
Received April 21, 2021, accepted April 30, 2021, date of publication May 4, 2021, date of current version May 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3077350

The NLP Cookbook: Modern Recipes for
Transformer Based Deep Learning Architectures
SUSHANT SINGH , (Member, IEEE), AND AUSIF MAHMOOD , (Member, IEEE)
Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT 06604, USA

Corresponding author: Sushant Singh (sushants@my.bridgeport.edu)

ABSTRACT In recent years, Natural Language Processing (NLP)models have achieved phenomenal success
in linguistic and semantic tasks like text classification, machine translation, cognitive dialogue systems,
information retrieval via Natural Language Understanding (NLU), and Natural Language Generation (NLG).
This feat is primarily attributed due to the seminal Transformer architecture, leading to designs such as BERT,
GPT (I, II, III), etc. Although these large-size models have achieved unprecedented performances, they come
at high computational costs. Consequently, some of the recent NLP architectures have utilized concepts of
transfer learning, pruning, quantization, and knowledge distillation to achieve moderate model sizes while
keeping nearly similar performances as achieved by their predecessors. Additionally, to mitigate the data
size challenge raised by language models from a knowledge extraction perspective, Knowledge Retrievers
have been built to extricate explicit data documents from a large corpus of databases with greater efficiency
and accuracy. Recent research has also focused on superior inference by providing efficient attention to
longer input sequences. In this paper, we summarize and examine the current state-of-the-art (SOTA)
NLP models that have been employed for numerous NLP tasks for optimal performance and efficiency.
We provide a detailed understanding and functioning of the different architectures, a taxonomy of NLP
designs, comparative evaluations, and future directions in NLP.

INDEX TERMS Deep learning, natural language processing (NLP), natural language understanding
(NLU), natural language generation (NLG), information retrieval (IR), knowledge distillation (KD), pruning,
quantization.

I. INTRODUCTION
Natural Language Processing (NLP) is a field of Machine
Learning dealing with linguistics that builds and develops
Language Models. Language Modeling (LM) determines the
likelihood of word sequences occurring in a sentence via
probabilistic and statistical techniques. Since human lan-
guages involve sequences of words, the initial language
models were based on Recurrent Neural Networks (RNNs).
Because RNNs can lead to vanishing and exploding gradients
for long sequences, improved recurrent networks like LSTMs
and GRUs were utilized for improved performance. Despite
enhancements, LSTMs were found to lack comprehension
when relatively longer sequences were involved. This is due
to the reason that the entire history known as a context,
is being handled by a single state vector. However, greater
compute resources lead to an influx of novel architectures

The associate editor coordinating the review of this manuscript and

approving it for publication was Ali Shariq Imran .

causing a meteoric rise of Deep Learning [1] based NLP
models.

The breakthrough Transformer [2] architecture in 2017
overcame LSTM’s context limitation via the Attention mech-
anism. Additionally, it provided greater throughput as inputs
are processed in parallel with no sequential dependency.
Subsequent launches of improved Transformer based models
like GPT-I [3] and BERT [4] in 2018 turned out to be a
climacteric year for the NLP world. These architectures were
trained on large datasets to create pre-trained models. There-
after transfer learning was used to fine-tune these models
for task-specific features resulting in significant performance
enhancement on several NLP tasks [5]–[10]. These tasks
include but are not limited to language modeling, sentiment
analysis, question answering, and natural language inference.

This accomplishment lacked the transfer learning’s
primary objective of achieving high model accuracy with
minimal fine-tuning samples. Also, model performance
needs to be generalized across several datasets and not be

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 68675

https://orcid.org/0000-0002-9159-5198
https://orcid.org/0000-0002-8991-4268
https://orcid.org/0000-0002-2416-2878

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

task or dataset-specific [11]–[13]. However, the goal of high
generalization and transfer learning was being compromised
as an increasing amount of data was being used for both
pre-training and fine-tuning purposes. This clouded the deci-
sion whether greater training data or an improved architecture
should be incorporated to build a better SOTA language
model. For instance, the subsequent XLNet [14] architec-
ture possessed novel yet intricate language modeling, that
provided a marginal improvement over a simplistic BERT
architecture that was trained on amere∼10%ofXLNet’s data
(113GB). Thereafter, with the induction of RoBERTa [15],
a large BERT-based model trained on significantly more data
than BERT (160GB), outperformed XLNet. Thus, an archi-
tecture that is more generalizable and further is trained on
larger data, results in NLP benchmarks.

The above-mentioned architectures are primarily language
understanding models, where a natural dialect is mapped to
a formal interpretation. Here the initial goal is the translation
of an input user utterance into a conventional phrase repre-
sentation. For Natural Language Understanding (NLU) the
intermediate representation for the above models’ end goal is
dictated by the downstream tasks.

Meanwhile, fine-tuning was transpiring to be progres-
sively challenging for task-specific roles in NLU models
as it required greater sample size to learn a particular task,
which bereft such models from generalization [16]. This
triggered the advent of Natural Language Generation (NLG)
models that contrary to NLU training, generated dialect utter-
ances learned from their corresponding masked or corrupted
input semantics. Such models operate differently from a rou-
tine downstream approach of cursory language comprehen-
sion and are optimal for sequence-to-sequence generation
tasks, such as language translation. Models like T5 [17],
BART [18], mBART [19], T-NLG [20] were pre-trained
on a large corpus of corrupted text and generated its cor-
responding cleaned text via denoising objective [21]. This
transition was useful as the additional fine-tuning layer for
NLU tasks was not required for NLG purposes. This further
enhanced prediction ability via zero or few-shot learning
which enabled sequence generation with minimal or no fine-
tuning. For instance, if a model’s semantic embedding space
is pre-trained with animal identification of ‘‘cat’’, ‘‘lion’’
and ‘‘chimpanzee’’, it could still correctly predict ‘‘dog’’
without fine-tuning. Despite superior sequence generation
capabilities, NLG model sizes surged exponentially with the
subsequent release of GPT-III [22] which was the largest
model before the release of GShard [23].

Since NLU and NLG’s exceptionally large-sized models
required several GPUs to load, this turned out costly and
resource prohibitive in most practical situations. Further,
when trained for several days or weeks on GPU clusters,
these colossal models came at an exorbitant energy cost.
To mitigate such computational costs [24], Knowledge Dis-
tillation (KD) [25] based models like DistilBERT [26], Tiny-
BERT [27], MobileBERT [28] were introduced at reduced
inference cost and size. These smaller student models

capitalized on the inductive bias of larger teacher mod-
els (BERT) to achieve faster training time. Similarly, prun-
ing and quantization [29] techniques got popular to build
economically sized models. Pruning can be classified into
3 categories: weight pruning, layer pruning, and head prun-
ing where certain minimal contributing weights, layers, and
attention heads are removed from the model. Like pruning,
training-aware quantization is performed to achieve less than
32-bit precision format thereby reducing model size.

For higher performance, greater learning was required
which resulted in larger data storage and model size. Due
to the model’s enormity and implicit knowledge storage,
its learning ability had caveats in terms of efficient infor-
mation access. Current Knowledge Retrieval models like
ORQA [30], REALM [31], RAG [32], DPR [33] attempt to
alleviate implicit storage concerns of language models by
providing external access to interpretable modular knowl-
edge. This was achieved by supplementing the language
model’s pre-training with a ‘knowledge retriever’ that facili-
tated the model to effectively retrieve and attend over explicit
target documents from a large corpus like Wikipedia.

Further, the Transformer model’s inability to handle input
sequences beyond a fixed token span inhibited them to com-
prehend large textual bodies holistically. This was particu-
larly evident when related words were farther apart than the
input length. Hence, to enhance contextual understanding,
architectures like Transformer-XL [34], Longformer [35],
ETC [36], Big Bird [37], were introduced with modified
attention mechanisms to process longer sequences.

Also, due to the surge in demand for NLPmodels to be eco-
nomically viable and readily available on edge devices, inno-
vative compressed models were launched based on generic
techniques. These are apart from the Distillation, Pruning,
and Quantization techniques described earlier. Such models
deploy a wide range of computing optimization procedures
ranging from hashing [38], sparse attention [39], factor-
ized embedding parameterization [40], replaced token detec-
tion [41], inter-layer parameter sharing [42], or a combination
of the above mentioned.

II. RELATED REVIEWS/TAXONOMY
We propose a novel NLP based taxonomy providing a unique
classification of current NLP models from six different per-
spectives:

â NLUModels: NLUmodels excel in classification, struc-
tured prediction, and/or query generation tasks. This is
accomplished through pre-training and fine-tuningmoti-
vated by the downstream task.

â NLG Models: Contrary to NLU models, these stand out
in sequence-to-sequence generation tasks. They gener-
ate clean text via few and single-shot learning from
corresponding corrupted utterances.

â Model Size Reduction: Use compression-based tech-
niques like KD, Pruning, and Quantization to make
large models economical and pragmatic. It’s useful for

68676 VOLUME 9, 2021

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

FIGURE 1. Taxonomy of NLP architectures.

the real-time deployment of large language models to
operate on edge devices.

â Information Retrieval (IR): Contextual open domain
question answering (QA) is reliant on effective and effi-
cient document retrieval. Hence, IR systems via superior
lexical and semantical extraction of physical documents
from a large textual corpus create SOTA in the QA
domain on multiple benchmarks outperforming contem-
porary language models.

â Long Sequence Models: Attention-based computational
complexity in Transformers scales quadratically with
input length, hence it is usually fixed to 512 tokens. This
might be acceptable for co-reference resolution tasks
that benefit from smaller input lengths [43], however,
is inadequate for Question Answering (QA) tasks where
reasoning is required across multiple lengthy documents
e.g., the HotpotQA dataset [44].

