
Received April 21, 2021, accepted April 29, 2021, date of publication May 4, 2021, date of current version May 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3077499

A Surveillance Video Real-Time Analysis System
Based on Edge-Cloud and FL-YOLO
Cooperation in Coal Mine
ZHI XU , JINGZHAO LI , AND MEI ZHANG
College of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232000, China

Corresponding author: Jingzhao Li (ljzaust@outlook.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 51874010, in part by the Key
Technology Research & Innovation Team Project under Grant 201950ZX003, in part by the Natural Science Research Projects of Colleges
and Universities in Anhui Province under Grant KJ2020A0309, and in part by the Huaibei Mining Group National Technology Center
Project: ‘‘Coal Mine Control System Based on Video Monitoring.’’

ABSTRACT Video monitoring is an important means to ensure production safety in coal mine. However,
the currently intelligent video surveillance is difficult to respond in real-time due to the latency of cloud
computing. In this paper, a cloud-edge cooperation framework is proposed, which integrates cloud computing
and edge computing in a coordinated manner. The cloud computing is used to process non-real-time and
global tasks, while the edge computing is responsible for handling local monitoring video in real-time.
In order to realize cloud-edge data interaction and online optimization for edge models, the heterogeneous
converged network is built. In addition, an object detection model FL-YOLO composed of depthwise
separable convolution and down-sampling inverted residual block is proposed, which realizes real-time video
analysis at the edge. Finally, this paper discusses the complexity of FL-YOLO by its computational cost
and model size. The experiment results show that the model size of FL-YOLO is 16.1MB, which is very
light, and it achieves 36.7 FPS on NVIDIA Jetson TX1 and an AP of 76.7% on Multi-scene pedestrian
dataset. Comparing with mainstream object detection models, FL-YOLO completes faster detection speed
and higher accuracy, and it has lower calculation complexity and smaller model scale. Furthermore, the AP
on Single-scene pedestrian dataset of FL-YOLO is improved to 80.7% by cloud-edge cooperation. K-Fold
method is also used to further compared the performance of FL-YOLO and other models. Moreover, system
test is implemented on coal mine, which validates the actual engineering effect of the proposed cloud-edge
cooperation framework.

INDEX TERMS Edge computing, YOLO, cloud-edge cooperation, real-time analysis.

I. INTRODUCTION
Coalmine video surveillance plays an important role in ensur-
ing coal mine production safety and the life of workers, but
many coalminingmanufacturer still usemanpower to process
surveillance videos. However, manpower handling inevitably
produces a series of problems such as inefficient, untimely
response, and human physiological fatigue [1]. In recent
years, with the development of AI technology, intelligent
video surveillance in coal mine is undoubtedly a major trend
in the future. Compared with manual video surveillance,
intelligent video surveillance can not only process faster
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and better, but also greatly reduce the costs of coal mine
companies. However, intelligent video surveillance requires a
large amount of storage and computing resources. As a result,
AImodels for video processing are usually deployed on cloud
servers with rich computing and storage resources. Unfortu-
nately, cloud computing will produce various problems, such
as high latency, network congestion, etc. These problems
seriously affect the safety of coal mine production. To solve
the above problems, traditional intelligent video surveillance
framework and AI algorithm must be improved.

Recently, Object detection algorithm based on Convolu-
tional Neural Networks (CNNs) is used in various video
surveillance fields [2]–[4]. CNN is used to extract the fea-
tures of the input image and eventually detect the objects
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in the image. Its performance has reached or even beyond
the human level. However, traditional CNN-based object
detection algorithms require large scale of parameters and
computations, and it can only be deployed on cloud servers.
Therefore, Cloud-based intelligent video surveillance in coal
mine will be limited in many aspects. In terms of network,
firstly, the coverage of Industrial Ethernet is limited. Sec-
ondly, wireless signal is restricted by the narrow tunnels
and the interference from high-current equipment. Thirdly,
video transmission requires a large amount of network band-
width, and the process also generates serious latency. Hence,
the application scenario of Cloud-based intelligent video
surveillance is constrained by network conditions of coal
mine. In terms of video processing, the large amount of
monitoring video will put tremendous computing pressure on
the cloud servers, it will cause computing latency. To sum
up the above, traditional CNN-based object detection algo-
rithms deployed on cloud servers have serious latency, and the
latencywill extremely reduce the performance of cloud-based
intelligent video surveillance.

Edge computing is proposed to solve the problems of
high latency and network congestion in cloud computing [5].
As the data centrally processed on cloud servers is dis-
persed to the edge, computing and network pressure on cloud
servers are greatly reduced.Meanwhile, Edge computing also
improves the real-time performance of whole system. Cur-
rently, with the continuous development of electronic tech-
nology, the computing and storage capabilities of embedded
devices are constantly improving. At the same time, due to
the research and development of lightweight neural networks,
embedded devices obtain the ability of intelligent computing.
However, the real-time and accuracy performances of AI
models are limited by the computing and storage resources
of embedded platform. Furthermore, coal mine has numer-
ous monitoring scenarios, and the lightweight model with
poor generalization ability cannot adapt tomultiple scenarios.
Hence, the accuracy of the lightweight models deployed on
the edge nodes cannot meet the actual needs of coal mine.

To overcome the abovementioned problems, we proposed
an Edge-Cloud cooperation framework and FL-YOLO (Fast
and Lightweight YOLO). In this framework, cloud comput-
ing is used to train and optimize edge models, and it also
provide other services of video surveillance system. Edge
computing is used to analyze surveillance video in real-time
with FL-YOLO algorithm. Eventually, the system is able to
detect objects with high speed and accuracy, so that coal
mine equipment and warning can quickly respond according
to the intelligent analysis results. It avoids workers hurt by
equipment or other issues, and enhance the safety of coal
mine production. The main contributions of this paper are as
follows.

1) The framework of Edge-Cloud cooperation is proposed
to realize real-time intelligent video surveillance in coalmine.
The latency of this framework is much less than that of
traditional methods, and it expands the coverage of video
surveillance in coal mine.

2) Based on the depthwise separable convolution,
a lightweight object detection model FL-YOLO is proposed
to implement on embedded platform. The size of the model
is only 16.1MB, and it has a great performance of speed and
accuracy.

The remainder of this paper is organized as follows.
Related work about object detection, Edge computing
and Edge-Cloud cooperation framework are introduced in
Section II. In Section III, a cloud-edge cooperation frame-
work of coal mine is proposed including edge-cloud ser-
vice and heterogeneous converged network. In Section IV,
a CNN-based object detection model FL-YOLO is pro-
posed. Meanwhile, the complexity of FL-YOLO is discussed.
In Section V, experimental results and discussions are given,
where the accuracy and speed of FL-YOLO are compared
with other models. The performance of Edge-Cloud coopera-
tion framework and traditional framework are also compared
in this section. Finally, the conclusion is drawn in Section VI.

II. RELATED WORK
A. OBJECT DETECTION ALGORITHMS
CNN-based object detection algorithms have been receiv-
ing a lot of attention from researchers due to the supe-
rior performance. The ‘‘one-stage’’ object detection method,
as represented by the YOLO series, is widely used in
real-time target detection. YOLO [6] was first proposed by
Redmon J, Divvala S, Girshick R and Farhadi A. YOLO
treats object detection as a regression problem, which is faster
but less accurate than ‘‘two-stage’’ methods such as Faster-
RCNN. Two years later, the authors of YOLO improved
YOLOv1 and proposed YOLOv2 [7], which replaces the
fully connected layer of YOLOv1 with a fully convolu-
tional layer, so that it has the ability to handle images of
different sizes. YOLOv2 also improved object positioning
accuracy though introduces anchor boxes, and improved the
capable of small objects detection by multi-scale detection.
Redmon J and Farhadi A improved YOLOv2 in 2018, they
proposed Darknet53 framework, which is able to extract
deeper features compared to Darknet19. Finally, the detec-
tion accuracy of YOLOv3 has been greatly improved com-
pared with YOLOv2, while maintaining the detection speed.
YOLOv3 framework is widely used in object detection
because of its excellent performance [8]. Xie et al. [9] pro-
posed MD-YOLO that is able to predict the tilt angle of
license plates by improving the output dimension of YOLO.
VL-YOLO [10] was proposed by improving the framework
of YOLOv3, it is more suitable for the detection of small-
sized object compared to YOLOv3. IN-YOLO [11] is used to
monitor surface condition of outdoor high voltage insulation.
The advanced architecture of YOLO is evidenced by wide
range of applications [12]–[14], while the excellent real-time
performance and low number of network parameters allow
YOLO to be applied to edge environmentsMeanwhile, except
deep learning methods, other methods such as brain program-
ing [15] are also possessing high performance on the field of
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object detection. However, those methods are difficult to be
applied in coal mine environment.

