IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 27, 2021, accepted May 1, 2021, date of publication May 4, 2021, date of current version May 13, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3077550

Container Placement and Migration in Edge
Computing: Concept and Scheduling Models

OMOGBAI OLEGHE

Systems Engineering Department, University of Lagos, Lagos 100213, Nigeria

e-mail: o.oleghe @ritepaklimited.com

ABSTRACT Containers are a form of software virtualization, rapidly becoming the de facto way of providing
edge computing services. Research on container-based edge computing is plentiful, and this has been buoyed
by the increasing demand for single digit, milliseconds latency computations. A container scheduler is part of
the architecture that is used to manage and orchestrate multiple container-based applications on heterogenous
computing nodes. The scheduler decides how incoming computing requests are allocated to containers,
which edge nodes the containers are placed on, and where already deployed containers are migrated to. This
paper aims to clarify the concept of container placement and migration in edge servers and the scheduling
models that have been developed for this purpose. The study illuminates the frameworks and algorithms upon
which the scheduling models are built. To convert the problem to one that can be solved using an algorithm,
the container placement problem in mostly abstracted using multi-objective optimization models or graph
network models. The scheduling algorithms are predominantly heuristic-based algorithms, which are able to
arrive at sub-optimal solutions very quickly. There is paucity of container scheduling models that consider
distributed edge computing tasks. Research in decentralized scheduling systems is gaining momentum and

the future outlook is in scheduling containers for mobile edge nodes.

INDEX TERMS Algorithm, container, edge computing, migration, placement, scheduling.

I. INTRODUCTION

The number of things connected to the internet is in constant
growth due to ever increasing demand for automation, artifi-
cial intelligence, augmented reality, smart homes and cities,
real-time analytics, gaming and a variety of other industrial-
and consumer-based applications. As a result, the volume
of data being generated and the frequency and complex-
ity of computation are also increasing, exerting pressure on
cloud servers. This pressure leads to high energy usage at
datacenters [1] and contributes to a reduction in quality of
service (QoS) such as dropped computations, high latency,
high cost of bandwidth and overloaded cloud server. Edge
servers (edge nodes) have been introduced to address these
and other related issues.

Edge nodes are geographically situated closer to end
devices than cloud servers, as portrayed in Figure 1. The
nearness of the edge node to the end device or end user is
advantageous in a number of ways. Rather than send a com-
putation from end device to cloud or transmit a response from

The associate editor coordinating the review of this manuscript and

approving it for publication was Wen-Sheng Zhao

68028

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

cloud to end device, the edge server does the computation and
transmission, or a part of it [2]. This service improves overall
computation latency, minimizes the workload that is sent to
the cloud, saves on bandwidth and enhances data privacy [3].

It is predicted that by 2025, 75% of all data will be pro-
cessed outside of datacenters or cloud servers [4]. The num-
ber of edge nodes is therefore projected to increase rapidly,
unlocking many opportunities for academic research in edge
computing [5]-[7].

There are factors that make edge computing to be a chal-
lenging service to provide. Some of these factors are reg-
istered in Table 1. These can be classified as user-related
factors, factors relating to the edge node and service-provider
related factors. For instance, user computing requests vary in
type, size, frequency and complexity, and users may change
location during a computational request. Edge nodes in a
cluster may be heterogenous in the availability of CPU, mem-
ory and energy resources. The service provider or edge net-
work owner may be driven by one or more operational goals
such as reducing energy consumption in all edge nodes or
maximizing the service level agreement (SLA). In providing
services at the edge, these and many other factors need to be

VOLUME 9, 2021

https://orcid.org/0000-0003-1368-626X
https://orcid.org/0000-0002-2507-5776

0. Oleghe: Container Placement and Migration in Edge Computing: Concept and Scheduling Models

IEEE Access

g = ‘ p-
/o e o \B

4 &

End devices
and users

FIGURE 1. loT architecture showing end devices, edge server and cloud
server.

considered by the server manager when accepting tasks and
allocating them to edge nodes.

Containers are virtualized software applications. The
architecture of container-based computing platforms enables
containers to be deployed, terminated, replicated, recovered
and migrated in milliseconds. For server managers, these
features help improve system flexibility and computing scal-
ability [8]. These and many other features encourage the use
of container-based applications as the platform for enabling
cloud and edge computing.

Container orchestration is the term used for managing
multiple containers on different computing nodes. Although
container orchestration is at an advanced stage in cloud
servers, it is still in the infancy stage in edge computing [9].
One of the key components of container orchestration is the
scheduler, responsible for deciding which container applica-
tion is placed on which edge node. From a service provider
standpoint, the scheduler decides how the different incoming
computing requests are mapped to containers, and how con-
tainers are mapped to heterogenous edge nodes, to service the
request. These mappings attempt to fulfill a set of objectives
within given operational constraints [10]-[13]. The schedul-
ing decision is a complex one. In fact, the container placement
problem in edge computing has been described as NP-hard to
solve [14]-[16].

Researchers have promoted an assortment of scheduling
models to address a variety of container placement problems
in edge computing. This study focuses on the frameworks
and algorithms upon which the scheduling models are built.
The aim is to illuminate the key methods that have been
used to formulate the container placement problem in edge
computing as well as the types of algorithms used in arriving
at an optimal placement solution. The resultant findings can
be used as a reference point for building container scheduling
models for edge servers.

Some research has been done in related fields, see for
example the studies reported in [17]-[20], but these have not
been in the context of containers. Others have reviewed the

VOLUME 9, 2021

TABLE 1. Factors that challenge the provision of edge computing.

Factors
mobility, request size, request type,
request frequency, location

Factor type
User-related

Edge node-related heterogeneity, resource and

availability, location
Service provider-related load balancing, cost, bandwidth,

energy, SLA

use of containers from a general perspective, without special
emphasis on scheduling of containerized edge computing, see
for example studies in [21], [22]. Ahmad et al. [23] report a
survey of scheduling techniques in edge computing. In their
review, they present the scheduling methods that have been
used to fulfil container-based edge computing. The current
study is unique as it highlights the frameworks and algorithms
upon which the scheduling models are built. The analysis
of the framework describes how the scheduling problem is
converted to one that can be solved analytically. The algo-
rithms are used in solving the converted problem in a timely
and efficient manner for the scheduler. The frameworks and
algorithms are the linchpins to scheduling models.

The scope of this study is container placement and migra-
tion, from the standpoint of the provider of edge com-
puting services. The main contributions within the study
scope are outlined as follows: 1) clarifies the concepts of
container-based edge computing, container placement and
migration in edge computing, and container scheduling for
edge computing; 2) reviews the Kubernetes and Docker
Swarm schedulers as well as the extensions that have been
developed for them; 3) underscores the frameworks and
algorithms that have been used to bring about the efficient
scheduling of container-based services in edge computing.

The remainder of this article is organized as follows:
section II provides an overview of the concept of container-
ized edge computing; section III outlines container placement
and migration; section IV presents an analysis of Kubernetes
and Docker Swarm schedulers in edge computing, including
the improvements that have been developed for them; section
V reports on the frameworks and algorithms that have been
used to develop the assortment of scheduling models; section
VI discusses the key findings; section VII is the conclusion.

Il. CONTAINER-BASED EDGE COMPUTING: CONCEPTS
Understanding the concept of edge computing and container-
ized applications is crucial to understanding why and how
container placement decisions are made. In this section,
the concept of edge nodes and edge computing are clarified
with respect to container placement scheduling. Application
examples are presented to show the variety of computing
requests that are fulfilled on edge servers.

A. EDGE NODES AND EDGE COMPUTING
The characteristics of edge nodes determine how edge com-
puting services are managed and delivered. Edge nodes can

68029

IEEE Access

0. Oleghe: Container Placement and Migration in Edge Computing: Concept and Scheduling Models

be described as computing devices equipped with network
connectivity to enable them communicate with end devices,
other edge nodes and the cloud. Some characteristics have
been defined for edge nodes such as: resource (CPU, mem-
ory, disk, power) constrained, low cost, low communication
bandwidth, low security [24], [25], sparsely distributed in a
network or geographic region [24] and diverse computing
configurations [26]. They have limited service range and so
need to be optimally located to serve end users. The distin-
guishing feature for an edge node is that it brings computing
closer to the end user [27]; computing that would normally
have been fulfilled on the cloud. Any single device with
computing power that serves this purpose can be an edge
node, whether a single board computer or a desktop computer,
be it stationary or mobile [12]. A cluster comprises a group
of more than one edge node, so defined for ease of managing
from a centralized location. In a cluster the distance between
edge nodes can range from a few meters to a few kilometers.
The inter-edge node distance cannot be much further due to
the network range limitations of most edge devices.

Edge computing, sometimes called fog computing [22],
[28]-[30] can be defined as the data computation that is
deployed and fulfilled on edge nodes rather than on the
cloud. The main types of edge computing tasks have been
machine learning and deep learning [31], augmented reality
with object recognition [32], [33] and network virtualiza-
tion [34], [35]. Some computations such as deep learning
and augmented reality are computationally expensive i.e. they
demand much CPU and memory to run. A number of devices
used as edge node, for instance Raspberry Pi and other single
board computers, are resource constrained to undertake com-
putationally expensive tasks. This motivates the dividing up
of such computations across two or more edge nodes [31],ina
distributed or parallel computing manner. The heterogeneity
of edge nodes and the variety of edge computing tasks, are
factors (see Table 1) that container scheduling models need to
consider when scheduling the placement of container appli-
cations on edge nodes [36].

B. CONTAINER-BASED VIRTUALIZATION
Application virtualization can be fulfilled using virtual
machines or containers. With virtual machines, a virtual
operating system is hosted on the disk [37]. In containers,
the memory allocated to running applications is run on top
of a hosts operating system’s kernel [38]. A container can be
described as a live application environment that has occupied
a portion of computing resources of a host machine [39].
Researchers have assessed the performance of edge com-
puting on the basis of containers, virtual machines and bare
metal native host. Empirical results show that rate of task
execution is hardly diminished using containers as against
using native host, unlike using a virtual machine [37], [40],
even for deep learning computations [41]. Joy [42] found
that the time taken by a Linux container to scale and process
a service request is significantly less than the time taken
to scale a new virtual machine to handle the same request.

68030

Application

_ Container with base

images and applications
Binaries and libraries

Container engine
hosted on
machine

- Host machine

Server infrastructure

FIGURE 2. Architecture for container virtualization.

The virtual machine took as long as three minutes while
the container took just eight seconds. Joy [42] also found
that more applications can be deployed on a host machine
when using containers than when using virtual machines.
Containers were found to have low storage footprint due
to the sharing of the same image [43]. Others have com-
pared the performance of various container engines. Manni-
nen et al. [44] tested an I/O intensive python application for a
control and monitoring system, using Docker, Balena, Linux
and Flatpack containers. They focused on memory, CPU and
power consumption. They found that Docker was the most
resource-hungry platform, with Flatpack and Linux using the
least resources. Park ef al. [45] develop a model that shares
execution environment containers across multiple application
containers, which helps to achieve significant reductions of
the resource pressure compared to using Docker-based mono-
lithic containers.

