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ABSTRACT A robust asynchronous switching fault-tolerant control method is proposed to solve the
problems of uncertainties, unknown disturbances, time-varying delays and partial actuator failures in
multi-phase batch processes. Firstly, an asynchronous system composed of subsystems with different
dimensions including stable and unstable case is established to describe such multi-phase batch processes
more accurately. Then introducing the output tracking error, the established switching model of different
dimensions is extended. On this basis, a robust asynchronous switching fault-tolerant control law is designed,
which improves the system’s ability to cope with negative factors such as actuator failure and can obtain
greater adjustment freedom. Secondly, by using relevant theories and methods, the sufficient conditions in
the form of linear matrix inequality (LMI) are given to ensure the exponential stability of the system and
the asymptotic stability at each phase. By solving these LMIs conditions, the shortest running time under
stable case, the longest running time under unstable case and the control law gain of each phase are obtained.
Finally, the effectiveness and feasibility of the proposed method are verified with injection molding process.

INDEX TERMS Asynchronous switching, fault-tolerant control, time-varying delays, multi-phase batch
processes.

I. INTRODUCTION
With people’s increasingly personalized and diversified
needs, batch processes with high adjustability and small-scale
are more popular. It has been widely used in many fields
such as chemistry, pharmacy and injection molding. In view
of the high accuracy and complexity of the control of batch
process, a good deal of more mature control method applied
to continuous processes are difficult to effectively control the
batch process. How to make batch process run efficiently
and stably has attracted extensive attention from scholars and
researchers at home and abroad [1]–[5].

The associate editor coordinating the review of this manuscript and
approving it for publication was Shen Yin.

The modern batch processes are becoming more and more
complex. And the actual production processes are affected
by many uncertain factors, such as equipment wear and tear,
line aging and changes in production environment, etc. There-
fore, uncertainty, unknown disturbances and time-varying
delays are problem that have to be considered. Liu et al. [6]
considered the influence of uncertainties, unknown distur-
bances and time-varying delays in the study of robust model
predictive control based on matrix inequality. Shi et al. [7]
considered the problems caused by uncertainties, unknown
disturbances and time-varying delays in the robust model pre-
dictive control for industrial processes. However, compared
with problems such as uncertainty, unknown disturbances
and time-varying delays, the impact of failures on the sys-
tem is more fatal. Considering the continuous high-intensity
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operation of production equipment and corresponding control
systems. The control system will inevitably break down.
Caccavale et al. [8] put forward a comprehensive judgment
scheme using redundant temperature measurement combined
with state observer. Kerkhof et al. [9] proposed a fault diag-
nosis scheme based on dynamic model for batch processes.
Wang et al. [10] proposed a scheme based on dynamic event
trigger fault estimation and sliding mode fault tolerance con-
trol. The above [8]–[10] on fault research are fault detection
methods, and there is no in-depth study on how to deal with
faults. Usually, the fault can be divided into sensor fault, sys-
tem internal fault and actuator fault. The actuator is the part
with the highest intensity and frequency in the whole system,
so the failure of the actuator is also the most common. If the
failure of the actuator cannot be dealt with effectively and
promptly, it will degrade the performance of the control sys-
tem. In the worst case, it will cause production stagnation and
even casualties. Therefore, the study of fault-tolerant control
has more practical significance [11], [12]. Wang et al. [13]
adopted a fault tolerant control method of iterative learning
in the batch process. Zhang et al. [14] proposed a minimum
quadratic linear fault-tolerant tracking control scheme for
batch process. Shi et al. [15] proposed a robust constraint
model to predict fault-tolerant control for industrial processes
with actuator fault. Shi et al. [16] proposed a fuzzy predic-
tive fault-tolerant control method for nonlinear system with
partial actuator failures. In [13]–[16], in view of the problem
of partial actuator failure, the control method adopted is
to introduce the failure factor into the controller design to
overcome the effect of actuator failure on the system. Further-
more, time delay is also an important factor affecting system
stability and control performance. It is common to adopt
iterative learning fault-tolerant control method for batch pro-
cesses with time delay and failure. Wang et al. [17] proposed
a two-dimensional robust iterative learning fault-tolerant
control (FTC) method for batch process with time delay
and actuator failures. Wang et al. [18] put forward an itera-
tive learning fault-tolerant control method considering uncer-
tainty and cost function in controller design. Tao et al. [19]
proposed a fault-tolerant iterative learning control method for
batch processes with actuator failures and differential time-
delay. Wang et al. [20] developed a fuzzy iterative learning
fault-tolerant controller for batch processes with time delays
and actuator failures. These studies [17]–[20] aim at the batch
processes with time delay and actuator failures and obtain
a better control effect. But their research focuses on the
single-phase batch processes.

In the actual industrial production, the batch processes are
mostly multi-phase. Wang et al. [21] proposed a robust iter-
ative learning fault-tolerant control method for multi-phase
batch processes (MPBP) with actuator failures and uncer-
tainties under the framework of a two-dimensional theory.
Shen et al. [22] proposed a two-dimensional iterative learn-
ing fault-tolerant control method for MPBP with time delays
and failures. Wang et al. [23] proposed a two-dimensional
robust mixed iterative learning method with guaranteed cost

for MPBPwith time delay, disturbances and actuator failures.
In the above research on MPBP with failures [21]–[23],
iterative learning control method is adopted. If there are
non-repetitive disturbances in the system or batch length is
inconsistent, the control effect of iterative learning control
method will be greatly worsened. Yu et al. [24] proposed
a robust predictive fault-tolerant control method for MPBP
with time-varying delays, uncertainty and disturbances. This
control method can effectively solve the problem of incon-
sistent batch length in the iterative learning control method.
However, the above [21]–[24] adopt the control method of
synchronous switching. Due to the influence of some uncon-
trollable factors in the actual industrial production process,
the system state and the controller are difficult to keep in
sync, i.e., the model and controller is mismatched. There-
fore, Wang et al. [25] proposed an iterative learning control
method for multi-phase batch processes with asynchronous
switching. However, the control scheme in [25] uses the same
control law from beginning to end. Hence it cannot to deal
with the deviation of the system state.

To sum up, a robust model predictive fault-tolerant control
method is proposed for MPBP with uncertainties, unknown
disturbances, interval time-varying delays, and partial actu-
ator failures. Based on model-dependent average dwell time
method [26]–[29], Lyapunov stability theory and switching
theory, the sufficient conditions with linear matrix inequal-
ity (LMI) form are given. By solving these LMI condi-
tions, the control gain of the system, the shortest running
time (SRT) for each phase of stable case and the longest run-
ning time (LRT) for each phase of unstable case are obtained.
Depending on LRT of the unstable case, we put the switching
signal in advance. It can ensure that the model matches the
controller, and the stability is avoided. Compared with other
studies, the contributions of this paper are as follows.

(1) A switching model of extended state space containing
stable and unstable conditions at each phase is established
to describe a class of MPBP with time-varying delays and
partial actuator failures. Based on this model, a robust model
predictive fault-tolerant control law is designed, which can
effectively improve the control performance and improve the
degree of freedom of the system.

(2) When the switching occurs, the model has completed
the switching. However, it is difficult for the controller to
switch in time due to some factors such as system identifi-
cation speed, signal transmission blocked. This will lead to
a mismatch between the model and the controller. Compared
with literature [21]–[24], the asynchronous switching method
proposed in this paper is more in line with the actual situation
of industrial application. By calculating the LRT under unsta-
ble case, the switching signal is given in advance to match the
model with the controller. The smooth operation of the system
can be ensured.

(3) Compared with the asynchronous switched method
in [25], the method proposed in this paper can effectively
deal with the problems of non-repetitive disturbances and
inconsistent batch length in the system. Furthermore, [25]
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has cannot to deal with the deviation of the system state. The
control scheme in [25] uses the same control law from begin-
ning to end, and the deviation of the system state will become
larger and larger as time goes by. The method proposed in
this paper can solve the control gain in real time to avoid the
increase of system deviation over time.

