
Received March 22, 2021, accepted April 26, 2021, date of publication May 4, 2021, date of current version May 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3077539

Migration in Hardware Transactional Memory
on Asymmetric Multiprocessor
ZIVOJIN SUSTRAN AND JELICA PROTIC
School of Electrical Engineering, University of Belgrade, Belgrade 11120, Serbia

Corresponding author: Zivojin Sustran (zika@etf.bg.ac.rs)

This work was supported in part by the Serbian Ministry of Education, Science and Technological Development under
Grant III44006(RZ62109).

ABSTRACT In this paper, a system is presented which implements transactions migration to an asym-
metric multiprocessor in order to decrease the probability of conflicts and improve execution performance.
Applications parallelization makes programming and testing much more difficult, so the goal is to avoid
putting additional burden on a programmer. Therefore, the proposed solution should be fully implemented
in hardware. In the asymmetric multiprocessor that is analyzed, all cores have the same instruction set, but
they are asymmetric in terms of microarchitectural properties, so that N − 1 ‘‘small’’ cores are identical,
while the Nth ‘‘big’’ core is different, as it provides better performance and higher capacities of its units.
The idea is to perform transaction migration from the ‘‘small’’ core to the ‘‘big’’ one, based on the history of
transaction execution. The experiments were performed using a significantly upgraded Gem5 simulator and
eight parallel applications from the STAMP benchmark suite. The experimental results show the speedup
and the rate of successfully executed transactions for five different multiprocessor configurations, including
symmetric and asymmetric multiprocessors with or without transaction migration. The improvement our
algorithm achieves for suitable applications is up to 14% (10% on average) in turnaround time compared to
the solutions which do not make use of asymmetry for scheduling transactions.

INDEX TERMS Shared memory algorithms, multicore architectures, hardware transactional memory,
asymmetric multiprocessor, thread migration.

I. INTRODUCTION
During the last decade, several commercial processors
emerged addressing performance and ease of programming.
In order to achieve more efficient use of a multi-core proces-
sor in terms of power consumption, asymmetric multi-core
processors have been introduced. Such processors consist of
multiple heterogeneous cores, so some of them are usually
faster and the others are slower for certain purposes. Most of
them have the cores on the same die which have identical
instruction set (ISA). They differ in type (in-order or out-
of-order), pipeline depth, issues width, etc. Those multipro-
cessors are called Single-ISA asymmetric multicore proces-
sors [1]. An application can be executed faster by mapping
execution to the right kind of core [2]. Transactional mem-
ory [3] is a paradigm that eases programming and can achieve
better performance. Creating a multithread program is easy

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Pilato .

because a programmer needs only to mark the critical section
as a transaction. Transactional memory ensures that trans-
actions are executed atomically with respect to other trans-
actions. Transactions are running without waiting. If some
problem occurs (like data race), then a transaction aborts
and restarts. This approach is considered to be optimistic
synchronization compared to pessimistic one, like the locked
based. Furthermore, optimistic synchronization can improve
performance if aborts occur rarely.

The prior research in Single-ISA asymmetric multiproces-
sors proposed moving a thread to the right core to improve
performance. This move is achievable on a fine-grain level
by moving only a small part of the thread [2], [4]–[6] or a
coarse-grain by moving the whole thread [7]–[13]. Usually
the fine-grain thread migration is performed by hardware,
while coarse-grain is performed by the OS scheduler.

The published research on transactional memory is vast
and covers various implementations which can be in hard-
ware, in software, or in both. This research focuses on

69346 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-3549-7056
https://orcid.org/0000-0002-2171-477X
https://orcid.org/0000-0001-9315-1788

Z. Sustran, J. Protic: Migration in HTM on Asymmetric Multiprocessor

Hardware transactional memory (HTM) which is also imple-
mented in commercial processors. Those implementations
are best effort, which means that transactions are limited
in size and if the programmer creates a large transaction,
that transaction is impossible to execute, and the execution
will fall back to conventional locking mechanism. Since each
new generation of processors has increased number of cores,
a problem may arise with scalability. If the number of threads
is increased, the number of transactions executed in parallel
can also increase, and this can lead to contention which
will increase the number of aborts. The larger number of
aborts means more wasted work and potential performance
degradation. To alleviate this problem, scheduling techniques
have been proposed in the previous research [14]–[21], which
reduce parallelism when contention is high.

This work combines the above techniques to improve the
performance of asymmetric multicore processors. Since the
techniques are orthogonal, it is necessary to find an effi-
cient way to obtain synergy in combining them. We try to
improve performance of the applications by reducing con-
tention. To the best of our knowledge none of the previous
research has explored this problem in a similar way. However,
some previous research can complement our own without
any modification, since it only improves either asymmetric
processors or transactional memory. Our solution is imple-
mented fully in hardware and it is fully transparent to the
programmer, i.e., the ISA is not changed, and the application
code is not changed in any way, so legacy code should operate
without modifications. The hardware modifications are small
and require only several more kilobytes of memory on the
die, which is easy to obtain by using modern technological
process.

The main goals of our paper are:
• To introduce a novel algorithm and architecture for
hardware-basedmigration of transactions on Single-ISA
asymmetric multicore processors. The algorithm uses
heuristics, which accounts for transaction length,
success rate, and reasons for failure.

• To present the implementation of the transaction migra-
tion M-HTM system in the Gem5 simulator. The base
transaction memory implementation is a replica of the
most advanced commercially available solution, while
the asymmetric multicore processor is a state of the art
static (non-reconfigurable) solution.

• To show the evaluation of the presented algorithm on
the STAMP set of benchmark tests for transactional
memory. The improvement that our algorithm achieves
of up to 14% (10% on average) in turnaround time
compared to the solutions which do not take advantage
of asymmetry for scheduling transactions.

The rest of this paper is organized in the following sections:
Section 2 presents the background, motivating example, and
the problem setting, followed by Section 3 which describes
the architecture of the proposed system. Section 4 presents
simulation analysis in detail, reports the experiments
performed in this research, and presents their results.

Section 5 discusses the related work. Section 6 concludes this
paper with current problem remarks and future work.

II. BACKGROUND AND PROBLEM STATEMENT
A transaction is a sequence of instructions within a thread
that must satisfy certain conditions. From the point of view of
other threads, effects of the execution of one transaction must
be as if all the instructions within that transaction performed
simultaneously and indivisibly. In other words, atomicity of
transactions must be provided for instructions reading from
and writing to the memory, since these instructions make
the effects of executing one thread visible to other threads.
During the execution of the transaction, no other thread may
access the data that the transaction reads or writes, otherwise
the atomicity of the transaction is disrupted.

Let us assume a transaction X reads variable A, then
another thread writes variable A, and finally at the end of
the transaction X it writes the variable A. This sequence of
instructions leads to an error called write after read. This error
means that read and write to A performed by the transaction
X are not executed indivisibly, and this kind of atomicity
corruption is called a conflict. The conflict can occur between
the transaction and any other thread, regardless of corrupting
operations’ execution inside of a transaction or inside the
out-of-transaction code. A transaction always starts uncon-
ditionally regardless of the state of other processors/threads.
During the transaction execution, it is checked whether the
executions on other processors have disrupted the atomicity
of the transaction. If a conflict is detected, the transaction is
interrupted, the thread returns to the state before the trans-
action and execution of the transaction must be attempted
from the beginning. In case the conflict occurred between
two transactions, one of them must be terminated, so that the
other transaction can continue execution, as the effects of the
interrupted transaction are discarded. If the conflict happened
between the transaction and out-of-transaction code, only the
transaction can be interrupted. The effects of executing a
transaction have to be discarded, and the effects of the oper-
ations that the transaction performed have to be reversible.

Hardware provides conflict detection and the reversal of
transaction execution effects. To do so, the hardware must:
1) keep records of the data accessed within the transac-
tion, 2) enable the exchange of information on shared data
access between different processors and 3) make it possible to
restore values that data had before the start of the transaction.
The first and the second requirement can be provided in
hardware for an arbitrary transaction length, e.g., the number
of different data items that the transaction can access. For
example, records of data that can be accessed can be per-
formed using Bloom filter as in [22]–[24]. With the Bloom
filter [25] it is possible to implement an unlimited set that is
imprecise in hardware. In this case, imprecise means opera-
tion that checks that the value belongs to the set can return
false positives. In this way, a conflict can be detected even
though it does not really exist. This inaccuracy does not affect
the logical correctness, but only the execution performance

VOLUME 9, 2021 69347

Z. Sustran, J. Protic: Migration in HTM on Asymmetric Multiprocessor

of the application. Information about data modifications is
exchanged in most implementations using the cache coher-
ence protocol which in its essence allows the exchange of data
access information between different processors. However,
the third requirement depends on the length of transactions,
respectively.

The hardware has to keep track which data were changed
during the execution of the transaction, so that it could undo
the changes in the case of conflict. This is usually done with a
limited size buffer. The most common implementation in the
proposed solutions and commercial processors is to keep the
changed data in private processor caches, while preserving
the old values in memory. Some of the earliest solutions are
provided in [3]. In that case, during the execution of the
transaction, removing of the data changed in the transaction
from the cache must be prohibited, because otherwise that
data would be made available to other processors, and the
old value of data kept in memory would be lost. If the cache
capacity is not large enough to keep all data accessed by
a transaction, the transaction must be interrupted, because
atomicity cannot be preserved. This is called a capacity over-
flow. Some of the proposed implementations try to overcome
this limitation by some kind of virtualization, as described
in [23], [26]–[29], but such a possibility does not yet exist in
commercial processors due to the complexity of the solutions.

For some instructions it is not easy to undo the effects,
such as system calls, access to some devices, etc. Transactions
with these instructions cannot be performed successfully on
commercially available processor. Some proposals to support
the execution of such instructions in a transaction can be
found in the open literature [30]. Bearing in mind that the
implementation of such a solution is very complex, and the
benefits of executing such instructions are relatively small,
it can be assumed that these techniques will not be applied in
commercially available processors in the near future. There-
fore, developers are advised to write transactions so that they
do not contain the aforementioned type of instructions [31].