â Computationally Efficient Architectures: Memory effi-
cient architectures with comparable accuracies to large
language models were built to reduce the high training
time of such models.

The above mentioned is a generalized categorization and
not a hard classification, few models can be used inter-
changeably that might serve dual purposes, however, there
is a clear demarcation despite insignificant universality.
Figure 1 depicts this taxonomy giving a visual breakdown of
the significant models belonging to different categories along
with their launch years.

III. PRELIMANIRES TO MODERN NLP ARCHITECTURES
A traditional RNN Encoder-Decoder model [45] comprises
of two recurrent neural networks (RNN), where one pro-
duces the encoded version of the input sequence, and the
other generates its decoded version into a different sequence.
To maximize the target’s conditional probability for an input
sequence, the model is trained jointly with the following
language modeling,

y∗ = argmaxP (yt | y1, y2, y3, . . . , yt−1) (1)

P (yt | y1, y2, y3, . . . , yt−1) = P
(
yt | y

t−1
1

)
(2)

Such a system is empirically found to give superior results
than vanilla RNNs, LSTMs [46], or GRUs [47] by imple-
menting conditional probabilities of phase pairs in machine
translation, sequence to sequence mapping, or text summa-
rization tasks.

In the above architecture (Figure 2), Encoder’s final layer
Et+1 transmits information to the decoder from its final
hidden Vt+1 the layer which contains the entire contex-
tual understanding of all previous words via a probability
distribution.

This combined abstract representation of all the words is
fed to the decoder to compute the desired language-based
task. Like its preceding layers, the final layer’s corresponding
learnable parameters are Ut+1 and Vt+1 at input and output
respectively at the Encoder and U ′t+1, V

′
t+1 at the Decoder.

Combining the weight matrices with hidden state and bias can

VOLUME 9, 2021 68677

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

FIGURE 2. Encoder-decoder architecture.

be expressed mathematically as follows:

Encoder:

Ht+1 = σ (Ut+1.X t+1 +Wt+1.H t + bt) (3)

Et+1 = σ (Vt+1.Ht+1 + bt)Ht+1 = (4)

Decoder:

H ′t+1 = σ
(
U ′t+1.Et+1 +W

′

t+1.H
′

t + bt+1
)

(5)

Ot+1 = Softmax
(
H ′t+1.V

′

t+1 + bt+1
)

(6)

Thereafter, the induction of Attention [48], [49] in
2014-15 overcame the RNN Encoder-Decoder limitation that
suffered from prior input dependencies, making it challeng-
ing to infer longer sequences and suffered from vanish-
ing and exploding gradients [50]. The attention mechanism
eliminated the RNN dependency by disabling the entire
input context through one final Encoder node. It weighs all
inputs individually that feed the decoder to create the target
sequence. This results in a greater contextual understanding
leading to superior predictions in target sequence generation.
First, the alignment determines the extent of match between
the jth input and ith output which can be determined as

etj = tanh
(
hi−1, hj

)
(7)

More precisely, the alignment scores take as input all encoder
output states and the previous decoded hidden state which is
expressed as:

Scoreeqnarray=Wcomb. tanh (Wdec.Hdec+Wenc.Henc) (8)

The decoder’s hidden state and encoder outputs are passed
via their respective linear layers along with their trainable
weights. The weight αtj for each encoded hidden represen-
tation hj is computed as:

αtj=
exp(etj)∑Tx
k=1 exp(etk)

, (9)

The resulting context vector in this attention mechanism is
determined by:

ct =
Tx∑
j=1

αtjhj where Tx = input sequence length (10)

The Attention mechanism is essentially the generation of the
context vector computed from the various alignment scores
at different positions as shown in figure 3.

Luong’s Attention mechanism differs from the above-
mentioned Bahdanau’s in terms of alignment score com-
putation. It uses both global and local attention, where the
global attention uses all encoder output states while the local
attention focuses on a small subset of words. This helps to
achieve superior translation for lengthier sequences. These
attention designs led to the development of modern Trans-
former architectures which use an enhanced attention mech-
anism as described in the next section.

IV. NLU ARCHITECTURES
NLU’s approach of transferring pre-trained neural language
representations demonstrated that pre-trained embeddings
improve downstream task results when compared to embed-
dings learned from scratch [51], [52]. Subsequent research
works enhanced learning to capture contextualized word rep-
resentations and transferred them to neural models [53], [54].
Recent efforts not limited to [55]–[57] have further built on
these ideas by adding end-to-end fine-tuning of language
models for downstream tasks in addition to extraction of
contextual word representations. This engineering progres-
sion, coupled with large compute availability has evolved
NLU’s state of the art methodology from transferring word
embeddings to transferring entire multi-billion parameter lan-
guage models, achieving unprecedented results across NLP
tasks. Contemporary NLU models leverage Transformers
for modeling tasks and exclusively use an Encoder or a
Decoder-based approach as per requirements. Such models
are vividly explained in the subsequent section.

A. TRANSFORMERS
1) THE ARCHITECTURE
The original Transformer is a 6-layered Encoder-Decoder
model, that generates a target sequence via the Decoder
from the source sequence via the Encoder. The Encoder and
Decoder at a high level consist of a self-attention and a
feed-forward layer. In the Decoder an additional attention
layer in between enables it to map its relevant tokens to
the Encoder for translation purposes. Self Attention enables
the look-up of remaining input words at various positions to
determine the relevance of the currently processed word. This
is performed for all input words that help to achieve a superior
encoding and contextual understanding of all words.

Transformer architecture was built to induct parallelism
in RNN and LSTM’s sequential data where input tokens
are fed instantaneously and corresponding embeddings are
generated simultaneously via the Encoder. This embedding

68678 VOLUME 9, 2021

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

FIGURE 3. Attention mechanism on encoder-decoder model.

maps a word (token) to a vector that can be pre-trained on
the fly, or to conserve time a pre-trained embedding space
like GloVe is implemented. However, similar tokens in differ-
ent sequences might have different interpretations which are
resolved via a positional encoder that generates context-based
word information concerning its position. Thereafter the
enhanced contextual representation is fed to the attention
layer which furthers contextualization by generating attention
vectors, that determine the relevance of the ith word in a
sequence concerning other words. These attention vectors are
then fed to the feed-forward Neural Network where they are
transformed to a more digestible form for the next ‘Encoder’
or Decoder’s ‘Encoder-Decoder Attention’ block.

The latter is fed with Encoder output and Decoder input
embedding that performs attention between the two. This
determines the relevance of Transformer’s input tokens con-
cerning its target tokens as the decoder establishes actual
vector representation between the source and target mapping.
The decoder predicts the next word via softmax which is
executed over multiple time steps until the end of the sentence
token is generated. At each Transformer layer, there are resid-
ual connections followed by a layer normalization [58] step
to speed up the training during backpropagation. All of the
transformer architectural details are demonstrated in Figure 4.

2) QUERIES, KEYS, AND VALUES
The input to the Transformer’s Attention mechanism is target
token Query vector Q, its corresponding source token Key
vector K , and Values V which are embedding matrices. Map-
ping of source and destination tokens in machine translation
can be quantified as to how similar each of their tokens is in a
sequence via inner dot product. Therefore, to achieve accurate
translation the key should match its corresponding query, via
a high dot product value between the two. AssumeQ∈̇{LQ,D}
and K ∈̇{LK ,D} where LQ,LK represent target and source
lengths, whileD denotes the word embedding dimensionality.
Softmax is implemented to achieve a probability distribution
where all Query, Key similarities add up to one and make
attention more focused on the best-matched keys.

WSM = softmax(Q.KT) whereWSM ∈̇{LQ,LK } (11)

FIGURE 4. The multi-headed transformer architecture.

Query assigns a probability to key for matching and often
values are similar to keys, therefore

ZAtt=Attention (Q,K ,V)=softmax
(
Q.KT

)
.V = WSM .V

(12)

3) MULTI-HEADED ATTENTION (MHA) AND MASKING
MHA enhances the model’s capacity to emphasize a
sequence’s different token positions by implementing atten-
tion parallelly multiple times. The resulting individual atten-
tion outputs or heads are concatenated and transformed via a
linear layer to the expected dimensions. Each of the multiple
heads enables attending the sequence parts from a different
perspective providing similar representational forms for each
token. This is performed as each token’s self-attention vector
might weigh the word it represents higher than others due to
the high resultant dot product. This is not productive since
the goal is to achieve similarly assessed interaction with
all tokens. Therefore self-attention is computed 8 different
times resulting in 8 separate attention vectors for each token
which are used to compute the final attention vector via a
weighted sum of all 8 vectors for each token. The resultant
multi-headed attention vectors are computed in parallel which
is fed to the feed-forward layer.

Each subsequent target token Tt+1 is generated using as
many source tokens in the encoder (S0, .., St+n). However,
in an autoregressive decoder only previous time stepped tar-
get tokens are considered (T0, ..,Tt), for future target pre-
diction purposes known as causal masking. This is provided
to enable maximal learning of the subsequently translated
target tokens. Therefore during parallelization via matrix
operations, it is ensured that the subsequent target words
are masked to zero, so the attention network cannot see
into the future. The Transformer described above resulted in
significant improvement in the NLP domain. This leads to a
plethora of high-performance architectures that we describe
in the subsequent sections.

VOLUME 9, 2021 68679

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

FIGURE 5. Bi-directional LSTM based ELMo language model.

