for an 8-bit data set). The second param-
eter is M, i.e., the kernel size of the second gaussian blur. M
must be an odd number greater than 1, yet should be kept
as low as possible. For higher noise contamination however,
a higher value of M will be helpful. The third parameter

is the post-amplification factor β. Depending on the noise
contamination level, higher value of β should be employed.
Recommended ranges for α, M, and β are 1.0 < α ≤ 5.0,
3 ≤ M ≤ 7, and 1.0 < β ≤ 10.0, respectively. Decimal
points indicate that floating point numbers are applicable.

C. DEMONSTRATION OF THE ALGORITHM VIA
SIMULATED GRAYSCALE IMAGE
To demonstrate the effectiveness of the algorithm we present
an example with a 610 × 520-pixeled 8-bit grayscale image
in Fig. 2. Starting from the top-left corner of the image,
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we add 4 lines of regular texts with varying intensities
of 255, 200, 150, and 100, respectively. At the bottom-most
part, we add two lines of hand-writing-font texts, both at
an intensity of 70. On the right side, multiple circles are
drawn with similarly varying intensities of 70, 100, 150,
200, and 255 from the innermost to the outermost circle,
sequentially. Now, noise-affected images in Figs. 2A-D are
obtained by adding random numbers in the ranges of 0-75,
0-100, 0-125, and 0-140, respectively. Figs. 2E-H depict
the background-noise-suppressed results corresponding to
Figs. 2A-D, respectively; where, α = 3.6 is set for all the
cases (as the known minimum intensity of interest is 70.0 for
the 8-bit input images), and the remaining two parameters
are respectively varied as (E)β = 3.0, M = 5, (F) β = 3.5,
M = 5, (G) β = 4.0, M = 7, and (H) β = 5.0, M = 7.
Consider the plots depicted in Figs. 2I-L, where the
red and green curves in each case represent the inten-
sity profiles along the red and green-dashed lines in the
respective noise-affected (Figs. 2A-D) and noise-suppressed
(Figs. 2E-H) images. In each case, the weakest circle with
an intensity of 70 is recovered. It is remarkable that,
Fig. 2D was contaminated with a maximum noise level
of up-to 140, which is twice this signal intensity. Never-
theless, the algorithm successfully retrieves the weak sig-
nal structures while suppressing the nearby higher-intensity
high-frequency noises. Additionally, an observation to the
white-arrow-marked hand-writing-font texts in Figs. 2D and
H justifies the effectiveness of the algorithm. In Fig. 2D, these
texts with an intensity of 70 are barely visible, whereas, after
noise-rejection, the texts become well-recognized in Fig. 2H.
An advantage of our approach is that the output image is
obtained with a mask-subtraction only, and does not involve
a blurring operation. Therefore, the algorithm does not
worsen the image resolution. The cyan and orange curves in
Figs. 2M-P represent the intensity profiles along the cyan
and orange-dashed lines in the respective noise-affected
(Figs. 2A-D) and noise-suppressed (Figs. 2E-H) images.
In each case, the resolution was observed to be least com-
promised.

D. FEASIBILITY OF THE ALGORITHM TO BE
APPLIED IN A COLOR IMAGE
Extending our demonstration to a color image, we prepare
another 475×375-pixeled 24-bit BGR-image, where the three
8-bit channels are indicated by B, G, and R, standing for blue,
green and red colors, respectively. For our analysis, smoothly
varying colored texts are drawn with a maximum allowed
intensity of 128 for each individual channel. For each chan-
nel, independent set of random numbers is added in the ranges
of 0-100, 0-150, 0-200, and 0-255, and the noise contami-
nated BGR-images thus obtained are depicted in Figs. 3A-D,
respectively (marked as Input in each case). For applying our
algorithm, we first split the BGR-input into blue, green, and
red channels which are shown as BIN, GIN, and RIN, respec-
tively. The individual channels in each case in Figs. 3A-D
are used as INPUTs and are noise-suppressed by means