The Single-ISA asymmetric processors usually consist of
two types of cores. According to the research presented
in [32], architectures with more than two types of cores do not
bring performance benefits. However, there are architectures
with many-type asymmetric cores [32]. The main goal of
such solutions is to optimize power consumption rather than
to achieve better performance, and power consumption is
out of scope of this paper. Due to the differences between
cores, some cores have better performance than others and
they have higher capacities of their units. Since such cores
require more transistors to be implemented, such cores will
be called ‘‘big’’, while the rest will be called ‘‘small’’ cores.
The ‘‘big’’ cores can be used to execute threads with high
priority or computational intensity, while the ‘‘small’’ cores
can execute threads with lower priority or less computa-
tional intensity [1], [33]. For example the ‘‘big’’ core can
have superscalar pipelined processing in which instructions
are executed outside the program sequence, multiple issues
of instructions in the same cycle, and larger data caches,

FIGURE 1. Execution of transactions on the a) symmetric b) asymmetric
multiprocessor.

while the ‘‘small’’ core has a normal pipelined processing,
where instructions are executed in the program order and
have smaller data cache. Industrial implementation of such
processors is already a commonplace and the commercially
available products, by ARM and Samsung, are presented
in [33], [34].

One thing to notice is that conflict can happen only during
transaction execution. Since we have at our disposal a ‘‘big’’
core, we can use it to run a transaction and reduce its exe-
cution time. Our hypothesis is that the program, which uses
transactional memory, could be accelerated on an asymmetric
multiprocessor by accelerating transactions. Figure 1a) shows
one execution of transactions on a symmetric multiprocessor.
At the moment ¶ transaction T2 starts its execution. From
that moment, transactions T1 and T2 are active, until transac-
tion T1 is completed at time ·. In that time period, if transac-
tions T1 and T2 access the same data, a conflict can happen,
that will cause the cancellation of one of the transactions.
Thus, the operations of the canceled transaction are useless
and must be repeated, thread execution lasts longer thereby
reducing the speed of program execution. The same situation
is from themoment¸ to moment¹when transactions T2 and
T3 are active at the same time.

The longer the time periods in which at least two trans-
actions are active, the greater the probability of conflicts.
Our assumption is that the length of such time periods can
be reduced if the same program is executed on an asymmet-
ric multiprocessor. The basic idea is to perform one of the
transactions on a ‘‘big’’ core. In that way, the duration of
that transaction execution decreases, so the time periods in
which at least two transactions are active become shorter,
which means that the likelihood of a conflict between two
transactions also decreases. There are several solutions to
perform one of the transactions on a ‘‘big’’ core, which will
be considered later in this paper. In this example, one of
the transactions is moved to execute on the ‘‘big’’ core, just
before it starts the execution. Figure 1b) shows an example
of executing the same transactions as in Figure 1a), but on an
asymmetric multiprocessor with transaction migration. The
given example is idealized, i.e. it shows the best case, because

69348 VOLUME 9, 2021

Z. Sustran, J. Protic: Migration in HTM on Asymmetric Multiprocessor

it is difficult to detect how transactions overlap during the
execution and it is assumed that both migration and execution
of the transaction on ‘‘big’’ core take less or equal time as
execution on slower core. At time ¬, when the CPU2 core
should start executing transaction T2, the CPU2 coremigrates
the execution of the transaction to the ‘‘big’’ CPU3 core.
By the time ­, migration is taking place, which consists of
stopping the execution on the CPU2 core, transferring the
context to the CPU3 core, and starting execution. No conflict
can occur during that time because the transaction T2 is not
active. It is activated only at time ­. From that moment to the
moment ®, there are two active transactions T1 and T2.
This period is shorter than the execution shown

in Figure 1a) because the transaction T2 started later, and thus
the probability of conflict became lower. From moment ¯ to
moment ° transactions T2 and T3 are active. This period is
also shorter than the period from ¸ to ¹ because transaction
T2 executes on the ‘‘big’’ CPU3 core, so it ends earlier.
From the moment T2 finishes its execution, the transaction
returns to CPU2 by the moment ±. There is no difference
in execution speed in the two presented cases if there is no
conflict and cancellation of transactions; however, if there is
a conflict, execution will slow down. If the scenario shown
in Figure 1b) occurs often, the probability of a slowdown due
to transaction cancellations will be smaller, which can result
in better program execution performance on an asymmetric
multiprocessor.

This example shows that the transaction in the thread run-
ning on a CPU2 core executes in a time interval of similar
duration in both cases (including the time to migrate). This is
a simplified presentation which neglects some details in order
to explain the basic idea in an easy manner. In the actual exe-
cution, the two times will be different, depending on the time
it takes for the transaction to migrate, as well as the speedup
in the T2 transaction execution on the ‘‘big’’ core. The time
spent on transactions migration is clearly an overhead cost,
which can lead to a slowdown in thread execution. To justify
the transaction migration cost, this overhead cost must be less
than the cost of useless work performed by the transaction
before cancelation.

In addition to the described potential benefits, execution on
a ‘‘big’’ core can make it possible for some transactions to be
performed at all. A ‘‘big’’ core may be faster because it has
larger buffers and more cache memory, so that the core has a
larger capacity to store the speculative data of a transaction.
Higher capacity allows for some transactions to be executed,
although they cannot be performed on a ‘‘small’’ core due to
transaction cancellation caused by capacity overflow. These
benefits could apply only on specific applications, whose
sets of speculative data in transactions are big enough that
they cannot be executed on a ‘‘small’’ core, and they can be
executed on a large one.

There are several ways to ensure transactions execution on
a ‘‘big’’ core. A trivial way is to run one thread of the program
on a ‘‘big’’ core and make all its transactions execute faster
than if the thread were executed on a slower core. This is

easy to implement and speeds up all transactions in a single
thread and those transactions maybe will not be in conflict
with other execution. In this way it becomes unlikely to have
a scenario like the one presented in Figure 1. Some transac-
tions may already have small probability of conflict (short
transactions or those with a small data set), so acceleration of
such transactions will not bring any benefits. This solution is
static because it does not allow reduction of conflicts between
transactions within the threads that are executed on slower
cores.

Another solution is that the operating system controls
whether a transaction should be executed on a ‘‘big’’ core.
One simple approach is to have the operating system spread
the threads across the available cores, so that the thread with
the maximal prediction of conflicts executes on a ‘‘big’’ core.
For such an approach it is necessary to define an algorithm to
predict which thread will have the most conflicts transactions
and implement it in the operating system scheduler. In order
for the software to perform that prediction, it is necessary to
provide access to the information on executed transactions
(both successfully executed and canceled). In most com-
mercially available transactional memory implementations,
e.g., [31], it is only possible to retrieve information about
the successful execution of the transaction and the reason
for cancellation in case of failure. For some other informa-
tion type it is necessary to expand the instruction set of the
processor. A potential problem with this approach is that
a transaction migration can be carried out in a relatively
distinct moments in time, but between these moments a large
number of transactions can be executed (those that should
be executed on a ‘‘big’’ core and those that should not).
Such a solution would be suitable for those programs that
have execution phases in which transactions of one thread
have frequent conflicts with transactions from other threads.
Another problem that can occur is the frequent change of
the core on which the thread is executed. This can lead to a
‘‘cold start’’ problem, where a thread which starts running on
another core does not have data in the cache that it needs. This
will cause a lot of cache misses that can significantly slow
down thread execution. A more complex approach would be
that at the beginning of each transaction the software decides
whether the transaction should be executed on a ‘‘big’’ core.
If it should, hardware performs the transaction migration to
the ‘‘big’’ core. This approach requires further change in the
instruction set, namely, to add appropriate instructions which
start the transaction withmigration requirement. Execution of
the prediction algorithm by the operating system can compro-
mise execution performance if it happens to be on a critical
path.

The third way is to implement an algorithm in the hard-
ware in order to predict whether the transaction should be
migrated to a ‘‘big’’ core. Since the transaction is a clearly
defined so that it begins with an instruction to start the
transaction and ends with either an instruction to end the
transaction or a transaction cancellation, the hardware can
easily detect at which point execution needs to be migrated

VOLUME 9, 2021 69349

Z. Sustran, J. Protic: Migration in HTM on Asymmetric Multiprocessor

from one core to another and it is not necessary to change
the instruction set and the software. It is necessary to keep
records of transactions so that the algorithm can determine
whether a transaction should be migrated to a ‘‘big’’ core.
All the information can be accessed by the algorithm without
the need to change the instruction set. Since the algorithm
is implemented in hardware, its execution can be done in
parallel with the program execution. This execution of the
algorithm will not affect the performance of the program
execution. Since the algorithm is implemented in hardware,
it must be simple enough for technical implementation, con-
sidering its complexity and consequently the necessary space
on the chip. Software solutions are in advantage because
they can implement significantly more complex algorithms.
Another advantage of software solution is that algorithms can
be significantly configurable, to become fine-tuned for each
type of program, while configurability of hardware solutions
can be reduced to the change of some integer parameters.
It has been considered in the paper that the most serious
problems in the new solution application refer to changing the
instruction set and performing the necessarily severe changes
of the already existing programs, which may slow down the
penetration of some techniques into commercial products.
For that reason, a hardware solution that can be minimally
configured has been considered in this paper.

Both the hardware and software solutionwith themigration
of threads on level of individual transactions suffer from
the same problem, which can make such solutions unusable.
In thread migration, we need to stop the pipeline processing
on the core, pack the context of a thread, copy the context to
another core, and run the pipeline processing on that core.
If on that other core some other thread was executed in
another address space, some parts of the cache must be invali-
dated, as well as buffers for virtual memorymapping, etc. The
entire process of that change can take several million cycles at
the worst case scenario [35]. That time is too long for frequent
migration to be beneficial, so any solution that uses migration
of threads often would not improve performance of the execu-
tion. However, the characteristics of transactions are such that
some things that would make the time of migration long are
prohibited in HTMs. For example, the whole context does not
have to be copied, but only the part that is saved on starting
the transaction. Migration will only be performed if on a
‘‘big’’ core the thread was previously performed in the same
address space as the thread the transaction of which should be
migrated. In this way, themigration can be achieved in several
orders of magnitude less time, which allows implementation
of a solution that will improve execution performance.