B. EDGE COMPUTING
Edge computing is a method to fill the shortcomings of
cloud computing. The papers of [5], [16], [17] explore the
concept of edge computing and its future development. Those
authors of above paper believe that the massive amounts of
data generated by IOT and cloud computing will put a huge
strain on cloud servers. They think that due to the dramatic
increase in the number of terminal devices in the future, cloud
computing will unable to meet the requirements of network
and computational cost in the future. Fortunately, the devel-
opment of embedded devices has enhanced the ability of edge
computing, which assist cloud computing in data processing.
Edge computing provides the advantages of low latency, low
bandwidth requirements, and low cost. Ren et al. [18] pro-
vide real-time object detection services at edge based on edge
computing. These papers [19], [20] studied the computing
and storage capabilities of edge devices and explored the
applications of edge computing. Edge computingmakes com-
puting closer to data source, which reduces the latency, power
consumption, and cost. Thereby, Edge computing broadens
the application fields and practical effects of AI.

Running AI algorithms at edge not only needs to improve
the computing and storage capacities of edge devices, but
also optimize the traditional neural networks [21], [22].
Lightweight AI models can be obtained by lightweight neural
networks or model compression. For designing lightweight
neural network models, M. Sandler, A. Howard, M. Zhu,
A. Zhmoginov and L. Chen proposed depthwise separable
convolution [23] which greatly reduces the number of param-
eters and calculations of ANN model compared to the stan-
dard convolution. Li et al. [24] combined depthwise separable
convolution with YOLO to monitor pedestrians in foggy. Liu
and Wang [25] used mobilenet to improve the model, and
identify tomato leaf diseases on mobile devices. Lightweight
neural networks such as mobilenet enable edge devices to
gain intelligent computing capability.

For the method of compressing neural network,
Song et al. [26] used model pruning, weights quantization
and Huffman coding to compress the model, reducing the
model size by 35x to 49x and speedup the process of inference
while maintaining the accuracy. He et al. [27] prune the con-
volutional filter of the model by the ASFP method, to solve
the information loss caused by typical pruning algorithms.
Li et al. [28] proposed a compression method for CNN to
reduce the cost of computation. Luo et al. [29] proposed
Thinet framework to realize compress and speedup of CNN
models. This framework decrease FLOPs by 3.31 times on
VGG16, and decrease the size of the model by 16.63 times.
Wang et al. [30] proposed the Efficient-YOLO based on
YOLOv3, they compress the model size by layer-level and
channel-wise pruning As a result, the Efficient YOLO could
deployed on embedded platform of NVIDIA Jetson TX2with
excellent accuracy and speed Rui et al. [31] prune the

convolution kernels in channel-dimension to reduce the
model size of YOLOv3-tiny to 5.3MB, and the pruning
method decrease the computational cost of the model to
2.6 GFLOPs. So that the pruned YOLOv3-tiny model
could deployed on ARM Cortex-A8 platform with accuracy
of 94.4% The above method is used to compress and speedup
neural network models, but those methods need specialized
computing strategy.

C. CLOUD-EDGE COOPERATION
Convergence of Cloud computing and Edge computing,
edge computing provides users with low-latency, low-power
services, while cloud computing is used to optimize the
inference capability of edge computing. The cloud-edge
cooperation method has already been applied in various
field. Wang et al. [32] proposed a cloud-edge computing
framework named CPSS (Cyber-Physical-Social Services).
In the paper, cloud computing is used to process large-
scale, long-term and global data, while edge computing is
used to process small-scale, short-term and locality data.
CPSS enables users to receive a higher quality and real-time
service. Wang et al. [33] proposed a cloud-edge computing
environment to provide real-time picking services for factory-
produced parts. Wang et al. [34] deployed R-CNN on edge
devices and incorporate cloud computing for real-time moni-
toring of part surface defects. Ye [35] used embedded devices
to preliminary process the collected data, and then further
analyzes the data through cloud computing to monitor the
health of city pipes. Hung et al. [36] proposed VideoEdge
architecture, it identify the best tradeoff between resources
and accuracy on cloud-edge collaboration framework for
processing video stream. Meanwhile, they narrow the search
space by identifying a ‘‘Pareto band’’ of promising config-
urations. Compared with the method of fair allocation of
resources, this method improves accuracy by 25.4× How-
ever, this method is difficult to apply to some areas of coal
mines where the network environment is poor or even unable
to connect network.

The above literature effectively resolved practical issues
of industrial production and urban safety through cloud and
edge computing. However, In the harsh coal mine envi-
ronment, current object detection models and cloud-edge
cooperation framework are difficult to perform effectively.
To this end, the edge-cloud cooperation framework pro-
posed in this paper is used to achieve real-time intelligent
video surveillance, and it guarantee production safety in coal
mine.

A summary of typical object detection methods is pre-
sented in TABLE 1. Cloud computing or Edge-cloud are
used in those methods of TABLE 1. However, those meth-
ods in TABLE 1 are required smoothly and stable net-
work environment. Meanwhile, the edge models in the
proposed methods of TABLE 1 are also required high per-
formance edge platform, it increases the cost of whole
system.
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TABLE 1. A summary of typical high speed object detection methods.

III. CLOUD-EDGE COMPUTING COOPERATION
FRAMEWORK OF COAL MINE
A. REAL-TIME EDGE SERVICE
Edge computing provides real-time intelligent processing ser-
vices for coal mine video surveillance [37]. Edge services
are composed of hardware layer, data interaction layer and
service layer. It is show in Fig. 1.

FIGURE 1. The architecture of edge service. MCU control the edge service
and process monitoring video in real-time.

Hardware layer is the basis of edge devices. It is composed
of communication interface, control interface and image sen-
sor. The data interaction layer communicates with cloud
server through communication interface, which completes
cloud-edge data transmission, control parameters transmis-
sion and model updating. Service layer is based on hardware
layer, which acquires real-time images of the monitoring
area, and processes them through MCU. The service layer
controls coal mine equipment in real-time through the control
interface according to the intelligent analysis results.

Real-time edge service is the basis of entire edge-cloud
cooperation system. It is used to process coal mine surveil-
lance video in real-time, control coal mine equipment, and
provide data for cloud servers.

B. NON-REAL-TIME CLOUD SERVICE
Cloud servers have strong computing and storage capabili-
ties, but severe latency will occur during data transmission

FIGURE 2. Process of cloud-edge cooperation framework. Cloud server
receive the data transmitted by edge, and use the data to train or improve
model. Finally, the trained or improved models are transmitted to edge
devices by heterogeneous integrated network.

and process. Hence, cloud computing is not suitable for the
tasks that require high real-time performance. Fig. 2. illus-
trates the work process of cloud-edge cooperation. In the
cloud-edge cooperation system, cloud computing is primarily
responsible for the following tasks:

(1) Integrating data from edge devices. The edge devices
send data to cloud server through heterogeneous converged
communication network. Then, cloud server classifies and
stores those data to prepare for the optimization of edge
models.

(2) Optimizing edge models. Cloud server has powerful
computing capability, it continuously trains and optimize
the edge models by the data transmitted from edge devices.
Then, cloud server transmits the optimized models to the
edge devices through heterogeneous converged communica-
tion network. It enables edge models to evolve constantly.

(3) Edge devices management. Edge devices are located
in various scenarios. The efficiency of edge devices can pro-
moted by centralized management through cloud servers.

In summary, cloud computing acts as a global orchestrator
in cloud-edge cooperation system. Cloud server obtain data
from edge devices and return the optimized models. Cloud
computing enables cloud-edge cooperation system to form a
virtuous cycle of data-model, which is an important guarantee
for improving the quality of intelligent video monitoring
systems.

C. THE HETEROGENEOUS CONVERGED NETWORK OF
CLOUD-EDGE COOPERATION
Cloud-edge cooperation system provides real-time intelli-
gent video surveillance at the edge. However, the process
of data transmission and model training can be considered
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as non-real-time tasks. Depending on the coal mine network
environment, edge nodes managed by cloud servers can be
divided into two types. The first type of edge computing
nodes are located in unblocked network environment. Those
nodes are able to provide real-time intelligent video surveil-
lance and transmit the monitoring images to cloud server
immediately. The second type of edge nodes are located
in blocked network environment, so that it cannot transmit
monitoring images immediately. But, those nodes also pro-
vide real-time intelligent video surveillance and equipment
controlling at edge to ensure the safety of workers.