B. EMBEDDINGS FROM LANGUAGE MODELS: ELMo
The goal of ELMo [59] is to generate a deep contextualized
word representation that could model (i) intricate syntactical
and semantical characteristics of word (ii) polysemy or lexi-
cal ambiguity, words with similar pronunciations could have
different meanings at different contexts or locations. These
enhancements gave rise to contextually rich word embed-
dings which were unavailable in the previous SOTA models
like GloVe. Unlike its predecessors that used a predeter-
mined embedding, ELMo considers all N token occurrences
(t1, t2, .., tN) for each token t in the entire sequence before
creating embeddings. The authors hypothesize that the model
could extract abstract linguistic attributes in its architecture’s
top layers via a task-specific bi-directional LSTM.

This is possible by combining a forward and a backward
language model. At timestep k − 1, the forward language
model predicts the next token tk given the input sequence’s
previous observed tokens via a joint probability distribution
shown in (13). Likewise, in (14) with its order reversed,
the backward language model forecasts the prior tokens given
the future tokens.

p (t1, t2, .., tn) =
N∏
k=1

p (tk | t1, t2, .., tk−1) (13)

p (t1, t2, .., tn) =
N∏
k=1

p(tk | tk+1, tk+2, . . . , tN) (14)

This is further implemented through a softmax on top of the
final LSTM layer as shown in Figure 5.

ELMo for each token representation xk computes its inter-
mediary bi-directional vector representation hk,j at each layer
j of the LSTM model as:

Rk =
{
xLMk , EhLMk,j ,

←

h
LM

k,j | j = 1, ..,L
}

=

{
hLMk,j | j = 0, ..,L

}
(15)

Mathematically hLMk,0 = xk will the lowest level token repre-
sentation and it could be generalized as:

hLMk,j =
[
Eh
LM
k,j ,

←

h
LM

k,j

]
j∈̇{1, ..,L} (16)

ELMo learns normalized weights via softmax staskj over L
layer representations. This results in a task-specific hyper-
parameter γ task that enables the task’s scaling optimization.
Hence for a particular task, the word representation variance
in different layers is expressed as:

ELMotaskk = E
(
Rk ; θ task

)
= γ task

L∑
j=0

staskj hLMk,j (17)

C. GENERATIVE PRE-TRAINING MODEL: GPT-I
In the first phase through unsupervised learning, the
decoder-based GPT-I is pre-trained on a large dataset. This
promotes raw data compute that eliminates the data labeling
bottleneck of supervised learning. The second phase performs
task-specific fine-tuning on considerably smaller supervised
datasets with marginal input variations. Consequently, it led
to greater task agnosticism than then SOTA models like
ELMo, ULMFiT [56] and succeeded in more sophisticated
tasks like common-sense reasoning, semantic similarity, and
reading comprehension. The pre-training of GPT-I can be
modeled as a maximization function of unsupervised tokens
{ui, . . . , un.

L1 (U) =
∑
i

logP(ui |ui−k , . . . , ui−1;2) (18)

where kk is the context window size and conditional proba-
bility is parametrized via2. With multi-headed-attention and
feedforward layers, a target token-based probability distribu-
tion via softmax is produced.

hn = trans formerblock(hl−1) ∀i ∈ [1, n] (19)

h0 = UWe +Wp (20)

P (u) = softmax
(
hnW T

e

)
(21)

where (U = u−k , .., u−1) is the set of context token vec-
tor, n is the number of layers, We and Wp are the token
and positional embedding matrices respectively. Post-pre-
training, parameter adaptation for the supervised end task
takes place. Here input sequence (x1, .., xm) from a labeled
dataset C is fed to the previous pre-trained model to obtain
the transformer’s block final activation hml that is fed to a
parametrized (W y) linear output layer for prediction (y). Also,
the objective L2 (C) is maximized is as follows

P
(
y | x1, . . . , xm

)
= softmax

(
hml Wy

)
(22)

L2 (C) =
∑

(x,y)
logP

(
y | x1, . . . , xm

)
(23)

Incorporating a secondary language modeling objective dur-
ing fine-tuning enhances learning by a better generalization
of the supervised model and accelerates convergence as:

L3 (C) = L2 (C)+ λL1 (C) (24)

68680 VOLUME 9, 2021

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

FIGURE 6. GPT-1 task-based architecture (top) and magnified views of
transformer based decoder (bottom).

GPT performs various tasks like classification, entail-
ment, similarity index, Multiple-Choice Questions (MCQ)
as shown in figure 6. The extraction phase distills features
from textual bodies before which the text is separated via
the ‘Delimiter’ token during text pre-processing. This token
is not required for classification tasks since it does not need
to gauge the relationship between multiple sequences. More-
over, Q&A or textual entailment tasks involve defined inputs
like ordered sentence pairs or triplets in a document. For
MCQ tasks, contextual alterations are required at input to
achieve the correct results. This is done via a Transformer
basedDecoder training objective where input transformations
are fine-tuned for their respective answers.

D. BIDIRECTIONAL ENCODER REPRESENTATIONS FROM
TRANSFORMER: BERT
BERT is a stack of pre-trained Transformer Encoders
that overcomes prior models’ restrictive expressiveness
i.e., GPT’s lack of bidirectional context and ELMo’s shallow
dual context’s concatenation. BERT’s deeper model provides
a token with several contexts with its multiple layers and the
bi-directional model provides a richer learning environment.
However, bi-directionality raises concerns that tokens could
implicitly foresee future tokens during pre-training result-
ing in minimal learning and leading to trivial predictions.
To effectively train such a model, BERT implements Masked
Language Modeling (MLM) that masks 15% of all input
tokens randomly in each input sequence. This masked word
prediction is the new requirement unlike recreating the entire
output sequence in a unidirectional LM.

BERTmasks during pre-training, hence the [MASK] token
does not show during fine-tuning, creating a mismatch as the
‘‘masked’’ tokens are not replaced. To overcome this dispar-
ity, subtle modeling modifications are performed during the
pre-training phase. If a token Ti is chosen to be masked, then

FIGURE 7. The architecture of BERT’s MLM and NSP functionality.

80% of the time it is replaced with the [MASK] token, 10%
of the time a random token is chosen and for the remaining
10%, it remains unchanged. Thereafter Ti cross-entropy loss
will predict the original token, the unchanged token step is
employed to maintain a bias towards the correct prediction.
This methodology creates a state of randomness and constant
learning for the Transformer encoder which is compelled
to maintain a distributed contextual representation of each
token. Further, as random replacement arises for a mere 1.5%
of all tokens (10% of 15%), this does not seem to impair the
language model’s understanding ability.

Language modeling could not explicitly comprehend the
association between multiple sequences; therefore it was
deemed sub-optimal for inference and Q&A tasks. To over-
come this, BERT was pre-trained with a monolingual cor-
pus for a binarized Next Sentence Prediction (NSP) task.
As shown in Figure 7, sentences Y (He came [MASK] from
home) and Z (Earth [MASK] around Sun) do not form any
continuity or relationship. Since Z is not the actual next sen-
tence following Y , the output classification label [NotNext]
gets activated, and [IsNext] activates when sequences are
coherent.

E. GENERALIZED AUTOREGRESSIVE PRETRAINING FOR
LANGUAGE UNDERSTANDING: XLNeT
XLNet captures the best of both worlds where it preserves the
benefits of Auto-Regressive (AR) modeling and bidirectional
contextual capture. To better comprehend why XLNet out-
performs BERT, consider the 5-token sequence [San, Fran-
cisco, is, a, city]. The two tokens chosen for prediction
are [San, Francisco], hence BERT and XLNet maximize
log p(San Francisco|is a city) as follows:

LBERT = log p(San|is a city)

+ log p(Francisco|is a city)

LXLNet = log p(San|is a city)

+ log p(Francisco|San is a city)

The above can further be generalized for the target (T) and
non-target token set (N), BERT and XLNet will maximize

VOLUME 9, 2021 68681

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

log p(T|N) with the following different interpretability:

LBERT =
∑
x∈T

log p(x|N) (25)

LBERT =
∑
x∈T

log p(x|NT<x) (26)

XLNet considers the target as well as the remaining tokens
for prediction, whereas BERT only considers the non-target
tokens. Hence, XLNet captures the inter-pair dependency
[San, Francisco] unlike BERT where either [San] or [Fran-
cisco] leads to correct prediction. Further, via ARXLNet per-
forms factorized ordering on all possible token permutations
(L! =5!) of sequence length L in the set i.e., {[1, 2, 3, 4, 5],
[1, 2, 5, 4, 3],..., [5, 4, 3, 2, 1]} ∼= [is, San, Francisco, a, city]
etc.

max
θ

Ez∼ZT

[
T∑
t=1

log pθ (xzt | xz<t)

]
(27)

where set ZT contains all permutational sequences of length
T [1, 2, ..,T] and xzt is the reference token. Hence the target
learns from numerous combinations attaining a richer con-
textualized learning. Further for all permutable factorization
orders, the model parameters are shared to build knowledge
and bidirectional context from all factorizations as demon-
strated via equation 27.

1) MASKING
There is a challenge to determine the word order in the
sequence as the token (xzt) determining the autoregression
is not considered. This word order is partially achieved via
positional encoding, however, for contextual understanding
XLNet employs masking. Consider a generated permutation
of [2, 1, 3] in a 3-token sequence where the first token
i.e., 2 has no context hence all masking results in [0,0,0] in
the 2nd row of the 3 × 3 masking matrix. Similarly, the 2nd

and 3rd masks would result in [0,1,0] and [1,1,0] in the
1st and 3rd row of the Query Stream (QS) masking matrix
where the token cannot see itself. QS matrix with an all-one
diagonal inclusion constitutes Content Stream (CS) masking
matrix where each token can see itself. This 3-token sequence
masking is demonstrated in figure 8 below.