Context transfer during migration can be carried out in two
ways. The first way is to keep the whole context on the thread
stack and to pass only the address of the next instruction
and the address of the top of the stack to the target core
on the occasion of migration. Then, on the target core the
entire thread context should be taken from the stack before
the execution of the transaction begins. The same procedure
occurs when returning execution to the original core if the

transaction was successful. In this way, the context transfer is
done through a cache coherence protocol. Another way is to
pass the entire context along with the transaction migration
message. A mechanism for preserving the current content of
architectural registers can be used in this case [36], which also
exists due to the implementation of transactional memory.
This content needs to be sent with the proper messages to the
other core which should continue execution. From the point
of view of performance and complexity of implementation,
there is no obvious advantage of one or another solution. It is
necessary to investigate which solution is more suitable for
each microarchitecture. In case of unsuccessful migration of
the transaction, both solutions can use the already existing
transactional memory storage mechanism and do not need to
restore the context at the original core.

An important design decision is what a ‘‘big’’ core would
do until it executes the migrated transaction. The simplest
solution is to do nothing. In this way, as soon as a request for
execution of migrated transactions occurs, it can be accepted.
Another approach is that a ‘‘big’’ core executes the pro-
gram thread like the other cores. When a request to execute
a migrated transaction arrives, it should stop executing its
thread in order to execute the migrated transaction. Correct-
ness of execution must be preserved, so the pausing of the
thread must be performed outside of any transaction. This
approach increases the potential for parallelism but slows
down the migration itself. Nevertheless, it is not possible to
claim in advance which approach is the better one. In the
following chapters, both approaches will be analyzed.

III. M-HTM DESIGN
The algorithm for transaction migration, which we call
M-HTM, is fully implemented in hardware. There is no need
to change the application code in any way for its proper work-
ing. It is assumed that the processor supports transactional
memory and has explicit instructions for starting and ending
the transaction. For all other details the specific implemen-
tation of the transactional memory is not crucial, and the
algorithm can be adapted to the implementation details of
the transactional memory (in most cases there is no need to
change anything). The multiprocessor must be asymmetric.
All cores have the same instruction set and are asymmetric in
terms of microarchitectural properties.

The proposed algorithm is designed for such a set of cores
that if there are N cores, N − 1 cores are identical and
considered ‘‘small’’ cores, while the N-th core has different
microarchitectural properties and considered a ‘‘big’’ core.
The existence of more than one ‘‘big’’ core is possible. The
proposed algorithm can be modified in order to support pro-
cessor architectures with multiple ‘‘big’’ cores, but it goes
beyond this research and may be the topic of future work.

A. ALGORITHM
Based on the transaction execution history the algorithm
decides whether this particular transaction should migrate to
a ‘‘big’’ core. Moreover, for each transaction, records are

69350 VOLUME 9, 2021

Z. Sustran, J. Protic: Migration in HTM on Asymmetric Multiprocessor

FIGURE 2. Actions in particular cases.

kept referring to its success, the failure type and the trans-
action size as well. Information about success and failure
type are kept separately for execution on the ‘‘small’’ and the
‘‘big’’ core. Records of success keep track of the information
whether the transaction has been completed successfully in
the earlier few executions or it was canceled. Records of fail-
ures keep track of whether the transaction has been aborted
in the earlier few failures because there was a conflict with
another transaction or because of a capacity overflow. The
transaction size records keep track of whether the transac-
tion is long enough to justify the migration. The dynamic
transaction length, expressed in the number of instructions,
must be made available to the algorithm. In order to keep
that record each core, while executing a transaction, counts
each executed instruction. The counter is reset when the
transaction starts. The counter value is passed to the algo-
rithm after the transaction is completed. Dynamic transaction
length can vary significantly, due to the dynamics of program
execution or because the transaction is aborted by conflict at
any time. The algorithm, therefore, determines whether the
transaction lasts long enough for migration based on several
earlier executions.

The current state of the history is determined based on data
in the records. It can be determined whether the transaction
should be migrated or not, based on the current state of

history. Figure 2 shows which actions are required depending
on the state of history for an individual transaction. If the
transaction successfully executes on the ‘‘small’’ core, there
is no need for migration, because no conflicts occur, so there
is no need to reduce the likelihood of their occurrence. Also,
there is no need to migrate the transaction in the case that the
transaction does not execute on the ‘‘big’’ core due to capacity
overflow. In that case, the best solution is to continue with the
execution using locking mechanism, because the transaction
cannot be executed on any core of that multiprocessor. The
transaction should bemigrated in the case when it can execute
successfully on the ‘‘big’’ core and does not execute on the
‘‘small’’ core, whatever the reason may be. In the case the
transaction cannot be performed on a ‘‘small’’ core due to
capacity overflow, it is desirable migrate it to a ‘‘big’’ core,
if there is a chance that it can be successfully executed on it.

If the transaction was canceled while executing on both
the ‘‘small’’ and ‘‘big’’ cores, the state history does not help
to determine whether a transaction should be migrated (state
with the ‘‘?’’ on the Figure 2). In that case, there is elevated
level of parallelism and it causes frequent conflicts between
transactions. Such an execution phase must eventually end
with the execution using locking mechanism, that will pro-
vide the necessary serialization and reduce parallelism. In that
case, it is better to avoid wasting time on the transaction
migration by ensuring the transfer to the execution utilizing
the locking mechanism on the ‘‘small’’ cores. The duration of
such a state is not easily predictable. While such a situation
lasts, the migration of the transaction is periodically allowed
with the aim of reacting to the change as soon as possible.
If the migration is successful, transition is made to a state in
which the transaction is successfully executed on the ‘‘big’’
core and the transaction is not migrated further.

The overall algorithm pseudo code is presented in List-
ing 1. Algorithm time complexity is constant since it does not
require any looping through elements. The spatial complexity
is also constant since the algorithm requires five counters and
four flip-flops to maintain state. Several adders and compara-
tors are required to implement the algorithm. Since width of
operands is expected to be small (four in our experiments),
circuit critical path is expected to be low and the algorithm
can execute at most in two clock cycles on high frequency
rate in modern processors.

The number of transactions that can be migrated depends
on the configuration of the ‘‘big’’ core. That number is equal
to the number of threads that the core can execute in parallel.
If the number of ‘‘small’’ cores that need to migrate their
executions is greater than the maximum number of migrated
threads, it is possible to cancel migration or wait for some
of the migrated threads to finish. It is preferable to wait
if the expected waiting time is shorter than the time that
would be spent on useless cancelations and repeated execu-
tions of a transaction. The total number of transactions that
have been migrated and are awaiting migration should be
less than the number of ‘‘small’’ cores, because otherwise
complete serialization of transactions could occur, which can

VOLUME 9, 2021 69351

Z. Sustran, J. Protic: Migration in HTM on Asymmetric Multiprocessor

LISTING 1. Algorithm which decides whether to migrate transaction,
based on history of execution.

significantly reduce program execution performance. In our
algorithm, it is ensured that a small number of transactions
can be on hold (number can be configurable on application
basis, but limited with the size of the waiting queue in ‘‘big’’
core), so the chance for migration is provided, while the
parallelism is not significantly reduced. If the ‘‘small’’ core
tries to migrate the transaction, and there is not enough space
to wait, the ‘‘small’’ core gives up the migration and tries
to execute the transaction. It should be noticed that due to

this limitation, the state in which the transaction should be
migrated to the ‘‘big’’ core is not permanent, since it is
possible to attempt to execute a transaction on a ‘‘small’’
core. If these attempts are often successful, it is possible to go
to the state in which transactions on a ‘‘small’’ core execute
successfully and the algorithm can block the migration of that
transaction.

In the case when there is no history of the transaction
execution (for example, the transaction is executed for the
first time), it is assumed that the transaction can be suc-
cessfully executed on both core types, just like in the case
that there was no cancellation of the transaction. It is a state
of history in which there is no migration, so the preference
is given to the execution of transactions on ‘‘small’’ cores.
Each time a transaction finishes its execution successfully,
the record of execution on the ‘‘big’’ core is invalidated,
as well as record of the failure type (i.e. the state is like the
transaction was never executed on the ‘‘big’’ core). In this
way, a non-intuitive transition between states is blocked. One
example is that a transaction in some executions was too long,
so it caused capacity overflow. After some time, the length of
the transaction is reduced, so it begins to execute successfully
on ‘‘small’’ cores. If the transaction starts unsuccessful exe-
cutions caused by the conflict, it may happen that the state of
history is such that the transaction does not migrate because
it has been unsuccessfully executed a long time ago on the
‘‘big’’ core due to capacity overflows.

Note that the state of history is determined based on global
information about the transaction, i.e. information about the
transaction that was executed on any core is used. The
transactions that execute over the same piece of code are
considered identical. In addition to global information the
‘‘small’’ core also considers local information. If the earlier
execution of the transaction on that core was successful, then
the next time it is executed without migrating. Also, if the
‘‘small’’ core migrated the transaction to the ‘‘big’’ core and
it was canceled there, the ‘‘small’’ core next time executes
that transaction without migrating. In this way, the immediate
local history takes precedence in relation to the global history.
Therefore, we avoid a large number of migrations, those with
a small chance to be useful.

B. IMPLEMENTATION
For the algorithm to work properly, it is necessary to collect
information about the executed transactions that should be
stored by hardware. Figure 3 shows an asymmetric multi-
processor with added information units designed to keep data
about transactions. The storage for information about transac-
tions is centralized, and one possible place for its placement is
the small memory inside the ‘‘big’’ core. This small memory
will be called the central register (CR).Whenever the ‘‘small’’
core executes a transaction it sends information about that
transaction to the ‘‘big’’ core, which updates the state of the
CR. The ‘‘small’’ core should check the CR before starting
the transaction, in order to find out whether the transaction
history is such that the migration should be performed and in

69352 VOLUME 9, 2021

Z. Sustran, J. Protic: Migration in HTM on Asymmetric Multiprocessor

FIGURE 3. Asymmetric multiprocessor with additional units.

that case it send a request to the ‘‘big’’ core for transaction
migration. The ‘‘small’’ core starts the transaction execution
in case when the transaction history has signaled that the
transaction should not be migrated, otherwise the transac-
tion migrates to the ‘‘big’’ core. All communication between
the cores occurs through the existing lines for cache data
exchange.