We proposed a heterogeneous converged network for the
two types of edge computing nodes in coal mine. For the
first type of edge nodes, the existing coal mine network is
used to interact with cloud servers. However, the coverage of
existing coal mine network is limited, which cannot support
the second type of edge nodes communicating with cloud
server directly. To this end, we merge various existing wired
network and wireless network, and to build mobile oppor-
tunity networks based on mobile workers and vehicles [38].
Ultimately, a heterogeneous converged network is composed
of wired network + wireless network, fixed communication
nodes + mobile communication nodes, traditional network
and opportunity network [39]. The heterogeneous converged
network provides a channel for edge nodes to interact with
cloud server. The heterogeneous converged network is shown
in Fig. 3.

FIGURE 3. Heterogeneous converged network. Workers and vehicles
compose the mobile opportunity network. Edge node of class2 transmit
data through mobile opportunity network and Industrial Ethernet.

IV. THE PROPOSED METHOD FOR REAL-TIME
INTELLIGENT VIDEO SURVEILLANCE
A. ANALYSIS OF THE OBJECT DETECTION MODEL OF
Tiny-YOLOv3
Tiny-YOLOv3 is a lite version of YOLOv3. Compared with
YOLOv3, Tiny-YOLOv3 is smaller and faster, with fewer
parameters and calculations. Therefore, Tiny-YOLOv3 is
easy to deploy on embedded platforms, and it has
high real-time performance due to its low computational
complexity.

Tiny-YOLOv3 divides the input image into S× S
grids. Each grid contains 3 Bounding boxes, and each
Bounding box contains 6 predicting parameters, which is
(x, y,w, h, Iobject , class) As shown in Fig. 4, among those
parameters, (x, y) is the distance of grid’s border to the center
of Bounding box. (w, h) is the ratio of the width and height
of the Bounding box to the width and height of entire image.
Iobject is the confidence score of Bonding box. class is the
category of object. (X ,Y ) is the distance of grid’s border that
contains Bounding box to the border of image.

FIGURE 4. Predicting bounding box of Tiny-YOLOv3. Tiny-YOLOv3
predicting size and location of object in surveillance image.

In the Bounding box of Tiny-YOLOv3, the content of class
is shown in (1)

class = [p1, p2 . . . pj] (1)

where, pj is the confidence of the prediction for jth category.

B. ANALYSIS OF DEPTHWISE SEPARABLE CONVOLUTION
Depthwise separable convolution greatly reduces the number
of model parameters and calculations with only a small loss
of accuracy [23] Therefore, a model consisting of depthwise
separable convolution is well suited for intelligent computing
at the edge.

Depthwise separable convolution consists of depthwise
convolutions and pointwise convolutions. It is computed
using depthwise convolution filters for each channel of the
input image, and followed by pointwise convolution, while
standard convolution is done in one step. The calculation
process of the depth separable convolution is shown in Fig. 5

Where,DF is the height and width of the input image. M is
the number of the image channels.DK is the size of the filters
of the depthwise convolution. N is the number of pointwise
convolution and output channels.

For an input image of size DF × DF × M , the ratio of
computational cost between depthwise separable convolution
and standard convolution [23] is shown in (2):

Costsec nn
Coststcnn

=
DF × DF ×M × DK × DK + DF × DF ×M × N

DF × DF ×M × N × DK × DK

=
1
N
+

1

D2
K

(2)
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FIGURE 5. Calculation process of the depth separable convolution depth
separable convolution decompose convolutional operation into
depthwise convolutional and pointwise convolutional.

where, Coststcnn is the computational cost of standard con-
volution; Costsec nn is the computational cost of depthwise
separable convolution.

The ratio of the parameters number is shown in eq. 3:

Pnumsec nn

Pnumstcnn

=
DK × DK ×M + N ×M
DK × DK × N ×M

=
1
N
+

1

D2
K

(3)

where, Pnumsec nn is the parameters number of depth-
wise convolution filters and pointwise convolution filters;
Pnumstcnn is the parameters number of standard convolution
filters.

The formula (2) and (3) show that, with the increase of
N and DK , the computational cost and parameters of depth-
wise separable convolution is decrease respect to standard
convolution.

C. DOWN-SAMPLING INVERTED RESIDUAL BLOCK
The backbone of Tiny-YOLOv3 is used to extracts fea-
tures from image and those features down-sampled by stan-
dard convolution or maxpooling. However, Tiny-YOLOv3 is
unable to extract the deeper features of the image due
to the limited number of convolutional layers. In addi-
tion, max-pooling will cause information lost. In this paper,
we down-sampled the input image by depthwise separable
convolution. Compared with max-pooling, depthwise sep-
arable convolution can hold more information Moreover,
depthwise separable convolution is able to increase the depth
of CNN model while maintain the size and computational
cost. Hence, for the same size of two CNN-based models,
depthwise separable convolution can improve the feature
extraction ability of the model. However, with the increases
of model depth, the model is prone to gradient disappearance

and overfitting. Fortunately, residual structure can effectively
solve those problems [40], [41].

FIGURE 6. Down-sampling inverted residual block. Firstly, the Dwise
Separable convolution down-sample and extract features of input data.
Secondly, the residual block is used to extract deeper features.

Inspired by MobilenetV2 [23], we proposed down-
sampling inverted residual block based on depthwise sep-
arable convolution The structure is shown in Fig. 6.
Firstly, the block uses depthwise separable convolution to
down-sample the input image. Secondly, the number of chan-
nels of the input feature is expanded from 1C to 2C through
1× 1 convolution. Thirdly, depthwise separable convolution
is used to extract the features. Finally, the number of channels
is restored to 1C through 1× 1 convolution, and the features
are accumulated with the output features of the secondly step
In order to reduce the loss of accuracy caused by float16 infer-
ence on embedded platforms, RELU6 is used as the activation
function of the first three convolutional layers [42] At the
same time, the linear activation function is used as the output
of the last layer. The linear activation function can avoid
information destruction caused by the nonlinearity of RELU

D. FAST-LIGHTWEIGHT YOLO
The safety of workers is an important factor of production
safety in coal mine. Pedestrian detection gives timely alarm
or shut down the equipment in operation based on the location
of the pedestrian, which can effectively prevent workers from
being injured.

We proposed a novel object detection model to detect
coal mine workers in real-time at edge. The model is
named FL-YOLO (Fast-Lightweight YOLO) The backbone
of FL-YOLO is composed of down-sampling inverted resid-
ual blocks. The framework of FL-YOLO is shown in Fig. 7.

Where, Ci(i = 1,2,3,4,5) denotes ith convolution layer.
DWCj(j= 1,2,3) denotes jth depthwise separable convolution
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FIGURE 7. Framework of FL-YOLO. Down-sampling and inverted residuals blocks compose the backbone of
FL-YOLO, and multi-scale detection enables the model to detect objects of different sizes.

layer. DIn(n = 1,2,3,4,5) denotes nth down-sampling and
inverted residual block.

FL-YOLO is a multi-scale object detection method. It has
excellent detection results for object of different sizes. Con-
sidering the versatility of the model, FL-YOLO uses a
fully convolutional layer as the output layer, which allows
FL-YOLO has the ability of process the input image with
different size.

For an image with an input size 416 × 416 × 3, firstly,
FL-YOLO extracts the feature map1 with size 26 × 26 by
Backbone. Secondly, after down-sampling and convolution
operations, a feature map2 of size 13 × 13 is extracted.
Thirdly, FL-YOLOup-samples featuremap2 and fuses it with
feature map1 to form a new feature map of size 26 × 26.
Finally, FL-YOLO outputs 3 × 13 × 13 bounding boxes y1,
and 3× 26× 26 bounding boxes y2.

TABLE 2. Details of the FL-YOLO.

Compared to Tiny-YOLOv3, the depth of FL-YOLO is
greatly improved due to down-sampling inverted residual
block and depthwise separable convolution, which improves
the feature extraction capability of FL-YOLO And The size
of FL-YOLO is only 16.1MB, which is much smaller than
Tiny-YOLO’s 34MB and YOLOv3’s 237MB. The details of
the FL-YOLO model are shown in TABLE2

E. COMPLEXITY ANALYSIS OF FL-YOLO
Inference speed is largely influenced by model complexity.
Model complexity includes computational complexity and
spatial complexity. Because the model size of FL-YOLO is
only 16.1MB, the spatial complexity of FL-YOLO is less
than YOLOv3 and Tiny-YOLOv3. The computational com-
plexity is determined by floating point operations (FLOPs).
We analyze the computational complexity of FL-YOLO by
calculating FLOPs during inference.