The first reference ‘2’ has no context which is gath-
ered from its corresponding ‘mem block’, a Transformer-
XL-based extended cached memory access. Thereafter it
receives context from token ‘3’ and ‘1’,’3’ for subsequent
orderings.

F. MODEL ARCHITECTURE
Figure 9 demonstrates the model’s two-stream attention
framework that consists of a content and query stream atten-
tion process to achieve greater understanding via contextu-
alization. This process is initiated via target-aware represen-
tation, where the target position is baked into the input for
subsequent token generation purposes.

FIGURE 8. Illustration of predicting x2 in the 3-token sequence with
different factorization orders and its corresponding masking matrices.

FIGURE 9. (Left): Standard attention via content stream and query stream
attention without access to the content. (Right): LM training.

(i) Target Aware Representation: A vanilla implementa-
tion of Transformer based parametrization does not suf-
fice for complex permutation-based language modeling. This
is because the next token distribution pθ (XZt | xz<t) is
independent of the target position i.e., Zt . Subsequently,
redundant distribution is generated, which is unable to dis-
cover effective representations, hence target position-aware
re-parametrization for the next-token distribution is proposed
as follows:

pθ
(
XZt = x | xz<t

)
=

exp(e (x)T hθ

(
xz<t

)
)∑

x ′ exp(e (x ′)
T hθ

(
xz<t)

) (28)

pθ
(
XZt = x | xz<t

)
=

exp
(
e (x)T gθ

(
xz<t ,Zt

))∑
x ′ exp(e (x ′)

T gθ

(
xz<t ,Zt)

) (29)

where gθ (xz<t ,Zt) is amodified representation that addition-
ally considers the target position Zt as an input.
(ii) Two Stream Self Attention: The formulation of gθ

remains a challenge despite the above resolution as the goal
is to rely on the target position Zt to gather contextual infor-
mation xz<t via attention, hence: (1) For gθ to predict xZt ,
it should utilize the position of Zt only to incorporate greater
learning, not the content xZt (2) To predict other tokens xZj
where j > t, gθ should encode the context xZt to provide full
contextual understanding.

68682 VOLUME 9, 2021

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

To further resolve the above conflict, the authors propose
two sets of hidden representation instead as follows:

v The hidden content representation hθ (xz<t) ∼= hZt that
encodes both context and content xZt

v The query representation gθ (xz<t ,Zt) ∼= gZt which
solely accesses the contextual information xz<t and posi-
tion Zt without the content xZt

The above two attention courses are parametrically shared
and updated for every self-attention layer m as:
Attention(Q = h(m−1)Zt

,KV = h(m−1)Z≤t ; θ)→ h(m)Zt
) (Content

Stream: utilize both Zt and xZt)
Attention(Q = g(m−1)Zt

,KV = h(m−1)Z<t ; θ) → g(m)Zt
) (Query

Stream: use Zt without seeing xZt)
This dual attention is pictorially expressed in figure 9. For

simplicity purposes, consider the prediction of token ti that is
not allowed to access its corresponding embedding from the
preceding layer. However, to predict ti+1 the token ti needs
to access its embedding and both operations must occur in a
single pass.

Therefore, two hidden representations are implemented
where h(m)Zt

is initialized via token embeddings and g(m)Zt
through weighted transformations. From above equations
h(m)Zt

can access the history including the current position

whereas g(m)Zt
can access only previous h(m)Zt

positions. The

token prediction happens in the final layer via g(m)Zt
. For

greater sequence length processing the memory blocks are
derived from Transformer-XL which can process longer than
standard Transformer input sequence lengths. The hidden
representations mentioned above are also stored in the mem-
ory blocks.

G. ROBUSTLY OPTIMIZED BERT PRETRAINING
APPROACH: RoBERTa
This paper claimed that BERTwas considerably undertrained
and as a result, RoBERTa incorporated a greater training
intensive regime. This was for BERT-based models that could
match or exceed the prior methods. Their revisions include:
(i) longer training duration with greater data and batch sizes
(ii) eliminating BERT’s NSP goal (iii) longer sequence train-
ing (iv) training data’smasking patternmodified dynamically.
The authors claim superior performance over BERT on down-
stream tasks for a more diverse and voluminous CC-News
dataset.

Further, BERT implements a non-efficient static mask-
ing implementation to avoid redundant masks. For instance,
training data that is duplicated 10 times for a sequence to be
masked in 10 different ways for 40 training epochs, where
each training sequence is seen with the same mask 4 times.
RoBERTa provides slightly enhanced results via incorporat-
ing dynamic masking where a masking pattern is generated
each time the model is fed a sequence while pretraining larger
datasets. Recent work has questioned BERT’s NSP [60] role
which was conjectured to play a key role in its performance in
language inference and Q&A tasks. RoBERTa amalgamates
both hypotheses and provides numerous supplementary

training formats that perform like BERT and outperform it
for full sentence training excluding the NSP loss. RoBERTa
provides similar and marginally better results than BERT on
GLUE benchmark as well as on RACE and SQUAD datasets
without fine-tuning for multiple tasks.

H. MEGATRON LANGUAGE MODEL (LM)
Megatron was the largest model when released with the size
of 24 × BERT and 5.6 × GPT-2 and could not fit in a
single GPU. Hence the key engineering implementation was
the induction of its 8 and 64-way model, and data paral-
lelized version where parameters were split across (∼512)
GPUs. It sustained high performance (15.1 Petaflops) and
scaling efficiency (76%), whereas BERT resulted in perfor-
mance degradation with size growth. This feat was primar-
ily attributed to layer normalization and residual connection
re-ordering within the transformer layers. This led to mono-
tonically superior performance on downstream tasks with
increased model size.

Megatron overcomes the prior model’s memory constraint
via splitting the model across several accelerators. This not
only resolves the memory usage but enhances the model par-
allelism irrespective of batch size. It incorporates distributed
tensor computations to upsurge model size or acceleration
and parallelizes the attention head computation. This does not
require a new compiler or code re-write and is implementable
with a few parameters.

First, the Multi-Layer Perceptron (MLP) block partitions
the GEMM parallelly in two columns, enabling GeLU non-
linearity applied independently to each partitioned GEMM.
This GeLU output is fed directly to the row-wise parallelized
GEMMwhose output is reduced via a single all-reduce oper-
ator (g and f) in forward and backward pass before passing it
to the dropout layer.

Parallelism in the self-attention block is achieved by par-
titioning the GEMMs column-wise for each key, query, and
value set. Hence, the workload is split across all GPUs as
matrix multiplication for each attention head is performed
on a single GPU. The resulting GEMM output, like MLP,
undergoes an all-reduce operation and is parallelized across
rows as shown above in figure 10. This technique eliminates
the need for synchronization between GEMMs for MLP and
attention blocks.

V. NLG ARCHITECTURES
In NLU models, the sheer amount of data compute required
for learning numerous post pre-trained ‘fine-tuned’ tasks
is parametrically inefficient, as an entirely new model is
required for every task. These models can be exemplified as
narrow experts rather than proficient generalists. Therefore,
NLG models provide a transition towards building generic
systems, that accomplish several tasks without the necessity
to create and label a training dataset manually for each task.
Moreover, MLM in NLU models is unable to capture a rich
relationship betweenmultiple sequences. Further, most effec-
tive NLU models derive their methodologies from the MLM

VOLUME 9, 2021 68683

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

FIGURE 10. Parallelized megatron’s MLP and self-attention blocks.

model variants which are denoising autoencoders trained on
text reconstructionwhere a random subset of words is masked
out. Consequently, NLG models in the last few years have
made tremendous progress on tasks like text translation and
summarization, Q&A, NLI, conversational engagement, pic-
ture description, with unprecedented accuracies.

A. LANGUAGE MODELS ARE UNSUPERVISED MULTI-TASK
LEARNERS: GPT-II
GPT-II [61] was possibly the first model that dawned on the
rise of NLGmodels. It was trained in an unsupervisedmanner
capable of learning complex tasks including Machine Trans-
lation, reading comprehension, and summarization without
explicit fine-tuning. Task-specific training corresponding to
its dataset was the core reason behind the generalization
deficiency witnessed in current models. Hence robust models
would likely require training and performance gauges on a
variety of task domains.

GPT-II incorporates a generic probabilistic model where
numerous tasks can be performed for the same input as
p(output|input, task). The training and test set performance
improves as model size is scaled up and as a result, it under
fits on the huge WebText dataset. The 1.5 billion parameters
GPT-2 outperformed its predecessors on most datasets in the
previously mentioned tasks in a zero-shot environment. It is
an extension of the GPT-I decoder-only architecture trained
on significantly greater data.

B. BIDIRECTIONAL AND AUTOREGRESSIVE
TRANSFORMERS: BART
A denoising autoencoder BART is a sequence-to-sequence
[62] model that incorporates two-stage pre-training: (1) Cor-
ruption of original text via a random noising function, and
(2) Recreation of the text via training the model. Noising
flexibility is the major benefit of the model where random
transformations not limited to length alterations are applied
to the original text. Two such noising variations that stand out

FIGURE 11. Denoised BART model and its noising schemes.

FIGURE 12. Denoised BART model for fine-tuned MT tasks.

are random order shuffling of the original sentence and a fill-
ing scheme where texts of any spanned length are randomly
replaced by a singlemasked token. BART deploys all possible
document corruption schemes as shown below in figure 11,
wherein the severest circumstance all source information is
lost and BART behaves like a language model.