Sending a message to the ‘‘big’’ core when starting each
transaction and waiting for a response, can significantly
compromise execution performance because it is performed
before starting any transaction, even those that do not need
migration. For that reason, it makes sense to add a small
memory to the ‘‘small’’ core, which will store the most up-
to-date information on transactions that have recently been
executed on a ‘‘small’’ core. We call this small memory the
cache register ($R). The $R stores only a unique identifier
of the transactions, information showing whether that trans-
action should be migrated and one bit indicating whether
the migration should be blocked locally, as presented in the
Figure 3. The unique transaction identifier can be the address
of the first instruction of that transaction.

Figure 4a) shows the messages sent and actions that take
place in order to migrate transaction from a ‘‘small’’ core to
the ‘‘big’’ core. Two cases are presented. One when there is
no information about a transaction in the $R. Other is when

such information is present, and transaction is successfully
migrated.

Just before the start of a transaction, a ‘‘small’’ core
requests status (TSRS) from the $R. If the status is not present
in the $R, the $R will send request status message (TRS) to
the CR. The ‘‘small’’ core will not wait for an answer, but it
will start executing the transaction instead. If the status (TS)
arrives later, the status will be saved in the $R, so that the next
time when the ‘‘small’’ core needs to start this transaction,
it will read the information from the $R in order to determine
whether the transaction should be migrated or not. Reading
status (TSS) from the $R can be performed in a single clock
cycle, because the $R is a small memory, so checking the
information about the transaction will not cause the signif-
icant slowdown. The ‘‘small’’ core requests this information
from the $R on execution of the instruction which starts the
transaction.

If migration is needed, the instruction that starts the trans-
action is not executed and the transaction ismigrated. Nomat-
ter if the transaction is migrated or not, the correctness of
the program execution is preserved, because the transaction
execution on any core has the same effects on data values
in the memory, and consequently on the program execution
effects. For this reason, executing a transaction on a ‘‘small’’
core until it is determined whether the transaction should

VOLUME 9, 2021 69353

Z. Sustran, J. Protic: Migration in HTM on Asymmetric Multiprocessor

FIGURE 4. Exchange of messages between the ‘‘big’’ core and a ‘‘small’’ core.

be migrated can only affect the execution performance.
The existing multiprocessors have communication networks
between cores that support this way of exchanging messages
and sending context. One example of such architecture is Sun
Niagara-1 [37], where cores send and receive data from a
shared coprocessor for floating point arithmetic.

The ‘‘small’’ core sends a migration request mes-
sage (MGREQ) when it needs to migrate a transaction. The
MGREQ is sent to the migration buffer (MB) in the ‘‘big’’
core. TheMB is used for storing a context of transactions that
are waiting to be executed on the ‘‘big’’ core. Therefore, if the
‘‘big’’ core is busy, the transaction will wait for migration
provided there is enough space in the MB. The MB responds
with a migration response message (MGRSP), which may
be positive or negative. If it is positive, the ‘‘small’’ core
sends the context of execution to the MB via a migration
data message (MGDAT). TheMB stores the received context.
When the ‘‘big’’ core becomes free, it takes the first received
context from the MB buffer and starts executing the trans-
action. If there is no space in the MB buffer, the ‘‘small’’
core receives a negative response and just starts to execute
the transaction. Waiting for an answer obviously results in
a certain slowdown, but it is inevitable due to limited size
of MB buffer. When the ‘‘big’’ core finishes executing the
migrated transaction, it sends a MGDAT message to the
‘‘small’’ core, if the execution was successful. If the execu-
tion was not successful, the ‘‘big’’ core sends the negative
MGRSP and nothing more, because the small core already
has the memorized context. When executing the transaction
start instruction, the context is saved, so it can be used in the
case of transaction cancellation and restart. That context is
preserved, although there was migration of the transaction.
Figure 4a) shows how cores exchange messages.

Both types of core count instructions during the execution
of transactions.When the core reaches the instruction that fin-
ishes the transaction (either successful completion or cancel-
lation of the transaction), the core sends an endmessage (TEI)
to the CR, containing information about the success of the
transaction, the reason for the completion and its length. The
answer to this message is not required, so the core can con-
tinue to execute the following instructions. Therefore, the TEI
message does not slow down the operation of the core. At the
moment of completion, the ‘‘small’’ core sets the bit for local
blocking of the transaction. If the transaction was successful,
it sets that bit to active value, otherwise to inactive value.
If the bit has the active value, the transaction is not migrated,
no matter what the global history of the transaction is.

The decision about the migration is made in the CR. After
receiving a TEI message, the CR updates the records and
determines whether the transaction should be migrated based
on it. The Figure 4b) presents the messages exchanged at that
moment. Since the information about migration is also stored
in $Rs, it is possible that ‘‘small’’ cores do not have up to date
information. Outdated information does not affect the correct
execution of the program, but it affects the execution per-
formance. In order to provide up-to-date information, when
changing that information, the ‘‘big’’ core sends the message
TS to all $R, to notify them about the latest change. Those
‘‘small’’ cores that have information about that transaction
in their cache register will write the new information. Other
cores ignore the message. This way of delivering the latest
information may require high bandwidth of communication
lines, which is already available in commercial multiproces-
sors for a long time [38]–[40].

It is necessary to keep records of success, reasons for
cancellation and the length of the transaction for the most

69354 VOLUME 9, 2021

Z. Sustran, J. Protic: Migration in HTM on Asymmetric Multiprocessor

TABLE 1. Configuration of simulated multiprocessors.

recent events. Records management is implemented in the
same way for all data. Since changes in the state history result
in broadcasting messages to all cores, records management
should be implemented in such a way to prevent the change
in the state of history at each event. One way to do so is
to provide hysteresis when determining the state of history,
which can be achieved using one counter for each data item.
The counters are limited to a minimum and maximum values.
When the counter value is maximum, the counter no longer
responds to events which increment its value, and when the
value is minimal, the counter no longer reacts to events that
decrement its value.

The state of the history changes only when the counter
reaches a minimum or maximum value. Let us assume that
the transaction success counter has a range of 4, the current
value is minimal, and the state of history determines that
the transaction is not executed successfully. One sequence
of events that would lead to a change in the state of
history would be: the transaction is executed twice suc-
cessfully, then once unsuccessfully and then three times
successfully.

The range of the counter can be configurable, so that
the proper value is set before executing each application.
However, in our solution, we assumed the same fixed value
for all counters, because the variable range would require
complex analysis of applications, which is out of scope of this
research.

The proposed implementation does not require excessive
chip space. The CR and a $R can have information about a
limited number of transactions. If there is no registry space,
the replacements are made by an approximation of the algo-
rithm called least recently used (LRU). Some of the entries in
the registry can be empty, so it is necessary for each entry
to keep one bit showing whether it is valid or not. If the
CR has 32 inputs, and the $R for each ‘‘small’’ core has
8 inputs, the required space is less than 3KB, for a multi-
processor with 32 cores. One entry in the migration buffer
MB has a thread context consisting of 32 eight-byte registers,

transaction address, and core number, which is about 0.25KB.
In our implementation, we set the number of inputs to theMB
buffer to 4, so the required space is about 1KB. Overall, only
around 4KB of memory must be added to the processor.

IV. EXPERIMENTAL ANALYSIS
The evaluation of the proposed solution was performed by
simulating the execution of existing representative applica-
tions which are used to evaluate transactional memory. In this
chapter we describe the implementation of the simulator, its
settings, and the test applications that were used. The results
are also presented and discussed.

A. EXPERIMENTAL SETTINGS
The simulation was performed using a significantly upgraded
Gem5 simulator [41]. That simulator has been selected due
to its open code which can be further modified. An impor-
tant fact about the selected simulator is that its development
is supported, and it is used for architectural evaluation by
one of the leading processor architecture design companies.
Simulation of the processor, memory and communications
was performed at the level of processor cycles. Simulation
of each test application is performed in isolation, i.e. only
that application is executed in the system, from the beginning
until the end. All test application threads have their own
core for execution, so they cannot be interrupted and there
is no thread scheduling. Table 1 shows the characteristics
of the ‘‘big’’ and ‘‘small’’ cores, as well as the existing
network between them. Both cores are assumed to run on
the same frequency, although this is not the case in real
implementations.

Usually, the ‘‘big’’ core operates on the higher frequency,
which speeds up the execution of the transaction. However,
it was found that the simulations with cores operating at dif-
ferent frequencies, have shown that a ‘‘big’’ core works much
better than the slower one, compared to the results obtained in
real implementations [42]. Therefore, we have taken a more
restrictive approach in our simulations, assuming that both

VOLUME 9, 2021 69355

Z. Sustran, J. Protic: Migration in HTM on Asymmetric Multiprocessor

cores operate on the same frequency. The first and the second
level caches are private for each core, while the third level
cache is shared by all cores.

The ‘‘small’’ core model is based on an Intel Pentium pro-
cessor [43] which has about 3.3million transistors. The ‘‘big’’
core is modeled after the Intel Pentium-M core, which has
about 14 million transistors [44]. In our analysis, the ‘‘big’’
core does not support multithreaded execution, so its imple-
mentation requires fewer transistors. Considering that this
assumption is more restrictive for our solution, we will
assume that the ‘‘big’’ core is four times larger than the
‘‘small’’ core. In the rest of our analysis we will express
the chip size in the number of ‘‘small’’ cores. We will ana-
lyze five different multiprocessor configurations: symmet-
ric multiprocessor (SMP) with ‘‘small’’ cores, asymmetric
multiprocessor (AMP) with one ‘‘big’’ core and multiple
‘‘small’’ cores, AMP with migration algorithm (MAMP),
AMP with migration algorithm and thread execution on the
‘‘big’’ core (MTAMP) and symmetric multiprocessor with
migration algorithm (FAMP). The characteristics of each
configuration are presented in Table 1. The sizes of all con-
figurations vary from 5 to 36 ‘‘small’’ cores, using the step 4.
We start from 5 to provide that each configuration has at least
two cores and we end at 36, so that each configuration could
execute at least 32 threads.