The backbone of FL-YOLO is composed of down-sampling
inverted residual block. The FLOPs of the block is shown
in (4):

FLOPsDIRB = FLOPsDS1 + FLOPsCOV1 + FLOPsDS2
+FLOPsCOV2 + FLOPsADD (4)

where, FLOPsDIRB is the FLOPs of down-sampling inverted
residual block; FLOPsDS1 is the FLOPs of first depthwise
separable convolution operation in the block; FLOPsCOV1
is the FLOPs of first convolution operation in the block;
FLOPsDS2 is the FLOPs of second depthwise separable con-
volution operation in the block; FLOPsCOV2 is the FLOPs
of second convolution operation in the block; FLOPsADD is
the addition operation in the block.

For an input image with size of DF ×DF ×M , by Eq. (2),
the FLOPs of first depthwise separable convolution is shown
in (9):

FLOPSDS1 = 4.5D2
FM + 0.5D2

FM
2 (5)

As Fig.6 shows that the first convolution changes the fea-
ture depth from 1M to 2M. By Eq. (3), FLOPsCOV1 can be
calculated as:

FLOPSCOV1 = 0.5D2
FM

2 (6)

The FLOPs of second depthwise separable convolution
operation is shown in (7):

FLOPSDS2 = 4.5D2
FM + D

2
FM

2 (7)
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FLOPsCOV2 and FLOPsADD can be calculated as follows:

FLOPSCOV2 = 0.5D2
FM

2 (8)

FLOPSADD = D2
FM (9)

From (5) to (9), the FLOPs of down-sampling inverted
residual block is:

FLOPSDIRB = 10D2
FM + 2.5D2

FM
2 (10)

By (10), the FLOPs of an inference process is 0.92Bn for
an image of size 416× 416× 3. The FLOPs of FL-YOLO is
much less than that of GradAM (2.6GFLOPs) [31], YOLOv3
(65.86Bn FLOPs) and Tiny-YOLOv3 (5.56Bn FLOPs) [8].
Therefore, FL-YOLO is more suitable for embedded plat-
forms than YOLOv3 and Tiny-YOLOv3.

The size and computational cost of FL-YOLO is less
than other object detection models such as YOLOv3 and
Faster-RCNN. Furthermore, the lightweight characteristics of
FL-YOLO allows it to be deployed on resource-constrained
platform, even embedded systems. Therefore, FL-YOLO can
be used in real-time control systems at edge or other scenario.
To sum up the above, FL-YOLO has excellent scalability.

F. ALGORITHM OF FL-YOLO
FL-YOLO outputs a number of bounding boxes that contain
objects information. However, the information in bounding
boxes does not directly represent the position and the type
of the objects in the image The output bounding boxes of
FL-YOLO need to be decoded.

The output bounding boxes of FL-YOLO:

Boxk = (xk , yk ,wk , hk , I kobject , class
k ) (11)

where, k denotes the number of bounding boxes, k ∈
[0, 2535)

The object’s position in bounding boxes is decoded as
follows:

bkx = σ (x
k )+ X k (12)

bky = σ (y
k )+ Y k (13)

bkw = pwew
k

(14)

bkh = pheh
k

(15)

where, σ denotes the function of sigmoid; X k , Y k are the
distance of grid’s border that contains Bounding box to the
border of entire image; pw, ph are the width and height of
anchor boxes respectively [8], [43], bkx , b

k
y , b

k
w, b

k
h are the

center point position and size of the bounding boxes.
Define the confidence that the predicted bounding box

contains object as:

scorek = I kobject × p
k (16)

where, scorek is the confidence for detecting the object in the
Kth bounding box.

Split the information in the bounding box output by
FL-YOLO, let:

b = (x, y,w, h) (17)

So,

Boxk = (bk , scorek ) (18)

For the large number of Bounding Boxes output by
FL-YOLO, it is necessary to select the prediction
box for each target. In this paper, we use the NMS
(Non-Maximum Suppression) algorithm to eliminate repet-
itive and low-confidence prediction bounding boxes. The
NMS algorithm pseudocode is shown in Algorithm 1.

Algorithm 1 NMS

1. Input: B = {b1, b2 . . . bk};SC={score1,score2,. . . ,scorek};
NMS threshold Nt ;
2. Output: Bounding boxes D, score SC, Index indexes
3. define function NMS(B, SC,Nt )
// indexes is the number of output Bounding Boxes.
4. D← {}, indexes← {1, 2, . . . , k}
5. while B 6= empty do
// Find the number of maximum score and assigned to m.
6. m← argmax(SC)
//M denotes the Bounding Box with maximum score.
7. M ← bm

//D is the candidate output of FL-YOLO.
8. D← D ∪M
//Delete M(bm) from B.
9. B← B−M
// Delete the Bounding boxes whose iou value with M are
//larger than the threshold Nt .
10. for bi in B do
11. if iou(M , bi) ≥ Nt then
//Delete the Bounding box from B.
12. B← B− bi

//Delete the score from SC.
13. SC ← SC − scorei

//Delete the number from indexes.
14. indexes← indexes− i
15. end if
16. end for
//Until B = empty,ending the loop
17. end while
18. return D, SC, indexes

The FL-YOLO object detection algorithm pseudocode is
shown in Algorithm 2.

G. LOSS FUNCTION
The loss function plays an important role in training process.
FL-YOLO predicts the position, size, and type of objects, and
its loss function should contain these items.

1) POSITION LOSS FUNCTION

Loss1 = λcoord
s2∑
i=0

B∑
j=0

Iobjij [(xi − x̂i)2 + (yi − ŷi)2]
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Algorithm 2 The Object Detection Algorithm of FL-YOLO
1. Input: image I
2. Output: boxes D, score SC, classes
3. Use FL-YOLO to predict:
y1∪y2 =

{
xij, yij ,wij, hij, cij, pij

}
, i ∈ [0, 3), j = [0, 5S2)

4. Reshape:
y1 ∪ y2 to box_xy = {xk , yk},
box_wh = {wk , hk}, confidence = {ck},
class_prob = {pk}, k ∈ [0, 15S2)

// Calculate the position and size of the object in the input
image.

5. box_xy ←

{
xk = σ (xk )+ gxk
yk = σ (yk )+ gyk

, box_wh ←{
wk = pwk e

wk

hk = pwk e
wk

6. Concatenate box_xy box_wh to boxes
7. score← {ck × pk}
//NMS algorithm is used to select Bounding Boxes.
8. Obtaining D, SC and indexes by NMS(boxes, score,Nt )
//Obtain the object category.
9. for j in indexes do
10. classes← argmax(pj)
11. end for
12. Return D, SC classes

+λcoord

s2∑
i=0

B∑
j=0

Iobjij (2− wi × hi)[(wi − ŵi)2

+(hi − ĥi)2] (19)

where, s2 is the number of grids in the image; B is the number
of bounding boxes predicted for each grid; When the IOU
between the j-th prediction box of the i-th grid and the ground
truth box is the largest, Iobjij = 1, otherwise Iobjij = 0;xi, yi,
wi, hi are the predicted center point position and length and
width of the object; x̂i, ŷi, ŵi, ĥi are the ground truth center
position and length and width of the object; We set λcoord = 5
to balance the object position loss function.

2) OBJECT CONFIDENCE LOSS FUNCTION

Loss2 = −
s2∑
i=0

B∑
j=0

Iobjij [Ĉi log(Ci)+ (1− Ĉi) log(1− Ci)]

−λnoobj

s2∑
i=0

B∑
j=0

Iobjij [Ĉi log(Ci)+(1−Ĉi) log(1−Ci)]

(20)

where, Ci denotes the predicted confidence;Ĉi represents the
truth confidence; We set λnoobj = 0.5 to balance the loss
function of the area without objects in the image.

Loss3 = −
s2∑
i=0

Iobjij

B∑
c∈classes

[p̂ji(c) log(p
j
i(c))+

(1− p̂ji(c)) log(1− p
j
i(c))]

(21)

where, classes indicates the number of categories; pji denotes
the probability of the prediction category; p̂ji represents the
classification probability of ground truth boxes.