This forces the model to develop greater reasoning across
overall sequence length enabling greater input transforma-
tions which results in superior generalization than BERT.
BART is pre-trained via optimization of a reconstruc-
tion loss performed on corrupted input documents i.e.,
cross-entropy between decoder’s output and original docu-
ment. For machine translation tasks, BART’s encoder embed-
ding layer is replaced with an arbitrarily initialized encoder,
that is trained end-to-end with the pre-trained model as
shown in Figure 12. This encoder maps its foreign vocab-
ulary to BART’s input which is denoised to its target lan-
guage English. The source encoder is trained in two stages,
that share the backpropagation of cross-entropy loss from
BART’s output. Firstly, most BART parameters are frozen,
and only the arbitrarily initialized encoder, BART’s positional
embeddings, and its encoder’s self-attention input projection
matrix are updated. Secondly, all model parameters are jointly
trained for few iterations. BART achieves state-of-the-art
performance on several text generation tasks, fueling further
exploration of NLG models. It achieves comparative results
on discriminative tasks when compared with RoBERTa.

C. MULTILINGUAL DENOISING PRE-TRAINING FOR
NEURAL MACHINE TRANSLATION: mBART
1) SUPERVISED MACHINE TRANSLATION
mBART demonstrates that considerable performance gains
are achieved over prior techniques [63], [64] by autoregres-
sively pre-training BART, via sequence reconstructed denois-
ing objective across 25 languages from the common crawl
(CC-25) corpus [65]. mBART’s parametric fine-tuning can

68684 VOLUME 9, 2021

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

be supervised or unsupervised, for any linguistic pair without
task-specific revision. For instance, fine-tuning a language
pair i.e. (German-English) enables the model to translate
from any language in the monolingual pre-training set i.e.
(French English), without further training. Since each lan-
guage contains tokens that possess significant numerical vari-
ations, the corpus is balanced via textual up/downsampling
from each language i with the ratio λi

λi =
1
pi
.
pαi∑
i p
α
i

(30)

where pi is each language’s percentage in the dataset with a
soothing parameter α = 0.7. The training data encompasses
K languages: C = {C1,−−,Ck} where each Ci is ith lan-
guage’s monolingual document collection. Consider a text
corrupting noising function g(X) where the model is trained
to predict original text X , hence loss Lθ is maximized as:

Lθ =
∑
Ci∈C

∑
X∈Ci

logP(X |g (X) ; θ) (31)

where language i has an instance X and above distribution P
is defined via a sequence-to-sequence model.

2) UNSUPERVISED MACHINE TRANSLATION
mBART is evaluated on tasks where target bi-text or text pairs
are not available in these 3 different formats.

v None of any kind of bi-text is made available, here
back-translation (BT) [66], [67] is a familiar solu-
tion. mBART offers a clean and effective initialization
scheme for such techniques.

v The bi-text for the target’s pair is made unavailable,
however, the pair is available in the target language’s
bi-text corpora for other language pairs.

v Bi text is not available for the target pair, how-
ever, is available for translation from a different lan-
guage to the target language. This novel evaluation
scheme demonstrates mBART’s transfer learning capa-
bility despite the absence of the source language’s bi-text

mBART is pre-trained for all 25 languages and fine-tuned for
the target language as shown in figure 13.

D. EXPLORING THE LIMITS OF TRANSFER LEARNING
WITH A TEXT-TO-TEXT TRANSFORMER: T5
This model was built by surveying and applying the most
effective transfer learning practices. Here all NLP tasks are
orchestrated within the same model and hyperparameters
are reframed into a unified text-to-text setup where text
strings are inputs and outputs. A high-quality, diverse and
vast dataset is required to measure the scaled-up effect of
pre-training in the 11 billion parameter T5. Therefore, Colos-
sal Clean Crawled Corpus (C4) was developed, twice as large
as Wikipedia.

The authors concluded that causal masking limits the
model’s capability to attend only till the ith input entry of a
sequence, which turns detrimental. Hence T5 incorporates

FIGURE 13. mBART generative model pre-training & fine-tuning.

fully visible masking during the sequence’s prefix section
(prefix LM)whereas causal masking is incorporated for train-
ing the target’s prediction. The following conclusions were
made after surveying the current transfer learning landscape.

v Model Configuration: Normally models with Encoder-
Decoder architectures outperformed decoder-based lan-
guage models.

v Pre-Training Goals: Denoising worked best for fill-in-
the-blank roles where the model is pre-trained to retrieve
input missing words at an acceptable computational cost

v In-Domain Datasets: In-domain data training turns out
to be effective, however pre-training small datasets gen-
erally leads to overfitting.

v Training Approaches: A pre-train, fine-tune methodol-
ogy for multi-task learning could be effective, however,
each task’s training frequency needs to be monitored.

v Scaling Economically: To efficiently access the finite
computing resources, evaluation amongmodel size scal-
ing, training time, and ensembled model quantity is
performed.

VOLUME 9, 2021 68685

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

E. TURING NATURAL LANGUAGE GENERATION: T-NLG
T-NLG is a 78 layered Transformer based generative lan-
guage model, that outsizes the T5 with its 17 billion trainable
parameters. It possesses greater speedup than Nvidia’s Mega-
tron, which was based on interconnecting multiple machines
via low latency buses. T-NLG is a progressively larger model,
pre-trained with greater variety and quantity of data. It pro-
vides superior results in generalized downstream tasks with
lesser fine-tuning samples. Hence, its authors conceptual-
ized training a huge centralized multi-task model with its
resources shared across various tasks, rather than allocat-
ing each model for a task. Consequently, the model effec-
tively performs question answering without prior context
leading to enhanced zero-shot learning. Zero Redundancy
Optimizer (ZeRO) achieves both model and data parallelism
concurrently, which perhaps is the primary reason to train
T-NLG with high throughput.

F. LANGUAGE MODELS ARE FEW-SHOT LEARNERS:
GPT-III
The GPT family (I, II, and III) are autoregressive language
models, based on transformer decoder blocks, unlike denois-
ing autoencoder-based BERT. GPT-3 is trained on 175 bil-
lion parameters from a dataset of 300 billion tokens of text
used for generating training examples for the model. Since
GPT-3 is 10 times the size of any previous language model
and for all tasks and purposes it employs few-shot learning
via a text interface, without gradient updates or fine-tuning it
achieves task agonism. It employs unsupervised pre-training,
where the language model acquires a wide range of skills and
pattern recognition capabilities. These are implemented on
the fly to swiftly adapt to or identify the desired task. GPT-
3 achieves SOTA in several NLP tasks although its few-shot
learning falls short in reproducing similar results for other
tasks.

G. SCALING GIANT MODELS WITH CONDITIONAL
COMPUTATION AND AUTOMATIC SHARDING: GShard
GShard enables scaling beyond 600 billion parameters for
multilingual machine translation via a sparsely gated mixture
of experts (MoE) by automated sharding at low computation
cost and compile time. The Transformer is sparsely scaled
by inducting a position-wise mixture of experts (MoE) layer
comprising of E feed-forward networks FFN 1, . . . ,FFNE
across its Transformer.

Gs,E = GATE (xs) (32)

FFN e (xs) = woe.ReLU (wie.xs) (33)

ys =
∑E

e=1
Gs,E .FFN e (xs) (34)

where xs and ys are the tokenized input and average weighted
output to the MoE layer, wie and woe are an expert’s
(feed-forward layer) input and output projection matrices.
The gating network indicates the expert’s contribution to the
final output via vector Gs,E . This takes in a nonzero value
for the tokens which are dispatched to a maximum of two

FIGURE 14. Sharded MoE Layered Transformer Encoder when scaled to
multiple devices, all other layers are replicated.

experts that contribute to a non-zero value in an otherwise
sparse matrix.

To achieve efficient parallelization across TPU clusters:
(i) The parallelized attention layer is split along batch dimen-
sions and weights are replicated across all devices. (ii) Due to
size constraints, it’s unfeasible to replicate MoE layer experts
across all devices, hence experts are sharded across several
devices, as shown below.

The two factors determining model quality are (i) High
resourced languages where a vast amount of training data
is available (ii) Enhancements for low-resourced languages
with limited data. Increased tasks or language pairs in a
translation model yields positive language transfer [68] for
low-resource languages.

The three-pronged strategy for reasonable training time
and efficiency for a large number of languages are:
(i) Increase network depth by stacking more layers
(ii) Increase network width by replicating the experts
(iii) Sparsely assign tokens to experts via learned routing
modules. When the number of experts per layer was quadru-
pled from 128 to 512 in a 12-layer deep model, a signifi-
cant performance bump of 3.3 was observed in the BLEU
score across 100 languages. Moreover, quadrupling the width
from 512 to 2048 resulted in a diminishing gain in BLEU
by 1.3. Further tripling the layer depth from 12 to 36 for
the previously mentioned expert widths provides significant
gains for low as well as high resources languages. However,
increased model depth is not fruitful unless the model’s
capacity constraint (MoE width) is not relaxed.

VI. MODEL SIZE REDUCTION
A. DISTILLATION
The goal of Knowledge Distillation (KD) is to train a smaller
student model under the supervision of a larger, more accu-
rate teacher model via a revised loss function to achieve
similar accuracy across unlabeled samples. The predicted
teacher model samples are supplied to enable student learning
through softer probabilistic class distributionwhile predicting
through hard target classification via a separate loss function.

68686 VOLUME 9, 2021

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

FIGURE 15. Language model’s generalized distilled architecture.