A container is a complete runtime environment compris-
ing an application with its dependencies. The dependencies
may include an operating system (such as Ubuntu), codes,
libraries, binaries and configuration files, that are needed to
run the application. The application together with its depen-
dencies are all together encased in a single package, called
a container [46]. Figure 2 depicts how a container is stacked
in a host machine. For a container to function, its container
engine, needs to be hosted on the machine. Examples of
container engines are LNX, Docker, Mesos, OpenVZ and
Containerd. The Docker engine for example comprises a
Docker daemon, a REST API and CLI, the whole of which
take up roughly 1.5Gb of host machine disk space.

A container is split into base image layer and application
layer (see Figure 2). Examples of base images include Ubuntu
and Alpine. Some base images such as Red Hat include an
operating system, language run times (NodeJS, python and
PHP) and a set of YUM repositories [47]. Base images can be
purpose-built such as in Red Hat, but many container applica-
tions need only a base operating system such as Ubuntu and
Alpine. The base image is a read-only layer in the file stack
of the container.

The application itself (read and writeable layer) may
include pre-built, purpose built, opensource or commer-
cial microservices. Some opensource microservices have
been built for TensorFlow, MongoDB, Grafana and Eclipse
Mosquito. Combining multiple microservices in a single

VOLUME 9, 2021

0. Oleghe: Container Placement and Migration in Edge Computing: Concept and Scheduling Models

IEEE Access

container is sometimes inevitable when fulfilling complex
and computationally demanding tasks [13], [48]. However,
this increases the container file size. Containerizing microser-
vices has been found to be better than running multiple
microservices in one container [10]. Although this increases
the complexity of orchestration, it boosts the container boot
up time because all the microservices can be booted simulta-
neously.

A container is a running instance of the base image together
with the microservice(s) or apps. A container application can
only run when its base image is present on a host machine.
One base image (parent image) can be used to deploy differ-
ent applications, if the applications have similar dependen-
cies. Figure 3 portrays how different applications can use the
same base image. In the depiction, the Grafana and MQTT
applications share the same base image i.e. Ubuntu. The
python applications also share the same base image of Ubuntu
which are all stacked on TensorFlow. Where a base image is
already deployed, the container takes a shorter time to boot
up, than where the base image is not present. This is possible
because the container is able to recognize that its base image
exists in the host container engine. The container boots up
with only the microservice(s), rather than boot up a base
image first, which takes more time to deploy due to the large
file size of most base images. This is what makes containers
to be rapidly deployed [49], and is sometimes a factor to
consider when deciding where to place containers in edge
nodes. For instance, to deploy a python-based application that
relies on TensorFlow, the scheduler can prioritize nodes that
already have the Ubuntu and TensorFlow images.

C. CONTAINER APPLICATIONS IN EDGE COMPUTING

The scope of container applications cuts across every indus-
try [50]. In the literature, the use of container-based edge
computing was found in: a civil construction application [51],
a crane maneuvering application to avoid accidents with
construction workers [52], monitoring patient fall detec-
tion [29]; human activity recognition [53]; autonomous vehi-
cles [33]; real-time video processing [3], [41]; real-time pro-
cess control [54], [55]; intelligent farming [56]; factory sys-
tem software management [57] and modular cyber-physical
system [58]. In [59], authors present the implementation of
a container-based MQTT broker. To avoid overload in any
broker, a load balancer uses an algorithm to route new client
requests to the least loaded broker. Authors in [60] paral-
lelize the training of a machine learning regression model
using Linux containers deployed on participating edge nodes.
Similarly, in [31], the authors distribute a container-based
TensorFlow deep learning task among several Raspberry Pi
devices.

The virtualization of network functions has been enhanced
with the use of containers. The authors in [35] present an
approach to launch virtual network functions on demand
on edge nodes. Container-based network functions can be
used to quickly re-establish lost network service by upload-
ing the network functions as containerized applications.

VOLUME 9, 2021

P b
]:;og:‘“ program (model P hi d
feature building) (graphics an
reduction) analytics)

TensorFlow

m

FIGURE 3. Container stack with base image and microservice application.

Such network functions include virtual private network, diag-
nostics/ monitoring functions, encryption and firewall.

Edge computing tasks vary in type. The container sched-
uler needs to take cognizance of this when deciding how to
accept and allocate requests to containers, and map containers
to edge nodes. For instance, an incoming object recognition
task may not be schedulable due to unavailability of an edge
node. The scheduler has the option of either dropping this
request or allocating it to a cloud-based server. The scheduler
can also decide to migrate an already running computation
to another edge node so that the incoming request can be
accommodated in the server.

Ill. CONTAINER PLACEMENT AND MIGRATION IN EDGE
COMPUTING

In addition to the varying nature of computing tasks received
at an edge server, there is randomness in when they are
received. Tasks may be received intermittently or continu-
ously. In edge computing, a container is not deployed unless
there is a request for its services. A container by definition is
a running instance of an application. As such, a container can
service only one computing request since an already running
application cannot be used to service a new incoming request.
However, multiple containers can be deployed to service a
single request, but two different requests cannot be serviced
by the same container.

There are two distinct types of container placement
approaches namely queuing and concurrent [16], [61]. The
queuing approach can be abstracted as a first-in-first-out or
priority-based method [62], [63], where the container place-
ment decision is made on a container-by-container basis.
A batch and process concept can be used to describe the
concurrent approach where computing requests are first col-
lated and then placement decision is made. Figure 4 is used
to depict the two approaches. As the example in Figure 4a
shows, container 4 cannot be placed on any of the edge
nodes after containers 1, 2 and 3 have been placed one after
the other. In the concurrent approach, Figure 4b, container
placement is optimized.

Taking decisions on a container-by-container basis can
lead to load imbalance, necessitating the need to relocate
already running services to create a balanced cluster. In the
queuing approach, a global optimal decision is difficult to
achieve [62], because the immediate placement decision is
taken only for the first container on the queue, without con-
sideration for subsequent containers on the queue. However,

68031

IEEE Access

0. Oleghe: Container Placement and Migration in Edge Computing: Concept and Scheduling Models

Edge mode 1
______________ CPU:2
------- MEM: 1GB
P

Base image: Ubuntu

No Alpine image on target node ¥

Container 4

L= - e
-~ il 4
Container 3 Container 2 Container 1
cPU:1 [cpU:2 cPU:2
MEM: 512M8B MEM: 1GB MEM: 1GB MEM: 512MB
Base image: Alpine Base image: Alpine [ll Base image: Ubuntu [ll Base image: Ubuntu
Sl San e il TS Edge node 2
hER Ve CPU:4
_______ MEM: 268
----------------- Base image: Ubuntu & Alpine

MEM: 512M8B \
Base image: Ubuntu N

Container 2 \ Edge mode 1
CPU:2 T, N CPU:2
MEM: 1B R MEM: 1GB
Base image: Ubuntu \ Base image: Ubuntu
Container 3 Y Edge node 2
CPU: 1 PERRSIN CPU:4
MEM: 1GB MEM: 2GB
Base image: Alpine 7 Base image: Ubuntu & Alpine

Container 4 e
CPU:1 d
MEM: 512M8
Base image: Alpine

FIGURE 4. Container placement approaches: a) queue-based placement;
b) concurrent container placement.

it is possible to set dispatching rules for container place-
ment, if there is prior knowledge of the characteristics of
all incoming requests. A machine learning-based predictive
model is used to predict incoming request to supplement such
an approach [64], [65].

A concurrent approach is able to achieve a global opti-
mal schedule, through the batch and process method. The
drawback with this method is that batching time can add
to placement delay if incoming requests are intermittent,
because the allocation of tasks waits for a specified time
to collate multiple tasks [66]. For a continuous stream of
incoming requests, a concurrent approach can be used, while
for intermittent requests, the container-by-container approach
can be used.

Container placement also encompasses container migra-
tion i.e. relocating an already running service to another edge
node. One reason for migrating a running service may be
because an end device/user has changed location such as an
autonomous vehicle. Another reason for migrating container
services is to balance the workload within the cluster of edge
nodes, so that no edge node is overloaded, while others are
underloaded. A third reason is that an edge node can suddenly
become unavailable, such as an unexpected shutdown or a
planned maintenance and a running application needs to be
migrated to continue an already started computation.

When a container is migrated between edge nodes, it is
the base image and microservices (see Figure 3) that are
migrated. Computing can equally be migrated to the cloud
from an edge server, in a situation where there is no suitable
edge node to transfer services to, and then back to an edge
node when one becomes available [67]. Where an edge node
cannot complete a computation due to limited resources, part
of that computation can be moved to the cloud [10]. Con-
tainers are used in cloud servers and so seamless migration is

68032

possible between edge node and cloud server. For these rea-
sons, containers facilitate efficient service handoff or transfer
in mobile and migrating edge services.

Container migration is of two types: cold and warm. In the
cold migration, the container(s) and base images are together
transferred to another node, in a single step process. In warm
migration, images are first replicated on the target node,
ahead of the migration, in a timely manner. Afterwards the
running applications are frozen, saved on the source node
disk, and then offloaded to the target node, on top of the
already deployed images, making a multi-step process [68].
Containerized applications with base images that are large
in file size can benefit from such migration. When the base
image is already deployed, i.e. pre-cached in the edge node,
deploying only the container(s) takes less time than deploying
both image and container at the same time, as it is done in
cold migration. This way, the temporary loss of service during
migration is minimized than in a cold migration. Caching
methods have been comprehensively investigated in [65].

Some applications have very strict latency requirements
such as autonomous driving, which can benefit from warm
container migration. Authors in [33], [68] tested the warm
approach on a 2GB container-based facial recognition appli-
cation. They were able to reduce container downtime during
migration from 3,200 seconds to 49 seconds on a SMbps
bandwidth. Authors in [69] propose a similar approach that
proactively deploys multiple instances of the client runtime
application in neighboring edge nodes. Service replication is
through pre-cached images.

There are variants of the warm migration, such as
pre-copy and post-copy, with conditions best suited for using
them [70], [71]. Warm caching is good in terms of reduced
latency, but it uses up limited resources such as memory [72].
A scheduler has to consider the cold and warm migration
options when deciding where to place a container. Kubernetes
scheduler uses the predicates and priorities scheduling poli-
cies for this purpose see [73].

Container migration whether cold or warm can be of two
types namely stateless and stateful [74]. Stateless migration is
the easier of the two. In stateless migration, the previous state
of the runtime container is not transferred, rather a new con-
tainer image is replicated in the target node. If stateless migra-
tion is to be used for an already running container application,
it means the computation will be terminated and restarted
afresh, resulting in loss of already done computation. This
results in duplicated computation. The total computation time
will increase if it is a high workload task such as video analyt-
ics and if the computation has significantly progressed in the
source node before termination. Stateless container migration
has been demonstrated in a computationally expensive object
detection classification task [3].

In stateful migration, the state of the application prior
to migrating from the source node is saved and trans-
ferred to the target node. The runtime container image at
source after offloading is the same at target after handoff.
Checkpoint/Restore in Userspace (CRIU) is a well-known

VOLUME 9, 2021

0. Oleghe: Container Placement and Migration in Edge Computing: Concept and Scheduling Models

IEEE Access

Linux-based software used in implementing stateful migra-
tion [75]. The software freezes a running application and
checkpoints (saves) this state to disk as a collection of files.
The application is restored and continued on the same device
or on another device from its frozen state. The applica-
tion state at restoration is exactly the state at freezing [76].
A scheduler needs to factor in this process, when decid-
ing where to place computations that are already being
serviced.