The loss function of FL-YOLO is obtained by overlaying
(16)-(18):

Loss = Loss1 + Loss2 + Loss3 (22)

H. MODEL OPTIMIZED FOR SCENE
In the cloud-edge cooperation system, FL-YOLO needs to
be deployed on edge to ensure real-time performance. How-
ever, due to the limitation of computing capacity and storage
resources of edge, lightweight model has poor data gen-
eralization capabilities and low object detection accuracy.
Considering the characteristics of coal mine video surveil-
lance, the monitoring area of each monitoring device remains
unchanged for a long time. Therefore, an object detection
model deployed on edge device only needs to exhibit excel-
lent performance in corresponding monitoring scenarios.
In this paper, we classify the FL-YOLO model into generic
model and dedicated model. The generic model uses refers
to a model trained with pictures of various scene in coal
mine. So that the generic model can be monitored in any area.
Based on the transfer learning [44], [45], the dedicated model
is optimized for the dataset with single scene. The single
scene denotes the area which monitored by an edge device
with general model. The parameters of dedicated model are
adjusted to make the edge model more suitable for the moni-
tored scene. Therefore, the accuracy of the model is improved
by optimization.

FIGURE 8. Process of edge model optimized. Different scenario transmit
different data to cloud server, and the cloud server optimizes the model
based on those data for different scenario.

After the generic model is deployed to the surveillance
scene, the edge device continuously transmit the images of
monitored area to cloud server. These images are used to
further train the edge model which deployed in the scene.
Finally, these optimize models are transmitted to the edge.
The process is shown in Fig. 8.
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V. EXPERIMENTAL RESULTS
A. COAL MINE PEDESTRIAN DATASET
1) MULTI-SCENE PEDESTRIAN DATASET
In order to train FL-YOLO and verify the optimiza-
tion effect of cloud-edge cooperation framework, we col-
lected 6,000 coal mine surveillance pictures After sorting,
it includes 2,598 pictures of pedestrians and 3,402 pictures
of nobody Four augmentation skills are used to process those
pictures, including src, processed by CLAHE, crop and flip.
Fig. 9 shows the examples of augmented images. More-
over, we randomly added Gaussian noise and Gaussian blur
on images. Finally, the multi-scene pedestrian dataset has
24000 pictures, it contains 10392 pictures with pedestrian and
13608 pictures with nobody.

FIGURE 9. Examples of augmented images. (a) Source (b) Processed by
CLAHE (c) Crop (d) flip.

2) SINGLE-SCENE PEDESTRIAN DATASET
To verify the impact of further training, we collected
501 images of a particular situation in coal mine. Those
images include 500 images of pedestrians, and one image of
no pedestrian. We processed the above 501 images with same
way as A, forming a Single-scene pedestrian dataset of 2000
pedestrian images and 4 images without pedestrians. Then,
randomnoise is superimposed on the non-pedestrians images,
to expand it to the same number of pedestrians images.
As a result, the Single-scene dataset contains 4,000
images. Fig. 10 shows the examples of Single-scene dataset

We process those images and train models on Intel-i7
9700K (4.9 Ghz) with NVIDIA GTX 1080Ti. After train-
ing, we deployed the model on NVIDIA GTX 1080Ti and
NVIDIA Jetson TX1 to test the performance of the model.

B. GENERIC MODEL PERFORMANCE VALIDATION
In order to verify the performance of FL-YOLO, we analyze
the training process of FL-YOLO and other object detection

FIGURE 10. Examples of single-scene pedestrian dataset. (a) Including
pedestrians (b) Non-pedestrian.

models. Furthermore, the detection speed and accuracy of
FL-YOLO is also compared with other models.

Training process reflects the performance of the model
to some extent. The faster the loss function converges and
the lower of the loss value is, the higher the accuracy of
the model is. To train the FL-YOLO model, we randomly
divide the dataset into training set and test set, where the
test set accounts for 20 percent of the multi-scene pedes-
trian dataset. Fig. 11 shows the Loss-Epochs curves of
FL-YOLO, YOLOv3 and Tiny-YOLOv3. From the train-
ing process, it can be seen that the loss function of
Tiny-YOLOv3 decreases unsteadily, converges slowly. The
final loss value of Tiny-YOLOv3 is higher than that of
TOLOv3 and FL-YOLO. The size of YOLOv3 is the largest
among the three models, with better feature extraction capa-
bilities, and the convergence process is faster and more stable
than Tiny-YOLOv3. For FL-YOLO, the feature extraction
capability is enhanced by depthwise separable convolution.
However, the size of FL-YOLO is lighter, and the residual
structure allows FL-YOLO has better data generalization
capability. Thereby, the training process of FL-YOLO per-
forms better than Tiny-YOLOv3 in terms of stability and
speed, and the final loss value of the former is also smaller
than that of the latter.

AP and mAP are important metric to reflect detection
accuracy of object detection models. The higher value of AP
or mAP is, the higher accuracy of the model will make In
this paper, we only detect coal mine underground pedestrians.
Therefore, AP and mAP are equal in this case. FPS (Frame
Per Second) reflects the detection speed of models, and
the real-time performance is positively correlated with FPS.
FL-YOLO and other models are deployed on GTX 1080ti
GPU and NVIDIA Jetson TX1 respectively, to measure the
value of AP and FPS.

TABLE 3 shows the results of various object detection
models on Multi-scene pedestrian dataset. A higher AP value
indicates a higher accuracy of the model, and the value
of FPS indicates the real-time performance of the model.
Fig. 12 shows the PR curves of these models. Experiment
results show, YOLOv3 has the best performance for AP,
P, and R values, and it also runs faster than SSD and
Faster R-CNN. Then, mobilenetV2 is used to construct
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FIGURE 11. (a) is the Loss-Epochs curves of FL-YOLO, YOLOv3 and
Tiny-YOLOv3 In order to make the curve more intuitive, (b) is the curve
fitting in (a) to make it more smooth and reflect the trend of training.

TABLE 3. Results of several object detection model.

the YOLOv3-mobilenetv2. YOLOv3-mobilenetv2 has better
real-time performance than YOLOv3, but it is still unable
to be applied on NVIDIA Jetson TX1. Tiny-YOLOv3 is a
lite version of YOLOv3 with considerably reduced computa-
tional cost and model size. It runs more than five times faster
than YOLOv3 and nearly three times faster than YOLOv3-
mobilenetv2. However, the accuracy of Tiny-YOLOv3 is the
worst of these models, so that it is difficult to applied. The
AP value of FL-YOLO is behind only YOLOv3 and Faster

FIGURE 12. PR curves of the examined methods on multi-scene
pedestrian dataset. (a) Faster R-CNN (b) SSD (c) SSD-mobilenetV2
(d) YOLOv3 (e) YOLOv3-mobilenetV2 (f) Tiny-YOLOv3 (g) FL-YOLO.

R-CNN, but the speed of FL-YOLO is the fastest among all
these models including the Efficient YOLO(401.21 ms/frame
on NVIDIA Jetson TX2) [30]. The excellent accuracy and
real-time performance of FL-YOLO make it suitable for
real-time pedestrian detection in coal mine.

In order to verify the performance of FL-YOLO more
comprehensively, we randomly divided Multi-scene pedes-
trian dataset into 5 groups of 4800 images each. Then,
we apply the method of k-fold [15], with k=5, and train the
FL-YOLO, YOLOv3, Tiny-YOLOv3 until convergence at
each fold. At the same time, we test the AP values of
each fold. The results of k-fold cross validation are show in
TABLE 4.

TABLE 3 and TABLE 4 show that the AP value
of YOLOv3 are higher than that of FL-YOLO and Tiny-
YOLOv3. However, the AP value of FL-YOLO is close to
YOLOv3 and much higher than Tiny-YOLOv3. Moreover,
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TABLE 4. Results of k-fold cross validation.

the real-time performance of FL-YOLO is superior to that of
YOLOv3 and Tiny-YOLOv3.

The above results show that FL-YOLO has excellent
performance, and it can ensure the accuracy of detecting
pedestrians in coal mine. The reasons for the outstanding
performance of FL-YOLO can be summarized as follows:

(1) Depthwise separable convolution reduces the number
of parameters and computing cost, and increases the speed of
FL-YOLO.

(2) The down-sampling inverted residual block greatly
improves the capability of feature extraction and data
generalization.

(3) Multi-scale detection allows FL-YOLO to detect
objects with different sizes effectively.