This hard to soft label transition enables greater information
variance for student learning, for instance, hard target classi-
fies dog as {cow, dog, cat, car ∈ 0, 1, 0, 0} and soft target as
{10−6, 0.9, 0.1, 10−9}. For hard classification computation,
the last fully connected layer of a deep neural network is a
vector of logits z, for which zi is the logit for the ith class.
Therefore, probability pi that the input fits the ith class can be
assessed by a softmax function in (35) and temperature ele-
ment T is inducted to influence each soft target’s significance
to be transferred to the student model learning in (36).

pi =
exp(zi)∑
j exp(zj)

; (35)

pi =
exp

(zi
T

)∑
j exp

(zj
T

) (36)

For a softer probability distribution over classes, a higher
temperature is needed (T = t). Experimentally it was dis-
covered that it is fruitful to train the student model on correct
(hard/ground truth) labels apart from teacher’s soft labels.
Although the student model cannot exactly match the soft
targets, hard label training further assists it to not stumble
to the incorrect prediction. The soft target distillation loss
(T = t) is computed by matching the logits between the
teacher and the student model as:

LD (p (zt ,T) , p (zs,T))=
∑
i

−pi (zti,T) log (pi (zsi,T))

(37)

where zt and zs denote the logits of the teacher and student
models, respectively. The distillation mechanism is clearly
explained in figure 15. The cross-entropy between the ground
truth label y and the soft logits of the student model consti-
tutes the student loss as:

Ls (y, p (zs,T)) =
∑
i

−yi log (pi (zsi,T)) (38)

The standard model of vanilla knowledge distillation inte-
grates the distilled and the student loss as shown below,

L (x,W) = α × LD(p (zt ,T) , p (zs,T))+ β

×Ls(y, p (zs,T)) (T = t)

× for LD and (T = 1) for Ls (39)

where W ∈ student parameters and α, β ∈ regulated
parameters. In the original paper weighted average was used
concerning α and β, i.e., β = 1−α and for best results, it was
observed that α � β.

1) DistilBERT
DistilBERT, the student version of the teacher BERT retained
97% of BERT’s language understanding performance and
was at inference time lighter, faster, and required lesser train-
ing cost. Through KD, DistilBERT reduces BERT size by
40%, is 60% faster and the compressedmodel is small enough
to be operated on edge devices. The layer-depth of Distil-
BERT is slashed by half when compared with BERT since
both possess the same dimensionality and possess generally
an equivalent architecture. Layer reduction was performed as
its normalization and linear optimization were computation-
ally ineffective in the final layers. To maximize the inductive
bias of large pre-trained models, DistilBERT introduced a
triple loss function which linearly combined the distillation
(LD) with the supervised training (Lmlm) or the masked lan-
guage modeling loss. It was observed that supplementing the
prior loss with embedding cosine loss (Lcos) was beneficial
as it directionally aligned the teacher’s and student’s hidden
state vectors.

2) TinyBERT
To overcome the distillation complexity of the pre-training-
then-fine-tuning paradigm, TinyBERT introduced a lucid
knowledge transfer process by inducting 3 loss functions:
(i) Embedding Layer Output (ii) Attention Matrices, the Hid-
den States from Transformer (iii) Output Logits. This not
only led TinyBERT to retain over 96% of BERT’s perfor-
mance at drastically reduced size but also deployed a mea-
ger 28% of parameters and 31% of inference time across
all BERT-based distillation models. Further, it leveraged the
untapped extractable potential fromBERT’s learned attention
weights [69], for (M + 1)th layer, knowledge acquired is
enhanced by minimizing:

Lmodel =

M+1∑
m=0

λmLlayer (Sm,Tg(m)) (40)

where Llayer is the loss function of a Transformer or an
Embedding layer and hyperparameter λm signifies the impor-
tance of mth layer’s distillation. BERT’s attention-based
enhancement for language understanding can be incorporated
in TinyBERT as:

Lattn =
1
h

h∑
i=1

MSE(ASi ,A
T
i), where Ai ∈ Rl×l (41)

VOLUME 9, 2021 68687

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

where h denotes the number of heads, Ai is the atten-
tion matrix corresponding to student or teacher’s ith head,
l denotes input text length along with mean squared
error (MSE) loss function. Further, TinyBERT distills knowl-
edge from the Transformer output layer and can be expressed
as:

Lhidn = MSE
(
H sWh,HT

)
(42)

whereWh ∈ Rl×d ′ ,H s
∈ Rl×d ′ ,HT

∈ Rl×d , d ′ < d
whereH s,HT are the hidden states of the student and teacher
respectively, hidden sizes of the teacher and student models
are denoted via scalar values of d ′ and d , Wh is a learnable
matrix that transforms the student network’s hidden states to
the teacher network’s space states. Similarly, TinyBERT also
performs distillation on embedding-layer:

Lembd = MSE
(
EsWe,ET

)
(43)

where Es and HT are embedding matrices of student and
teacher networks, respectively. Apart from mimicking the
intermediate layer behavior, TinyBERT implements KD to
fit predictions of the teacher model via cross-entropy loss
between logits of the student and the teacher.

Lpred = −softmax
(
zT
)
.log(softmax

((
zs

t

))
(44)

Here zT and zS are the respective logits predicted by the
teacher and student models.

3) MobileBERT
Unlike previous distilled models, MobileBERT achieves
task-agnostic compression from BERT achieving training
convergence via prediction and distillation loss. To train such
a deeply thin model, a unique inverted bottleneck teacher
model is designed that incorporates BERT (IB-BERT) from
where knowledge transfer distills to MobileBERT. It is 4.3×
smaller, 5.5× faster than BERT achieving a competitive score
that is 0.6 units lower than BERT on GLUE-based inference
tasks. Further, the low latency of 62 ms on Pixel 4 phone can
be attributed to the replacement of Layer Normalization and
gelu activation, with the simpler Hadamard product (◦) based
linear transformation.

NoNorm (h) = ϒ◦ h+ β, whereϒ, β∈Rn (45)

For knowledge transfer, the mean squared error between
feature maps ofMobileBERT’s and IB-BERT is implemented
as a transfer objective.

Ll
FMT =

1
TN

T∑
t=1

N∑
n=1

(H tr
t,l,n − H

st
t,l,n)

2 (46)

where l is layer index, T is sequence length, N is the feature
map size. For TinyBERT to harness the attention capability
from BERT, KL-divergence is minimized between per-head

distributions of the two models, where A denotes the number
of attention heads.

Ll
AT =

1
TA

T∑
t=1

A∑
a=1

DKL(atrt,l,a||a
st
t,l,a) (47)

Alternatively, a new KD loss can be implemented during
MobileBERT’s pre-training with a linear combination of
BERT’s MLM and NSP loss, where α is a hyperparameter
between (0,1).

LPD = αLMLM + (1− α)LKD + LNSP (48)

For the above-outlined objectives, 3 training strategies are
proposed:

(i) Auxiliary Knowledge Transfer: Intermediary transfer
via a linear combination of all layer transfer loss and distilled
pre-training loss.
(ii) Joint Knowledge Transfer: For superior results, 2 sep-

arate losses are proposed where MobileBERT is trained with
all layers that jointly transfer losses and perform pre-trained
distillation.
(iii) Progressive Knowledge Transfer: To minimize error

transfer from lower to higher layers, it is proposed to divide
knowledge transfer into L layered L stages where each layer
is trained progressively.

B. PRUNING
Pruning [70] is a methodology where certain weights, biases,
layers, and activations are zeroed out which are no longer a
part of the model’s backpropagation. This introduces sparsity
in such elements which are visible post ReLU layer that
converts negative values to zero ((ReLU (x) : max(0, x)).
Iterative pruning learns the key weights, eliminating the least
critical ones based on threshold values, and retraining the
model enabling it to recuperate from pruning by adapting to
the remaining weights. NLP models like BERT, RoBERTa,
XLNet were pruned by 40% and retained their performance
by 98%, which is comparable to DistilBERT.

1) LAYER PRUNING
a: STRUCTURED DROPOUT
This architecture [71] randomly drops layers at training and
test time that enables sub-network selection of any desired
depth, since the network has been trained to be pruning
robust. This is an upgrade from current techniques that
require re-training a new model from scratch as opposed
to training a network from which multiple shallow models
are extracted. This sub-network sampling like Dropout [72]
and DropConnect [73] builds an efficient pruning robust
network if the smartly chosen simultaneous group of weights
are dropped. Formally, pruning robustness in regularizing
networks can be achieved by independently dropping each
weight via Bernoulli’s distribution where parameter p >
0 regulates the drop rate. This is comparable to the pointwise
product of weight matrix W with an arbitrarily sampled {0,
1) mask matrixM , Wd = M �W .

68688 VOLUME 9, 2021

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

The most effective layer dropping strategy is to drop every
other layer, where pruning rate p and dropping layers at depth
d such that d ≡ 0(mod b1/pc). For N groups with a fixed
drop ratio p, the average number of groups utilized during
training the network is N (1 − p), hence pruning size for r
groups, the ideal drop rate will be p∗ = 1 − r/N . This
approach has been highly effective on numerous NLP tasks
and has led to models on size comparable to distilled versions
of BERT and demonstrate better performance.

b: POOR MAN’S BERT
Due to the over-parameterization of deep neural networks,
availability of all parameters is not required at inference time,
hence few layers are strategically dropped resulting in com-
petitive results for downstream tasks [74]. The odd-alternate
dropping strategy drove superior results than the top and
even alternate dropping for span K = 2 across all tasks.
For instance, in a 12-layer network, dropping: top – {11,
12}; even-alternate – {10, 12}; odd-alternate – {9, 11}, con-
cluded in (i) dropping the final two layers consecutively is
more detrimental than eliminating alternate layers, and (ii)
preserving the final layer has greater significance than other
top layers.

At higher values of K , the alternate dropping approach
signifies a large drop in performance, hypothesized due to
the elimination of lower layers. The Symmetric approach
emphasizes the conservation of top and bottom layers while
middle layers are dropped. This leads to a minimal impact on
BERT while it substantially degrades XLNet’s performance,
resulting in the second-best strategy for BERT giving robust
results even after removal of 4 layers.