II. PROCESS FORMULATION
A. ESTABLISHMENT OF MODEL
For a MPBP with uncertainties, unknown disturbances and
time-varying delays, a state space model is proposed to
describe it as follows.
x0(k)(k+1) = A0(k)(k)x(k)+A0(k)d (k)x0(k)(k − d(k))

+B0(k)u0(k)(k)+ ω0(k)(k)
y0(k)(k) = C0(k)x0(k)(k)

(1)

where x0(k)(k) ∈ Rn
0(k)
x , u0(k)(k) ∈ Rn

0(k)
u , y0(k)(k) ∈ Rn

0(k)
y

andω0(k)(k) are the system state, control input, system output
and unknown disturbances at the discrete-time k , respec-
tively. d(k) represents the time-varying delays based on dis-
crete time k , which satisfies

dm ≤ d(k) ≤ dM (2)

where dM and dm are the upper and lower bounds of the
time-varying delays d(k). 0(k) is the signal of whether the
system has a switchover, which satisfies 0(k) : R+ → p :=
{1, 2, 3 · · · ,P}, p is the phase of the system. In the pth phase,
the sub-model of the system is Ap(k) = Ap + 1p

a(k) and
Apd (k) = Apd +1

p
d (k), where A

p,Apd , B
p and Cp are the con-

stant matrices matching the system dimension, respectively.
1
p
a(k) and 1p

d (k) are the uncertain matrices matching the
system dimension respectively, which can be expressed as
follows.[

1
p
a(k) 1

p
d (k)

]
= N p1p(k)

[
Hp Hp

d

]
(3)

1pT(k)1p(k) ≤ Ip (4)

where N p, Hp and Hp
d are constant matrices. 1p(k) is the

uncertainties under the discrete time k .
When 0(k) = p, Eq. (1) can be rewritten as Eq. (5). Con-

sidering the problem of asynchronous switching, we divide
each phase into stable and unstable cases. Eq. (5a) is the
model of the stable case at pth phase and Eq. (5b) is the
model of the unstable case at pth phase. Therefore, Eq. (1)
is transformed as follow form.

xp(k + 1) = Ap(k)xp(k)+ Apd (k)x
p(k − d(k))

+Bpup(k)+ ωp(k)
yp(k) = Cpxp(k)

(5a)


xp(k + 1) = Ap(k)xp(k)+ Apd (k)x

p(k − d(k))
+Bpup−1(k)+ ωp(k)

yp(k) = Cpxp(k)

(5b)

Furthermore, in the actual industrial production processes,
controller failure is inevitable because of long-term continu-
ous operation. Therefore, the actuator cannot get the correct

calculated value and operate normally. In general, actuator
failure includes three types, namely partial failure (αp > 0),
complete failure (αp = 0) and stuck failure (αp > upα).
Because of the latter two kinds of failures, the system cannot
be operated, so the case of αp > 0 situation is studied
emphatically. The following equation is defined.

upF (k) = αpup(k) (6)

0 ≤ αp ≤ αp ≤ ᾱp (7)

where up(k) is the control input of the controller, upF (k) is
the control value in the case of partial failure of the actuator,
αp ≤ 1 and ᾱp ≥ 1 are known scalars.
To improve the control performance of the controller in

case of failure, the following equation is introduced.

βp =
ᾱp + αp

2
, β

p
0 =

ᾱp − αp

ᾱp + αp
(8)

Combining Eqs. 6-8, the following equation can be
obtained.

αp = (Ip + αp0)β
p (9)

with ∣∣αp0∣∣ ≤ βp0 ≤ Ip
After considering actuator failure, the state space model

describing MPBP in the pth phase is rewritten as:
xp(k + 1) = Ap(k)xp(k)+ Apd (k)x

p(k − d(k))
+Bpαpup(k)+ ωp(k)

y(k) = Cpxp(k)

(10a)


xp(k + 1) = Ap(k)xp(k)+ Apd (k)x

p(k − d(k))
+Bpαpup−1(k)+ ωp(k)

yp(k) = Cpxp(k)

(10b)

Due to each batch contains multi-phases, switching
between phases is inevitable. Therefore, the system states of
the two adjacent phases meet the following equation.

xp(T p−1) = <pxp−1(T p−1) (11)

where <p represents a state-transition matrix between the
p-1th phase and the pth phase.

If the switching occurs between adjacent phases,
the switching conditions are as follows.

0(k + 1) =

{
0(k)+ 1 if γ 0(k)+1(x(k)) < 0
0(k) other

(12)

where γ 0(k)+1(x(k)) < 0 is a switching condition that deter-
mines whether a switching has occurred.

Since the system must switch between two phases, and the
switching time is also a key factor affecting the system,
the relationship between the time of each switching point and
the switching conditions can be expressed as the following
equation.

T p = min
{
k > T p−1|γ p(x(k)) < 0

}
, T 0

= 0 (13)
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In the pth phase, T pS and T pU are used to represent the
switching time of stable case and unstable case in the same
phase. In order to more clearly describe the multi-phase batch
process with asynchronous switching, a time series is defined.
It contains the switching point and the completion point of the
adjacent phase in a batch.∑
=

{
(T 1s, 0(T 1s)), (T 2U , 0(T 2U )), (T 2S , 0(T 2S )),

(T 3U , 0(T 3U )), · · · , (T pU , 0(T pU )), (T pS , 0(T pS )) }

(14)

where (T pU , 0(T pU )) refers to the unstable switching point
in the pth phase caused by the controller switching untimely.
(T pS , 0(T pS )) refers to the point where the controller has
completed the switching.

And the switching time of the two phases are satisfied
T pS −T pU ≥ τ pS , T

pU
−T (p−1)U

≤ τ
p
U , where τ

p
S and τ pU are

the SRT of the stable case and the LRT of the unstable case,
respectively.

B. EXTENDED STATE SPACE MODEL
To reduce the steady-state error of the system and improve
the regulating ability of the controller, an incremental state is
adopted. And output tracking error is introduced to establish
a new state-space model as shown in the following equation.

x̄pS (k + 1) = Apk (k)x̄
pS (k)+ Apdk (k)x̄

pS (k − d(k))
+Bpkα

p1up(k)+ Gpk ω̄
p
k (k)

1yp(k) = Cp
k x̄

pS (k)
zpS (k) = epS (k) = Epk x̄

pS (k)

(15a)


x̄pU (k + 1) = Apk (k)x̄

pU (k)+ Apdk (k)x̄
pU (k − d(k))

+Bpkα
p1up−1(k)+ Gpk ω̄

p
k (k)

1yp(k) = Cp
k x̄

pU (k)
zpU (k) = epU (k) = Epk x̄

pU (k)

(15b)

where

x̄pS (k) =
[
1xp(k)
epS (k)

]
, x̄pU (k) =

[
1xp(k)
epU (k)

]
,

x̄pS (k − d(k)) =
[
1xpS (k − d(k))
epS (k − d(k))

]
,

x̄pU (k − d(k)) =
[
1xpU (k − d(k))
epU (k − d(k))

]
,

Apk (k) = Apk +1
p
ak (k), Apk =

[
Ap 0
CpAp I

]
,

1
p
ak (k) = N p

k1
p(k)Hp

k , Apdk =
[

Apd 0
CpApd 0

]
,

1
p
dk (k) = N p

k1
p(k)Hp

dk , Bpk =
[

Bp

CpBp

]
,

N p
k =

[
N p

CpN p

]
, Gpk =

[
Ip

Cp

]
,

Cp
k =

[
Cp 0

]
, Epk =

[
0 Ip

]
,

Hp
k =

[
Hp 0

]
, Hp

dk =
[
Hp
d 0

]
,

ω̄pS (k) = (1p
a(k)−1

p
a(k − 1))xp(k − 1)

+ (1p
d (k)−1

p
d (k − 1))

· xp(k − 1− d(k − 1))+1ωp(k),

ω̄pU (k) = (1p
a(k)−1

p
a(k − 1))xp(k − 1)

+ (1p
d (k)−1

p
d (k − 1))xp(k − 1

− d(k − 1))+1ωp(k),

1ωp(k) = ωp(k)− ωp(k − 1).

And ϑp(k) is the setpoint of the batch processes in the
pth phase. The output tracking error of the batch processes
are defined as ep(k) = yp(k)−ϑp(k). The following equation
can be obtained.

epS (k + 1) = epS (k)+ CpAp(k)1xp(k)+CpBp(k)αp1up(k)

+Cpω̄pS (k)

epU (k + 1) = epU (k)+ CpAp(k)1xp(k)

+CpBp(k)αp1up−1(k)+ Cpω̄pU (k)

Hence, themodel of the extended system in two contiguous
phases meet the following equation:[
1xp+1(T p)
ep+1(T p)

]
=

[
<
p1xp(T p)

Cp
<
p(1xp(T p)+ xp(T p − 1))− ϑp+1

]
=

[
<
p

Cp
<
p

] [
I 0

] [1xp(T p)
ep(T p)

]
+

[
0

Cp
<
pxp(T p − 1)− ϑp+1

]
(16)

where

<̄
p
=

[
<
p

Cp
<
p

] [
I 0

]
, ϒp

=

[
0

Cp
<
pxp(T p − 1)− ϑp+1

]
,

then x̄p+1(k) = <̄px̄p(k)+ ϒp.
Remark 1: In order to clearly show the design idea of the

controller in this paper, a block diagram of each batch is
given. As shown in Figure 1.