For simulation analysis, the simulator has been upgraded
to support transactional memory, hardware thread migration
and all parts of the proposed solution. Transactional memory
is implemented so that the records of data accessed in the
transaction are kept in the first level cache memory. Conflict
detection between transactions is performed using a modi-
fied MESI cache coherence protocol [45]. The modification
includes new messages that have information on speculative
reads and writes during the transaction. The address of data
accessed speculatively by another transaction is compared
to the set of data addresses speculatively accessed by the
current transaction with the aim of determining whether the
conflict has occurred. Records of data in the set are kept
using a Bloom filter [25] in order to reduce the necessary
hardware for its implementation and to improve the efficiency
of these sets. However, it should be noticed that false conflicts
could arise that would cause unnecessary cancellation of the
transaction.

As soon as a conflict is detected, one of the transactions is
canceled and restarted. Cancelation is done by invalidating all
entries that contained speculativelymodified data in the cache
memory of the processor which executed the transaction and
restoring the processor context to the one that was saved
when entering the transaction. The application starts and ends
the transaction using transactional memory instructions of
the IA-32 architecture [31]. This instruction set is selected
to enable compiling test applications more easily, using the
existing compilers. Transaction migration is done by using
data packets sent from one core to another via communica-
tion lines that serve for cache coherence messages transfer.
The simulation correctly reflects packet transfer because the

buffers and transport lines have size limits, so depending on
the amount of messages in the system it can suffer from
congestion and the transfer slowdown, which also happens
in real systems. The assumed topology is Gem5’s default
crossbar topology, where each hop has two cycle latency
(see Table 1). The context that has to be transferred from
one core to another is reduced to the minimal size, neces-
sary to execute a transaction. Having in mind that the set
of instructions which can be executed in the transaction is
limited, only the basic architectural registers available to the
user application have to be transmitted. During migration, the
core stops completely, the pipeline is completely flushed, and
then the context is saved and sent to another core. Therefore,
the migration is a slow operation that, in the case of frequent
use, can significantly degrade the system performance. All
messages needed for the realization of this solution are imple-
mented using cache coherence packets. Since the directory
and cache memory for storing data when transactions need
to migrate are associative structures of a small size (the
maximum of 32 inputs) they are implemented with a latency
of one clock period.

The set of applications selected for this analysis is
STAMP [46], because it is a set of applications which has
been often used in transactional memory research. Among
the existing applications, the ssca2 application was not used
in our analysis, because the probability of conflict between
transactions is small, so none of the transaction will be
selected for migration. Therefore, there is no potential for
performance improvement of this application by the proposed
solution. The Kmeans application shows similar character-
istics, so it is the representative example of the behavior
of the proposed solution in the applications with the small
probability of conflicts.

The synchronization level in individual tests has not been
changed and the tests were used in their original form. How-
ever, transaction’s locking fallback path is not defined in the
original form, so it had to be implemented. The selected solu-
tion is that each transaction is repeated for a limited number
of times (the limit is the same for all applications). If the
maximum number of repetitions is reached, we switch to the
synchronization using a global lock [47] in order to guaran-
tee the progress in execution. If the transaction fails due to
capacity overflow, the maximum number of repetitions is cut
in half. The algorithm used is one of the algorithms described
in [48], which provides satisfactory results for almost all
applications. Before starting the transaction, each thread will
wait for some pseudorandom time, which is generated from a
range that grows exponentially with the number of repetitions
of that particular transaction. In this way, we try to avoid
repetition of scenarios leading to the conflict and transaction
cancellation.

Data sets which were used vary in size and they were
defined according to the data sets proposed for simulation
in [46]. The Kmeans and Vacation applications have two ver-
sions, one being with less frequent conflicts, while the other
being with more frequent conflicts between transactions.

69356 VOLUME 9, 2021

Z. Sustran, J. Protic: Migration in HTM on Asymmetric Multiprocessor

FIGURE 5. Speedup comparison to the system with one ‘‘small’’ core.

In the analysis of the proposed solution we have selected the
version with more frequent conflicts because they are more
difficult to parallelize. The parameters used for each of the
applications are given in Table 2.

B. SIMULATION RESULTS
Figure 5 shows the acceleration achieved by all configura-
tions relative to execution on a single ‘‘small’’ core for all
applications. Measurements were performed only for parallel

VOLUME 9, 2021 69357

Z. Sustran, J. Protic: Migration in HTM on Asymmetric Multiprocessor

FIGURE 6. Percentage of successfully executed transactions.

parts of applications, because the acceleration of the serial
part of the application on an asymmetric multiprocessor has
already been discussed in [49]–[51]. The same procedures
can be applied in this solution. Figure 6 shows the success

rate of transactions achieved for all configurations and all
applications. The applications were executed with the maxi-
mum number of threads allowed for a specific multiprocessor
configuration and its size (see Table 1 as a reminder).

69358 VOLUME 9, 2021

Z. Sustran, J. Protic: Migration in HTM on Asymmetric Multiprocessor

TABLE 2. Parameters for starting STAMP applications.

TABLE 3. MAMP migration success rate.

Performance slopes for the SMP configurations show that
performance grows linearly for the Kmeans and Vacation
applications, sub linearly for the Genome and Intruder appli-
cations, while it does not scale well with the increase of paral-
lelism for the Bayes, Labyrinth and Yada applications. Those
results are consistent with the results previously obtained
by other researchers [48], who experimented on real hard-
ware with similarly sized caches and similar organization of
transactional memory, so results from our simulator does not
deviate from results that are expected on real hardware.

The Kmeans application is highly parallelizable and it has
a high rate of transaction success. The speedup grows linearly
with the core number increase. Applications of this type do
not benefit from our solution since only few transactions are
selected for migration by the algorithm. The average number
of migrated transactions and their success rates are presented
in Tables 3 and 4, for theMAMP and theMTAMP versions of
algorithm, respectively. While our solution does not reduce
performance substantially (around 2% on average), we rec-
ommend turning off migration and allowing one thread to
execute on the ‘‘big’’ core since the AMP configuration gives
the best result.

The Vacation application is also highly parallelizable as
the Kmeans but the number of aborts is high. In this case the
number of the aborts does not throttle performance, no matter
that the percentage of migration failure is high.

The Yada, Bayes and Labyrinth application have very long
transactions with huge read and write sets. This causes low
transaction success rate in the existing commercially avail-
able HTM solutions due to capacity overflow and high con-
tention. There are no speedup gains with the increase of the
number of cores. We consider those applications not suitable
for running on HTM since the possible improvement from
any solution if hardware is limited by current development
of manufacturing technology. For all applications there is a
considerable rate of transaction migrations by our algorithms,

TABLE 4. MTAMP migration success rate.

but the success rate is low, and the ‘‘big’’ core does not reduce
transaction execution time enough to lower contention.

The Genome and Intruder applications are not as highly
parallelizable as in the case of the Kmeans. However, both
applications exhibit higher number of aborts when thread
number is increased. These kinds of applications are suitable
for our migration algorithms. In Tables 3 and 4 we can see
that fairly small percentage of transactions has migrated, but
the success rate is high thereby reducing the number of aborts
and ultimately increasing the overall performance. The unex-
pected result is that for the Genome applications better results
are accomplished by using the MAMP algorithm, and for the
Intruder application by using the MTMAP. The discussion
of such a result will be further analyzed in the subsequent
section. For the Genome application the configurations AMP
and MTAMP with the area of twenty cores has unexpectedly
low acceleration. We discard these results due to the unfor-
tunate schedule of the transactions, which is produced by the
nature of simulation, i.e., there is no randomness as is the case
in a real system.

The FAMP configuration is not intended for implemen-
tation on real hardware but for use in simulation, in order
to test the proposed algorithm for migration. The idea is to
have configurations comprising only ‘‘small’’ cores, while
one ‘‘small’’ core in one configuration takes a role of the
‘‘big’’ core in the MAMP configuration, where transactions
migrate by means of the algorithm. In this way, different
transaction schedules are modeled due to migration, while the
transaction execution time remains unmodified. We want to
check if the different transaction schedule is the only source
of the performance improvement, because if that is the case
our solution is overkill, since different transaction schedules
can be achieved with much less effort. As the results shows
the FAMP configurations have worst performance on average
of all types of configurations and that shows that performance
improvement in some applications is due to execution of the
migrated thread on the ‘‘big’’ core.

C. DISCUSSION
We should emphasize again the previously mentioned fact
that the simulated ‘‘big’’ core does not support multithreaded
execution. The current state of the technology allows imple-
mentations in which the ‘‘big’’ core uses the support for mul-
tithreaded execution and the most common implementations

VOLUME 9, 2021 69359

Z. Sustran, J. Protic: Migration in HTM on Asymmetric Multiprocessor

FIGURE 7. STAMP Genome transactions execution on processor with area of 16.

provide support for two threads. In the systems using this kind
of a configuration, the ‘‘big’’ corewould display the increased
parallelism, overcoming the problems of some applications
caused by the low level of parallelism. That solution would
bring the possibility to accelerate more transactions in the
application phases that suffer from many conflicts between
transactions. It has also been noticed that some transaction
migrations turned out to be useless, since they have been
interrupted due to conflicts. In order to prevent wasting time
on migration, it is possible to make such a ‘‘big’’ core the
transactions of which have priority over the transactions on
‘‘small’’ cores, so that the conflict is resolved by canceling
transactions on the ‘‘small’’ core. Generally, it is expected
that a solution with complex conflict resolution would be
significantly more difficult to verify [52], but in this case it
should only delay the response to those messages that would
eventually cause transactions cancelation. All these elements
of the solution should be examined in detail in the future

since they could contribute to significant improvements of the
proposed solution.