C. SCENE OPTIMIZATION MODEL PERFORMANCE
VALIDATION
There is a large demand for intelligent video surveillance
in coal mine, and the surveillance scenes are different.
Therefore, the generic model is not able to achieve the ideal
accuracy, because the lightweight model is lack of data gen-
eralization ability. Considering that FL-YOLO is deployed
in different regions, the model parameters can be adjusted
according to the environment to suit different monitoring
area. For a given surveillance scene, the viewpoint tends
not to change in the short term, so the background of the
surveillance scene can be considered as fixed. However, the
recognition mistake of background may occur when using a
generic model for intelligent surveillance.

According to the transfer learning, FL-YOLO takes a
Multi-scene pedestrian dataset as the source domain of
the model, while single-scene pedestrian dataset can be
considered as the target domain. Therefore, we optimized
the model’s parameters by instance-based transfer learning.
On the basis of the generic model, we further train it using
the single-scene pedestrian dataset. Consider that only the
Tiny-YOLO and FL-YOLO have the speed to meet the prac-
tical application on embedded platforms. Hence, we just
analyze the further training process of Tiny-YOLOv3 and
FL-YOLO.

To optimize the FL-YOLO, we divide the single-scene
pedestrian dataset into a training set and a test set, where
the test set takes up 20 percent of the single-scene pedestrian
dataset. As shown in Fig. 13, the loss functions of FL-YOLO
and Tiny-YOLO are further reduced.

FIGURE 13. (a) is the further training Loss-Epochs curves of FL-YOLO and
Tiny_YOLOv3. In order to make the curve more intuitive, (b) is the curve
fitting in (a) to make it more smooth and reflect the trend of training.

FIGURE 14. P-R curves optimized FL-YOLO and Tiny-YOLOv3 (a) FL-YOLO
(b) Tiny-YOLOv3.

The P-R curve of optimized FL-YOLO and Tiny-
YOLOv3 is shown in Fig. 14. Fig. 13 and Fig. 14 show
that the FL-YOLO and Tiny-YOLOv3 models become more
adaptable to the scene, and the performance is improved in
this scenario.

We also use the method of k-fold (k=5) to further val-
idate the effect of scene optimization. First, we randomly
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TABLE 5. Results of k-fold cross validation.

divided the single-scene pedestrian dataset into 5 groups
of 800 images each. Then, we optimize FL-YOLO and Tiny-
YOLOv3 until convergence at each fold. Finally, we test the
AP values of FL-YOLO and Tiny-YOLOv3 at each fold. The
results of optimization k-fold cross validation are show in
TABLE 5.

TABLE 5 shows that the average values of AP for
FL-YOLO and Tiny-YOLOv3 were significantly improved.
Meanwhile, the Standard Deviation of FL-YOLO and Tiny-
YOLOv3 is also decreased. The above results show that the
optimization leads to improve accuracy and generalization of
models in a single scenario.

As the Fig. 15 shows, YOLO incorrectly identifies objects
in the background as pedestrians before optimized, but this
mistake does not happen after optimization.

FIGURE 15. Example of optimization effect. (a) Before optimization,
FL-YOLO misidentify a machine as person. (b) After optimization, FL-YOLO
solve the misidentification problem and increases the confidence level of
correct identification.

Through the cooperation of edge computing and cloud
computing, the edge is used to complete real-time intelligent
video monitoring, while the cloud computing is responsi-
ble for model optimization. Experimental results show that
FL-YOLO has excellent performance. After optimization,
the real-time performance and accuracy of FL-YOLO are
all superior to those of other mainstream object detection
models. Meanwhile, the Robustness of FL-YOLO is also
improved, and the influence of the noise and adversarial
attacks acting on edge model is reduced by further train of
edge-cloud framework.

D. SYSTEM TEST AND COMPARISON
1) SYSTEM IMPLEMENTATION
A Surveillance Video Real-time Analysis System was imple-
mented on coalmine.We use theNVIDIA Jetson TX1 as edge

node, and a computer with Intel i7-9700k @4.9Ghz CPU,
NVIDIA GTX1080Ti GPU was used as a cloud server. The
deployment locations of the edge nodes include Rock road-
way, machine lane, Transfer Point of Outer Lane, Ground
entry channel and haulage tunnel. The surveillance screens
are show in Fig. 16.

In the above five scenarios, Ground Entry Channel and
Haulage Tunnel have access to Industrial Ethenet. They have
a low-latency and stable network. The edge nodes imple-
mented at Ground Entry Channel and Haulage Tunnel can be
seen as the edge node of class 1.

However, the Industrial Ethernet does not cover the
Machine Lane and Transfer Point of Outer Lane Hence,
wireless communication is used to access network. Therefore,
the edge nodes deployed on the Machine Lane and Transfer
Point of Outer Lane can be considered the edge node of
class 1.

The edge node deployed on Rock Roadway can been seen
as a temporary node added during construction. Therefore,
those edge nodes cannot be connected to Industrial Ethernet
and wireless network. So, the edge node implemented at
Rock Roadway can be seen as the edge node of class 2.
However, there is frequent movement of workers and vehicles
in Rock Roadway. Hence, we use the mobility of workers
and vehicles to build heterogeneous converged networks to
complete the transmission tasks of key videos, images and
models. The information transmission method of the edge
node implemented as Rock Roadway is shown in Fig.17.

As the Fig.17 shows, we install mobile information trans-
mission nodes on workers and vehicles. Then, the informa-
tion of the edge node is carried by mobile nodes, and those
information will be forwarded to the fixed nodes through the
movement of workers and vehicles. Finally, the fixed nodes
send information to cloud server ormonitoring center through
Industrial Ethernet

TABLE 6. Latency of process surveillance video.

2) COMPARISON OF EDGE-CLOUD COOPERATION AND
CLOUD COMPUTING
Wedeploy edge nodes at the above five sites. On the one hand,
Surveillance video is processed at edge in the edge-cloud
cooperation system. On the other hand, surveillance video
is sent to cloud, and the cloud server is used to process
the surveillance video. The latency of cloud computing
and edge-cloud cooperation to process surveillance video is
shown in TABLE 6
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FIGURE 16. The surveillance screens (a) Rock Roadway (b) Machine Lane
(c) Transfer Point of Outer Lane (d) Ground Entry Channel (e) Haulage
Tunne.

FIGURE 17. Information transmission method of Rock Roadway. Edge
nodes deployed on the Rock Roadway transmit the information of the
nodes by mobbing vehicles or workers.

The latency times shown in TABLE 6 are the aver-
age times used by the two systems for intelligent process-
ing of 5000 images respectively As shown in TABLE 6,

the latency of Edge-cloud cooperation is lower than that of
Cloud computing. Moreover, the latency of Cloud computing
is different due to the network conditions in different regions.

In the Edge-cloud cooperation environment, the latency of
video upload is still affected by network conditions. However,
the video has been processed by edge nodes, it is able to
respond to the video events in real time at the surveillance
sites. In addition, with the growth of system deployment
time, the edge model is continuously optimized. Hence,
the edge-cloud cooperation surveillance analysis system has
an excellent performance of real-time and accuracy, it ensures
the production safety of coal mine to a great extent.

VI. CONCLUSION
In this paper, we have introduced a cloud-edge coopera-
tion framework for real-time intelligent video surveillance in
underground coal mine environment. The main work of this
paper are as follows:

(1) A new cloud-edge cooperation framework is proposed.
In the real-time intelligent video surveillance, this framework
realize model optimization. For the scenarios with poor net-
work environments, this framework still enables data interac-
tion between edge and cloud.

(2) On the basis of YOLO, FL-YOLO real-time object
detection model is proposed.

(3) Pedestrian dataset is built to train FL-YOLO, and vali-
dated the performance of FL-YOLO.

Compared with the traditional video surveillance method,
cloud-edge computing framework has excellent performance
of real-time and accuracy.

In the future, the main work is further optimization the
cloud-edge cooperation framework by two steps. Firstly,
we will further optimize the object detection model with
the goals of lightweight, high accuracy, and high speed.
Secondly, we will optimize the data transmission method
between edge and cloud, to improve the coverage of
real-time intelligent video surveillance and the speed of data
transmission.

REFERENCES
[1] S. S. Thomas, S. Gupta, and V. K. Subramanian, ‘‘Smart surveillance

based on video summarization,’’ in Proc. IEEE Region Symp. (TEN-
SYMP), Cochin, India, Jul. 2017, pp. 1–5, doi: 10.1109/TENCONSpring.
2017.8070003.