III. DESIGN OF FAULT CONTROLLER
In this section, a robust asynchronous switch fault tolerant
controller is designed to keep theMPBP stable during switch-
ing and occurring failure. Then the SRT of each stable case
and the LRT of each unstable case can be solved by the
following theorems. The proposed control method can not
only guarantee the stability of the system in the event of
failure, but also guarantee the smooth stability of the system
when switching between two adjacent phases.

A. DESIGN OF THE FAULT-TOLERANT CONTROL LAW
UNDER ASYNCHRONOUS CONDITION
The fault-tolerant control law based on the Eq. (15) in the
stable and unstable cases are designed, the following equation
can be obtained.

1up(k) = K p
k x̄

pS (k) = K p
k

[
1xp(k)
epS (k)

]
(17a)

1up−1(k) = K p−1
k x̄(p−1)U (k)
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= K p−1
k

((
<
p−1

)−1
x̄p(k)+

(
<
p−1

)−1
ϒp−1

)
= K p−1

k

(
<
p−1

)−1 [1xp(k)
ep(k)

]
+K p−1

k

(
<
p−1

)−1
ϒp−1 (17b)

where K p
k and K p−1

k are the control law gains of the system
in the phase pth and phase p-1th, respectively.
Due to x̄p−1(k) = (<̄p−1)−1 · x̄p(k)− (<̄p−1)−1 · ϒp−1

≤

(<̄p−1)−1 · x̄p(k), ϒp−1
≥ 0, the following equation can be

obtained by scaling the Eq. (17b).

1up−1(k) ≤ K p−1
k (<p−1)−1x̄p(k) (18)

Therefore, the Eq. (18) is substituted into the Eq. (15) to
obtain the state space model of the closed-loop system in the
stable case and unstable case. The following equations can be
obtained.

x̄pS (k + 1) = Apk (k)x̄
pS (k)+ Apdk (k)x̄

pS (k − d(k))
+Bpk (k)α

p1up(k)+ Gpk ω̄
p
k (k)

1yp(k) = Cp
k x̄

pS (k)
zpS (k) = epS (k) = Epk x̄

pS (k)

(19a)



x̄pU (k + 1) = Apk (k)x̄
pU (k)+ Apdk (k)x̄

pU (k − d(k))

+Bpk (k)α
pK p−1

k (<p−1)−1x̄pk (k)
+Gpk ω̄

p
k (k)

1yp(k) = Cp
k x̄

pU (k)
zpU (k) = epU (k) = Epk x̄

pU (k)

(19b)

B. DEFINITIONS AND LEMMAS
Due to design requirements, the following definitions and
lemmas are given.
Definition 1 (Robust MPC Problem): In order to achieve

the robust predictive control objective of batch processes with
asynchronous condition, the following performance index of
the robust predictive control are considered:

min
1u(k+i),i≥0

max Jp
∞

[Ap(k+i) Apd (k+i) Bp]∈�,i≥0

Jp
∞
(k) =

∞∑
i=0

[(xp1 (k + i|k))
TQp(xp1 (k + i|k))

+ up(k + i|k)TRpup(k + i|k)] (20)

where Qp > 0 and RP > 0 are the weighting matrices of
the pth phase for system state variables and the control input,
respectively. xp(k+ i|k) and up(k+ i|k) are the state and input
of the system at time the k + i predicted by at the time k in
the pth phase.
Definition 2 [26]: In a batch process, k satisfies k =

O ≥ d = T pO for any discrete time. NpS
0 (d,O) denotes

the number in the time interval [d,O] for the switching
signal 0 appearing in the pth phase of each batch. τ pS
represents the running time of the system during a sin-
gle stable case in a batch. In conclusion, we can get

NpS
0 (d,O) ≤ NS

0 +
T pS (d,O)
τPS

, where NS
0 is chatter bound and

τ
p
S > 0. Similarly, the switching number of the system in

unstable case can be obtained as NpU
0 (d,O) ≤ NU

0 +
TPU (d,O)
τPU

,

where NU
0 is chatter bound and τ pU > 0.

Definition 3 [27]: Given a scalar rp > 0, the asymptotic
stability of the system with unknown disturbance ω̄p(k) can
be guaranteed, and the output zp(k) of the system can also
satisfy ||zp|| ≤ rp||ω̄p||. The discrete-time robust H∞ perfor-
mance is considered.
Lemma 1 [28]: Consider the matrices W , L and V of the

appropriate dimensions, where W and L are real matrices,
and the following formula can be obtained.

LTVL −W < 0 (21)

if and only if[
−W LT

L −V−1

]
< 0 or

[
−V−1 L
LT −W

]
< 0 (22)

Lemma 2 [29]: For any vector δ̄(k) ∈ Rn, two positive
integers κ0, κ1, and matrix 0 < R̄ ∈ Rn×n, the following
inequality holds.

−(κ1 − κ0 + 1)
κ1∑
t=κ0

δ̄T(k)R̄δ̄(k) ≤ −
κ1∑
t=κ0

δ̄T(k)R̄
κ1∑
t=κ0

δ̄T(k)

(23)

Lemma 3 [30]: Let D,F,E andM be real matrices of appro-
priate dimensions with satisfying M = MT, then for all
FTF ≤ I

M + DFE + ETFTDT < 0 (24)

if and only if there exists ε > 0 such that

M + ε−1DDT
+ εETE < 0 (25)

Lemma 4: For the pth phase, it will ensure the sub-system to
be asymptotically stable, if the Lyapunov function V p(x̄1(k))
can be found and satisfy the following conditions:

1) V p(x̄1(k)) ≥ 0 for x̄(k) ∈ Rnx+ne , and V p(x̄(k)) = 0↔
x̄(k) = 0;
2) V p(x̄(k)) = ∞↔ ‖x̄(k)‖ = ∞;
3) For any bounded condition, 0 < 4p < 1

V p(x̄(k + 1)) ≤ 4pV p(x̄(k)) (26)

C. MAIN THEOREM AND COROLLARY
In this section, the robust predict fault-tolerant control law
is designed, including two theorems and the corresponding
proof. Theorem 1 is a sufficient condition to ensure the
stability of the MPBP with uncertainties, time-varying delays
and partial actuator failure. Theorem 2 considers unknown
disturbances on the basis of Theorem 1.
Theorem 1: The considered system (19) with ω̄ = 0 is the

asymptotical stability in each phase and exponentially stable
in a batch, if there are some scalar 0 < ςSp < 1, ςUp > 1, θp >
0, θp−1 > 0, 0 ≤ dm ≤ dM ,some positive definite matrices
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QpS ,RpS ,Q(p−1)U ,R(p−1)U , some positive definite symmet-
ric matrices PpS1 ,T

pS
1 ,MpS

1 ,G
pS
1 , L

pS
1 , S

pS
1 , S

pS
2 ,M

pS
3 ,M

pS
4 ,

XpS1 ,X
pS
2 , β

pS ,Y pS ,P(p−1)U1 ,T (p−1)U
1 ,M (p−1)U

1 ,G(p−1)U
1 , βpU

Y pU ,L(p−1)U1 , S(p−1)U1 , S(p−1)U2 ,M (p−1)U
3 ,M (p−1)U

4 ,X (p−1)U
1 ,

X (p−1)U
2 ∈ R(nx+ne) and some scalars εpS1 , ε

pS
2 , ε

pU
1 , ε

pU
2 , θP >

0, µSp > 1, 0 < µUp < 1, so that the following LMIs hold.