of the proposed algorithm with α = 2.0, and (A)β = 7.0,
M = 5, (B) β = 8.0, M = 5, (C) β = 8.0, M = 7, and
(D) β = 9.0, M = 7, respectively. The output noise sup-
pressed channels are depicted as BOUT, GOUT, and ROUT,
which are merged together to form the noise-suppressed
BGR-image marked asOutput in each case (Figs. 3A-D). The
plots in Figs. 3E-H correspond to the cases in Figs. 3A-D,
respectively, where, red and blue curves in each case depict
the intensity profiles along the yellow-dashed lines in the
input and output-BGR images, respectively. Note that, each
intensity value in each plot is an average of blue, green,
and red intensities. With an observation to the input and
output BGR-images and the corresponding intensity pro-
files, it is evident that the algorithm has a potential to be
applied in a color image. However, it is observed that, with
an excessive noise level in each channel, the non-primary
color-information might not get recovered effectively.

In Figs. 3A-D, we apply a same level of noise to all the
3 channels in each case, for instance, a noise-level of 0-255 is
applied to each channel in Fig. 3D. Therefore, in this example,
we utilize the same set of β and M parameters for each chan-
nel in a BGR-image. If each channel is contaminated with
different noise-levels, choosing different set of parameters
might be helpful. Additionally, choice of an optimum α-value
is critical for a BGR-image, since the minimum intensity of
interest in a channel might go very low while representing
certain non-primary colors. Therefore, instead of using a
global α, an independent layer of α-values for each channel
can be chosen based on the available signal level, which will
help to better preserve the structural as well as color infor-
mation. Note that each BGR-image in Figs. 3A-D consists of
475 × 375 pixels, and it can be extended up-to any practi-
cal size supported by an image-processing library/software.
For different sized images, the relevant changing parame-
ter will be the processing speed, which we discuss in the
following section II.H.

E. APPLICATION OF THE ALGORITHM IN LIFE SCIENCE
IMAGING
Extending our demonstration to a life-science imag-
ing application, we consider a two-photon fluorescence
microscopy [32], [33] image as an INPUT being depicted
in Fig. 4A with a poor signal to noise ratio (SNR)
of less than 5. A dorsal root ganglion sample from a
Nav1.8-tdTomato positive mouse was used as sample (see
supplemental material). The scanned image with a field of
view of ∼ 140 × 140µm2 (770× 770 pixels) consists of
multiple fine fibers which are mostly contaminated with
high-frequency noises at the background. Following the same
notations as in previous figures, Fig. 4B shows the AMP1
with α = 2.0. Figs. 4C and D show the 3× downscaled
and 29 × 29-kernel gaussian blurred outputs, i.e., RESIZE1
and BLUR1, respectively. Upscaled version of BLUR1,
i.e., RESIZE2 is depicted in Fig. 4E. Subtraction result of
RESIZE2 and AMP1, i.e., SUB1 is represented in Fig. 4F.
With M = 7, Fig. 4G shows BLUR2, i.e., the 7 × 7-kernel
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FIGURE 3. Assessing the algorithm with 24-bit BGR-input image. (A)-(D) Noise-affected color images added with random numbers in the
ranges of (A) 0-100, (B) 0-150, (C) 0-200, and (D) 0-255, respectively. BIN, GIN & RIN in each case denote blue, green & red-channel inputs,
and BOUT, GOUT & ROUT similarly denote the corresponding noise-suppressed outputs obtained with α = 2.0, and (A) β = 7.0, M = 5,
(B) β = 8.0, M = 5, (C) β = 8.0, M = 7, and (D) β = 9.0, M = 7, respectively. BOUT, GOUT & ROUT are merged to form the BGR-output in each
case. (E)-(H) red & blue curves in each case represent intensity profiles along the yellow-dashed lines in the corresponding
noise-affected-input & noise-suppressed-output BGR-images, respectively.

gaussian blurred version of SUB1. With β = 5.0, the ampli-
fied version of BLUR2, i.e., the final MASK is depicted
in Fig. 4H. Subsequently, MASK is subtracted from INPUT,
and the noise-suppressed image is presented in Fig. 4I, with
an SNR of more than 40. Thus, the proposed algorithm suc-
cessfully suppressed the high-frequency background noises
to bring the signal of interest into attention.