IV. KUBERNETES AND DOCKER SWARM CONTAINER
SCHEDULERS FOR EDGE COMPUTING

Kubernetes is the prevalent container orchestration tool in
both cloud and edge computing. Developed by Google, it is
maintained and supported by a large opensource commu-
nity. Kubernetes is integrated in many cloud computing ser-
vices such as Google Cloud, Amazon Web Service, Red Hat
and Microsoft Azure. Kubernetes automates the deployment,
scaling and management of container-based applications.
Details of Kubernetes can be found in [73].

Kubernetes scheduler is one of the main components
in the Kubernetes architecture. The scheduler decides the
placement of containers (also known as pods) unto edge
nodes. It relies on a greedy multi-criteria decision-making
framework. In its simplest form, nodes are labelled using
a weighted sum of pre-determined metrics such as CPU
and memory. The scheduler considers other factors relat-
ing to nodes and tasks, such as data locality, hard-
ware/software/policy constraints, affinity and anti-affinity
specifications, data locality, inter-workload interference, and
deadlines [73]. The Kubernetes scheduler relies on these
metrics and factors when deciding where to place con-
tainers. Kubernetes allows custom metrics and factors to
be built into the scheduler. Pods are able to communicate
their metrics to the Kubernetes central server also called
the control plane. This way the resource utilization in each
edge node is monitored at heartbeat intervals. The scheduler
relies on this information amongst others, to schedule pods
in such a way that the workload is evenly distributed and
other requirements are fulfilled. The Kubernetes scheduler
taint/toleration and predicates/priorities mechanisms are also
used to restrict which pod is placed on an edge node [73].
Chima Ogbuachi ez al. [77] give a good account of the Kuber-
netes scheduler backend functions.

Kubernetes has largely been used for cloud-based comput-
ing. Many of the requirements of edge computing are dif-
ferent from those of cloud computing. For instance, resource
limitation is more evident in edge nodes than in cloud-based
nodes. Edge nodes are more geographically spread than
cloud servers, and Kubernetes does not consider the topol-
ogy of the edge network [2], [9]. Heterogeneity of nodes is
more pronounced in edge servers than in cloud servers. The
latency requirements are more stringent for edge computing
than in cloud computing. In addition to these, Kubernetes
default scheduler uses the queuing model, which has some
limitations.

VOLUME 9, 2021

Extensions have been proposed to enhance the Kubernetes
scheduler component and mitigate some of its limitations
in edge servers. Authors in [36] introduce Skippy, a kuber-
netes plugin scheduler. Their model aims to address some
limitations of Kubernetes such as non-consideration of the
tradeoff between data movement and computation move-
ment, non-consideration of the inter-edge node bandwidth
and non-consideration of the proximity of databases. The
scheduler makes heuristic trade-offs between data and com-
putation movement, and considers workload-specific com-
pute requirements such as GPU acceleration. The scheduler
uses a python-based discrete event simulation tool to find the
values of weighs for the priority functions. In their model,
the scheduler prioritizes:

1. nodes (whether cloud or edge), where the computation
happens more quickly.

2. nodes where the network bandwidth is high.

3. nodes with high computing resources such as a GPU.

Kubernetes scheduler by default is run from a centralized
node, also known as the master node, which runs the control
plane API server. The master node manages and controls
the worker nodes. The workload at a master node increases
as the number of worker nodes increases. This can create
problems for the master node such as high latency, high
energy consumption, high resource utilization and frequent
maintenance. Casquero et al. [78] describe a custom sched-
uler for Kubernetes orchestrator that pushes the scheduling
decision to the worker nodes. Kubernetes node filtering and
ranking functions, predicates and priorities respectively, are
moved from the master node to the edge nodes. Their model is
able to schedule faster than the centralized scheduling model
used by the default scheduler in Kubernetes.

Haja et al. [79] design a custom Kubernetes scheduler that
makes decisions based on applications’ delay constraints and
edge reliability. In their model, latency measuring pods are
launched on nodes. These pods ping each other periodically,
and record the message round-trip time as a node-to-node
latency measurement. The node-to-node latency measure-
ments are cached as key value pairs and used by the sched-
uler to match computing tasks with their respective latency
requirements.

Kaur et al. [14] extend the functionalities of the Kuber-
netes scheduler by considering the carbon footprints and
energy consumption at the edge network as part of the
decision variables. They formulate the requirements as a
multi-objective optimization problem, solved as an integer
linear programming problem. A model proposed by Chima
Ogbuachi et al. [77] aims to take the physical, operational,
network and software states into consideration. The authors
apply a hybrid scheduling model combining both the queuing
model and the concurrent model. In a study by Fahs and
Pierre [80], the Kubernetes scheduler is modified to prioritize
the placement of pods in edge nodes that are located close to
the main sources of network traffic. By so doing, the network
latency between end device and edge node is considerably

68033

IEEE Access

0. Oleghe: Container Placement and Migration in Edge Computing: Concept and Scheduling Models

reduced. More recently, Han et al. [81] introduce KaiS,
a Kubernetes-oriented scheduler. The KaiS scheduler relies
on each edge node taking the dispatch decision. They use
a Multi-Agent Deep Reinforcement Learning-based schedul-
ing model that places a dispatching agent at each edge access
point. The edge access point receives requests and dispatches
to edge nodes.

Kubernetes allows custom scheduling logic and decision
variables to be added to the default model in a variety of
ways [9], but this can create additional computation over-
head for the scheduler [77]. A custom scheduler can be built
and implemented outside of Kubernetes control and made to
interface with Kubernetes through an external module [77].
The external custom scheduler runs side-by-side the default
Kubernetes scheduler and either of the two schedulers is
invoked depending on the requirement.

Docker Swarm is another popular container orchestration
tool, native to the Docker engine. It implements two simple
scheduling strategies namely random and spread [28]. In a
random strategy, containers are placed randomly on nodes,
while a spread strategy attempts to balance the load, and
so places new containers on nodes with the least workload.
The spread strategy gives a better latency than the random
strategy [28]. Docker Swarm scheduler is advantageous due
to its simplicity, but is not as robust as Kubernetes for most
real-world use cases.

As with Kubernetes, some researchers have proposed mod-
els to enhance Docker Swarm for edge servers. Authors
in [28] extend the Docker Swarm functionalities. The
scheduling algorithm is based on the Dijkstra’s algorithm
which calculates the latencies between the end users and
the edge nodes. Another algorithm selects the most adequate
edge node to place a container service, such that latency
is minimized. In [82], the authors develop a model which
scans all container deployment requests and prioritizes them
according to metrics defined by the orchestrator. A com-
ponent in the model periodically probes the edge nodes to
get the relative latency between cluster nodes. It stores the
information as a table, sorting the nodes in terms of relative
latency. The scheduler allocates containers on the basis of
latency and distance of user to edge node. Mendes [83] extend
the functionalities of Docker Swarm to make it more flexible
to overbooking. Overbooking is allocating more resources
beyond the nominal capacity of the edge node. The author
designed an algorithm that uses the energy efficiency levels
at the nodes to schedule container placement. In the schedul-
ing model three levels of resource utilization are defined
namely: low, desired and degradation energy efficiency. Their
model utilizes a host registry that lists, in descending order,
the total resource utilization of each host in each level. Prior-
ity scheduling is given to the first elements (nodes) in the list
of low energy efficiency nodes, so that those nodes can move
to the desired level of energy efficiency.

There are other container orchestration tools such as
Marathon by Apache Mesos and Cloudify [21]. Within the
literature on scheduling models for container placement in

68034

edge computing, there is paucity of reported use cases for
these and other orchestration tools.

V. CONTAINER PLACEMENT SCHEDULING FRAMEWORKS
AND ALGORITHMS FOR EDGE COMPUTING
The container placement problem in general is a decision-
making problem. It is how the edge server scheduler can
optimally allocate incoming computing requests and relocate
already running computations, given a set of user require-
ments, operational goals and system constraints. The decision
is for multi-container placement in a multi-node cluster.
Container placement scheduling models are continually
being advanced for edge computing. The focus of this study
is not on the functionalities of scheduling models, since
functionality is influenced by the decision factors relating to
the specific use case. This study focuses on the frameworks
that have been used in building the scheduling models. The
frameworks explain how the container placement problem
is formulated i.e. how to convert the problem to one that is
solvable, analytically and logically. The problem formulation
determines the logic that is inputted into the algorithm, as well
as the type of algorithm that is used, because the algorithm
is used to solve the formulated problem. In addition to the
framework, this section reviews the types of algorithms that
have been used to solve the container placement problem,
such as heuristic, metaheuristic, graph-based and deep rein-
forcement learning.

A. SCHEDULING FRAMEWORKS FOR CONTAINER
PLACEMENT PROBLEM IN EDGE COMPUTING

The container placement problem can be formulated in dif-
ferent ways. The Kubernetes scheduler for example is based
on a greedy multi-criteria decision-making framework. This
section presents the scheduling frameworks that have been
used to model the variety of container placement problems in
edge computing.

1) OPTIMIZATION-BASED FRAMEOWRKS
Optimization modelling is a well-known method of mod-
elling complex problems, using analytical functions. The con-
tainer placement and migration problem in edge computing
can be modelled using optimization modelling, as it consists
of a set of decision variables, decision constraints, objective
functions and model assumptions [84]-[86]. In the container
placement problem in edge computing, the objective function
relates to the goals such as minimizing latency [84], min-
imizing overall cost of providing edge services [12], [39],
minimizing total energy used by the server [86] and min-
imizing load imbalance [39]. Satisfying SLA is a maxi-
mization objective [10], [33]. Many of the problems tend
towards a joint optimization problem, see examples in [14],
[39], [71], [84]-[86]. This addressed the tradeoffs that may
exist while attempting to fulfil one objective over another.
The decision variables are the scheduling decisions to be
taken, such as which computing tasks to accept [10], [87],
what containers will the task be assigned to [87], what edge

VOLUME 9, 2021

0. Oleghe: Container Placement and Migration in Edge Computing: Concept and Scheduling Models

IEEE Access

nodes will the containers be deployed [33] or migrated [39].
Constraints in optimization problems can be described as
finite resources that the decision maker has to consider when
taking the decision. Constraints for an optimization problem
are case dependent, i.e. each unique problem has its own
distinct set of constraints. Authors in [10] propose to max-
imize system utility, using a set of constraints that guarantees
that the sum of the resources needed to deploy and run the
container on the edge node is less than the total amount of
available resources on the node. In [11] the authors propose a
data block placement and task scheduling joint optimization
model. In their model one of the constraints forces each task
to be processed on only one container. Others have modelled
energy, CPU and latency-related constraints [12], [13] and
bandwidth constraints [12].

The modelling of the container placement problem using
an optimization-based framework permits the problem to
be converted to one that is mathematically solvable. The
scheduling algorithm works to find a solution that fulfils the
objective function. By so doing, it arrives at an optimal or
near-optimal solution.

There are some drawbacks with using optimization models
generally. The model designer has to be well grounded in
integer, linear and non-linear program modelling. The com-
plexity of the optimization problem, and the time taken to
solve it, is a factor of the type and number of constraints.
Non-linear constraints add complexity. For this reason, most
constraints used in the optimization model are either linear or
binary [88], and the number of constraints is normally below
five. Another drawback is with the use of assumptions, which
can reduce the real-world efficacy of the eventual model.