3pS

11
3pS

12
3pS

13
3pS

14
3pS

15

∗ 3pS
22

0 0 0
∗ ∗ 3pS

33
0 0

∗ ∗ ∗ 3pS
44

0
∗ ∗ ∗ ∗ 3pS

55

 < 0 (27)


3pU

11
3pU

12
3pU

13
3pU

14
3pU

15

∗ 3pU
22

0 0 0
∗ ∗ 3pU

33
0 0

∗ ∗ ∗ 3pU
44

0
∗ ∗ ∗ ∗ 3pU

55

 < 0 (28)


V S
p (x̄1(k)) ≤ µ

S
pV

S
p−1(x̄1(k))

V S
p (x̄1(k)) ≤ µ

S
pV

U
p (x̄1(k))

VU
p (x̄1(k)) ≤ µUp V

S
p−1(x̄1(k))

(29)

[
−1 x̄pT(k|k)

x̄p(k|k) −Pp1

]
≤ 0 (30)

3
pS
11 =

φ
pS
1 0 (ςSp )

dMLpS1
∗ −(ςSp )

dM SpS1 0

∗ ∗ −(ςSp )
dM ((MpS

4 )+ (XpS1 ))

 ,
3
pS
12 =

 LpS1 ApTk + Y
pST
1 βpSBpTk LpS1 ApTk + Y

pST
1 βpSBpTk − L

pS
1

SpS1 ApTdk SpS1 ApTdk
0 0

 ,
3pS

13
=

 LpS1 (QpS )
1
2 Y pST1 (RpS )

1
2

0 0
0 0

 , 3pS
14
= 3pS

15
=

 LpS1 HpT
k Y pST1 βpS

SpS1 HpT
dk 0

0 0

 ,
3pS

22
=

[
−LpS1 + ε

pS
1 N p

k N
pT
k + ε

pS
2 Bpk (β

pS
0 )2BpTk 0

0 −XpS1 (Dp2)
−1
+ ε

pS
1 N p

k N
pT
k + ε

pS
2 Bpk (β

pS
0 )2BpTk

]
,

3pS
33
=

[
−θpIp 0

0 −θpIp

]
, 3pS

44
= 3pS

55
=

[
−ε

pS
1 Ip 0
0 −ε

pS
2 Ip

]
,

3pU
11
=

φ
pU
1 0 (ςUp )dML(p−1)U1

∗ −(ςUp )
dM S(p−1)U1 0

∗ ∗ −(ςUp )dM ((M (p−1)U
4 )+ (X (p−1)U

1 ))

 ,

3pU
12
=

L
(p−1)U
1 ApTk + L

(p−1)U
1

(
(<p−1)−1

)T (
K p−1

)T
βpUBpTk L(p−1)U1 ApTk +L

(p−1)U
1

(
(<p−1)−1

)T(
K p−1

)T
βpUBpTk −L

(p−1)U
1

S(p−1)U1 ApTdk S(p−1)U1 ApTdk
0 0

,
3pU

13
=

 L(p−1)U1 (Q(p−1)U )
1
2 L(p−1)U1

(
(<p−1)−1

)T (
K p−1

)T
(R(p−1)U )

1
2

0 0
0 0

 ,
3pU

14
= 3pU

15
=

 L(p−1)U1 HpT
k L(p−1)U1

(
(<p−1)−1

)T (
K p−1

)T
βpU

S(p−1)U1 HpT
dk 0

0 0

 ,
3pU

22
=

[
−L(p−1)U1 + ε

pU
1 N p

k N
pT
k + ε

pU
2 Bpk (β

pU
0 )2BpTk 0

0 −X (p−1)U
1 (Dp2)

−1
+ ε

pU
1 N p

k N
pT
k + ε

pU
2 Bpk (β

pU
0 )2BpTk

]
,

3
pU
33 =

[
−θp−1Ip−1 0

0 −θp−1Ip−1

]
, 3

pU
44 = 3

pU
55 =

[
−ε

pU
1 Ip 0
0 −ε

pU
2 Ip

]
,

φ
pS
1 = −ς

S
p L

pS
1 +M

pS
3 + D

p
1S

pS
2 + S

pS
2 − (ςSp )

dMXpS2 ,

φ
pU
1 = −ς

U
p L

(p−1)U
1 +M (p−1)U

3 + Dp1S
(p−1)U
2 + S(p−1)U2 − (ςUp )dMX (p−1)U

2 , Dp1 = (dM − dm + 1)Ip, Dp2 = (dM )2Ip.
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where 3pS
11 ,3

pS
12 ,3

pS
13
,3pS

14
,3pS

22
,3pS

33
,3pU

11
,3pU

12
,3pU

13
,3pU

14
,

3pU
22

, 3pU
33 , and φ

pS
1 as shown at the bottom of the previous

page.
In Eq. (27) and Eq. (28), ‘‘∗’’ is derived from symmetry

and ‘‘0’’ is the zero matrix of the corresponding dimension.
The SRT of stable case and the LRT of unstable case in

each phase are as follows.
τ
p
S ≥ −

lnµSp
ln ςSp

τ
p
U ≤ −

lnµUp
ln ςUp

(31)

Proof 1:When ω̄pk = 0, the proof of the stable case and
unstable case of the MPBP in the pth is as follows.
The stable case of the pth phase is proof:
Firstly, the asymptotic stability the uncertain discrete-time

closed system (19) with w(k) = 0 are proved. When there
is no disturbance in the system, according to Lemma 3,
the Lyapunov function and robust performance indexes of the
system meet the following equation:

V (x̄pS (k + i+ 1|k))− V (x̄pS (k + i|k))

≤ −[(x̄pS (k + i|k)TQpS (x̄pS (k + i|k)

+1upS (k + i|k)TRpS1upS (k + i|k)] (32)

Accumulating left and right sides of Eq. (32) from i = 0
to ∞ and requiring that V (x̄pSk (∞)) = 0 or x̄pSk (∞) = 0,
the following equation can be obtained:

JpS
∞
(k) ≤ V S

p (x̄
p
k (k)) ≤ θ

p (33)

where θp is the upper bound of JpS
∞
(k).

The selection of Lyapunov-Krasovskii function can be
expressed as follows.

V S
p (x

p(k + i)) =
5∑
j=1

V pS
j (xp(k + i)) (34)

where, to simplify, define

x̄pd (k + i) = x̄p(k + i− d(k + i)),

x̄pdM (k + i) = x̄p(k + i− dM ),

δp(k + i) = x̄p(k + i+ 1)− x̄p(k + i),

ϕp(k + i) =
[
x̄pT(k + i) x̄pTd (k + i) x̄pTdM (k + i)

]T
,

V pS
1 (xpk (k + i)) = x̄pT(k + i)PpS1 x̄p(k + i)

= x̄pT(k+i)θp(LpS1 )−1x̄p(k + i),

V pS
2 (x̄p(k + i)) =

k−1∑
r=k−d(k)

x̄pT(r+i)(ςSp )
k−1−rT pS1 x̄p(r + i),

V pS
3 (x̄p(k + i)) =

k−1∑
r=k−dM

x̄pT(r + i)(ςSp )
k−1−rMpS

1 x̄p(r + i)

=

k−1∑
r=k−dM

x̄pT(r + i)(ςSp )
k−1−rθp(MpS

2 )−1

× x̄p(r + i),

V pS
4 (x̄p(k + i)) =

−dm∑
s=−dM

k−1∑
r=k+s

x̄pT(r + i)(ςSp )
k−1−rT pS1

× x̄p(r + i)

=

−dm∑
s=−dM

k−1∑
r=k+s

x̄pT(r + i)(ςSp )
k−1−rθp

× (SpS1 )−1x̄p(r + i),

V pS
5 (x̄p(k + i)) = dM

−1∑
s=−dM

k−1∑
r=k+s

δpT(r + i)(ςSp )
k−1−r

×GpS1 δ
p(r + i)

= dM
−1∑

s=−dM

k−1∑
r=k+s

δpT(r + i)(ςSp )
k−1−r

× θp(XpS1 )−1δp(r + i),

PpS1 ,T
pS
1 ,MpS

1 ,M
pS
2 andGpS1 are positive definitematrices.

Let

ξp(k + i) =
[
x̄p(k + i)T x̄p(k + i− d(k))T · · ·

x̄p(k + i− dM )T · · · δp(k + i− 1)T
]
,

ψ
pS
1 = diag

[
PpS1 T pS1 · · · MpS

1 · · · dMG
pS
1

]
,

(5pS )−1 = diag
[
(LpS1 )−1 (SpS1 )−1 · · · (MpS

2 )−1 · · ·

dM (XpS1 )−1
]
.

Therefore, the following Eq. (35) can be obtained.

V S
p (x̄

p(k + i)) = ξpT(k + i)ψp
1 ξ

p(k + i)

= ξpT(k + i)θp(5pS )−1ξp(k + i) (35)

By multiplying Eq. (35) with differential operator 1, the
following expression is designed.