Observationally XLNet demonstrates greater pruned
robustness than BERT as its learning mellows close to its
7th layer whereas BERT keeps learning until the 11th layer.
Consequently (i) XLNet gathers task-oriented knowledge at
lower layers in contrast to BERT, (ii) XLNet’s final layers
might get fairly redundant and are liable to get dropped
without a considerable drop in performances. The authors
furthered the dropping experimentations to DistilBERT, here
dropping 30% of its layers resulted in minimal performance
degradation.

Like previous models, top-layer dropping turned out to
be most reliable as RoBERTa proved to be more pruning
robust than BERT as a 6-layered RoBERTa demonstrated
similar performances to DistilRoBERTa. All the layer drop-
ping strategies can be visualized from the above figure 16.

2) WEIGHT PRUNING
Prior work focuses primarily on unstructured individual
weight pruning [75], [76], although effective its resulting
unstructured sparse matrices are challenging to process on
conventional hardware. This makes it difficult to secure
inference speedups despite model size reduction. Contrar-
ily structured pruning enforces highly structured weight
matrices which when optimized via dense linear algebraic

FIGURE 16. Layer pruning strategies deployed by language models.

implementation, lead to substantial speedup but lower perfor-
mance than unstructured pruning due to greater constraints.

a: STRUCTURED PRUNING
To overcome the above shortcomings, a novel structured
pruning paradigm was introduced [77] with low-rank factor-
ization which retained the dense matrix structure and l0 norm
which relaxed constraints enforced via structured pruning.
The weight matrices were factorized into a product of two
smaller matrices with a diagonal mask that was pruned while
training via l0 regularizer that controlled the end sparsity
of the model. This generic method FLOP (Factorized L0
Pruning) could be employed for any matrix multiplication.
For a neural network f (; θ) parameterized by θ = {θ j}

n
j=1

where each θj represents an individual weight or a block of
weights (e.g., column matrix) and n denotes the number of
blocks. Consider a pruning binarized variable z = {zj}

n
j=1

where zj ∈ {0, 1}, θ̃ = {θ̃j denotes model parameter set, post
pruning via l0 normalization.

θ̃ = θ � z ∀jθ̃j = θjzj (49)

Consider a matrix W to be factorized into a product of two
smaller matrices P and Q where W = P.Q and r is the
number of P columns or Q rows. Structured Pruning for each
component is attained via a pruning variable zk

W = PGQ =
∑r

k=1
zk × (pk × qk)

×where G = diag (z1, . . . , zr) (50)

3) HEAD PRUNING
Though certain models have a greater dependency on mul-
tiple heads in a multi-headed attention environment, recent
work reveals that a significant portion of attention heads
can be removed resulting in a pruned model with enhanced
memory efficiency, speed, and accuracy. Prior work [78], [79]
judged head importance via averaging the attention weights

VOLUME 9, 2021 68689

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

over all heads at a particular position or based their results on
maximum attention weight values. However, both approaches
did not unequivocally consider the fluctuating significance of
different heads.

a: ANALYZING MULTI-HEAD SELF-ATTENTION: SPECIALIZED
HEADS DO THE HEAVY LIFTING, REST CAN BE PRUNED
This model [80] unearthed three distinct layered head roles:
(i) Positional heads: Attending to an adjacent token (ii) Syn-
tactic heads: Attending to those with syntactic dependency
(iii) Rare Word heads: Indicating to least frequent tokens in
a sequence. Based on the above roles [80] the revelations
are summarized as (a) Small subset of heads were key for
translation (b) Key heads possessed a single, often more
specialized and interpretable model functionality (c) The
head roles corresponded to adjacent tokens attention in an
explicit syntactic dependency relation. High head confidence
via Layer-wise Relevance Propagation (LRP) [81] relates to
the proportion of a token’s attention defined as the median
of its maximum attention weight computed over all tokens,
which is expected to be crucial for a task. Themodified Trans-
former architecture via product of each head’s computed rep-
resentation head i and scalar gate gi,MultiHead (Q,K ,V) =
Concat i(gi.head i)WO, where gi are input independent head
specific parameters, L0 regularization is applied to gi for
less important heads that need to be disabled, where h ∈
(numberofheads).

L0 (g1 . . . gh) =
h∑
i=1

(1− [[gi = 0]]) (51)

However, L0 norm is non-differentiable; hence it cannot be
inducted as a regularization term in the objective function.
Therefore, a stochastic relaxation is applied where each gate
gi is randomly picked from a head distribution obtained via
stretching (0, 1) to (− ∈, 1+ ∈) and collapsing the proba-
bility distribution (− ∈, 1] to [1, 1+ ∈) to singular points
0 and 1. This rectified stretching results in a distribution over
[0,1] that is mixed discretized-continuous. The probability
sum of heads being non-zero can be implemented as a relaxed
L0 norm.

LC (∅) =

h∑
i=1

(1− P(gi = 0 | ∅i)) (52)

The modified training regime can be expressed as L (θ,∅) =
Lxent (θ,∅) + λLC (∅), where θ are original Trans-
former’s parameters, Lxent (θ,∅) is the translation model’s
cross-entropy loss and LC (∅) is the regularizer.

b: ARE 16 HEADS REALLY BETTER THAN ONE?
In multi-headed attention (MHA), consider a sequence of nd-
dimensional vectors x = x1, .., xn ∈ Rd , and query vector
q ∈ Rd . TheMHA layer parametersW h

q ,W
h
kW

h
vW

h
o ∈ Rdh×d

andW h
o ∈ Rd×dh , when dh = d . For masking attention heads

the original transformer equation is modified as:

MHAttn (x, q) =
Nh∑
h=1

ξhAttW h
q ,W

h
kW

h
vW h

o
(x, q) (53)

where ξh are masking variables with values between 0, 1},
Atth(x) is the output of head h for input x. The following
experiments yielded the best results [82] on pruning the
different number of heads at test times:
(i) Pruning just one head: If the model’s performance

significantly degrades while masking head h, then h is a
key head else it is redundant given the rest of the model.
A mere 8 (out of 96) heads trigger a significant change
in performance when removed from the model, out of
which half result in a higher BLEU score.

(ii) Pruning all heads except one: A single head for most
layers was deemed sufficient at test time, even for
networks with 12 or 16 attention heads, resulting in a
drastic parametric reduction. However, multiple atten-
tion heads are a requirement for specific layers i.e., the
final layer of the encoder-decoder attention, where per-
formance degrades by a massive 13.5 BLEU points on
a single head.

The expected sensitivity of the model to the masking ξ is
evaluated for the proxy score for head significance.

Ih = Ex∼X
∣∣∣∣∂L(x)∂ξh

∣∣∣∣ (54)

Ih = Ex∼X
∣∣∣∣Atth(x)T ∂L(x)

∂Atth(x)

∣∣∣∣ (55)

where X is the data distribution, L(x) is the loss on sample x.
If Ih is high, then modifying ξh will likely have a significant
effect on the model, hence low Ih value heads are iteratively
pruned out.

C. QUANTIZATION
32-bit floating-point (FP32) has been the predominant numer-
ical format for deep learning, however the current surge
for reduced bandwidth and compute resources has propelled
the implementation of lower-precision formats. It has been
demonstrated that weights and activation representations via
8-bit integers (INT8) have not led to an evident accuracy loss.
For instance, BERT’s quantization to 16/8-bit weight format
resulted in 4× model compression with minimal accuracy
loss, consequently, a scaled-up BERT serves a billion CPU
requests daily.

1) LQ-NETS
This model [83] inducts simple to train network weights and
activations mechanism via joint training of a deep neural
network. It quantizes with variable bit precision capabili-
ties unlike fixed or manual schemes [84], [85]. Generally,
a quantized function can represent floating-point weights w,
activations a, in a few bits as:

Q (x) = ql, if x ∈ (tl, tl+1] where ql, l = (1, . . . ,L) (56)

68690 VOLUME 9, 2021

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

Here ql and (tl, tl+1] are quantization levels and intervals,
respectively. To preserve quick inference times, quantization
functions need to be compatible with bitwise operations,
which is achieved via uniform distribution that

maps floating-point numbers to their nearest fixed-point
integers with a normalization factor. The LQ learnable quan-
tization function can be expressed as:

QLQ (x, v) = vT el, if x ∈ (tl, tl+1] (57)

where v ∈ RK is the learnable floating-point basis and el ∈
{−1, 1}K for l = (1, ..,L) enumerating K -bit binary encod-
ings from [−1, ..,−1] to [1, .., 1]. The inner product compu-
tation of quantized weights and activations is computed by
the following bitwise operations with weight bit-width Kw.

QLQ
(
w, vw

)T QLQ (a, va)= Kw∑
i=1

Ka∑
j=1

vwi v
a
j

(
bwi � b

a
j

)
(58)

where w, a ∈ Rn encoded by vectors bwi , b
a
j ∈ {−1, 1}

N

where i = 1, . . . ,Kw and j = 1, . . . ,Ka and vw ∈ RKw ,
va ∈ RKa , � denotes bitwise inner product xnor operation.