2) MULTIDIMENSIONAL KNAPSACK
The Knapsack model can be used in situations where there
are more items than can be accommodated in a given space.
The knapsack problem can be described within the context
of containers in edge computing. Suppose each edge node is
a knapsack with CPU capacity and each container is an item
with CPU requirement to be placed on the edge node. The
knapsack problem exists when there are more container appli-
cations than the edge node CPU capacity can accommodate.
Assume there are n container applications, w is the CPU
requirement of each application and c is the CPU capacity of
the edge node. Suppose also that v is the degree of value of the
application. For instance, if the owner of the edge node seeks
to maximize SLA on latency, an object recognition request
from an autonomous vehicle will hold more value than a
request to filter data for onward transfer to a cloud-based
database. The objective of the scheduler is to select, at every
time step, a subset of requests to place in the edge node, such
that the overall value is maximized within the constraint c.
This can be modelled as a knapsack problem using Equa-
tions 1-3 [89]:

n
max Z ViXi (1)
i=1

VOLUME 9, 2021

n
subject to: Z wixi< ¢ 2)
i=1
xic{0,1} Vi 3)

The binary decision variable x; is introduced for each
container application, where x; = 1 if the i-th request is
selected and placed on the edge node, otherwise x; = 0 (hence
the name 0-1 knapsack problem). The knapsack problem has
been proven to be NP-hard [89]-[91].

In the real world, there are multiple edge nodes as well
as multiple resources e.g. CPU, memory, disk and energy.
In such a scenario, the problem becomes a multidimensional
knapsack problem (MDKP), formulated as follows:

Assume there are m numbers of edge nodes with resource
capacities ¢; for j = 1, ..., m. The binary decision variable
can be represented as xi ; = 1 to represent that container i is
selected and placed into edge node j, xi,; = 0 otherwise. The
MDKP can be formulated as Equations 4-7.

max Z Z ViXi,j @)

j=1i=1

n

subject to: Zwixich vj @)
i=1
m
inng Vi (6)
j=1
x;je{1,0} Vi,j. N

Authors in [11] model the placement of data block contain-
ers on edge nodes as a 0-1 MDKP. Authors in [33] modelled
each edge node as a knapsack with constrained CPU and
memory, while each application is considered as an item to
be placed in each knapsack. In [10] and [92], the authors
model the selection of tasks to accept and those to place on
containers as a multidimensional knapsack problem.

MDKTP is typically solved using dynamic programming
and branch-and-bound techniques [89]. These techniques are
hampered in large scale MDKPs, which are better handled by
algorithms such as Tabu search [11].

3) MARKOV DECISION PROCESS

Markov Decision Process (MDP) provides a mathematical
framework for modeling a system as a set of states and actions
to be taken given the current state. MDP framework seeks to
find the immediate optimal actions, given the current state sit-
uation, while considering the future outcomes. Subsequently,
the key elements in MDP are discussed in relation to container
placement problem in edge computing.

In MDPs, an agent can be described as the decision maker,
for example the container scheduling agent [81]. In an MDP,
the state space is the set of situational conditions that initiates
a decision to be made [93], such as the changing distance
between an end device and edge node, which triggers a
container migration [94]. A state can also be the current
workload [64], or the queue of computing requests [63].

68035

IEEE Access

0. Oleghe: Container Placement and Migration in Edge Computing: Concept and Scheduling Models

An MDP also includes a set of actions that can be performed
by the agent, when moving from one state space to another,
for instance to migrate or not to migrate a container [88].
Selection of an action is through exploration, where the agent
randomly selects an action [95], through exploitation, where
agents take actions based on previous actions taken [96],
or through a balancing of both strategies [95]. Rewards are
assigned for taking an action in a state. In the context of
container-based edge computing, the reward can be linked to
the objective function, for instance to minimize total system
cost over time [94], [97]. In [85], the authors explain reward
succinctly as computation completion time. The shorter the
time, the higher the reward, and any computation that exceeds
the SLA time limit is punished with a negative reward. Accu-
mulated rewards are calculated at each time step or action
and stored as Q-values, to be used with an exploitation action
selection approach. An agent in MDP tries to maximize the
accumulated rewards it receives from each action.

In MDP, a policy is a decision rule used at every decision
time step [93]. It is also a sequence of decision rules to be
used at all decision epochs [94]. In [88], the author gives
examples of such decision rules as whether to always migrate,
never migrate or infrequently migrate containers. A policy is
a function of the current state. The goal of an MDP is to find
the policy at each state that maximizes the expected reward
of executing that policy, given the current state situation.

Discount factors are used to balance the trade-off between
immediate and future rewards [98], i.e. it controls the weight
given (between 0 and 1) to short-term and long-term rewards.
Otherwise, reward accumulation becomes unending. A dis-
count factor closer to 0, implies that immediate rewards are
more important, and rewards obtained later are discounted
more than rewards obtained earlier. As an example, if compu-
tation latency is to be minimized, then by setting a discount
factor —> 0, an MDP-based algorithm will minimize the
instantaneous latency. By setting a discount factor — 1,
the algorithm will minimize the long-run system latency,
without considering the short-term consequences. The setting
of discount factor is application dependent [98]. However,
some guidelines exist, for instance, if the service duration is
going to be long, the discount factor can be set closer to 1,
since a long-term horizon is the case [88]. The discount factor
values are plugged into the computation for the accumulated
rewards.

Han et al. [81] investigated how edge access points can
optimally service computing requests that are received from
multiple edge nodes. Containers are dispatched from the edge
access points to the edge nodes. They modelled a multi-agent
deep reinforcement learning scheduling model using MDP.
The edge access point is the agent. The state space in the
formulation consists of: the service type and delay require-
ment of the current dispatching request, (ii) the queue infor-
mation of requests awaiting dispatch at the edge access point,
(iii) the queue information of unprocessed requests at the
edge node, (iv) the available CPU, memory and storage
resources at the edge node, (v) the edge node number label

68036

and (vi) the measured network latency between the edge
access point and the cloud. The individual action space of the
edge access point agent specifies where the received request
can be dispatched to. Each agent attempts to improve the
long-term throughput while ensuring the load balancing of
the edge network.

MDP framework is the basis for Deep Reinforcement
Learning-based algorithms. These are amongst the most effi-
cient algorithms. By framing the placement problem using
MDP, the scheduler is being set up for a deep reinforcement
learning-based model. MDP has a lot of moving parts (ele-
ments), which adds complexity to the modelling process.

4) LYAPUNOV OPTIMIZATION
Container placement can be viewed as a queuing system,
where containers are queued or buffered before placement.
This type of system can be modelled using the queuing-aware
Lyapunov optimization framework. When dealing with net-
work queues, the Lyapunov optimization framework has
proven to be beneficial. It is used to achieve optimal control
of the system by introducing dynamic coefficients [12]. The
state of a system at an instant in time can be described using
a non-negative multidimensional function, called a Lyapunov
function. The function is defined in such a way that it grows
when the system moves towards undesirable and unstable
states. The objective is to make the Lyapunov function drift
towards zero (stability). A typical goal is to stabilize all
network queues while optimizing some performance objec-
tive(s) [63], [86], such as minimizing average energy [86].
The Lyapunov function can be described as follows:
Suppose an edge network evolves in discrete time
t € [1,...,n]. The task accumulation at time slot ¢ given by
the Lyapunov function is given by Equation 8.

1 n
Loy=5) 0®? ®)
i=1

The Lyapunov drift is the difference in Lyapunov function
values at two consecutive time slots [96] and is given by
Equation 9.

AL(t)=L(t+1)—L(@) ©)

A drift closer to zero indicates a more stable queue, which
is the ideal case. To quantify the effect of the drift on the
system, such as system cost or energy, a non-negative control
coefficient V is introduced [12]. If the scheduler is to stabilize
the task queue while minimizing the time average system cost
C (container placement cost), the drift-plus-penalty expres-
sion f(¢) is defined as Equation 10:

f@O=AL@)+V-C() (10)

The V parameter can be chosen such that the time averaged
C(t) is arbitrarily close to optimal. The larger the value
of V, the greater the emphasis on cost [96]. The problem
is then reduced to minimizing the upper bound of the drift
plus penalty function [96]. By controlling the f(¢) at each

VOLUME 9, 2021

0. Oleghe: Container Placement and Migration in Edge Computing: Concept and Scheduling Models

IEEE Access

time step, the scheduler can control the queue length while
minimizing system cost.

Authors in [63] build a dynamic service migration and
workload scheduling model. Their scheduler is able to decide
where services should be migrated in response to user mobil-
ity and demand variation. They model the problem as a
sequential decision making MDP. They use Lyapunov opti-
mization approach to convert the constrained MDP into a
sequence of unconstrained stochastic shortest path prob-
lems, solved over consecutive renewal time frames. Some
researchers have investigated a system whereby parked vehi-
cles with computing capabilities can be added to a network
of edge nodes [86]. They studied how computing services
can be migrated from fixed road side edge servers to the
parked vehicles. They first model the container scheduling
problem as an optimization problem. The Lyapunov opti-
mization function is then used to reduce the optimization
problem to a per-slot optimization problem. This way only the
current time slot information is needed. In [12], the authors
studied service migration for vehicular edge computing. They
formulate and solve a cost-minimization container deploy-
ment problem, using the Lyapunov function. The Lyapunov-
based algorithm allowed the deployment decision to be made
greedily, based simply on the current system states with-
out considering the future knowledge of stochastic factors.
Authors in [99] design a service placement scheduling model
for cost-efficient mobile edge computing. They propose to
minimize service latency and migration cost. They formulate
the problem as a stochastic optimization problem and use
Lyapunov framework to solve it. In their model, historical
measurements of undesirous migration costs were used to
construct a virtual queue with initial queue backlog of 0. Any
queue backlog at time slot t for the virtual queue is taken as
the exceeded cost of service migration. The stability of the
virtual queue is used as a control to keep the migration cost
minimized.

The Lyapunov optimization framework can been used to
convert an optimization problem to a queue-based prob-
lem [63]. It has proven beneficial in service migration place-
ment problems [63], [86]. The Lyapunov optimization frame-
work works on the basis of a queuing system, which does not
guarantee a solution that tends towards a global optimal one.

5) DIRECTED GRAPH NETWORK

The container placement problem and the topology of
edge networks influence the use of directed graph net-
work [16], [61]. A directed graph is used to convert the
container placement problem to a flow-based problem. Fig-
ure S5 depicts this flow. End users Ul to U4 submit com-
puting tasks, which are mapped to containers C1 to C4.
The containers C1 to C4 are then mapped to edge nodes
N1 to N4 as shown. The minimum number of paths is four
representing the: i) the task request, ii) the task placement on
a container, iii) the container placement on an edge node and
iv), the completed task or response. For a migration problem,
the number of paths may be more, depending on the number

VOLUME 9, 2021

()
1 T2

T2
T2
LE

T4 T4

us

R G
;

FIGURE 5. Mapping service of request to containers and mapping
containers to edge nodes, using directed graph network.

of migrations used in servicing a request. This leads to a
multi-level decision making process for the scheduler.