[2] T. Akiyama, Y. Kobayashi, J. Kishigami, and K. Muto, ‘‘CNN-based boat
detectionmodel for alert system using surveillance video camera,’’ inProc.
IEEE 7th Global Conf. Consum. Electron. (GCCE), Nara, Japan, 2018,
pp. 669–670, doi: 10.1109/GCCE.2018.8574704.

[3] A. Mhalla, T. Chateau, S. Gazzah, and N. E. B. Amara, ‘‘An embed-
ded computer-vision system for multi-object detection in traffic surveil-
lance,’’ IEEE Trans. Intell. Transp. Syst., vol. 20, no. 11, pp. 4006–4018,
Nov. 2019, doi: 10.1109/TITS.2018.2876614.

[4] A. Shahbaz and K.-H. Jo, ‘‘Deep atrous spatial features-based supervised
foreground detection algorithm for industrial surveillance systems,’’ IEEE
Trans. Ind. Informat., vol. 17, no. 7, pp. 4818–4826, Jul. 2021, doi:
10.1109/TII.2020.3017078.

[5] W. Shi and S. Dustdar, ‘‘The promise of edge computing,’’ Com-
puter, vol. 49, no. 5, pp. 78–81, May 2016, doi: 10.1109/MC.
2016.145.

VOLUME 9, 2021 68495

http://dx.doi.org/10.1109/TENCONSpring.2017.8070003
http://dx.doi.org/10.1109/TENCONSpring.2017.8070003
http://dx.doi.org/10.1109/GCCE.2018.8574704
http://dx.doi.org/10.1109/TITS.2018.2876614
http://dx.doi.org/10.1109/TII.2020.3017078
http://dx.doi.org/10.1109/MC.2016.145
http://dx.doi.org/10.1109/MC.2016.145


Z. Xu et al.: Surveillance Video Real-Time Analysis System Based on Edge-Cloud and FL-YOLO Cooperation in Coal Mine

[6] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 779–788,
doi: 10.1109/CVPR.2016.91.

[7] J. Redmon and A. Farhadi, ‘‘YOLO9000: Better, faster, stronger,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA,
Jul. 2017, pp. 6517–6525, doi: 10.1109/CVPR.2017.690.

[8] J. Redmon and A. Farhadi, ‘‘YOLOv3: An incremental improvement,’’ in
Proc. CVPR, 2018, pp. 1–6.

[9] L. Xie, T. Ahmad, L. Jin, Y. Liu, and S. Zhang, ‘‘A new CNN-
based method for multi-directional car license plate detection,’’ IEEE
Trans. Intell. Transp. Syst., vol. 19, no. 2, pp. 507–517, Feb. 2018, doi:
10.1109/TITS.2017.2784093.

[10] L. Zhou, W. Min, D. Lin, Q. Han, and R. Liu, ‘‘Detecting motion
blurred vehicle logo in IoV using filter-DeblurGAN and VL-YOLO,’’
IEEE Trans. Veh. Technol., vol. 69, no. 4, pp. 3604–3614, Apr. 2020, doi:
10.1109/TVT.2020.2969427.

[11] D. Sadykova, D. Pernebayeva, M. Bagheri, and A. James, ‘‘IN-YOLO:
Real-time detection of outdoor high voltage insulators using UAV imag-
ing,’’ IEEE Trans. Power Del., vol. 35, no. 3, pp. 1599–1601, Jun. 2020,
doi: 10.1109/TPWRD.2019.2944741.

[12] C. Zhang, Q. Cao, H. Jiang, W. Zhang, J. Li, and J. Yao, ‘‘A fast
filtering mechanism to improve efficiency of large-scale video analyt-
ics,’’ IEEE Trans. Comput., vol. 69, no. 6, pp. 914–928, Jun. 2020, doi:
10.1109/TC.2020.2970413.

[13] W. Fang, L. Wang, and P. Ren, ‘‘Tinier-YOLO: A real-time object
detection method for constrained environments,’’ IEEE Access, vol. 8,
pp. 1935–1944, 2020, doi: 10.1109/ACCESS.2019.2961959.

[14] Z. Shao, L. Wang, Z. Wang, W. Du, andW.Wu, ‘‘Saliency-aware convolu-
tion neural network for ship detection in surveillance video,’’ IEEE Trans.
Circuits Syst. Video Technol., vol. 30, no. 3, pp. 781–794, Mar. 2020, doi:
10.1109/TCSVT.2019.2897980.

[15] G. Olague, D. E. Hernández, P. Llamas, E. Clemente, and J. L. Briseño,
‘‘Brain programming as a new strategy to create visual routines for
object tracking,’’ Multimedia Tools Appl., vol. 78, no. 5, pp. 5881–5918,
Mar. 2019, doi: 10.1007/s11042-018-6634-9.

[16] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and
challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016,
doi: 10.1109/JIOT.2016.2579198.

[17] M. Satyanarayanan, ‘‘The emergence of edge computing,’’ Computer,
vol. 50, no. 1, pp. 30–39, Jan. 2017, doi: 10.1109/MC.2017.9.

[18] J. Ren, Y. Guo, D. Zhang, Q. Liu, and Y. Zhang, ‘‘Distributed and
efficient object detection in edge computing: Challenges and solu-
tions,’’ IEEE Netw., vol. 32, no. 6, pp. 137–143, Nov./Dec. 2018, doi:
10.1109/MNET.2018.1700415.

[19] A. Ahmed and E. Ahmed, ‘‘A survey on mobile edge computing,’’ in Proc.
10th Int. Conf. Intell. Syst. Control (ISCO), Coimbatore, India, Jan. 2016,
pp. 1–8, doi: 10.1109/ISCO.2016.7727082.

[20] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, ‘‘Mobile edge computing:
A survey,’’ IEEE Internet Things J., vol. 5, no. 1, pp. 450–465, Feb. 2018,
doi: 10.1109/JIOT.2017.2750180.

[21] L. Xu, J. Han, T. Wang, and L. Bai, ‘‘An efficient CNN to realize
speckle correlation imaging based on cloud-edge for cyber-physical-
social-system,’’ IEEE Access, vol. 8, pp. 54154–54163, 2020, doi:
10.1109/ACCESS.2020.2979786.

[22] H. El-Sayed, S. Sankar, M. Prasad, D. Puthal, A. Gupta, M. Mohanty, and
C.-T. Lin, ‘‘Edge of things: The big picture on the integration of edge,
IoT and the cloud in a distributed computing environment,’’ IEEE Access,
vol. 6, pp. 1706–1717, 2018, doi: 10.1109/ACCESS.2017.2780087.

[23] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Salt Lake City, UT, USA,
Jun. 2018, pp. 4510–4520, doi: 10.1109/CVPR.2018.00474.

[24] G. Li, Y. Yang, and X. Qu, ‘‘Deep learning approaches on pedestrian
detection in hazy weather,’’ IEEE Trans. Ind. Electron., vol. 67, no. 10,
pp. 8889–8899, Oct. 2020, doi: 10.1109/TIE.2019.2945295.

[25] J. Liu and X. Wang, ‘‘Early recognition of tomato gray leaf spot disease
based on MobileNetv2-YOLOv3 model,’’ Plant Methods, vol. 16, no. 1,
pp. 1–16, Dec. 2020, doi: 10.1186/s13007-020-00624-2.

[26] S. Han, H. Mao, and W. Dally, ‘‘Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,’’
in Proc. 4th Int. Conf. Learn. Represent. (ICLR), San Juan, Puerto Rico,
2017, pp. 3–7.

[27] Y. He, X. Dong, G. Kang, Y. Fu, C. Yan, and Y. Yang, ‘‘Asymp-
totic soft filter pruning for deep convolutional neural networks,’’ IEEE
Trans. Cybern., vol. 50, no. 8, pp. 3594–3604, Aug. 2020, doi:
10.1109/TCYB.2019.2933477.

[28] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, ‘‘Pruning Filters
for Efficient ConvNets,’’ in Proc. 5th Int. Conf. Learn. Represent. (ICLR),
Toulon, France, 2016, pp. 1–13.

[29] J.-H. Luo, J. Wu, and W. Lin, ‘‘ThiNet: A filter level pruning method
for deep neural network compression,’’ in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Venice, Italy, Oct. 2017, pp. 5068–5076, doi:
10.1109/ICCV.2017.541.

[30] Z. Wang, J. Zhang, Z. Zhao, and F. Su, ‘‘Efficient yolo: A lightweight
model for embedded deep learning object detection,’’ in Proc. IEEE Int.
Conf. Multimedia Expo Workshops (ICMEW), London, U.K., Jul. 2020,
pp. 1–6, doi: 10.1109/ICMEW46912.2020.9105997.