1V S
p (x̄

p(k + i)) ≤ V S
p (x̄

p(k + i+ 1))− ςSp V
S
p (x̄

p(k + i))

=

5∑
j=1

1V pS
j (x̄p(k + i)) (36)

where

1V pS
1 (x̄(k + i))

= x̄pT(k + i+ 1)θp(LpS1 )−1x̄p(k + i+ 1)

− ςSp x̄
pT(k + i)θp(LpS1 )−1x̄p(k + i),

1V pS
2 (x̄p(k + i))

=

k∑
r=k+1−d(k+1)

x̄pT(r + i)(ςSp )
k−rθp(SpS1 )−1x̄p(r + i)

−

k−1∑
r=k−d(k)

ςSp x̄
pT(r + i)(ςSp )

k−1−rθp(SpS1 )−1x̄p(r + i)
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≤

k−1∑
r=k+1−dM

x̄pT(r + i)(ςSp )
k−rθp(SpS1 )−1x̄p(r + i)

+ x̄pT(k + i)θp(SpS1 )−1x̄p(k + i)

−

k−1∑
r=k−dm

ςSp x̄
pT(r + i)(ςSp )

k−1−rθp(SpS1 )−1x̄p(r + i)

= x̄pT(k + i)θp(SpS1 )−1x̄p(k + i)

− x̄pTd (k + i)(ςSp )
dM θp(SpS1 )−1x̄pd (k + i)

+

k−dm∑
r=k−dM+1

x̄pT(r + i)(ςSp )
k−rθp(SpS1 )−1x̄p(r + i),

1V pS
3 (x̄p(k + i))

=

k∑
r=k+1−dM

x̄pT(r + i)(ςSp )
k−rθp(MpS

2 )−1x̄p(r + i)

−

k−1∑
r=k−dM

ςSp x̄
pT(r + i)(ςSp )

k−1−rθp(MpS
2 )−1x̄p(r + i)

=

k−1∑
r=k+1−dM

x̄pT(r + i)(ςSp )
k−r−1θp(MpS

2 )−1x̄p(r + i)

+ x̄pT(k + i)θp(MpS
2 )−1x̄p(k + i)

− x̄pTdM (k + i)(ς
S
p )
dM θp(MpS

2 )−1x̄pdM (k + i),

−

k−1∑
r=k+1−dM

ςSp x̄
pT(r + i)(ςSp )

k−1−rθp(MpS
2 )−1x̄p(r + i)

= x̄pT(k + i)θp(MpS
2 )−1x̄p(k + i)

− x̄pTdM (k + i)(ς
S
p )
dM θp(MpS

2 )−1x̄pdM (k + i),

1V pS
4 (x̄p(k + i))

=

−dm∑
s=−dM

k∑
r=k+s+1

x̄pT(r + i)(ςSp )
k−rθp(SpS1 )−1x̄p(r + i)

−

−dm∑
s=−dM

k−1∑
r=k+s

ςSp x
pT(r+i)(ςSp )

k−1−rθp(SpS1 )−1x̄p(r + i)

< (dM − dm + 1)x̄pT(k + i)θp(SpS1 )−1x̄p(k + i)

−

k−dm∑
r=k−dM+1

x̄pT(r + i)(ςSp )
k−rθp(SpS1 )−1x̄p(r + i),

1V pS
5 (x̄p(k + i))

= dM
−1∑

s=−dM

k∑
r=k+s+1

δpT(r + i)(ςSp )
k−rθp(XpS1 )−1

· δp(r + i)− dM
−1∑

s=−dM

k−1∑
r=k+s

ςSp δ
pT(r + i)(ςSp )

k−1−r

· θp(XpS1 )−1δp(r + i)

= d2
M
δpT(k + i)θp(XpS1 )−1δp(k + i).

According to Lemma 2, the following expression can be
obtained.

1V pS
5 (x̄p(k + i))

≤ d2Mδ
pT(k + i)θp(XpS1 )−1δp(k + i)

−

k−1∑
r=k−dM

δpT(r + i)(ςSp )
k−rθp(XpS1 )−1

k−1∑
r=k−d̃M

δp(r + i)

< d2M (x̄p(k + i+ 1)− x̄p(k + i))Tθp(XpS1 )−1(x̄p(k + i+ 1)

− x̄p(k + i))−(x̄p(k + i)−xpdM (k + i))
T(ςSp )

dM θp(XpS1 )−1

· (x̄p(k + i)− x̄pdM (k + i)) (37)

Based on the Eq. (32), it holds that

(θp)−11V S
p (x̄

p(k + i|k))+ (θp)−1JpS (k) ≤ 0, (38)

where

JpS (k) = (x̄p(k + i|k))TQpS1 (x̄p(k + i|k))

+ (1upS (k + i|k))TRpS1

1upS (k + i|k) is the optimal performance index.
Considering Eqs. (36)-(38), the following expression can

be obtained.

(θp)−11V S
p (x̄

p(k + i))+ (θp)−1JpS (k) < ϕpT(k)8pSϕp(k)

8pS
=

φ
pS
1k 0 (ςSp )

d̃M (XpS1 )−1

∗ −(ςSp )
dM (SpS1 )−1 0

∗ 0 −(ςSp )
d̃M((MpS

2 )−1+(XpS1 )−1)


+3

pST
1 (LpS1 )−13pS

1 +3
pST
2 (DpS2 )2(XpS1 )−13pS

2

+ λ
pST
1 (θp)−1λpS1 + λ

pST
2 (θp)−1λpS2

φ
pS
1k = −ς

S
p (L

pS
1 )−1 + (SpS1 )−1 + (MpS

2 )−1 + Dp1(S
pS
1 )−1

− (ςSp )
dM (XpS1 )−1,

3
pS
1 =

[
ApSkb (k) Apdk (k) 0

]
,

3
pS
2 =

[
ApSkb (k)− I Apdk (k) 0

]
,

λ
pS
1 =

[
(QpS1 )

1
2 0 0

]
,

λ
pS
2 =

[
(RpS1 )

1
2 Y pS1 (LpS1 )−1 0 0

]
. (39)

According to the Lemma 1, it can be expressed as the
following LMI form (40), as shown at the bottom of the next
page.

Pre- and post-multiplying LMI condition (43) by
diag[ LpS1 SpS1 XpS1 Ip Ip Ip Ip ] and let LpS1 (MpS

2 )−1LpS1 =

MpS
3 ,L

pS
1 (SpS1 )−1LpS1 = SpS2 ,L

pS
1 (XpS1 )−1LpS1 = XpS2 ,X

pS
1

(MpS
2 )−1XpS1 = MpS

4 ,K
pS
= Y pS1 (LpS1 )−1, the following

equation can be obtained.
According to Eq. (41), as shown at the bottom of the next

page, and Lemma 3, the Eq. (27) can be obtained.
The unstable case of the pth phase is proof:
When the MPBP under the asynchronous condition,

the state of the system has been switched, but the controller
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of the system has not been switched. Therefore, the control
law K p−1

k is a known quantity. Similar to the stable case,
the unstable phase proved by Lemma 4 satisfies V p

U (x̄k (k +
1)) ≤ ςUp V

p
U (x̄k (k)). Similar to the proof of steady case,

the following Lyapunov-Krasovskii function can be obtained.

VU
p (x̄p(k + i)) = ξpT(k + i)ψpU

1 ξp(k + i)

= ξpT(k + i)θp(5pU )−1ξp(k + i) (42)

where

ξp(k + i) =
[
xp(k + i)T xp(k + i− d(k))T · · ·

xp(k + i− dM )T · · · δp(k + i− 1)T
]

ψ
pU
1 = diag

[
P(p−1)U1 T (p−1)U

1 · · · M (p−1)U
1

· · · dMG
(p−1)U
1

]
(5pU )−1 = diag

[
(L(p−1)U1 )−1 (S(p−1)U1 )−1 · · ·

(M (p−1)U
2 )−1 · · · dM (X (p−1)U

1 )−1
]

The incremental form of Eq. (42) can be obtained as follow.

1VU
p (x̄p(k + i)) ≤ VU

p (x̄p(k + i+ 1))− ςUp V
U
p (x̄p(k + i))

=

5∑
j=1

1V pU
j (x̄p(k + i)) (43)

where

1V pU
1 (x̄(k + i))

= x̄pT(k + i+ 1)θp(L(p−1)U1 )−1x̄p(k + i+ 1)

− ςSp x̄
pT(k + i)θp(LpS1 )−1x̄p(k + i)

1V pU
2 (x̄p(k + i))

=

k∑
r=k+1−d(k+1)

x̄pT(r + i)(ςSp )
k−rθp(SpS1 )−1x̄p(r + i)

−

k−1∑
r=k−d(k)

ςSp x̄
pT(r + i)(ςSp )

k−1−rθp(SpS1 )−1x̄p(r + i)

≤ x̄pT(k + i)θp(SpS1 )−1x̄p(k + i)

− x̄pT(k + i)(ςSp )
dM θp(SpS1 )−1x̄p(k + i)

+

k−dm∑
r=k−dM+1

x̄pT(r + i)(ςSp )
k−rθp(SpS1 )−1x̄p(r + i)

1V pU
3 (x̄p(k + i))

=

k∑
r=k+1−dM

x̄pT(r + i)(ςSp )
k−rθp(MpS

2 )−1x̄p(r + i)

−

k−1∑
r=k−dM

ςSp x̄
pT(r + i)(ςSp )

k−1−rθp(MpS
2 )−1x̄p(r + i)