By modelling the container placement and migration prob-
lem as a directed graph, Zhou et al. [13] calculate the optimal
flow path that minimizes latency, while authors Hu ez al. [61]
establish an optimal path that minimizes cost. One of the
motivations for modelling the container placement problem
with a directed graph is to convert the problem to an opti-
mization flow problem such that an optimization flow-based
algorithm can be used to solve it [61]. Examples of such
algorithms are the cycle canceling algorithm and successive
shortest path algorithm.

Undirected bipartite graph networks are non-flow based.
Figure 6 can be used to describe this concept for mapping
tasks (service requests) to containers. The set of tasks and
containers make up the vertex pair. Tasks T1 to TS are to be
mapped to containers C1 to C5. The topology (Figure 6a)
shows the possible mappings, depicted using the edges, i.e.
the links. Task T1 can be mapped to containers C1 and C2;
Task T2 can only be mapped to container C1 and so on.
However, only one task can be mapped to a container, since
a container, by definition, cannot service more than one task.
A graph matching attempts to generate a mapping such that
no two edges share the same vertex. The vertices (T2 and
C3) without edges causes the mapping to be imperfectly
matched. A perfect matching is where all tasks are mapped.
A maximum matching attempts to map the largest number of
tasks.

Graph edges may represent inter-edge node distance
and bandwidth [36] and other network-specific parameters.
In directed graph networks weights are assigned to edges. The
goal is to optimize the total weights of all edges in a perfectly
matched graph. There are graph-based algorithms, such as the
Kuhn—Munkres algorithm, which can be used for solving the
optimization problem.

In the development of their container scheduling model,
authors in [11] have converted the task scheduling problem
to a problem of weighted bipartite graph matching. They
describe the use of bipartite graph matching. A bipartite

68037

IEEE Access

0. Oleghe: Container Placement and Migration in Edge Computing: Concept and Scheduling Models

a /N SN SN/ N
. T T2 T3 . T4 T5
\ \ \ / N\ / \\
C1 c2 c3 ca c5
/ N / . / A \
. T T2 T3 T4 T
C1 Cc2 c3 ca c5

FIGURE 6. Mapping of service request to containers, using undirected
graph network.

graph is such that the number of tasks must be equal to the
number of containers. In a situation where there are more
containers than tasks, the edge orchestrator removes the extra
containers [11]. If the number of tasks is more than that of
containers, hypothetical containers are added to make the
number equal. Then a graph-based algorithm can be applied
to find the optimal solution of the problem of weighted
bipartite graph matching. The edges for the hypothetical
containers are assigned a weights of zero so that they are not
executed by the algorithm, and thus will not be selected for
scheduling [11].

A graph-based model is useful for mapping the edge net-
work topology. A graph-based approach can also perform
the concurrent container scheduling [61]. In an undirected
bipartite graph, the matching increases in complexity as the
number of vertices (tasks and containers) increase.

B. ALGORITHMS
Algorithms are very efficient in solving many complex prob-
lems. The scheduling frameworks described so far have been
used to convert the container placement problem to a problem
that can be solved using an algorithm. Some of the for-
mulated problems are combinatorial optimization problems
(see Section IV-A-1). They have also been proven to be NP-
hard [13], [85], [86]. Such problems can be solved using
approximation algorithms or heuristics algorithms [100].
These algorithms are able to solve complex optimization
problems very quickly and speed up the decision-making
process of the scheduler. If the algorithm takes too long to
arrive at a solution, the scheduler will be tardy in the container
placement decisions, which can increase the overall latency of
computation and reduce QoS. Algorithms, like frameworks,
play a pivotal role in container scheduling models.

Heuristic refers to an approach that seeks an optimal or
near-optimal solution as quickly as possible, but does not
guarantee that it is the most optimal. Heuristic algorithms

68038

Algorithm 1 Example Pseudocode for Heuristic Algorithm
Input = set of inputs, computation to run
Output = optimal solution at each iteration
1- Begin with initial or most recent optimal solution
2- Run computation and generate new solution
3- If new solution is better than most recent optimal solu-
tion, choose new solution, otherwise retain most recent
solution
4- End

assist to balance the trade-off between time complexity of
computation and accuracy.

A heuristic algorithm searches for an optimal solution at
every iteration. If it finds a better solution, it makes the current
solution as the optimal one, otherwise, the algorithm keeps
the most recently found solution [101]. The pseudocode for a
heuristic algorithm is described in Algorithm 1.

Fahs and Pierre, [80], attempt to limit the number of appli-
cation replicas by scheduling where they are placed. They use
a heuristic algorithm to schedule each replica placement. One
of the objectives of the scheduler was to place replicas closer
to the end user, using a proximity metric. Another objective
was to minimize the load imbalance in the cluster arising from
replica placement or migration. In the heuristic, application
replicas are ordered according to usage. The frequently used
replicas are more favored. The heuristic also lists replicas
according to their proximity measure. Replicas and nodes
closer to the main sources of traffic are more favored. Their
algorithm iterates through the ordered lists and attempts to
find a solution that optimizes the objective function.

The iteration stops when an improvement is found for the
solution by a pre-defined value. If no improvement is found,
then the current placement is maintained.

Asensio et al. [16] present a heuristic algorithm in their
design of a concurrent container scheduling model. In their
model, high scores are given to applications that require a
specific runtime environment, applications that require a low
number of pods and applications that do not have to be iso-
lated. For edge nodes, high scores are given to nodes having
large resources. The heuristic algorithm is used to define the
scoring functions to rank container applications and nodes.
In each iteration of the algorithm run time, a percentage of the
highest ranked applications is sorted in a random manner, and
the algorithm tries to allocate all these applications to nodes
in an ordered manner.

The Greedy search algorithm is a well-known approxima-
tion algorithm, based on the heuristic concept. The Kuber-
netes scheduler uses a greedy algorithm. Algorithm 2 is a
pseudocode that describes the greedy algorithm, for schedul-
ing the placement of containerized data blocks on edge nodes.
In the pseudocode, a set of containerized data blocks n, each
with size s are to be placed in an edge node with space E. The
objective is to maximize the value of all data blocks that can
be placed in the edge node, where greater value is placed on
larger data blocks.

VOLUME 9, 2021

0. Oleghe: Container Placement and Migration in Edge Computing: Concept and Scheduling Models

IEEE Access

Algorithm 2 Example Pseudocode for Greedy Algorithm
Input = set A of n data blocks each with data size s
Output = maximize n in space E
1- Begin
2- Rank the data blocks in order of size from largest to least

Smax = s/max = s//max = swmax cee
3- Choose a data block n,,,, that has the largest data size

Smax

4- Add nypax to E

5- Remove n,,,, from A to obtain new A

6- While E is not maximized, repeat steps 2- 5 for every
8 mae> 8 maxs 8" max -..until E is maximized

7- End

The first fit method is a very common scheduling approach
in container placement decisions. In first fit approach,
the scheduler attempts to place a container on the first edge
node that can accommodate it [85]. This is a greedy concept
and is used by the Docker Swarm scheduler.

Mendes [83] describe the use of a greedy algorithm for
their energy-aware container placement scheduling model.
Their algorithm uses the energy efficiency levels at the nodes
to schedule container placement. In their scheduling model
they define three levels of resource utilization: low, desired
and degradation energy efficiency. Their model utilizes a
host registry that lists, in descending order, the total resource
utilization of each host in each level. Priority placement is
given to the first elements (nodes) in the list of low energy
efficiency nodes so that those nodes can move to the desired
level of energy efficiency

The min-min algorithm is a heuristic-based algorithm that
mimics the greedy approach. In min-min, the minimum com-
pletion time for each task is computed with respect to all
available edge nodes [102]. The task with the overall min-
imum completion time is selected and assigned to the cor-
responding edge node. The newly mapped task is removed
from the list, and the process iterates until all tasks are
mapped [102]. The main limitation with the min-min algo-
rithm is that it can lead to load imbalance because it attempts
to schedule small tasks first [102]. Chen et al. [103] use
a min-min algorithm in their container scheduling model.
In their model, containers with the least increase in energy
consumption are prioritized.

Tabu-search algorithm is a heuristic-based algorithm.
It searches through a set of solutions (from an updated
tabu list) rather than one solution at each iteration, i.e.
it employs a neighborhood search. It uses memory to store
previous solutions arrived at, so these solutions can be
retrieved at future iterations. The authors in [11] used
Tabu-search to solve their knapsack problem formulation for
the optimal placement of containerized data blocks in edge
computing.

Another heuristic-based algorithm is Ant Colony. It can
be used for finding the optimal paths through directed graph
networks [39]. The Ant Colony algorithm is non-iterative,

VOLUME 9, 2021

rather it uses random sampling probability to take decisions.
In a study done by [39], the authors utilize Ant Colony algo-
rithm in their container migration mechanism for balancing
workload in edge servers. The problem is formulated as a
multi-objective optimization problem. Ant Colony algorithm
is used to solve the optimization problem while updating the
global pheromone of all migrations.

Particle swarm optimization, is yet another heuristic-based
algorithm. It has been used by Fan et al. [104], where
they have formulated the container placement problem as a
multi-objective optimization problem, with the joint objec-
tives to minimize latency, minimize the number of failed
requests, and minimize the load imbalance within the clus-
ter. They describe the use of particle swarm optimization in
solving the formulated optimization problem.

Like particle swarm and ant colony, the bacteria foraging
algorithm is a population-based, nature-inspired metaheuris-
tic algorithm. Sobhanayak et al. [66] proposed a scheduling
model that aims to maximize resource utilization in the edge
network. They formulate the optimal placement of tasks as
an optimization problem and use a Hybrid Bacteria Foraging
algorithm to solve it. The main benefit of using the algorithm
is that it gives a feasible subjective solution in polynomial
time.

The Kuhn-Munkres Hungarian algorithm is a graph-based
algorithm, which can be used to find maximum-weight
matchings in bipartite graphs, see applications in [11]
and [86]. The Kuhn-Munkres algorithm adds time complexity
of O(]V|3), where V is the number of vertices.

A directed graph network is also a flow-based network.
Hu et al. [61] model a concurrent container scheduling
problem as a minimum cost flow problem. Minimum cost
flow problems are solved using the cycle cancelling algo-
rithm [105]. Hu et al. [61] aim to minimize the total cost of
the flow in the directed graph network. They used the cycle
cancelling algorithm to find an optimal solution.

Reinforcement learning is a classification-based algorithm
concerned with how intelligent agents (such as a container
scheduler) should take actions in an environment, in order
to maximize the notion of cumulative reward. Reinforce-
ment learning can be used to solve complex intractable prob-
lems that have been modelled using MDP. The purpose of
reinforcement learning is for the agent to learn an optimal,
or near-optimal policy that maximizes the user-specified
reward function. In [84], authors model a microservice coor-
dination problem using an MDP. Reinforcement learning,
with a greedy selection policy, was used to find the opti-
mal decision. Authors in [85] propose to maximize sys-
tem utility in the joint scheduling of delay-sensitive and
computation-oriented tasks. They model the problem as an
optimization problem and use Deep reinforcement learning
with deep deterministic policy gradient to arrive at an optimal
solution. More recently, Han et al. [81] propose a scheduling
system that decentralizes the scheduling decisions to the
multiple master nodes. To enable this, they use a multi-agent
deep reinforcement learning algorithm.

68039

IEEE Access

0. Oleghe: Container Placement and Migration in Edge Computing: Concept and Scheduling Models

TABLE 2. Container placement scheduling models in edge computing: A
matching of algorithms to frameworks for.