To further investigate why different algorithm made bet-
ter results on the Genome and the Intruder applications
we present the visualization of their execution in the Fig-
ures 7 and 8. In these figures, we show for each core what is
executed over time (non-transactional execution, successful
or unsuccessful transaction execution, failback to locks, and
idle). Those two different applications differ in number of dis-
tinct phases of executions. The Intruder application has only
one phase, while the Genome has three phases. Each phase of
the Genome can start when all threads finish with the earlier
phase. The ‘‘big’’ core in the Genome executes much longer
migrations than the Intruder scaled to the overall execution
time. The thread on the ‘‘big’’ core in the Genome is being
delayed due to servicing migration request from other cores.
This delay is causing other threads to start executing the next
phase later and, consequently, to reduce the performance of

69360 VOLUME 9, 2021

Z. Sustran, J. Protic: Migration in HTM on Asymmetric Multiprocessor

FIGURE 8. STAMP Intruder transactions execution on processor with area of 12.

thewhole application. This problem happens only in our fixed
setting since only one specific thread is executed on the ‘‘big’’
core and that thread is being constantly delayed. To alleviate
this problem, we can schedule another thread to execute on
the ‘‘big’’ core.

In our experiments, we have analyzed only single pro-
grammed workloads. Our solution can also work in multi-
programmed workloads with small modifications. The most
important change is to make ‘‘small’’ cores aware of the given
process running on the ‘‘big’’ core. The ‘‘small’’ core then
needs to skipmigration if the process is different from its own.
In this way, only one process can benefit from migration, but
then migration cost is low since there is no need to change
address space on the ‘‘big’’ core. The OS scheduler can then
decide which process is more critical and schedule one of
its threads to the ‘‘big’’ core. Other necessary changes are
related to tracking which transaction belongs to which pro-
cess (for example by concatenating process id with transac-
tion address in the $R and the CR), to fine-tune the $R and the
CR sizes, etc.

We have performed experiments only for the crossbar net-
work topology. Different topologies should be examined in
the future with longer communication latencies from core to
core.

From the experiments we conclude that our algorithm
MTAMP (with the modification of scheduling from time to
time different thread on the ‘‘big’’ core) can improve perfor-
mance for applications that are not highly parallelizable or
completely unparallelizable under the available HTM imple-
mentation on the Single-ISA multicore processor. For those
applications where our algorithm is not suitable, we recom-
mend that the migration algorithm should be turned off. The
improvement our algorithm achieves for suitable applications
is up to 14% (10% on average) in turnaround time compared
to the solutions which do not take advantage of asymmetry
for scheduling transactions.

V. RELATED WORK
There is a huge amount of research on Single-ISA asymmet-
ric multicore processors and transactional memory. However,

VOLUME 9, 2021 69361

Z. Sustran, J. Protic: Migration in HTM on Asymmetric Multiprocessor

to the best of our knowledge, there is no research that prac-
tically examines running an application on an asymmetric
processor with transactional memory support, so we will
discuss previous work separately for asymmetric processors
and for transactional memory.

A. SINGLE-ISA ASYMMETRIC MULTICORE
A large body of work on Single-ISA asymmetric multicore
processors is categorized and described in the extensive sur-
vey [1]. The main benefits of using existing solutions are
performance gain and energy consumption reduction. Energy
consumption analysis is out of the scope of this paper, so we
will not discuss solutions the sole purpose of which is to
reduce energy consumption. Performance can be improved
by migrating work to the right core.

The migration on a fine-grained level is examined
in [2], [4]–[6], where it is proposed that bottlenecks that
cause other threads to stall should be transferred to a ‘‘big’’
core. Those bottlenecks are executions in critical sections or
in the lagging threads, which prevent other threads to pass
through a barrier. The number of threads which are waiting
on critical section executed by another thread is computed
by using counters. The lagging thread is determined by the
number of threads executing or by estimating the remaining
running execution time of the thread by tracking the historical
value and current execution time. In [5] authors argue that
migration is justifiable only when that part of the thread is
on a critical path and they propose metric for determining a
measure of criticality. Our work is similar since we migrate
on a fine-grain level but it differs from earlier work since the
authors have not examined transactions as bottlenecks. The
hardware technique we use is similar to those solutions, but it
is adapted for transactional memory. Optimization techniques
used in those solutions, like ‘‘Data Marshaling’’ proposed
in [53] used for predictively transferring data from one core
to another during migration to reduce the number of cache’s
misses, can be used to complement our solution or any other
cache optimization [54].

The migration on a coarse-grained level is examined in
previous research, where it is proposed that the whole threads
should be migrated to the right core, mostly using OS sched-
uler. With the inclusion of fairness consideration the per-
formance of multiprogram workload can also be improved
by utilizing software. In [9], [10] scheduling is based on
speedup that is expected on a ‘‘big’’ core. If some applica-
tions are lagging, their threads are swapped to a ‘‘big’’ core.
The scheduling in [7], [8] is done by modeling performance
estimates using machine learning, i.e., linear regression on
the values of performance counters. The machine learning
is frequently used to achieve better performance in systems
with transactional memory [55]. The focus in [11]–[13] is on
the fairness of scheduling. Formulas for calculating fairness
based on time or execution progress on each type of core are
presented. When some thread has the lower value than other
threads it is scheduled to the other type of core. In [11], [12]
authors suggest that scheduling can be done in hardware,

but the work lacks detailed description. We consider these
researches orthogonal to our own because these software
schedulers can be used together with our solution, especially
to solve problem of running multiprogram workload, which
we have not considered in this paper.

In addition to conventional applications, migration is
examined for task-parallel applications in the context of
asymmetric multicore processors. Task parallel application is
an application which consists of multiple tasks executed on
multiple worker threads. A task can depend on other tasks
and only when the dependent tasks are executed the task can
proceed with execution. Some existing solutions [56], [57]
schedule tasks based on criticality on big cores (by analyzing
task dependency graph) and based on computational needs
of the tasks. Other solutions [58], [59] propose work steal-
ing when some condition is met, like when the number of
executing tasks is low. Work stealing represents migrating
tasks from the small to the big cores. Our work differs in
that it proposes a performance improvement for transactional
memory-based applications.

B. TRANSACTIONAL MEMORY
The existing research on transactional memory is vast and
many of the existing solutions can be used as a base for
our solution, so we solely consider research on transaction
scheduling since it is most similar to our work. The schedul-
ing of transactions includes collecting data about transaction
conflicts and generating decision based on that data whether
to delay transaction or to execute it. Some solutions require
hardware changes to collect necessary data, while recent
solutions use only limited data provided by commercially
available processors with HTM support.

The scheduling algorithms proposed in [19]–[21] require
programming interface modifications to get precise infor-
mation about transactions (either conflicting transactions or
transactions’ access trace). Since changing programming
interface will be rare in future versions of commercially avail-
able processors with HTM support we consider our solution
to be more feasible.

Simple scheduling is proposed in [14], where contention
is monitored by keeping track of abort rate. In cases when
the abort rate exceeds a preset threshold, transactions are
being delayed. Reducing the number of transactions currently
executing in [18] is done by using auxiliary locks in a transac-
tion. This solution assumes that transaction code is built from
an already existing lock-based code and programmer-added
locks are used as auxiliary locks. In [15] when transaction
commits or aborts, data are collected which other transactions
are active. If it is a commit that means that active transactions
do not conflict and can be executed in parallel, otherwise
they should not be scheduled at the same time. Based on
the information each transaction accesses a lock which is
used as scheduling manager. Similarly, in [16], [17] the same
principle is used but instead of locks, the number of queues
is made variable, so it is increased or decreased based on
commit/abort rate. Our research can be considered similar,

69362 VOLUME 9, 2021

Z. Sustran, J. Protic: Migration in HTM on Asymmetric Multiprocessor

since we also reduce parallelism (recall several migrated
transactions can wait in queue to execute on the ‘‘big’’ core).
However, the difference is that we try to preserve parallelism
as much as possible and avoid conflicts by reducing time
window in which conflict can happen. On the other hand, our
solution can be used together with these solutions without any
modification.

VI. CONCLUSION
In this paper we have proposed and investigated a systemwith
the Single-ISA asymmetric multiprocessor which supports
hardware transactional memory. We have presented meth-
ods and techniques on which we have built the prototype
for the M-HTM system. The system performs transaction
migration using an algorithm fully implemented in hardware.
Two variants of the algorithm were proposed: MAMP and
MTAMP. The MTAMP achieved better results. Using simu-
lation, we have investigated the impact of the migrations on
the performance of the several applications from the STAMP
benchmark test suit. Our solution achieved higher perfor-
mance for the applications that are suitable for migration,
while for the other applications it achieved comparable per-
formance. The suitable applications are the ones which are
parallelizable but not to a high extent and which do not have
short transactions. We proposed and described the solution
for an architecture, which is underpowered, so we consider
our results conservative. In the system which has more ‘‘big’’
cores with simultaneous multithreading we expect that our
solution will achieve better results. We have discussed how
our algorithm could bemodified for the purpose of such a sys-
tem, but further details will be presented, and improvements
will be investigated in our future work.

REFERENCES
[1] S. Mittal, ‘‘A survey of techniques for architecting and managing asym-

metric multicore processors,’’ ACMComput. Surv., vol. 48, no. 3, pp. 1–38,
Feb. 2016, doi: 10.1145/2856125.

[2] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt, ‘‘Accelerating
critical section execution with asymmetric multi-core architectures,’’ in
Proc. 14th Int. Conf. Archit. Support Program. Lang. Oper. Syst. (ASP-
LOS), 2009, p. 253, doi: 10.1145/1508244.1508274.

[3] M. Herlihy and J. E. B. Moss, ‘‘Transactional memory,’’ ACM SIGARCH
Comput. Archit. News, vol. 21, no. 2, pp. 289–300, May 1993, doi:
10.1145/173682.165164.

[4] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, ‘‘Bottleneck identi-
fication and scheduling in multithreaded applications,’’ in Proc. 17th Int.
Conf. Archit. Support Program. Lang. Oper. Syst. (ASPLOS), Apr. 2012,
vol. 40, no. 1, p. 223, doi: 10.1145/2150976.2151001.