F. EFFECT OF α AND β OVER SIGNAL-TO-NOISE
RATIO (SNR)
To assess the effect of α and β over the performance of
the algorithm, we consider the low-SNR two-photon fluores-
cence microscopy image (in Fig. 4A) as input, and the value
of M is fixed at 7. Now, the value of α is gradually increased
as 1.2, 1.6, 2.0, 2.4, and 2.8. For each value of α, the value
of β is again varied as 3.0, 4.0, 5.0, 6.0, and 7.0. In this
way, the output images are obtained for all the 25 different
cases, and are depicted in Fig. 5. For all 25 images, a common
5×5-sized region-of-interest (ROI)-1 is selected correspond-
ing to a moderate intensity structure. Likewise, another com-
mon 5 × 5-sized ROI-2 is selected from a nearby location
containing high-frequency noises. Subsequently, for each of

the 25 cases, the mean of signal intensities (µROI−1) is calcu-
lated for ROI-1, and the standard deviation of noises (σROI−2)
is calculated for ROI-2. The SNR value is finally obtained as
the ratio of µROI−1 and σROI−2 in each case. It is observed
that, for a fixed reasonable value of α, SNR tends to increase
with increase in value of β, and vice versa. When both α
and β values are increased, a drastic improvement in SNR
is observed. For instance, with α = 1.2, β = 3.0, SNR is
4.72; with α = 1.6, β = 4.0, SNR improves to 8.55; with α =
2.0, β = 5.0, SNR significantly improves to 45.09. However,
note that, excessive values of α and β can lead to loss of
information, particularly the weaker and finer structures.

G. COMPARISON WITH A FEW ALTERNATIVE
APPROACHES
In a simple scenario when: noise density is low, signal
strength is comparable or higher than the noise contamination
level, and signal of interest is not much corrupted, a high-
pass filter can be directly applied to separate out the noises
and subsequently can be subtracted from the original input
to recover the signal. However, when density and strength
of noise are much higher, such an approach might not be
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FIGURE 4. Demonstration of background-noise suppressing ability of the algorithm in a life-science imaging application. (A) A low signal-to-noise ratio
(SNR < 5) two-photon fluorescence image with a field of view of ∼140× 140 µm2, (B)-(H) intermediate steps depicting (B) AMP1 with α = 2.0,
(C) RESIZE1 with 3× downscaling, (D) BLUR1 with 29× 29-sized gaussian kernel, (E) RESIZE2 with interpolated upscaling, (F) SUB1, (G) BLUR2 with
M = 7, and (H) MASK with β = 5.0, respectively, (I) background-suppressed image with SNR over 40.

able to distinguish the noise-corrupted low-frequency infor-
mation particularly when signal strength is relatively weaker.
For instance, consider the 3 input images in Figs. 6A-C.
A Laplacian high-pass filter is applied and a layer/mask with
high-frequency components (and edges as well) is generated
in each case (Figs. 6D-F). After subtraction of this layer
from the input, the resultant image in each case is depicted
in Figs. 6G-I, respectively. In the simplest case in Fig. 6A,
this idea successfully eliminates the noisy pixels. How-
ever, the same idea does not provide satisfactory outcomes
for Figs. 6B and C, where noise contaminations are much
higher. On the other hand, Figs. 6J-L depict the results of
our proposed algorithm for the same inputs in Figs. 6A-C,
respectively.We observe that our proposedmethod efficiently
suppressed the noises in each case.