Framework
Optimization modelling

Algorithm
Heuristic (Maheshwari et al. 2018)
Metaheuristic (Ma, Shao et. al., 2020)

Heuristic (Araldo et al., 2020;
Faticanti et a., 2029; Tang et al.,
2020) Metaheuristic (Li, Bai et al.,
2019)

Multi-dimensional
knapsack problem

Markov decision process Reinforcement learning (Wang, Guo
etal., 2019; Tang, Zhou et al., 2018;

Han et al., 2021)

Lyapunov function Heuristic (Zhao, Wang et al., 2020)

Hungarian (Ge et al., 2020)

Metaheuristic (Zhou et al., 2020)
Cycle cancelling (Hu et al.,2020)
Heuristic (Asensio et al., 2020)

Directed Graph Network

Undirected Graph Network ~ Metaheuristic (Li, Bai et al., 2019)

Heuristic (Rausch et al., 2021)

VI. DISCUSSION

Much research effort has been expended on the development
of scheduling models for container placement and migra-
tion in edge computing. This study accentuates two critical
aspects of the model building process, namely the frame-
works for modelling the scheduling problem and the types
of algorithms that are used. The frameworks convert the con-
tainer placement scheduling problem to one that can be solved
using an algorithm. Approaches that have been used to frame
the container placement scheduling problem include: Opti-
mization Modelling, Multi-dimensional Knapsack Problem,
Markov Decision Process, Lyapunov Optimization Mod-
elling and Graph Network. The container placement schedul-
ing problem is a complex NP-hard problem and warrants
the use of such modelling frameworks and subsequent algo-
rithms. The types of algorithms that have been used include:
heuristic (and metaheuristics) graph-based and reinforcement
learning.

One would expect to find definitive patterns emerging, i.e.
patterns that link frameworks with algorithms. Table 2 has
been used to register the few studies where patterns were
observed, but still some discrepancies exist. For instance,
reinforcement learning algorithm has typically been used
where the container placement problem was modelled using
Markov Decision Process.

However, Zhang et al. [85] model a delay-sensitive and
computation-oriented container placement problem using an
optimization modelling framework. They use a reinforce-
ment learning-based algorithm to solve the formulated prob-
lem. Although the types of algorithms are mainly heuris-
tic, graph-based and reinforcement learning, the variety of
algorithms that have been used is unexplainable. On the
other hand, findings indicate that the container placement
problem is majorly a joint optimization problem. Most of the
scheduling models are based on optimization models. All of
the frameworks necessitate solving an optimization problem.

68040

Most of the edge container placement scheduling decisions
are taken on the basis that each request is assigned to a single
container and each container is assigned to no more than one
edge node. Computations such as distributed or parallel com-
puting sometimes require multi-container, multi-node place-
ment. There is paucity of scheduling models that consider this
type of container placement problem [15].

Container migration is a unique type of container place-
ment, because the placement is to relocate an already run-
ning container from one edge node to another. This type of
container placement is rarely covered within the scheduling
models so far advanced [13]. It is unclear how migrating
containers are prioritized and placed ahead of new requests.

Containerized edge computing is predicted to grow expo-
nentially. As tasks, containers and edge devices increase,
the edge container placement scheduler will be more chal-
lenged in the near future. Currently, most of the scheduling
models rely on a centralized decision-making system [15].
These centralized servers will become overloaded as edge
computing continues in its growth trajectory. This will neces-
sitate more clusters, further increasing the workload for the
orchestrator in managing many master nodes. This can lead to
increased latency because in a centralized scheduling system,
additional time is taken to upload system states and wait for
dispatch decisions [81]. Decentralizing the scheduling deci-
sions to multiple edge servers is inevitable [98]. The work by
Han et al. [81] is among the very few efforts in this area. They
describe, in detail, a decentralized Kubernetes-oriented con-
tainer scheduling model for edge servers. In their system, they
deploy a scheduling agent on multiple master nodes. Exper-
iments show that the scheduling delay of centralized service
orchestration is almost nine times that of the decentralized
approach. Casquero et al. [78] describe a custom scheduler
for Kubernetes orchestrator that distributes the decision logic
of the scheduler among edge nodes. Their agentified sched-
uler is supposed to reduce the workload at the control plane
of the Kubernetes server. The node filtering and node ranking
function normally done by the server is undertaken by agents
embedded in the edge nodes. The authors built a multi-agent
scheduling platform which receives the node filtering infor-
mation from all nodes. Then node ranking is fulfilled through
negotiation among the agents in the filtered edge nodes.
Experimental tests showed that the scheduling times for the
agentified scheduler were lower than those from a central-
ized scheduler. Wang et al. [98] investigate the dynamic
service migration in mobile edge computing. They model
the problem using Markov Decision Process and develop
an algorithm for computing the optimal service placement
policy. Their algorithm is based on a modified policy itera-
tion approach. Although they investigate a non-containerized
edge server, their approach can be extended to the ser-
vice placement of container-based applications. While they
focused on a centralized control mechanism, their model is
applicable in a decentralized system as well. The works in
along the research stream relating to decentralized schedulers
are not yet definitive. More work is needed in this area.

VOLUME 9, 2021

0. Oleghe: Container Placement and Migration in Edge Computing: Concept and Scheduling Models

IEEE Access

The container placement problem is mostly formulated on
the basis that the edge nodes are stationary. Mobile edge
computing is likely to grow as autonomous vehicles and
augmented reality applications become more widespread.
Stationary edge nodes are mostly sparsely distributed, and
this affects mobile edge computing, such that edge ser-
vices have to be partially fulfilled on the cloud in some
instances [10], [67]. Stationary edge nodes will be challenged
in the near future, which makes a case for mobile edge
nodes, such as using vehicular edge computing [86]. Vehicu-
lar edge computing allows edge computing to be ubiquitous,
but scheduling the placement and migration of containers
in moving edge nodes opens up new challenges and novel
research prospects.

VIi. CONCLUSION

In this study, the container placement scheduling problem
in edge computing has been investigated. First the concept
of container placement and migration is clarified. Then,
frameworks and algorithms that have been used to build
the scheduling models were reviewed. A number of key
findings were reported. The container placement problem in
mostly abstracted using multi-objective optimization models
or graph network models, to convert the problem to one
that can be solved using an algorithm. The scheduling algo-
rithms are predominantly heuristic-based algorithms, which
are able to arrive at sub-optimal solutions very quickly. There
is paucity of container scheduling models that consider dis-
tributed edge computing tasks. Research in decentralized
scheduling systems is gaining momentum. The future outlook
is in scheduling containers for mobile edge nodes.

This study has focused on the frameworks and algorithms
that have been used in building container scheduling models
for edge servers. The study showed that optimization mod-
elling frameworks and heuristic-based algorithms are ubig-
uitous. This may suggest that optimization modelling and
heuristic algorithms are more advantageous than others. The
current study is theoretical in nature, and would be limited to
only a theoretically-based comparative analysis. An empirical
study is needed to fulfil a more factual comparative analysis.

ACKNOWLEDGMENT

The author is deeply grateful to the three anonymous review-
ers, whose comments and suggestions contributed to the
enhancement of the final version of the article.

REFERENCES

[1] J. Shuja, K. Bilal, S. A. Madani, M. Othman, R. Ranjan, P. Balaji,
and S. U. Khan, “Survey of techniques and architectures for designing
energy-efficient data centers,” IEEE Syst. J., vol. 10, no. 2, pp. 507-519,
Jun. 2016.

[2] K. Nakanishi, F. Suzuki, S. Ohzahata, R. Yamamoto, and T. Kato,
“A container-based content delivery method for edge cloud over wide
area network,” in Proc. Int. Conf. Inf. Netw. (ICOIN), Jan. 2020,
pp. 568-573.

[3] M. Salehe, Z. Hu, S. H. Mortazavi, I. Mohomed, and T. Capes,
“VideoPipe: Building video stream processing pipelines at the edge,” in
Proc. 20th Int. Middleware Conf. Ind. Track, Dec. 2019, pp. 43-49.

VOLUME 9, 2021

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

R. Meulen, “What edge computing means for infrastructure
and operations leaders,” Web Post Infrastruct. Oper.,, Garner,
Tech. Rep., 2018. Accessed: Mar. 20, 2021. [Online]. Available:
https://www.gartner.com/smarterwithgartner/what-edge-computing-
means-for-infrastructure-and-operations-leaders

P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb,
“Survey on multi-access edge computing for Internet of Things real-
ization,” IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 2961-2991,
Jun. 2018.

S. Wang, J. Xu, N. Zhang, and Y. Liu, “A survey on service migration in
mobile edge computing,” IEEE Access, vol. 6, pp. 23511-23528, 2018.
K. Cao, Y. Liu, G. Meng, and Q. Sun, “An overview on edge computing
research,” IEEE Access, vol. 8, pp. 85714-85728, 2020.

C. Pahl, S. Helmer, L. Miori, J. Sanin, and B. Lee, “A container-based
edge cloud PaaS architecture based on raspberry pi clusters,” in Proc.
IEEE 4th Int. Conf. Future Internet Things Cloud Workshops (FiCloudW),
Aug. 2016, pp. 117-124.

P. Kayal, “Kubernetes in fog computing: Feasibility demonstration, limi-
tations and improvement scope,” in Proc. IEEE 6th World Forum Internet
Things (WF-10T), Jun. 2020, pp. 1-6.

A. Araldo, A. D. Stefano, and A. D. Stefano, “‘Resource allocation for
edge computing with multiple tenant configurations,” in Proc. 35th Annu.
ACM Symp. Appl. Comput., Mar. 2020, pp. 1190-1199.

C. Li, J. Bai, and J. Tang, “Joint optimization of data placement and
scheduling for improving user experience in edge computing,” J. Parallel
Distrib. Comput., vol. 125, pp. 93—105, Mar. 2019.

P. Zhao, P. Wang, X. Yang, and J. Lin, ““Towards cost-efficient edge intel-
ligent computing with elastic deployment of container-based microser-
vices,” IEEE Access, vol. 8, pp. 102947-102957, 2020.

A. Zhou, S. Wang, S. Wan, and L. Qi, “LMM: Latency-aware micro-
service mashup in mobile edge computing environment,” Neural Comput.
Appl., vol. 32, no. 19, pp. 15411-15425, Oct. 2020.

K. Kaur, S. Garg, G. Kaddoum, S. H. Ahmed, and M. Atiquzzaman,
“KEIDS: Kubernetes-based energy and interference driven scheduler for
industrial IoT in edge-cloud ecosystem,” IEEE Internet Things J., vol. 7,
no. 5, pp. 4228-4237, May 2020.

V. Cardellini, F. L. Presti, M. Nardelli, and F. Rossi, ““Self-adaptive con-
tainer deployment in the fog: A survey,” in Proc. Int. Symp. Algorithmic
Aspects Cloud Comput. Cham, Switzerland: Springer, 2019, pp. 77-102.
A. Asensio, X. Masip-Bruin, J. Garcia, and S. Sanchez, ““On the optimal-
ity of concurrent container clusters scheduling over heterogeneous smart
environments,” Future Gener. Comput. Syst., vol. 118, pp. 157-169,
May 2021.

J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, and P. Mohapatra, “Edge
cloud offloading algorithms: Issues, methods, and perspectives,” ACM
Comput. Surv., vol. 52, no. 1, pp. 1-23, Feb. 2019.