[5] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, ‘‘Utility-based
acceleration of multithreaded applications on asymmetric CMPs,’’ in Proc.
40th Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2013, vol. 41, no. 3,
pp. 154–165, doi: 10.1145/2485922.2485936.

[6] N. B. Lakshminarayana, J. Lee, and H. Kim, ‘‘Age based scheduling
for asymmetric multiprocessors,’’ in Proc. Conf. High Perform. Comput.
Netw., Storage Anal. (SC), 2009, p. 1, doi: 10.1145/1654059.1654085.

[7] T. Yu, R. Zhong, V. Janjic, P. Petoumenos, J. Zhai, H. Leather, and
J. Thomson, ‘‘Collaborative heterogeneity-aware OS scheduler for asym-
metric multicore processors,’’ IEEE Trans. Parallel Distrib. Syst., vol. 32,
no. 5, pp. 1224–1237, May 2021, doi: 10.1109/TPDS.2020.3045279.

[8] I. Jibaja, T. Cao, S. M. Blackburn, and K. S. McKinley, ‘‘Portable
performance on asymmetric multicore processors,’’ in Proc. Int. Symp.
Code Gener. Optim., no. 1, Feb. 2016, pp. 24–35, doi: 10.1145/
2854038.2854047.

[9] J. C. Saez, A. Pousa, F. Castro, D. Chaver, andM. Prieto-Matias, ‘‘Towards
completely fair scheduling on asymmetric single-ISA multicore proces-
sors,’’ J. Parallel Distrib. Comput., vol. 102, pp. 115–131, Apr. 2017, doi:
10.1016/j.jpdc.2016.12.011.

[10] A. Garcia-Garcia, J. C. Saez, and M. Prieto-Matias, ‘‘Contention-
aware fair scheduling for asymmetric single-ISA multicore systems,’’
IEEE Trans. Comput., vol. 67, no. 12, pp. 1703–1719, Dec. 2018, doi:
10.1109/TC.2018.2836418.

[11] C. Kim and J. Huh, ‘‘Exploring the design space of fair scheduling supports
for asymmetric multicore systems,’’ IEEE Trans. Comput., vol. 67, no. 8,
pp. 1136–1152, Aug. 2018, doi: 10.1109/TC.2018.2796077.

[12] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
‘‘Scheduling heterogeneous multi-cores through performance impact esti-
mation (PIE),’’ in Proc. 39th Annu. Int. Symp. Comput. Archit. (ISCA),
Jun. 2012, pp. 213–224.

[13] N. Markovic, D. Nemirovsky, O. Unsal, M. Valero, and A. Crista, ‘‘Thread
lock section-aware scheduling on asymmetric single-ISA multi-core,’’
IEEE Comput. Archit. Lett., vol. 14, no. 2, pp. 160–163, Jul. 2015, doi:
10.1109/LCA.2014.2357805.

[14] R. M. Yoo and H.-H.-S. Lee, ‘‘Adaptive transaction scheduling for trans-
actional memory systems,’’ in Proc. 20th Annu. Symp. Parallelism Algo-
rithms Archit. (SPAA), May 2008, p. 169, doi: 10.1145/1378533.1378564.

[15] N. Diegues, P. Romano, and S. Garbatov, ‘‘Seer: Probabilistic schedul-
ing for hardware transactional memory,’’ in Proc. 27th ACM Symp.
Parallelism Algorithms Archit., Jun. 2015, pp. 224–233, doi: 10.1145/
2755573.2755578.

[16] M.Mohamedin, R. Palmieri, and B. Ravindran, ‘‘On scheduling best-effort
HTM transactions,’’ in Proc. 27th ACM Symp. Parallelism Algorithms
Archit., Jun. 2015, pp. 74–76, doi: 10.1145/2755573.2755612.

[17] Z. Chen, A. Hassan, M. J. Kishi, J. Nelson, and R. Palmieri, ‘‘HATS:
Hardware-assisted transaction scheduler,’’ in Proc. Leibniz Int. Infor-
mat. (LIPIcs), 2020, vol. 153, no. 10, pp. 1–10, doi: 10.4230/LIPIcs.
OPODIS.2019.10.

[18] Y. Afek, A. Levy, and A. Morrison, ‘‘Software-improved hardware lock
elision,’’ in Proc. ACM Symp. Princ. Distrib. Comput. (PODC), 2014,
pp. 212–221, doi: 10.1145/2611462.2611482.

[19] C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E. Ramadan,
A. Bhandari, and E. Witchel, ‘‘TxLinux: Using and managing hard-
ware transactional memory in an operating system,’’ in Proc. 21st ACM
SIGOPS Symp. Oper. Syst. Princ., 2007, vol. 41, no. 6, pp. 87–101, doi:
10.1145/1294261.1294271.

[20] M. Ansari, B. Khan, M. Luján, C. Kotselidis, C. Kirkham, and I. Watson,
‘‘Improving performance by reducing aborts in hardware transactional
memory,’’ in Proc. Int. Conf. High-Perform. Embedded Archit. Compil.,
in Lecture Notes in Computer Science: Including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics, vol. 5952,
2010, pp. 35–49.

[21] G. Blake, R. G. Dreslinski, and T.Mudge, ‘‘Bloomfilter guided transaction
scheduling,’’ in Proc. IEEE 17th Int. Symp. High Perform. Comput. Archit.,
Feb. 2011, pp. 75–86, doi: 10.1109/HPCA.2011.5749718.

[22] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval, ‘‘Bulk disambiguation of
speculative threads in multiprocessors,’’ in Proc. 33rd Int. Symp. Comput.
Archit. (ISCA), 2006, pp. 227–238, doi: 10.1109/ISCA.2006.13.

[23] R. Rajwar, M. Herlihy, and K. Lai, ‘‘Virtualizing transactional memory,’’
in Proc. 32nd Int. Symp. Comput. Archit. (ISCA), 2005, pp. 494–505, doi:
10.1109/ISCA.2005.54.

[24] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill,
M. M. Swift, and D. A. Wood, ‘‘LogTM-SE: Decoupling hardware trans-
actional memory from caches,’’ in Proc. IEEE 13th Int. Symp. High
Perform. Comput. Archit., Feb. 2007, pp. 261–272, doi: 10.1109/HPCA.
2007.346204.

[25] B. H. Bloom, ‘‘Space/time trade-offs in hash coding with allowable
errors,’’ Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970, doi:
10.1145/362686.362692.

[26] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and
S. Lie, ‘‘Unbounded transactional memory,’’ in Proc. 11th Int. Symp.
High-Perform. Comput. Archit., 2005, no. 1, pp. 316–327, doi: 10.1109/
HPCA.2005.41.

[27] W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson,
M. Van Biesbrouck, G. Pokam, B. Calder, and O. Colavin, ‘‘Unbounded
page-based transactional memory,’’ in Proc. 12th Int. Conf. Archit.
Support Program. Lang. Oper. Syst. (ASPLOS-XII), 2006, p. 347, doi:
10.1145/1168857.1168901.

VOLUME 9, 2021 69363

http://dx.doi.org/10.1145/2856125
http://dx.doi.org/10.1145/1508244.1508274
http://dx.doi.org/10.1145/173682.165164
http://dx.doi.org/10.1145/2150976.2151001
http://dx.doi.org/10.1145/2485922.2485936
http://dx.doi.org/10.1145/1654059.1654085
http://dx.doi.org/10.1109/TPDS.2020.3045279
http://dx.doi.org/10.1145/2854038.2854047
http://dx.doi.org/10.1145/2854038.2854047
http://dx.doi.org/10.1016/j.jpdc.2016.12.011
http://dx.doi.org/10.1109/TC.2018.2836418
http://dx.doi.org/10.1109/TC.2018.2796077
http://dx.doi.org/10.1109/LCA.2014.2357805
http://dx.doi.org/10.1145/1378533.1378564
http://dx.doi.org/10.1145/2755573.2755578
http://dx.doi.org/10.1145/2755573.2755578
http://dx.doi.org/10.1145/2755573.2755612
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2019.10
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2019.10
http://dx.doi.org/10.1145/2611462.2611482
http://dx.doi.org/10.1145/1294261.1294271
http://dx.doi.org/10.1109/HPCA.2011.5749718
http://dx.doi.org/10.1109/ISCA.2006.13
http://dx.doi.org/10.1109/ISCA.2005.54
http://dx.doi.org/10.1109/HPCA.2007.346204
http://dx.doi.org/10.1109/HPCA.2007.346204
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1109/HPCA.2005.41
http://dx.doi.org/10.1109/HPCA.2005.41
http://dx.doi.org/10.1145/1168857.1168901

Z. Sustran, J. Protic: Migration in HTM on Asymmetric Multiprocessor

[28] J. Chung, C. C. Minh, A. McDonald, T. Skare, H. Chafi, B. D. Carlstrom,
C. Kozyrakis, and K. Olukotun, ‘‘Tradeoffs in transactional memory vir-
tualization,’’ in Proc. 12th Int. Conf. Archit. Support Program. Lang.
Oper. Syst. (ASPLOS-XII), Oct. 2006, vol. 41, no. 11, p. 371, doi:
10.1145/1168857.1168903.

[29] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood,
‘‘LogTM: Log-based transactional memory,’’ in Proc. 12th Int. Symp.
High-Perform. Comput. Archit., 2006, pp. 258–269, doi: 10.1109/HPCA.
2006.1598134.

[30] C. Blundell, E. C. Lewis, and M. M. Martin. (2006). Unrestricted Trans-
actional Memory: Supporting I/O and System Calls Within Transactions.
[Online]. Available: http://repository.upenn.edu/cis_reports/130/

[31] Intel 64 and IA-32 Architectures SoftwareDeveloper’sManual, Intel Corp.,
Santa Clara, CA, USA, 2018, pp. 385–392.