φ
pS
k 0 (ςSp )

dM (XpS1 )−1 ApSkb (k) (ApSkb (k)− I )
T (QpS1 )

1
2 ((LpS1 )−1)TY pST1 ((RpS1 )

1
2 )T

∗ −(ςSp )
d̃M (SpS1 )−1 0 ApTdk (k) ApTdk (k) 0 0

∗ ∗ −(ςSp )
dM ((MpS

2 )−1 + (XpS1 )−1) 0 0 0 0

∗ ∗ ∗ −LpS1 0 0 0
∗ ∗ ∗ ∗ −(Dp2)

−1XpS
1

0 0
∗ ∗ ∗ ∗ ∗ −θpIp 0
∗ ∗ ∗ ∗ ∗ ∗ −θpIp


< 0

(40)



φ
pS
1 0 (ςSp )

dMLpS1 LpS1 ApTk (k)+ Y pST1 BpTk (k)

∗ −(ςSp )
dM SpS1 0 SpS1 ApTdk (k)

∗ ∗ −(ςSp )
dM ((MpS

4 )+ (XpS1 )) 0

∗ ∗ ∗ −LpS1
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

LpS1 ApTk (k)+ Y pST1 BpTk (k)− LpS1 LpS1 (QpS1 )
1
2 Y pST1 (RpS1 )

1
2

SpS1 ApTdk (k) 0 0
0 0 0
0 0 0

−(Dp2)
−1XpS1 0 0
∗ −θpIp 0
∗ ∗ −θpIp


< 0 (41)
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= x̄pT(k + i)θp(MpS
2 )−1x̄p(k + i)

− x̄pT(k + i)(ςSp )
dM θp(MpS

2 )−1x̄p(k + i)

1V pU
4 (x̄p(k + i))

=

−dm∑
s=−dM

k∑
r=k+s+1

x̄pT(r + i)(ςSp )
k−rθp(SpS1 )−1x̄p(r + i)

−

−dm∑
s=−dM

k−1∑
r=k+s

ςSp x̄
pT(r + i)(ςSp )

k−1−rθp(SpS1 )−1x̄p(r + i)

< (dM − dm + 1)x̄pT(k + i)θp(SpS1 )−1x̄p(k + i)

−

k−dm∑
r=k−dM+1

x̄pT(r + i)(ςSp )
k−rθp(SpS1 )−1x̄p(r + i)

1V pU
5 (x̄p(k + i))

= dM
−1∑

s=−dM

k∑
r=k+s+1

δpT(r + i)(ςSp )
k−rθp(XpS1 )−1

· δp(r + i)− dM
−1∑

s=−dM

k−1∑
r=k+s

ςSp δ
pT(r + i)(ςSp )

k−1−r

· θp(XpS1 )−1δp(r + i)

= d2
M
δpT(k + i)θp(XpS1 )−1δp(k + i)

− dM
k−1∑

r=k−dM

δpT(r + i)(ςSp )
k−rθp(XpS1 )−1δp(r + i)

According to the Lemma 2, the following expression can
be obtained.

1V pU
5 (x̄p(k + i))

≤ d2Mδ
pT(k + i)θp(XpS1 )−1δp(k + i)

−

k−1∑
r=k−dM

δpT(r + i)(ςSp )
k−rθp(XpS1 )−1

k−1∑
r=k−d̃M

δp(r + i)

< d2M (x̄p(k + i+ 1)− x̄p(k + i))Tθp(XpS1 )−1(x̄p(k + i+ 1)

− x̄p(k + i))−(x̄p(k + i)− x̄p(k + i))T(ςSp )
dM θp(XpS1 )−1

· (x̄p(k + i)− x̄p(k + i)) (44)

Similar to the stable case, the following equation can be
expressed.

(θp)−11VU
p (x̄p(k + i|k))+ (θp)−1JpU (k) ≤ 0, (45)

where

JpU (k) = (x̄p(k + i|k))TQpU1 (x̄p(k + i|k))

+ (1upU (k + i|k))TRpU1 1upU (k + i|k).

The unstable case is similar to the stable case. Hence,
the proof of the unstable case is ignored.

Furthermore, assuming that the discrete time is k , the asyn-
chronous switching system operates in the steady case
of the pth phase. According to the above equations (27)-(29),

the following relationship can be obtained.

V S
p (xk (k))

< (ςSp )
O−T p−1/pV S

p (xk (T
p−1/p))

≤ µSp (ς
S
p )
O−T p−1/pVU

p (xk (T p−1/p))

≤ (ςSp )
O−T p−1/pµSp (ς

U
p )T

p−1/p
−T p−1VU

p (xk (T p−1))

≤ (ςSp )
O−T p−1/pµSp (ς

U
p )T

p−1/p
−T p−1µUp V

S
p−1(xk (T

p−1))

...

≤

P∏
p=1

(µSp )
Np0+

(
T pS (d,O)

/
τ
p
S

)
×

P∏
p=1

(ςSp )
T Sp (d,O)

×

P∏
p=1

(µUp )
NU0 +

(
T pU (d,O)

/
τ
p
U

)
×

P∏
p=1

(ςUp )T
p
U (d,O)

×V S
1 (xk (T

1))

= exp

 P∑
p=1

NS
0 lnµ

S
p +

P∑
p=1

NU
0 lnµ

U
p


×

P∏
p=1

((µSp )
1/
τ
p
S (ςSp ))

T pS (d,O)

×

P∏
p=1

((µUp )
1/
τ
p
U (ςUp ))T

p
U (d,O)V S

1 (xk (T
1)) (46)

Based on the Eq. (31), the following equation can be
obtained. 

τ
p
S +

lnµSp
ln ςSp

≥ 0

τ
p
U +

lnµUp
ln ςUp

≤ 0

(47)

Due to 0 < ςSp < 1, ςUp > 1, µSp > 1, 0 < µUp < 1,
it holds that {

τ
p
S ln ς

S
p + lnµSp ≤ 0

τ
p
U ln ςUp + lnµUp ≤ 0

(48)

yet

(µSp )
1/
τ
p
S (ςSp ) = exp

(
ln

[
(µSp )

1/
τ
p
S (ςSp )

])
= exp

([
1/
τ
p
S
lnµSp + ln ςSp

])
(µUp )

1/
τ
p
U (ςUp ) = exp

(
ln

[
(µUp )

1/
τ
p
U (ςUp )

])
= exp

([
1/
τ
p
U
lnµUp + ln ςUp

])
(49)

Let η = maxp∈P((µSP)
1
τ
p
S (ςSp ), (µ

U
P )

1
τ
p
U (ςUp )), κ =

exp(
P∑
p−1

NS
0 lnµ

S
p +

P∑
p=1

NU
0 lnµ

U
p ), the following equation can

be obtained:

V S
p (x1k (k)) ≤ ηκ

O−f V S
1 (x1k (T

1)) (50)
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It can ensure the exponential stability of the system
based on Eq. (29). Also, under the normal circumstance,
V S
p (x(k)) ≤ ς

O−f V S
1 (x(T

1)).
Moreover, to get the invariant set of the system, we can take

the maximum value of

x̄p(k) = max (xp(r̄) δp(r̄) ), r̄ ∈ (k − dM , k),

it has

V p(xp1k (k)) ≤ x̄
pT
l (k)ψ̄p

lk x̄
p
l (k) ≤ θ

p (51)

where ψ̄p
lk = Pp1 + dMT

p
1 + dMM

p
1 +

dm+dM
2 (dM − dm +

1)T p1 + d2M ·
1+dM

2 Gp1. Letting ϕ̄
p
l = θp(ψ̄p

lk )
−1, we can use

Lemma 1 to get Eq. (30).
Theorem 2: The considered system (19) with ω̄ 6= 0 is the

asymptotical stability in each phase and exponentially stable
in a batch, if there are some scalar 0 < ςSp < 1, ςUp > 1, θp >
0, θp−1 > 0, 0 ≤ dm ≤ dM ,some positive definite matrices
QpS ,RpS ,Q(p−1)U ,R(p−1)U , some positive definite symmet-
ric matrices PpS1 ,T

pS
1 ,MpS

1 ,G
pS
1 , L

pS
1 , S

pS
1 , S

pS
2 ,M

pS
3 ,M

pS
4 ,

XpS1 ,X
pS
2 ,β

pS,Y pS,P(p−1)U1 ,T (p−1)U
1 ,M (p−1)U

1 ,G(p−1)U
1 , βpU ,

Y pU,L(p−1)U1 , S(p−1)U1 , S(p−1)U2 ,M (p−1)U
3 ,M (p−1)U

4 ,X (p−1)U
1 ,

X (p−1)U
2 ∈ R(nx+ne) and some scalars rp, εpS1 , ε

pS
2 , ε

pU
1 , ε

pU
2 ,

θP > 0, µSp > 1, 0 < µUp < 1, so that the following LMIs
hold. 