[31] R. Shi, T. Li, and Y. Yamaguchi, ‘‘An attribution-based pruning method
for real-time mango detection with YOLO network,’’ Comput. Electron.
Agricult., vol. 169, Feb. 2020, Art. no. 105214.

[32] X.Wang, L. T. Yang, X. Xie, J. Jin, andM. J. Deen, ‘‘A cloud-edge comput-
ing framework for cyber-physical-social services,’’ IEEE Commun. Mag.,
vol. 55, no. 11, pp. 80–85, Nov. 2017, doi: 10.1109/MCOM.2017.1700360.

[33] Y. Wang, K. Hong, J. Zou, T. Peng, and H. Yang, ‘‘A CNN-based visual
sorting system with cloud-edge computing for flexible manufacturing sys-
tems,’’ IEEE Trans. Ind. Informat., vol. 16, no. 7, pp. 4726–4735, Jul. 2020,
doi: 10.1109/TII.2019.2947539.

[34] Y. Wang, M. Liu, P. Zheng, H. Yang, and J. Zou, ‘‘A smart surface
inspection system using faster R-CNN in cloud-edge computing envi-
ronment,’’ Adv. Eng. Informat., vol. 43, Jan. 2020, Art. no. 101037, doi:
10.1016/j.aei.2020.101037.

[35] L. Ye, ‘‘Study on embedded system in monitoring of intelligent city
pipeline network,’’ Comput. Commun., vol. 153, pp. 451–458, Mar. 2020,
doi: 10.1016/j.comcom.2020.02.004.

[36] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, ‘‘VideoEdge: Processing camera streams using
hierarchical clusters,’’ in Proc. IEEE/ACM Symp. Edge Comput. (SEC),
Seattle, WA, USA, Oct. 2018, pp. 115–131, doi: 10.1109/SEC.2018.
00016.

[37] G. Ananthanarayanan, P. Bahl, P. Bodik, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, ‘‘Real-time video analytics: The killer app
for edge computing,’’ Computer, vol. 50, no. 10, pp. 58–67, 2017, doi:
10.1109/MC.2017.3641638.

[38] S. Trifunovic, S. T. Kouyoumdjieva, B. Distl, L. Pajevic, G. Karls-
son, and B. Plattner, ‘‘A decade of research in opportunistic networks:
Challenges, relevance, and future directions,’’ IEEE Commun. Mag.,
vol. 55, no. 1, pp. 168–173, Jan. 2017, doi: 10.1109/MCOM.2017.
1500527CM.

[39] S. Wang, X. Wang, J. Huang, R. Bie, Z. Tian, and F. Zhao, ‘‘The poten-
tial of mobile opportunistic networks for data disseminations,’’ IEEE
Trans. Veh. Technol., vol. 65, no. 2, pp. 912–922, Feb. 2016, doi:
10.1109/TVT.2015.2401605.

[40] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 770–778, doi:
10.1109/CVPR.2016.90.

[41] L. Chen, Q. Ding, Q. Zou, Z. Chen, and L. Li, ‘‘DenseLightNet:
A light-weight vehicle detection network for autonomous driving,’’ IEEE
Trans. Ind. Electron., vol. 67, no. 12, pp. 10600–10609, Dec. 2020, doi:
10.1109/TIE.2019.2962413.

[42] Q.-C.Mao, H.-M. Sun, L.-Q. Zuo, andR.-S. Jia, ‘‘Finding every car: A traf-
fic surveillancemulti-scale vehicle object detectionmethod,’’ Int. J. Speech
Technol., vol. 50, no. 10, pp. 3125–3136, Oct. 2020, doi: 10.1007/s10489-
020-01704-5.

[43] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards
real-time object detection with region proposal networks,’’ IEEE Trans.
Ind. Electron., vol. 67, no. 12, pp. 10600–10609, Dec. 2020, doi:
10.1109/TIE.2019.2962413.

[44] W. Pan and Q. Yang, ‘‘Transfer learning in heterogeneous collaborative
filtering domains,’’ Artif. Intell., vol. 197, pp. 39–55, Apr. 2013, doi:
10.1016/j.artint.2013.01.003.

[45] Y. Jiang, D. Wu, Z. Deng, P. Qian, J. Wang, G. Wang, F.-L. Chung,
K.-S. Choi, and S. Wang, ‘‘Seizure classification from EEG signals using
transfer learning, semi-supervised learning and TSK fuzzy system,’’ IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 12, pp. 2270–2284,
Dec. 2017, doi: 10.1109/TNSRE.2017.2748388.

68496 VOLUME 9, 2021

http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/CVPR.2017.690
http://dx.doi.org/10.1109/TITS.2017.2784093
http://dx.doi.org/10.1109/TVT.2020.2969427
http://dx.doi.org/10.1109/TPWRD.2019.2944741
http://dx.doi.org/10.1109/TC.2020.2970413
http://dx.doi.org/10.1109/ACCESS.2019.2961959
http://dx.doi.org/10.1109/TCSVT.2019.2897980
http://dx.doi.org/10.1007/s11042-018-6634-9
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/MC.2017.9
http://dx.doi.org/10.1109/MNET.2018.1700415
http://dx.doi.org/10.1109/ISCO.2016.7727082
http://dx.doi.org/10.1109/JIOT.2017.2750180
http://dx.doi.org/10.1109/ACCESS.2020.2979786
http://dx.doi.org/10.1109/ACCESS.2017.2780087
http://dx.doi.org/10.1109/CVPR.2018.00474
http://dx.doi.org/10.1109/TIE.2019.2945295
http://dx.doi.org/10.1186/s13007-020-00624-2
http://dx.doi.org/10.1109/TCYB.2019.2933477
http://dx.doi.org/10.1109/ICCV.2017.541
http://dx.doi.org/10.1109/ICMEW46912.2020.9105997
http://dx.doi.org/10.1109/MCOM.2017.1700360
http://dx.doi.org/10.1109/TII.2019.2947539
http://dx.doi.org/10.1016/j.aei.2020.101037
http://dx.doi.org/10.1016/j.comcom.2020.02.004
http://dx.doi.org/10.1109/SEC.2018.00016
http://dx.doi.org/10.1109/SEC.2018.00016
http://dx.doi.org/10.1109/MC.2017.3641638
http://dx.doi.org/10.1109/MCOM.2017.1500527CM
http://dx.doi.org/10.1109/MCOM.2017.1500527CM
http://dx.doi.org/10.1109/TVT.2015.2401605
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/TIE.2019.2962413
http://dx.doi.org/10.1007/s10489-020-01704-5
http://dx.doi.org/10.1007/s10489-020-01704-5
http://dx.doi.org/10.1109/TIE.2019.2962413
http://dx.doi.org/10.1016/j.artint.2013.01.003
http://dx.doi.org/10.1109/TNSRE.2017.2748388


Z. Xu et al.: Surveillance Video Real-Time Analysis System Based on Edge-Cloud and FL-YOLO Cooperation in Coal Mine

ZHI XU received the bachelor’s degree in electrical
engineering from the College of Electrical and
Information Engineering, Anhui University of Sci-
ence and Technology (AUST), Huainan, China,
in 2018, where he is currently pursuing the Ph.D.
degree in mechanical engineering. His current
research interests include edge computing and arti-
ficial intelligence.

JINGZHAO LI received the M.A. degree from
the China University of Mine and Technology,
in 1992, and the Ph.D. degree from the Key Lab-
oratory of Power Electronics and Power Drives,
Hefei University of Science and Technology,
in 2003. He is currently a Professor with the
School of Electrical Information and Engineer-
ing, Anhui University of Science and Technology,
China. He has published more than 100 articles in
domestic and international academic journals and

conference proceedings. These articles are embodied more than 60 times by
SCI and EI and are citedmore than 100 times by others. His research interests
include computer control, the Internet of Things technology, and embedded
systems.

MEI ZHANG was born in Suzhou, Anhui, China,
in 1979. She received the bachelor’s and master’s
degrees in electrical engineering from the Anhui
University of Science and Technology, in 2002 and
2005, respectively. She is currently an Associate
Professor with the School of Electrical and Infor-
mation Engineering, Anhui University of Science
and Technology. Her research interests include
intelligent control, the Internet of Things (IoT)
technology, and embedded systems.

VOLUME 9, 2021 68497