Aside from direct subtraction of a high-passed layer, mor-
phological filtering [34] is another state-of-the-art technique
to reduce the noise-issue. Morphological erosion and mor-
phological opening are two promising candidates in this
regard. Fig. 7A shows the noise-contaminated image with
a noise level of 0-140, the same one obtained in Fig. 2D.
Fig. 7B depicts the noise-suppressed result via our proposed
algorithm. The results of morphological erosion and opening
operations with a 2-pixel-radius circular structure element are
depicted in Figs. 7C and D, respectively. In case of erosion,
background noises are effectively removed. However, such an
operation leads to significant loss of structural information,
and thus might result in irreversible resolution loss. In case
of opening, a dilation operation is subsequently performed
after an erosion, so that the reduced structural details can be
compensated. However, in this process, a loss of resolution
during erosion might not be possible to recover. The red,

green, blue, and gray curves in Fig. 7J plot the intensity
profiles along the white dashed lines in Figs. 7A-D, respec-
tively. It is clearly observed that our algorithm’s result (green
curve) outperforms both erosion (blue curve) and opening
(gray curve) operations, in terms of preserving the origi-
nal structural and intensity information. Further extending
our comparison, utilizing the same noisy input in Fig. 7A,
Figs. 7E-I show the results of (E) non-local mean denois-
ing [35], (F-G) rolling ball and sliding paraboloid back-
ground subtractions [16], [36], (H) traditional UM [17], and
(I) Otsu thresholding [37], respectively (see supplemental
material). In Fig. 7K, we plot all the intensity profiles along
the yellow-dashed lines in Figs. 7A-B, E-H. It is evident that
our algorithm’s result (green curve) outperforms the coun-
terparts. Further extending our comparison, we perform an
SNR analysis (following the same method used in Fig. 5) for
all the images in Figs. 7A-I, and the SNR values are plotted
in Fig. 7L. The input image in Fig. 7A holds an SNR of 3.84.
After applying the proposed method, it has been improved
to 54.5. We observe that morphological erosion and opening
results hold SNRs over 13 and 26, respectively, however, with
their limitations as we have stated before.

H. ASSESSMENT OF PROCESSING SPEED
To assess the processing speed, we run the algorithm on
an i7 9800X CPU, and two CUDA-enabled GPUs, Quadro
P1000 and Quadro RTX 8000 with CUDA-core numbers
of 640 and 4608, respectively. In Fig. 8A, red, blue, and
green curves represent processing time with respect to input
image size plotted for 9800X, P1000, and RTX 8000, respec-
tively. For a small image size, processing time is identical
for each case. We however observe that, as image size gets
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FIGURE 5. Effect of α & β on SNR. A low-SNR (<5) two-photon fluorescence microscopy image is used as INPUT. For M = 7, α is varied as 1.2, 1.6,
2.0, 2.4 & 2.8, and for each α-value, β is varied as 3.0, 4.0, 5.0, 6.0 & 7.0. For a fixed reasonable α-value, SNR tends to increase as β increases, and
vice versa. SNR improves rapidly when both α & β-values are increased. For instance, with α = 1.2, β = 3.0, SNR is 4.72; with α = 1.6, β = 4.0, SNR
improves to 8.55; with α = 2.0, β = 5.0, SNR significantly improves to 45.09.

larger, CPU-processing time tends to increase exponentially
as depicted by the red curve. The blue curve for P1000 indi-
cates an improvement over CPU performance. Eventually,
RTX 8000 significantly reduces the processing time as indi-
cated by the flat enough green curve. At 10000× 10000
image size (8-bit), CPU processing time is found to
be >250 ms, whereas the same for RTX 8000 is <20 ms
indicating >12 times better performance. Likewise, RTX
8000 processing time for a 1000× 1000-sized 8-bit image is

observed to be <300 µs, justifying a real-time applicability
of the algorithm.

Fig. 8B shows a comparison of our processing-speed with
a few state-of-the-art techniques: non-local mean denoising,
morphological erosion, andmorphological opening. For a fair
comparison, each method is CUDA-accelerated with Quadro
RTX 8000 while assessing the processing time. It is observed
that, in comparison to non-local mean denoising, which is
usually an expensive operation, our method works way faster.
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FIGURE 6. A comparison of direct subtraction of a high-passed layer (from input) with the proposed algorithm.
(A)-(C) Noise-affected images, (D)-(F) Laplacian high-pass filtered layers of (A)-(C), respectively, (G)-(I)
high-passed-layer subtracted results of (A)-(C), respectively, where, noisy background was well-suppressed
in (G), but the same idea did not work satisfactorily in (H) & (I). (J)-(L) Results of the proposed algorithm for the
same inputs in (A)-(C), respectively, showing an efficient suppression of noise in each case.