S. Chen, Q. Li, M. Zhou, and A. Abusorrah, “Recent advances in collab-
orative scheduling of computing tasks in an edge computing paradigm,”
Sensors, vol. 21, no. 3, p. 779, Jan. 2021.

M. S. U. Islam, A. Kumar, and Y.-C. Hu, “Context-aware scheduling in
fog computing: A survey, taxonomy, challenges and future directions,”
J. Netw. Comput. Appl., vol. 180, Apr. 2021, Art. no. 103008.

K. Matrouk and K. Alatoun, “Scheduling algorithms in fog computing:
A survey,” Int. J. Netw. Distrib. Comput., vol. 9, no. 1, pp. 59-74, 2021.
E. Casalicchio and S. Iannucci, “The state-of-the-art in container tech-
nologies: Application, orchestration and security,” Concurrency Com-
put., Pract. Exper., vol. 32, no. 17, p. e5668, Sep. 2020.

P.-J. Maenhaut, B. Volckaert, V. Ongenae, and F. De Turck, “Resource
management in a containerized cloud: Status and challenges,” J. Netw.
Syst. Manage., vol. 28, no. 2, pp. 197-246, Apr. 2020.

I. Ahmad, M. G. AlFailakawi, A. AlMutawa, and L. Alsalman, “Con-
tainer scheduling techniques: A survey and assessment,” J. King Saud
Univ.-Comput. Inf. Sci., Mar. 2021, doi: 10.1016/j.jksuci.2021.03.002.
Z.Tao, Q. Xia, Z. Hao, C. Li, L. Ma, S. Yi, and Q. Li, A survey of virtual
machine management in edge computing,” Proc. IEEE, vol. 107, no. 8,
pp. 1482-1499, Aug. 2019.

R. Du, K. Xu, and X. Liang, “Multiattribute evaluation model based
on the KSP algorithm for edge computing,” IEEE Access, vol. 8,
pp. 146932-146943, 2020.

H. Jayakumar, A. Raha, J. R. Stevens, and V. Raghunathan,
“Energy-aware memory mapping for hybrid FRAM-SRAM MCUs
in intermittently-powered IoT devices,” ACM Trans. Embedded Comput.
Syst., vol. 16, no. 3, pp. 1-23, Jul. 2017.

E. Ahmed, A. Ahmed, 1. Yaqoob, J. Shuja, A. Gani, M. Imran, and
M. Shoaib, “Bringing computation closer toward the user network: Is
edge computing the solution?” IEEE Commun. Mag., vol. 55, no. 11,
pp. 138-144, Nov. 2017.

68041

http://dx.doi.org/10.1016/j.jksuci.2021.03.002

IEEE Access

0. Oleghe: Container Placement and Migration in Edge Computing: Concept and Scheduling Models

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

68042

H. M. Fard, R. Prodan, and F. Wolf, “A container-driven approach for
resource provisioning in edge-fog cloud,” in Proc. Int. Symp. Algorithmic
Aspects Cloud Comput. Cham, Switzerland: Springer, 2019, pp. 59-76.
V. Divya and R. S. Leena, “Docker based intelligent fall detection using
edge-fog cloud infrastructure,” IEEE Internet Things J., early access,
Dec. 4, 2020, doi: 10.1109/J10T.2020.3042502.

A. Stanciu, “Blockchain based distributed control system for edge com-
puting,” in Proc. 21st Int. Conf. Control Syst. Comput. Sci. (CSCS),
May 2017, pp. 667-671.

P.-H. Tsai, H.-J. Hong, A.-C. Cheng, and C.-H. Hsu, “Distributed analyt-
ics in fog computing platforms using tensorflow and kubernetes,” in Proc.
19th Asia—Pacific Netw. Oper. Manage. Symp. (APNOMS), Sep. 2017,
pp. 145-150.

N. Tellez, M. Jimeno, A. Salazar, and E. D. Nino-Ruiz, ‘“Container-based
architecture for optimal face-recognition tasks in edge computing,” in
Proc. 4th ACM/IEEE Symp. Edge Comput., Nov. 2019, pp. 301-303.

J. Tang, R. Yu, S. Liu, and J.-L. Gaudiot, “A container based edge
offloading framework for autonomous driving,” IEEE Access, vol. 8,
pp. 33713-33726, 2020.

A. T. Z. Kasgari and W. Saad, ‘““Stochastic optimization and control
framework for 5G network slicing with effective isolation,” in Proc. 52nd
Annu. Conf. Inf. Sci. Syst. (CISS), Mar. 2018, pp. 1-6.

S. R. Chaudhry, A. Palade, A. Kazmi, and S. Clarke, “Improved QoS at
the edge using serverless computing to deploy virtual network functions,”
IEEE Internet Things J., vol. 7, no. 10, pp. 10673—-10683, Oct. 2020.

T. Rausch, A. Rashed, and S. Dustdar, “Optimized container scheduling
for data-intensive serverless edge computing,” Future Gener. Comput.
Syst., vol. 114, pp. 259-271, Jan. 2021.

F. Ramalho and A. Neto, ‘“Virtualization at the network edge: A perfor-
mance comparison,” in Proc. IEEE 17th Int. Symp. A World Wireless,
Mobile Multimedia Netw. (WoWMoM), Jun. 2016, pp. 1-6.

J. Turnbull, The Docker Book: Containerization is the New Vir-
tualization. 2014. Accessed: Jan. 14, 2021. [Online]. Available:
https://dockerbook.com/TheDockerBook_sample.pdf

Z. Ma, S. Shao, S. Guo, Z. Wang, F. Qi, and A. Xiong, “Container
migration mechanism for load balancing in edge network under power
Internet of Things,” IEEE Access, vol. 8, pp. 118405-118416, 2020.

A. Krylovskiy, “Internet of Things gateways meet Linux containers:
Performance evaluation and discussion,” in Proc. IEEE 2nd World Forum
Internet Things (WF-10T), Dec. 2015, pp. 222-227.

P. Mendki, “Docker container based analytics at [oT edge video analytics
usecase,” in Proc. 3rd Int. Conf. Internet Things, Smart Innov. Usages
(IoT-SIU), Feb. 2018, pp. 1-4.

A. M. Joy, “Performance comparison between linux containers and vir-
tual machines,” in Proc. Int. Conf. Adv. Comput. Eng. Appl., Mar. 2015,
pp. 342-346.

B. L. Ismail, E. M. Goortani, M. B. A. Karim, W. M. Tat, S. Setapa,
J. Y. Luke, and O. H. Hoe, ““Evaluation of docker as edge computing plat-
form,” in Proc. IEEE Conf. Open Syst. (ICOS), Aug. 2015, pp. 130-135.
H. Manninen, V. Jiiskeldinen, and J. O. Blech, ‘‘Performance evaluation
of containerization platforms for control and monitoring devices,” in
Proc. 25th IEEE Int. Conf. Emerg. Technol. Factory Automat. (ETFA),
Sep. 2020, pp. 1061-1064.

M. Park, K. Bhardwaj, and A. Gavrilovska, “Toward lighter containers
for the edge,” in Proc. 3rd USENIX Workshop Hot Topics Edge Comput.
(HotEdge), 2020, pp. 1-7.

Docker. What is a Container. Accessed: Feb. 18, 2021. [Online]. Avail-
able: https://www.docker.com/resources/what-container

S. McCarty, “Choosing the right container base image for your
application,” Tech. Rep., 2019. Accessed: Feb. 23, 2021. [Online].
Available: https://crunchtools.com/files/2019/05/Choosing-the-right-
container-base-image-for-your-application.pdf

Q. Qu, R. Xu, S. Y. Nikouei, and Y. Chen, “An experimental study
on microservices based edge computing platforms,” in Proc. IEEE
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), Jul. 2020,
pp. 836-841.

A. Hall and U. Ramachandran, “An execution model for serverless func-
tions at the edge,” in Proc. Int. Conf. Internet Things Design Implement.,
Apr. 2019, pp. 225-236.

J. Chabas, G. Chandra, G. Sanchi, and M. Mitra. New Demand,
New Markets-What Edge Computing Means for Hardware
Companies. Accessed: Feb. 18, 2021. [Online]. Available:

https://www.mckinsey.com/industries/technology-media-and-
telecommunications/our-insights/new-demand-new-markets-what-
edge-computing-means-for-hardware-companies

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

P. Kochovski and V. Stankovski, “Supporting smart construction with
dependable edge computing infrastructures and applications,” Autom.
Construct., vol. 85, pp. 182-192, Jan. 2018.

V. P. Betancourt, B. Liu, and J. Becker, ‘““Model-based development of
a dynamic container-based edge computing system,” in Proc. IEEE Int.
Symp. Syst. Eng. (ISSE), Oct. 2020, pp. 1-5.

M. Al-Rakhami, A. Gumaei, M. Alsahli, M. M. Hassan, A. Alamri,
A. Guerrieri, and G. Fortino, “A lightweight and cost effective edge
intelligence architecture based on containerization technology,” World
Wide Web, pp. 1-20, May 2019, doi: 10.1007/s11280-019-00692-y.

T. Tasci, J. Melcher, and A. Verl, “A container-based architecture for real-
time control applications,” in Proc. IEEE Int. Conf. Eng., Technol. Innov.
(ICE/ITMC), Jun. 2018, pp. 1-9.

T. Goldschmidt, S. Hauck-Stattelmann, S. Malakuti, and S. Griiner,
“Container-based architecture for flexible industrial control applica-
tions,” J. Syst. Archit., vol. 84, pp. 28-36, Mar. 2018.

Y. Song, J. Xie, Q. Huang, M. Wang, and J. Yu, “Design and implemen-
tation of turtle breeding system based on embedded container cloud,” in
Proc. 2nd IEEE Adv. Inf. Manage., Commun., Electron. Automat. Control
Conf. (IMCEC), May 2018, pp. 2531-2534.

R. Senington, B. Pataki, and X. V. Wang, “Using docker for factory sys-
tem software management: Experience report,” Procedia CIRP, vol. 72,
pp. 659-664, Jan. 2018.

P. Gonzélez-Nalda, I. Etxeberria-Agiriano, I. Calvo, and M. C. Otero,
“A modular CPS architecture design based on ROS and docker,” Int. J.
Interact. Des. Manuf., vol. 11, no. 4, pp. 949-955, Nov. 2017.

Z.Y. Thean, V. V. Yap, and P. C. Teh, “Container-based MQTT broker
cluster for edge computing,” in Proc. 4th Int. Conf. Workshops Recent
Adpv. Innov. Eng. (ICRAIE), Nov. 2019, pp. 1-6.

J. Reijonen, M. Opsenica, R. Morabito, M. Komu, and M. Elmusrati,
“Regression training using model parallelism in a distributed cloud,” in
Proc. IEEE Int. Conf. Dependable, Autonomic Secure Comput., Int. Conf.
Pervas. Intell. Comput., Int. Conf. Cloud Big Data Comput., Int. Conf.
Cyber Sci. Technol. Congr. (DASC/PiCom/CBDCom/CyberScilech),
Aug. 2019, pp. 741-747.

Y. Hu, H. Zhou, C. de Laat, and Z. Zhao, ‘“Concurrent container schedul-
ing on heterogeneous clusters with multi-resource constraints,” Future
Gener. Comput. Syst., vol. 102, pp. 562-573, Jan. 2020.