[32] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
‘‘Single-ISA heterogeneous multi-core architectures: The potential for
processor power reduction,’’ in Proc. MICRO, Dec. 2003, pp. 81–92.
Accessed: Jul. 16, 2014. [Online]. Available: http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=1253185

[33] P. Greenhalgh. (2011). Big.LITTLE processing with ARM Cortex-A15
& Cortex-A7. ARM. Accessed: Oct. 15, 2019. [Online]. Available:
https://www.eetimes.com/big-little-processing-with-arm-cortex-a15-
cortex-a7/#

[34] H. Chung, M. Kang, and H.-D. Cho. (2013). Heterogeneous multi-
processing solution of Exynos 5 Octa with ARM big.LITTLETM technol-
ogy. Samsung. Accessed: Nov. 03, 2019. [Online]. Available: https://s3.ap-
northeast-2.amazonaws.com/global.semi.static/Heterogeneous_Multi-
Processing_Solution_of_Exynos_5_Octa_with_ARM_bigLITTLE_
Technology.pdf

[35] M. Becchi and P. Crowley, ‘‘Dynamic thread assignment on heterogeneous
multiprocessor architectures,’’ in Proc. 3rd Conf. Comput. Frontiers (CF),
vol. 10, 2006, p. 29, doi: 10.1145/1128022.1128029.

[36] K. C. Yeager, ‘‘The Mips R10000 superscalar microprocessor,’’ IEEE
Micro, vol. 16, no. 2, pp. 28–41, Apr. 1996, doi: 10.1109/40.491460.

[37] P. Kongetira, K. Aingaran, and K. Olukotun, ‘‘Niagara: A 32-way mul-
tithreaded sparc processor,’’ IEEE Micro, vol. 25, no. 2, pp. 21–29,
Mar. 2005, doi: 10.1109/MM.2005.35.

[38] A. Ahmed, P. Conway, B. Hughes, and F. Weber, ‘‘AMD opteron shared
memory MP systems,’’ in Proc. 14th HotChips Symp., 2002, pp. 1–30.

[39] D. C. Bossen, J. M. Tendler, and K. Reick, ‘‘Power4 system design for
high reliability,’’ IEEE Micro, vol. 22, no. 2, pp. 16–24, Mar. 2002, doi:
10.1109/MM.2002.997876.

[40] R. Kalla, B. Sinharoy, and J. Tendler, ‘‘Simultaneous multi-threading
implementation in POWER5,’’ in Proc. Conf. Rec. Hot Chips Symp., 2003.

[41] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, ‘‘The gem5 simulator,’’
ACM SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, May 2011,
doi: 10.1145/2024716.2024718.

[42] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai, ‘‘The impact of perfor-
mance asymmetry in emerging multicore architectures,’’ in Proc. 32nd Int.
Symp. Comput. Archit. (ISCA), May 2005, vol. 33, no. 2, pp. 506–517, doi:
10.1109/ISCA.2005.51.

[43] ‘‘Pentium processor data book,’’ in Pentium Processor User’s Manual,
vol. 1. Santa Clara, CA, USA: Intel Corporation, 1993.

[44] S. Gochman, ‘‘The Intel Pentium M processor: Microarchitecture and
performance,’’ Intel Technol. J., vol. 7, no. 2, pp. 1–18, 2003.

[45] M. S. Papamarcos and J. H. Patel, ‘‘A low-overhead coherence solution
for multiprocessors with private cache memories,’’ in Proc. 11th Annu.
Int. Symp. Comput. Archit. (ISCA), 1984, pp. 348–354, doi: 10.1145/
800015.808204.

[46] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun, ‘‘STAMP:
Stanford transactional applications for multi-processing,’’ in Proc. IEEE
Int. Symp. Workload Characterization, Oct. 2008, pp. 35–46, doi:
10.1109/IISWC.2008.4636089.

[47] Programming With Intel Transactional Synchronization Extensions: Intel
64 and IA-32 Architectures Optimization Reference Manual, Intel Corp.,
Santa Clara, CA, USA, 2016, pp. 385–392.

[48] N. Diegues and P. Romano, ‘‘Self-tuning Intel restricted transac-
tional memory,’’ Parallel Comput., vol. 50, pp. 25–52, Dec. 2015, doi:
10.1016/j.parco.2015.10.001.

[49] M. D. Hill and M. R. Marty, ‘‘Amdahl’s law in the multicore era,’’ Com-
puter, vol. 41, no. 7, pp. 33–38, Jul. 2008, doi: 10.1109/MC.2008.209.

[50] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan, ‘‘Hetero-
geneous chip multiprocessors,’’ Computer, vol. 38, no. 11, pp. 32–38,
Nov. 2005, doi: 10.1109/MC.2005.379.

[51] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, and E. Ayguade,
‘‘Performance, power efficiency and scalability of asymmetric cluster chip
multiprocessors,’’ IEEE Comput. Archit. Lett., vol. 5, no. 1, p. 4, Jan. 2006,
doi: 10.1109/L-CA.2006.6.

[52] R. Quislant, E. Gutierrez, E. L. Zapata, and O. Plata, ‘‘Conflict detection in
hardware transactional memory,’’ in Transactional Memory. Foundations,
Algorithms, Tools, and Applications. Cham, Switzerland: Springer, 2015,
pp. 127–149.

[53] M. A. Suleman, O. Mutlu, J. A. Joao, Khubaib, and Y. N. Patt, ‘‘Data
marshaling for multi-core architectures,’’ in Proc. 37th Annu. Int. Symp.
Comput. Archit. (ISCA), 2010, p. 441, doi: 10.1145/1815961.1816020.

[54] Z. Sustran, G. Rakocevic, and V. Milutinovic, ‘‘Dual data cache systems,’’
in Advances in Computers, vol. 96. Amsterdam, The Netherlands: Elsevier,
2015, pp. 187–233, doi: 10.1016/bs.adcom.2014.11.001.

[55] I. Vurdelja, Ž. Šuštran, J. Protić, and D. Draskovic, ‘‘Survey of
machine learning application in transactional memory,’’ in Proc. 28th
Telecommun. Forum (TELFOR), Nov. 2020, pp. 1–4, doi: 10.1109/
TELFOR51502.2020.9306547.

[56] M. Han, J. Park, and W. Baek, ‘‘Design and implementation of a
Criticality- and heterogeneity-aware runtime system for task-parallel appli-
cations,’’ IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 5, pp. 1117–1132,
May 2021, doi: 10.1109/TPDS.2020.3031911.

[57] K. Chronaki, A. Rico, R. M. Badia, E. Ayguadé, J. Labarta, and
M. Valero, ‘‘Criticality-aware dynamic task scheduling for heterogeneous
architectures,’’ in Proc. 29th ACM Int. Conf. Supercomput., Jun. 2015,
pp. 329–338, doi: 10.1145/2751205.2751235.

[58] Q. Chen, Y. Chen, Z. Huang, and M. Guo, ‘‘WATS: Workload-aware task
scheduling in asymmetric multi-core architectures,’’ in Proc. IEEE 26th
Int. Parallel Distrib. Process. Symp. (IPDPS), May 2012, pp. 249–260, doi:
10.1109/IPDPS.2012.32.

[59] C. Torng, M. Wang, and C. Batten, ‘‘Asymmetry-aware work-stealing
runtimes,’’ in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit.
(ISCA), Jun. 2016, pp. 40–52, doi: 10.1109/ISCA.2016.14.

ZIVOJIN SUSTRAN received the B.Sc. and M.Sc.
degrees in electrical engineering and computing
from the School of Electrical Engineering, Univer-
sity of Belgrade, Serbia, in 2010 and 2012, respec-
tively, where he is currently pursuing the Ph.D.
degree. He is currently a Teaching Assistant with
the School of Electrical Engineering, University of
Belgrade. He has been involved in the research and
development of hardware and software solutions in
industry and academia for ten years, with expertise

in computer architecture, cache memory design, systems programming,
operating systems, and FPGA acceleration. He has coauthored two jour-
nal articles and gave talks at conferences in Europe. His current research
interests include cache coherence and shared memory algorithms, hardware
transactional memory, multicore architectures, and with special emphasis on
asymmetric multiprocessors.

JELICA PROTIC received the Ph.D. degree in elec-
trical engineering from the University of Belgrade.
She is currently a Full Professor of computer engi-
neering and informatics with the School of Electri-
cal Engineering, University of Belgrade. She was a
Principal Designer in pioneer projects of network-
ing proprietary industrial computers. With Milo
Tomasevic andVeljkoMilutinovic, she coauthored
Distributed Shared Memory: Concepts and Sys-
tems (IEEE CS Press, 1997) and presented numer-

ous pre-conference tutorials on this subject. She also conducted research in
the domain of wireless sensor networks. She has long term experience in
teaching a diversity of courses in programming languages and the develop-
ment of various educational software tools. Her research interests include
distributed systems, consistency models, computer networks, and all aspects
of computer-based quantitative performance analysis and modeling.

69364 VOLUME 9, 2021

http://dx.doi.org/10.1145/1168857.1168903
http://dx.doi.org/10.1109/HPCA.2006.1598134
http://dx.doi.org/10.1109/HPCA.2006.1598134
http://dx.doi.org/10.1145/1128022.1128029
http://dx.doi.org/10.1109/40.491460
http://dx.doi.org/10.1109/MM.2005.35
http://dx.doi.org/10.1109/MM.2002.997876
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1109/ISCA.2005.51
http://dx.doi.org/10.1145/800015.808204
http://dx.doi.org/10.1145/800015.808204
http://dx.doi.org/10.1109/IISWC.2008.4636089
http://dx.doi.org/10.1016/j.parco.2015.10.001
http://dx.doi.org/10.1109/MC.2008.209
http://dx.doi.org/10.1109/MC.2005.379
http://dx.doi.org/10.1109/L-CA.2006.6
http://dx.doi.org/10.1145/1815961.1816020
http://dx.doi.org/10.1016/bs.adcom.2014.11.001
http://dx.doi.org/10.1109/TELFOR51502.2020.9306547
http://dx.doi.org/10.1109/TELFOR51502.2020.9306547
http://dx.doi.org/10.1109/TPDS.2020.3031911
http://dx.doi.org/10.1145/2751205.2751235
http://dx.doi.org/10.1109/IPDPS.2012.32
http://dx.doi.org/10.1109/ISCA.2016.14