For instance, for a 10000×10000-sized 8-bit input, non-local
mean denoising takes a duration of several seconds, whereas
processing time for our method for the same input is∼19 ms.
For the same input, a simple erosion operation takes ∼7 ms,
and an opening operation takes ∼13 ms. Thus, a less than
20 ms processing time is observed for the proposed method
and the morphological operations up-to an 8-bit input size
of 10000× 10000.

I. DISCUSSION
Contradicting a traditional UM approach, the proposed
method does not involve addition of a high-passed image to
the original input, and therefore does not result in a noise
amplification. The sole purpose of our algorithm is to sup-
press high-frequency background noises in an image. The
reported method does not demand any dedicated hardware
to operate. We have demonstrated the effectiveness of the
algorithm by means of both simulated and life-science imag-
ing examples while securing a high processing speed via
CUDA-acceleration.

For our algorithm to work best, it is expected that the noise-
affected two-dimensional data set is digitized satisfying the
respective Nyquist-Shannon sampling criterion [38], [39] in
both dimensions, which will ensure at least 2 × 2 samples
for the smallest recoverable structure. If undersampled, a
single-sample information might be treated as a noise and
thus might get eliminated or weakened. It is important that
depending on the signal being digitized, the input-range
of the digitizer should be set carefully to avoid saturation
effect. Additionally, the input data should not go through

a conventional low-pass blurring filter prior to processing
by our algorithm. A low-pass filter might distribute the
high-frequency noise intensities to its darker-neighbors, and
thereafter our algorithm might no longer be able to generate
an effective subtraction-mask. It is important to note that,
as a result of the second gaussian blur (BLUR2), the edges
of the low-frequency structure in the MASK attain some
non-zero values, which when subtracted from the INPUT,
results in a suppression of the edges. To reduce this effect
a smaller value of M is recommended. However, this effect
might be helpful to improve the point spread function in some
applications. To obtain the smooth layer of AMP1 we first
performed a 3× downscaling, and thereafter a 29×29-kernel
gaussian blurring was applied. To produce a similar smooth-
ness without the downscaling operation, we will require an
even larger gaussian kernel which becomes expensive for a
moderate to large-sized data set. However, a reduced smooth-
ness of this layer might be still helpful in some applica-
tions to better-preserve useful high-frequency information.
For an ultra-large data set (e.g., > 10000× 10000), a higher
downscaling factor can be helpful so that the convolution
remains computationally less expensive. However, an exces-
sive downscaling might reduce the noise information and
the resultant subtraction-mask might not remain effective
enough. Alternatively, an ultra-large data set can be split
into multiple blocks and can be processed in parallel taking
advantage of CUDA-streaming. At the final stage, a bilin-
ear interpolation can be applied to minimize any artifact
arising at the joining of successive blocks. A disadvan-
tage of GPU-processing is the additional time required for
data downloading/ uploading to and from the host memory.
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FIGURE 7. Comparison with a few existing techniques. (A) Noise-affected input image, (B) noise-suppressed output of
the proposed algorithm, (C-I) output results of (C) morphological erosion, (D) morphological opening, (E) non-local mean
denoising, (F-G) rolling ball & sliding paraboloid background subtraction, (H) traditional UM, and (I) Otsu thresholding,
(J) intensity profiles along the white-dashed lines in (A)-(D), indicating that proposed algorithm (green curve)
outperforms morphological operations (blue & gray curves) in context of suppressing noise while preserving useful
information, (K) intensity profiles along the yellow-dashed lines in A-B, E-H, indicating that proposed algorithm (green
curve) outperforms the counterparts in terms of noise suppression, (L) plot of SNRs for (A) 3.84, (B) 54.5, (C) 13.6,
(D) 26.6, (E) 5.32, (F) 3.29, (G) 3.32, (H) 3.22, and (I) 1.97.