∐pS
11

∐pS
12

∐pS
13

∐pS
14

∐pS
15

∗
∐pS

22
0 0 0

∗ ∗
∐pS

33
0 0

∗ ∗ ∗
∐pS

44
0

∗ ∗ ∗ ∗
∐pS

55


< 0 (52)



∐pU
11

∐pU
12

∐pU
13

∐pU
14

∐pU
15

∗
∐pU

22
0 0 0

∗ ∗
∐pU

33
0 0

∗ ∗ ∗
∐pU

44
0

∗ ∗ ∗ ∗
∐pU

55


< 0 (53)


V S
p (x̄1(k)) ≤ µ

S
pV

S
p−1(x̄1(k))

V S
p (x̄1(k)) ≤ µ

S
pV

U
p (x̄1(k))

VU
p (x̄1(k)) ≤ µUp V

S
p−1(x̄1(k))

(54)

 −1 x̄pTl (k|k)

x̄pl (k|k) −ϕ̄
p
l

 ≤ 0 (55)

where
∐pS

11
,
∐pS

12 ,
∐pS

13
,
∐pS

22
,
∐pS

33
,
∐pU

11
,
∐pU

12
,
∐pU

13
,
∐pU

14
,∐pU

22
,
∐pU

33
, φpS12 , and φ

pU
12 as shown at the bottom of the next

page.
Proof 2:Under stable case at each phase, when there are

disturbances in the system, i.e., ω̄pk 6= 0, the following H∞

performance index is introduced to ensure the stability of the
system.

Jp1 =
∞∑
k=0

[
(
zpS (k)

)T
zpS (k)− (rp)2

(
ω̄
p
k (k)

)T
ω̄
p
k (k)] (56)

For any ω̄(k) ∈ l2[0,∞] with nonzero, as shown in the
following equation:

Jpω ≤
∞∑
k=0

[
(
zpS (k)

)T
zpS (k)− (rp)2

(
ω
p
k (k)

)T
ω
p
k (k)

+ (θp)−11V p(x̄pk (k))+ (θp)−1J̄pS1 (k)] (57)

Similar to Theorem 1, the following expression can be
obtained (58), as shown at the bottom of page 13.

The unstable case is similar to stable case, the following
expression can be obtained (59), as shown at the bottom of
page 13.

Meanwhile, Jpω ≤ 0, ||zp||l2 ≤ r
p
||ω̄p||l2 is guaranteed.

Remark 2: With the development of LMI technology and
the maturity of MATLAB’s LMI tools, the construction of
Lyapunov functions and solving given LMI conditions are
more convenient. In other words, the method of solving
LMI can effectively reduce the computational difficulty, com-
pared with some non-LMI methods such as the method
proposed in [35].

IV. SIMULATION CASE
A. DESCRIPTION OF SIMULATION SYSTEM
The injection molding process has many superiorities, for
instance fast production speed, high efficiency, high degree of
automation and a wide range of types and styles. Therefore,
injection molding has a wide range of applications in the
field of large-scale and complex shape product production
in plastic processing. The simulation in this paper takes the
working process of the reciprocating screw injection mold-
ing machine as an example. Reciprocating screw injection
molding machine is the most commonmechanical equipment
in the injection molding industry, and the injection molding
process is a typical MPBP, taking injection molding as an
example can more accurately verify the effectiveness and
feasibility of the method proposed in this paper. The structure
of the injection molding machine is shown in Fig 2.

The four main phases of the injection molding processes
are shown in Fig 3. Fig. 3 (a) shows the injection phase,
in which molten plastic is injected into the mold. Then,
the system enters pressure holding phase. The main purpose
of this phase is to keep the pressure in the cavity stable so
as to ensure the quality of the product Fig. 3(b) shows the
holding phase. Fig. 3 (c) and Fig. 3 (d) show the cooling phase
and product removal, respectively. The simulation case in this
paper takes the switch between injection phase and pressure
holding phase as an example.

B. SIMULATION MODEL
The model established in injection molding machine is used
for simulation with MATLAB software in order to verify
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pS∐
11

=


φ
pS
1w 0 (ςSp )

dMLpS1 0

∗ −(ςSp )
dM SpS1 0 0

∗ ∗ −(ςSp )
dM ((MpS

4 )+ (XpS1 )) 0
∗ ∗ ∗ −(rp)2Ip

 ,
pS∐
12

=


LpS1 ApTk + Y

pST
1 βpSBpTk

SpS1 ApTdk
0
GpTk

LpS1 ApTk + Y
pST
1 βpSBpTk − L

pS
1

SpS1 ApTdk
0
GpTk

 ,
pS∐
13

=


LpS1 EpTk LpS1 (QpS )

1
2 Y pST1 (RpS )

1
2

0 0 0
0 0 0
0 0 0

 , pS∐
14

=

pS∐
15

=


LpS1 HpT

k Y pST1 βpS

SpS1 HpT
dk 0

0 0
0 0

 ,
pS∐
22

=

[
−LpS1 + ε

pS
1 N p

k N
pT
k + ε

pS
2 Bpk (β

pS
0 )2BpTk 0

0 −XpS1 (Dp2)
−1
+ ε

pS
1 N p

k N
pT
k + ε

pS
2 Bpk (β

pS
0 )2BpTk

]
,

pS∐
33

=

−Ip 0 0
0 −θpIp 0
0 0 −θpIp

 , pS∐
44

=

pS∐
55

=

[
−ε

pS
1 Ip 0
0 −ε

pS
2 Ip

]
,

pU∐
11

=


φ
pU
12 0 (ςUp )dML(p−1)U1 0

∗ −(ςUp )
dM S(p−1)U1 0 0

∗ ∗ −(ςUp )dM ((M (p−1)U
4 )+ (X (p−1)U

1 )) 0
∗ ∗ ∗ −(γ pU )2Ip

 ,
pU∐
12

=


L(p−1)U1 ApTk + L

(p−1)U
1

(
(<p−1)−1

)T (
K p−1

)T
βpUBpTk

S(p−1)U1 ApTdk
0
GpTk

L(p−1)U1 ApTk + L
(p−1)U
1

(
(<p−1)−1

)T (
K p−1

)T
βpUBpTk − L

(p−1)U
1

S(p−1)U1 ApTdk
0
GpTk

 ,
pU∐
13

=


L(p−1)U1 EpTk L(p−1)U1 (Q(p−1)U )

1
2 L(p−1)U1

(
(<p−1)−1

)T (
K p−1

)T
(R(p−1)U )

1
2

0 0 0
0 0 0
0 0 0

 ,
pU∐
14

=

pU∐
15

=


L(p−1)U1 HpT

k L(p−1)U1

(
(<p−1)−1

)T (
K p−1

)T
βpU

S(p−1)U1 HpT
dk 0

0 0
0 0

 ,
pU∐
22

=

[
−L(p−1)U1 + ε

pU
1 N p

k N
pT
k + ε

pU
2 Bpk (β

pU
0 )2BpTk 0

0 −X (p−1)U
1 (Dp2)

−1
+ ε

pU
1 N p

k N
pT
k + ε

pU
2 Bpk (β

pU
0 )2BpTk

]
,

pU∐
33

=

−Ip 0 0
0 −θp−1Ip−1 0
0 0 −θp−1Ip−1

 , pU∐
44

=

pU∐
55

=

[
−ε

pU
1 Ip 0
0 −ε

pU
2 Ip

]
φ
pS
12 = −ς

S
p L

pS
1 +M

pS
3 + D

p
1S

pS
2 + S

pS
2 − (ςSp )

dMXpS2 ,

φ
pU
12 = −ς

U
p L

(p−1)U
1 +M (p−1)U

3 + Dp1S
(p−1)U
2 + S(p−1)U2 − (ςUp )dMX (p−1)U

2 , Dp1 = (dM − dm + 1)Ip,Dp2 = (dM )2Ip.
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the effectivity of the designed controller. Through repeated
tests, the transfer function of injection velocity (IV) and valve
opening (VO) of the system in the injection phase can be
obtained as shown in Equation (60).

IV
VO
=

8.687z−1 − 5.617z−2

1− 0.9291z−1 − 0.03191z−2
(60)

In the holding pressure phase, the transfer functions of noz-
zle pressure (NP) and injection velocity (IV) in the pressure
holding phase can be obtained as shown in Equation (61).