J. Luo, L. Yin, J. Hu, C. Wang, X. Liu, X. Fan, and H. Luo, “Container-
based fog computing architecture and energy-balancing scheduling algo-
rithm for energy 10T,” Future Gener. Comput. Syst., vol. 97, pp. 50-60,
Aug. 2019.

R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung,
“Dynamic service migration and workload scheduling in edge-clouds,”
Perform. Eval., vol. 91, pp. 205-228, Sep. 2015.

L. Toka, G. Dobreff, B. Fodor, and B. Sonkoly, “Machine learning-based
scaling management for kubernetes edge clusters,” IEEE Trans. Netw.
Service Manage., vol. 18, no. 1, pp. 958-972, Mar. 2021.

J. Shuja, K. Bilal, W. Alasmary, H. Sinky, and E. Alanazi, “Apply-
ing machine learning techniques for caching in next-generation edge
networks: A comprehensive survey,” J. Netw. Comput. Appl., vol. 181,
May 2021, Art. no. 103005.

S. Sobhanayak, K. Jaiswal, A. K. Turuk, B. Sahoo, B. K. Mohanta, and
D. Jena, “Container-based task scheduling for edge computing in IoT-
cloud environment using improved HBF optimisation algorithm,” Int. J.
Embedded Syst., vol. 13, no. 1, pp. 85-100, 2020.

S. Taherizadeh, V. Stankovski, and M. Grobelnik, “A capillary computing
architecture for dynamic Internet of Things: Orchestration of microser-
vices from edge devices to fog and cloud providers,” Sensors, vol. 18,
no. 9, p. 2938, Sep. 2018.

L. Ma, S. Yi, and Q. Li, “Efficient service handoff across edge servers
via docker container migration,” in Proc. 2nd ACM/IEEE Symp. Edge
Comput., Oct. 2017, pp. 1-13.

I. Farris, T. Taleb, A. Iera, and H. Flinck, “Lightweight service replication
for ultra-short latency applications in mobile edge networks,” in Proc.
IEEE Int. Conf. Commun. (ICC), May 2017, pp. 1-6.

C. Puliafito, C. Vallati, E. Mingozzi, G. Merlino, F. Longo, and
A. Puliafito, “Container migration in the fog: A performance evaluation,”
Sensors, vol. 19, no. 7, p. 1488, Mar. 2019.

S. Maheshwari, S. Choudhury, I. Seskar, and D. Raychaudhuri, “Traffic-
aware dynamic container migration for real-time support in mobile edge
clouds,” in Proc. IEEE Int. Conf. Adv. Netw. Telecommun. Syst. (ANTS),
Dec. 2018, pp. 1-6.

VOLUME 9, 2021

http://dx.doi.org/10.1109/JIOT.2020.3042502
http://dx.doi.org/10.1007/s11280-019-00692-y

0. Oleghe: Container Placement and Migration in Edge Computing: Concept and Scheduling Models

IEEE Access

[72]

[73]

[74]

[75]
[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92

S. Fu,R. Mittal, L. Zhang, and S. Ratnasamy, ‘‘Fast and efficient container
startup at the edge via dependency scheduling,” in Proc. 3rd USENIX
Workshop Hot Topics Edge Comput. (HotEdge), 2020, pp. 1-7.
Kubernetes. Accessed: Mar. 20, 2021. [Online]. Available:
https://kubernetes.io

A. A. Majeed, P. Kilpatrick, I. Spence, and B. Varghese, ‘‘Perfor-
mance estimation of container-based cloud-to-fog offloading,” 2019,
arXiv:1909.04945. [Online]. Available: http://arxiv.org/abs/1909.04945
A. Mirkin, A. Kuznetsov, and K. Kolyshkin, “Containers checkpointing
and live migration,” in Proc. Linux Symp., vol. 2, 2008, pp. 85-90.
(2021). CRIU. Accessed: Feb. 12, 2021. [Online]. Available:
https://criu.org/Main_Page

M. C. Ogbuachi, A. Reale, P. Suskovics, and B. Kovics, “Context-aware
kubernetes scheduler for edge-native applications on 5G,” J. Commun.
Softw. Syst., vol. 16, no. 1, pp. 85-94, Mar. 2020.

O. Casquero, A. Armentia, I. Sarachaga, F. Perez, D. Orive, and
M. Marcos, ““Distributed scheduling in kubernetes based on MAS for fog-
in-the-loop applications,” in Proc. 24th IEEE Int. Conf. Emerg. Technol.
Factory Automat. (ETFA), Sep. 2019, pp. 1213-1217.

D. Haja, M. Szalay, B. Sonkoly, G. Pongracz, and L. Toka, “Sharpening
kubernetes for the edge,” in Proc. ACM SIGCOMM Conf. Posters Demos,
2019, pp. 136-137.

A. J. Fahs and G. Pierre, “Tail-latency-aware fog application replica
placement,” in Proc. Int. Conf. Service-Oriented Comput. Cham,
Switzerland: Springer, 2020, pp. 508-524.

Y. Han, S. Shen, X. Wang, S. Wang, and V. C. M. Leung,
“Tailored learning-based scheduling for kubernetes-oriented edge-
cloud system,” 2021, arXiv:2101.06582. [Online]. Available:
http://arxiv.org/abs/2101.06582

W. Wong, A. Zavodovski, P. Zhou, and J. Kangasharju, “Container
deployment strategy for edge networking,” in Proc. 4th Workshop Mid-
dleware Edge Clouds Cloudlets, 2019, pp. 1-6.

S. Mendes, J. Simdo, and L. Veiga, “Oversubscribing micro-clouds with
energy-aware containers scheduling,” in Proc. 34th ACM/SIGAPP Symp.
Appl. Comput., Apr. 2019, pp. 130-137.

S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen, “Delay-
aware microservice coordination in mobile edge computing: A reinforce-
ment learning approach,” IEEE Trans. Mobile Comput., vol. 20, no. 3,
pp- 939-951, Mar. 2021.

F. Zhang, Z. Tang, J. Lou, and W. Jia, “Online joint scheduling of
delay-sensitive and computation-oriented tasks in edge computing,” in
Proc. 15th Int. Conf. Mobile Ad-Hoc Sensor Netw. (MSN), Dec. 2019,
pp. 303-308.

S. Ge, M. Cheng, X. He, and X. Zhou, “A two-stage service migration
algorithm in parked vehicle edge computing for Internet of Things,”
Sensors, vol. 20, no. 10, p. 2786, May 2020.

A. Singh, G. S. Aujla, and R. S. Bali, “Container-based load balancing
for energy efficiency in software-defined edge computing environment,”
Sustain. Comput., Informat. Syst., vol. 30, Jun. 2021, Art. no. 100463.

S. Wang, “Dynamic service placement in mobile micro-clouds,” Ph.D.
dissertation, Imperial College London, London, U.K., 2015.

Y. Song, C. Zhang, and Y. Fang, “Multiple multidimensional knapsack
problem and its applications in cognitive radio networks,” in Proc. IEEE
Mil. Commun. Conf. (MILCOM), Nov. 2008, pp. 1-7.

P.C.Chuand]. E. Beasley, “‘A genetic algorithm for the multidimensional
knapsack problem,” J. Heuristics, vol. 4, no. 1, pp. 63-86, Jun. 1998.

I. Ketykd, L. Kecskés, C. Nemes, and L. Farkas, ‘““Multi-user computation
offloading as multiple knapsack problem for 5G mobile edge computing,”
in Proc. Eur. Conf. Netw. Commun. (EuCNC), Jun. 2016, pp. 225-229.
F. Faticanti, F. De Pellegrini, D. Siracusa, D. Santoro, and S. Cretti, “Cut-
ting throughput with the edge: App-aware placement in fog computing,”
in Proc. 6th IEEE Int. Conf. Cyber Secur. Cloud Comput. (CSCloud)/5th
IEEE Int. Conf. Edge Comput. Scalable Cloud (EdgeCom), Jun. 2019,
pp. 196-203.

VOLUME 9, 2021

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]
[101]

[102]

[103]

[104]

[105]

M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Hoboken, NJ, USA: Wiley, 2014.

A. Ksentini, T. Taleb, and M. Chen, “A Markov decision process-based
service migration procedure for follow me cloud,” in Proc. IEEE Int.
Conf. Commun. (ICC), Jun. 2014, pp. 1350-1354.

M. Tokic and G. Palm, “Value-difference based exploration: Adaptive
control between epsilon-greedy and softmax,” in Proc. Annu. Conf. Artif.
Intell. Berlin, Germany: Springer, 2011, pp. 335-346.

L. Tang, H. Yang, R. Ma, L. Hu, W. Wang, and Q. Chen, “Queue-aware
dynamic placement of virtual network functions in 5G access network,”
IEEE Access, vol. 6, pp. 44291-44305, 2018.

Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, ‘“Migration modeling
and learning algorithms for containers in fog computing,” IEEE Trans.
Services Comput., vol. 12, no. 5, pp. 712-725, Sep. 2019.

S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge computing based on
Markov decision process,” IEEE/ACM Trans. Netw., vol. 27, no. 3,
pp. 12721288, Jun. 2019.

T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,” IEEE J.
Sel. Areas Commun., vol. 36, no. 10, pp. 2333-2345, Oct. 2018.

E. Aarts, E. Aarts, and J. Lenstra, Local Search in Combinatorial Opti-
mization. Princeton, NJ, USA: Princeton Univ. Press, 2003.

H. Pirim, B. Eksioglu, and E. Bayraktar, Tabu Search: A Comparative
Study. London, U.K.: INTECH Open Access Publisher, 2008.

M.-Y. Wu, W. Shu, and H. Zhang, “Segmented min-min: A static map-
ping algorithm for meta-tasks on heterogeneous computing systems,” in
Proc. 9th Heterogeneous Comput. Workshop (HCW), 2000, pp. 375-385.
F. Chen, X. Zhou, and C. Shi, “The container scheduling method based
on the min-min in edge computing,” in Proc. 4th Int. Conf. Big Data
Comput., 2019, pp. 83-90.

G. Fan, L. Chen, H. Yu, and W. Qi, “Multi-objective optimization of
container-based microservice scheduling in edge computing,” Comput.
Sci. Inf. Syst., vol. 18, no. 1, pp. 2342, 2020.

P. T. Sokkalingam, R. K. Ahuja, and J. B. Orlin, “New polynomial-time
cycle-canceling algorithms for minimum-cost flows,”” Networks, vol. 36,
no. 1, pp. 53-63, 2000.

OMOGBAI OLEGHE received the B.Sc. degree
in mechanical engineering from the University of
Lagos, Nigeria, in 1991, the M.B.A. degree from
the Birmingham Business School, University of
Birmingham, U.K., in 1996, and the M.Sc. degree
in manufacturing consultancy and the Ph.D. degree
in lean manufacturing and simulation modeling
from Cranfield University, U.K.,in 2013 and 2019,
respectively. He has acquired a specialization in
discrete event simulation, system dynamics mod-

eling, machine learning, deep learning, and the Industrial Internet of Things
infrastructures. He is a Visiting Lecturer at the Systems Engineering Depart-
ment of the University of Lagos, Nigeria. He is also a Consultant on
data-driven manufacturing. His current research focus is on the use of
containers as the platform for the Industrial Internet of Things applications.

68043