For a continuous data-processing application, an asyn-
chronous transfer can be helpful to minimize this issue.
As we have stated earlier, higher values of M and β

are recommended if the INPUT is highly contaminated
with noise. In such a case, the absolute intensities of
the fine enough structures in the noise-suppressed out-
put might tend to reduce slightly (refer to Figs. 2M-P),
which can be of course improved with a normalization.
Nevertheless, this effect should be taken into account in
case of a quantitative analysis. Each example presented
in this paper consists of a dark background and brighter
signal. In case of a white background with darker signal,
the 8-bit input and output data sets can be simply sub-
tracted from 255 for our algorithm to work. Although we

have utilized 8-bit images in the examples, the algorithm
can be also extended to a higher bit-depth data with appro-
priate gaussian kernels. Note that the reported technique is
designed to suppress high-frequency background noises only,
which is different from a background elimination process
for foreground object segmentation [40]–[43] involved in
various computer vision applications, such as, moving
object detection in a video stream. If noise level is
stronger than available signal, some informative sam-
ples belonging to low-frequency structures might get cor-
rupted with noise, which our method cannot correct.
Conventional denoising algorithms can be employed to
our background-suppressed data to correct such corrupted
samples.
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FIGURE 8. Assessment and comparison of processing speed. (A) Red,
blue, and green curves represent processing time for our algorithm in
milliseconds with respect to image size plotted for i7 9800X, Quadro
P1000, and Quadro RTX 8000, respectively. Flat enough green curve
shows a significant speed-improvement in comparison to the exponential
red-curve. For a 10000× 10000-sized 8-bit input, 9800X and RTX
8000-processing times are >250 ms and <20 ms, respectively, indicating
a >12× performance boost via CUDA-acceleration, (B) gray, magenta,
orange, and green curves depict the processing time in milliseconds with
respect to image size plotted for non-local mean denoising,
morphological erosion, morphological opening, and the proposed
method, respectively. A less than 20 ms processing time is observed for
the proposed method and the morphological operations up-to an input
size of 10000× 10000, whereas, non-local mean denoising requires up-to
several seconds.

III. CONCLUSION AND FUTURE WORK
The reported method has a potential to be applied in vari-
ous fields involving real-world data acquisition and analysis,
such as, multi-modality microscopy, ultrasound/ computed
tomography (CT)/ X-ray imaging, astronomical imaging, etc.
In fluorescence microscopy, to reduce photobleaching and/or
phototoxicity to an in vivo or ex vivo biological specimen,
one has to excite the sample at a minimized average power
which might lead to a poor SNR due to a strong noisy
background. Apart from that, in case of volumetric imaging
with an ultra-deep penetration, the emerging signal might
get dominated by the background noise. In such situations,
the proposed method can be helpful to recover the signal of
interest.

While assessing the processing speed, we observe a less
than 20 ms computation time (up-to a 10000 × 10000-sized
8-bit data set) for the proposed method, which is slower but
mostly comparable to that of a morphological operation, and
way faster than a computationally expensive algorithm, such
as non-local mean denoising.

As of now, the effectiveness of the algorithm can be
controlled with multiple parameters: α, β, and M. For
user-friendly operations in a wide range of experimental
conditions, it is thus worth extending the algorithm to be
non-parametric where a real-time SNR measurement can be
helpful to optimize the control parameters. Besides, instead of
using a fixed global α, an independent layer of α-values can
be chosen based on the signal strength to make the algorithm
more effective particularly to be applied in a color image.

The algorithm when applied to a data-set, leaves the res-
olution least compromised. It can be therefore extended to
a noise-compensated resolution-preserving local/global con-
trast optimization technique, which can be helpful to deal
with the unwanted noise-amplification issue in a conventional
contrast enhancing method.
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