NP
VO
=

171.8z−1 − 156.8z−2

1− 1.317z−1 − 0.3259z−2
(61)

And injection velocity (IV) and nozzle pressure (NP) sat-
isfy the transfer function as shown in Eq. (62).

NP
IV
=

0.1054z−1

1− z−1
(62)

Define

x1(k) = [IV(k) 0.03191IV(k − 1)− 5.617VO(k − 1)

NP(k)]T ,

u1(k) = VO(k), y1(k) = IV(k),

x2(k) =
[
NP(k) −0.3259NP(k − 1)− 156.8VO(k − 1)

]T
,

u2(k) = VO(k), y2(k) = NP(k).

The state space model of system is as follows:{
xp(k + 1) = Apxp(k)+ Bpup(k)+ ωp(k)
yp(k) = Cpxp(k) p = 1, 2

(63)

where

A1 =

 0.9291 1 0
0.03191 0 0
0.1054 0 1

 , B1 =

 8.687
−5.617

0

 ,

(
zpS (k)

)T
zpS (k)− (rp)2

(
ω̄
p
k (k)

)T
ω̄
p
k (k)+ (θp)−11V p(xp1k (k))+ (θp)−1JpS (k) =

[
ϕ
p
1 (k)

ω̄
p
k (k)

]T



φ
pS
12 0 (ςSp )

dM (XpS1 )−1 0

∗ −(ςSp )
dM (SpS1 )−1 0 0

∗ ∗ −(ςSp )
dM ((MpS

2 )−1 + (XpS1 )−1) 0
∗ ∗ ∗ −(rp)2

 +
(3pS

1

)T
GpTk

 (LpS1 )−1
[
3
pS
1 Gpk

]

+

(3pS
2

)T
GpTk

 (Dp2)
−1(XpS1 )−1

[
3
pS
2 Gpk

]

+


EpTk
0
0
0

[Epk 0 0 0
]
+

[
λ
pS
1 0

]T
(θp)−1

[
λ
pS
1 0

]

+

[
λ
pS
2 0

]T
(θp)−1

[
λ
pS
2 0

]



[
ϕ
p
1 (k)

ω̄
p
k (k)

]
(58)


φ
pU
12 0 (ςUp )dM (X (p−1)U

1 )−1 0

∗ −(ςUp )dM (S(p−1)U1 )−1 0 0

∗ ∗ −(ςUp )dM ((M (p−1)U
2 )−1 + (X (p−1)U

1 )−1) 0
∗ ∗ ∗ −(rp)2

+
(3pU

1

)T
GpTk

 (L(p−1)U1 )−1
[
3
pU
1 Gpk

]

+

(3pU
2

)T
GpTk

 (Dp2)
−1(X (p−1)U

1 )−1
[
3
pU
2 Gpk

]

+


EpTk
0
0
0

[Epk 0 0 0
]
+

[
λ
pU
1 0

]T
(θp)−1

[
λ
pU
1 0

]
+

[
λ
pU
2 0

]T
(θp)−1

[
λ
pU
2 0

]
< 0 (59)
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FIGURE 1. A block diagram of each batch.

FIGURE 2. The structure of the injection molding machine.

C1
=
[
1 0 0

]
, A2 =

[
1.317 1
−0.3259 0

]
,

B2 =
[

171.8
−156.8

]
, C2

=
[
1 0

]
.

FIGURE 3. The main process of injection molding.

FIGURE 4. The tracking performance of the system under different fault
conditions.

When p = 1, the system works in the injection phase.
When p = 2, the system works in the pressure holding phase.
The switching conditions of the two phases can be obtained

in the following equation.

γ 1(x(k)) = 350−
[
0 0 1

]
x1(k) < 0 (64)

Considering the existence of time-varying delays, uncer-
tainties, unknown disturbances and actuator fault in the sys-
tem, the following equation can be obtained.

xp(k + 1) = Ap(k)xp(k)+ Apd (k)x
p(k − d(k))

+Bpαpup(k)+ ωp(k)
yp(k) = Cpxp(k) p = 1, 2

(65)

where

1 ≤ d(k) ≤ 3, N 1
=

 0.1 0 0
0 0.1 0
0 0 0

 ,
H1
=

 0.104 0 0
0.5 0 0
0 0 0

 , H1
d =

 0.004 0 0
0.05 0 0
0 0 0

 ,
11(k) =

11 0 0
0 12 0
0 0 13

 , N 2
=

[
1 0
0 1

]
,
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FIGURE 5. Comparison of system output response and control output in case 1.

H2
=

[
0.0104 0
−0.0304 0

]
, H1

d =

[
0.001 0
−0.002 0

]
12(k)

=

[
14 0
0 15

]
, ω1(k) = 0.5× [16 17 18 ]T,

ω2(k) = 0.5× [19 110 ]T, |1ii| ≤ 1,

ii = 1, 2, · · · , 5. Suppose there is an unknown fault αp

causing the actuator to fail. In this simulation, we know that
0.4 = αp < αp < ᾱp = 1.2. According to the Eq. (8),
βp = 0.8, βp0 = 0.5 can be obtained. The setpoint values for
the two phases can be obtained in the following equation:{

ϑ1(k) = 40, 0 < k ≤ T 1

ϑ2(k) = 300, T 1 < k < T 1
+ T 2 (66)

To describe the tracking performance of the system more
accurately, the following equation is defined:

D(k) =

{√
e1T(k)e1(k) 0 ≤ k < T1√
e2T(k)e2(k) T1 ≤ k ≤ T1 + T2

(67)

C. SIMULATION RESULTS
This section is mainly to verify the proposed method. One
of the purposes is to verify whether the system can switch
smoothly between two adjacent phases. The other is to verify
whether the proposed method can effectively restrain the
influence of factors such as uncertainty, unknown distur-
bance, time-varying delays and actuator fault in the system.
In order to verify the effectiveness and feasibility of the pro-
posed control method. In this paper, injection molding pro-
cess is taken as an example for simulation verification. After
repeated tests, the parameters of the controller in the injection
phase and the pressure holding phase are chosen as Q1

1 =

diag [0.5, 1, 1, 1] ,R11 = 0.1 and Q2
1 = diag [10, 2.6, 9]R21 =

0.1, respectively. Then, the SRT of the injection phase is
T 1
= 86s. And the SRT of the pressure holding phase

is T 2
= 113s. The control law gain of the system after

stabilization in the injection phase and the pressure holding
phase are K1 = [−0.00874 − 0.0952 0 − 0.0476] and
K2 = [−0.0084 −0.0066 −0.0032], respectively. The above
parameters are obtained by solving LMIs in Theorem 2.
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Figure 4 shows the tracking performance of the system of
the proposed method under three different case. The three
cases can be expression as following formula.

Case 1: αp = 0.8+ 0.2111

Case 2: αp = 0.8+ 0.4111

Case 3: αp = 0.8+ 0.8111

(68)

where 111 is a random number in [−1, 1]. Figure 4 gives
the tracking performance of the system under three different
random failure conditions. It can be seen that the tracking
performance of the system deteriorates with the increase of
the random fault range. But the proposed control method can
still make the system converge rapidly. In order to intuitively
reflect the superiority of the control method proposed in
this paper, we selected a traditional control method [20] for
comparison. Figure 5 (a) shows the system output response
with asynchronous switching controller. Figure 5(b) shows
the system output response with synchronous switching con-
troller in [20]. Important purpose of the designed controller
is that the system state and controller can be switched simul-
taneously. Avoid the ‘‘escape’’ of system state caused by the
occurrence of asynchronous switching. It can be seen from
the output response curve that the proposed asynchronous
control method can realize the smooth switch from the injec-
tion phase to the pressure holding phase. However, when the
synchronous switching control method is adopted, the state
of the system fluctuates greatly.

Figure 5 (c) shows the system of control inputs with
asynchronous switching controller. Figure 5 (d) shows the
system of control inputs synchronous switching controller.
The designed asynchronous switching controller can ensure
the smooth and stable switching. After switching, the asyn-
chronous switching controller can be stable and fast-tracking
setpoint value. The synchronization switching controller has
great fluctuation, and the response time of the controller is
long, which has great influence on the actual production.

V. CONCLUSION
A robust asynchronous switching fault-tolerant controller
is designed for MPBP with uncertainties, unknown distur-
bances, time-varying delays and partial actuator failures.
In combination with the model-dependent average dwell
time method, Lyapunov stability theory and switched system
theory, sufficient conditions with LMIs form are given to
ensure the exponential stability of the system and the asymp-
totic stability of each phase. Finally, the simulation results
show that the proposed method has better tracking perfor-
mance and anti-disturbance capability under the condition of
time-varying delays and partial actuator failure.
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