2) QBERT
QBERT [86] deploys a two-way BERT quantization with
input x ∈ X , its corresponding label y ∈ Y , via cross
entropy-based loss function

L (θ) =
∑
(xi,yi)

CE(softmax(Wc(Wn (. . .W1 (We (xi))))) , yi)

(59)

where We is the embedding table, with encoder layers
W1,W2 . . .Wn and classifierWc. Assigning the same bit size
representation to different encoder layers with varying sen-
sitivity attending to different structures [5] is sub-optimal
and it gets intricate for small target size (2/4 bits) requiring
ultra-low precision. Hence via Hessian Aware Quantization
(HAWQ) more bits are assigned to greater sensitive layers to
retain performance. Hessian matrix is computed via compu-
tationally economical matrix-free iteration technique where
first layer encoder gradient g1 for an arbitrary vector v as:

∂gT1 v

∂W1
=
∂gT1
∂W1

v+ gT1
∂v
∂W1

=
∂gT1
∂W1

v = H1v (60)

where H1 is Hessian matrix of the first encoder and v is
independent to W1, this approach determines the top eigen-
values for different layers and more aggressive quantization
is deployed for layers with smaller eigenvalues. For further
optimization via group-wise quantization, each dense matrix
is treated as a group with its quantization range and is parti-
tioned following each continuous output neuron.

3) Q8BERT
To quantize weights and activations to 8-bits, symmetric
linear quantization is implemented [87], where Sx is the

quantized scaling factor for input x and (M = 2b−1 − 1) is
the highest quantized value when quantizing to b bits.

Quantize
(
x | Sx ,M

)
: = Clamp

(
bx× Sx

⌉
,−M ,M

)
Clamp (x, a, b) = min(max (x, a) , b) (61)

Implementing a combination of fake quantization [88] and
Straight-Through Estimator (STE) [89], inference time quan-
tization is achieved during training with a full-precision back-
propagation enabling FP32 weights to overcome errors. Here
∂xq
∂x =

E1, where xq is the result of fake quantizing x.

VII. INFORMATION RETRIEVAL
For knowledge-intensive tasks like efficient data updating,
and retrieval, huge implicit knowledge storage is required.
Standard language models are not adept at these tasks and
do not match up with task-specific architectures which can
be crucial for open-domain Q&A. For instance, BERT can
predict the missing word in the sentence, ‘‘The __ is the
currency of the US’’ (answer: ‘‘dollar’’). However since this
knowledge is stored implicitly in its parameters, the size sub-
stantially increases to store further data. This constraint raises
the network latency and turns out prohibitively expensive to
store information as storage space is limited due to the size
constraints of the network.

A. GOLDEN RETRIEVER
A conventional multi-hop based open-domain QA involves
question q and from a large corpus containing relevant con-
textual S (gold) documents d1, .., ds that form a sequence
of reasoning via textual similarities that lead to a preferred
answer a. However, GoldEn Retriever’s [90] first-hop gen-
erates a search query q1 that retrieves document d for a
given question q, thereafter for consequent reasoning steps
(k = 2, .., S) a query qk is generated from the question (q)
and available context (d1, .., dk−1). GoldEn retrieves greater
contextual documents iteratively while concatenating the
retrieved context for its QAmodel to answer. It is independent
of the dataset and task-specific IR models where indexing of
additional documents or question types leads to inefficien-
cies. A lightweight RNN model is adapted where text spans
are extracted from contextual data to potentially reduce the
large query space. The goal is to generate a search query qk
that helps retrieve dk for the following reasoning step, based
on a textual span from the context Ck , q is selected from a
trained document reader.

qk = Gk (q,Ck), (62)

Ck+1 = Ckconcat IRn (qk) (63)

where Gk is the query generator and IRn(qk) are top n
retrieved documents via qk .

B. ORQA
The components reader and retriever are trained jointly in an
end-to-end fashion where BERT is implemented for parame-
ter scoring. It can retrieve any text from an open corpus and

VOLUME 9, 2021 68691

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

is not constrained by returning a fixed set of documents like
a typical IR model. The retrieval score computation is the
question’s q dense inner product with evidence block b.

hq = WqBERTQ (q) [CLS] (64)

hb = WbBERT B (b) [CLS] , (65)

Sretr (b, q) = hTq hb (66)

whereWq andWb matrices project the BERT output into 128-
dimensional vectors. Similarly, the reader is BERT’s span
variant of the reading model.

hstart = BERT R (q, b) [START (s)] , (67)

hend = BERT R(q, b)[END (s)], (68)

Sread (b, s, q)MLP([hstart ; hend]) (69)

The retrieval model is pre-trained with an Inverse Cloze Task
(ICT), where the sentence context is relevant semantically
and is used to extrapolate data missing from the sequence q.

PICT (b | q) =
exp(Sretr (b, q))∑

b′∈BATCH exp(Sretr (b′, q))
(70)

where q is treated as pseudo-question, b is text encircling q
and BATCH is a set of evidence blocks employed for sam-
pling negatives. Apart from learning word matching features,
it also learns abstract representations as pseudo-question
might or might not be present in the evidence. Post ICT,
learning is defined distribution over answer derivations.

Plearn (b, s | q)=
exp(S (b, s, q))∑

b′∈TOP(k)
∑

s′∈b′ exp(S (b′, s′, q))
(71)

where TOP(k) are top retrieved blocks based on Sretr . In this
framework, evidence retrieval from complete Wikipedia is
implemented as a latent variable which is unfeasible to train
from scratch hence retriever is pre-trained with an ICT.

C. REALM
This framework explicitly attends to a vast corpus like
Wikipedia however, its retriever learns via backpropagation
and performs Maximum Inner Product Search (MIPS) via
cosine similarity to choose document appropriateness. The
retriever is designed to cache and asynchronously update
each document to overcome the computational challenge of
multi-million order retrieval of candidate documents.

In pre-training, the model needs to predict the randomly
masked tokens via the knowledge retrieval relevance score
f (x, z), the inner product of vector embeddings between x
and z (MIPS). To implement a knowledge-based encoder,
the combination of input x and retrieved document z from
a corpus is fed as a sequence to fine-tune the Transformer
p (y | z, x) as shown in figure 17. This enables complete cross
attention between x and z that enables to predict the output y
where:

f (x, z) = Embed Input (x)T Embeddoc(z)

p(z|x) =
expf (x, z)∑
z′ exp f (x, z′)

(72)

FIGURE 17. Unsupervised pre-training (top) and supervised fine-tuning
(bottom) in REALM’s architecture.

p(y|x) =
∑
z∈

p (y | z, x) p (z | x) (73)

Like ORQA, BERT is implemented for embedding:

joinBERT (x) = [CLS] x [SEP] (74)

joinBERT (x1, x2) = [CLS] x1 [SEP] x2 [SEP] (75)

In the pre-training of the BERT’s masked language modeling
task, each mask in token x needs to be predicted as:

p(y|z, x) =
Jx∏
j=1

p
(
yj | z, x

)
(76)

p(yj|z, x) ∝ exp
(
wTj BERTMASK (j)

(
joinBERT

(
x, zbody

)))
(77)

whereBERTMASK (j) represents the Transformer output vector
corresponding to the jth masked token. Jx is the total number
of [MASK] tokens in x, andwj is the learned word embedding
for token yj. For an open-endedQ&Afine-tuning task, answer
y is in the form of a spanned token sequence in the target
document z. The span set S(z, y) matching y in z can be
modeled as:

p(y|z, x) ∝
∑

sεS(z,y)

exp
(
MLP

([
hSTART (s); hEND(s)

]))
(78)

hSTART (s) = BERT START (s)
(
joinBERT

(
x, zbody

))
(79)

hEND(s) = BERT END(s)
(
joinBERT

(
x, zbody

))
(80)

where BERT START (s) and BERT END(s) denote the Trans-
former output vectors corresponding to the start and end
tokens of span S and MLP denotes a feed-forward neural
network.

D. RETRIEVAL AUGMENTED GENERATION: RAG
RAG is a flexible combination of the ‘closed-book’ i.e.,
parametric model and the performance of ‘open-book’
i.e., retrieval model approaches, outperforming current lan-
guage models. A parametric memory is a sequence to
sequence pre-trained model whereas a Wikipedia rep-
resentation via a dense vector index constitutes non-
parametric memory, which is accessed via a pre-trained
neural retriever. Since RAG is built as a culmination of

68692 VOLUME 9, 2021

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

the two it does not require prior training since knowledge
is available via retrieved pre-trained data unlike former
non-parametric architectures [91]. To achieve greater context
in output sequence (y) generation, the general-purpose RAG
incorporates retrieved text passages z for a given input x, that
involve two major components:

(i) Retriever p (z | x), parameterized via , it returns
the top matched content from text passages for query x, this
RAGSequence architecture’s retrieved passage acts as a latent
variable marginalized to achieve maximum probability p(y |
x) across top-K approximations.

pRAG−Sequence(y|x)

=

∑
z∈̇top−k(p(. | x))

p (z | x)
N∏
i

pθ (yi| x, z, y1:i−1) (81)

(ii) Generator pθ (yi | x, z, y1:i−1), parameterized via θ , it gen-
erates the current token yi based on a contextual representa-
tion of the prior i− 1 tokens y1:i−1, input x and retrieved pas-
sage z. The RAGTokenmodel predicts each target token based
on a different latent passage, simultaneously enabling the
generator to select subject matter from various documents.

pRAG−Token(y|x)

=

N∏
i

∑
z∈̇top−k(p(. | x))

p (zi | x)pθ (yi | x, zi, y1:i−1) (82)

The retrieval module p (z | x) is based on Dense Passage
Retrieval (DPR) where d (z) the document’s dense represen-
tation generated via BERT and q(x) the query representation
generated via another BERT.

p (z | x) ∝ exp〈d (z) , q(x)〉 (83)

To effectively compute top− k(p (. | x)) elements z with the
highest probability p (z | x) DPR employs a MIPS index
where BART is used as the generator pθ (yi | x, zi, y1:i−1). The
retriever and generator are trained in conjunction to retrieve
the target document in a semi-unsupervised manner.

E. DENSE PASSAGE RETRIEVAL: DPR
DPR enhances open-domain QA retrieval using the dual
encoder approach, unlike the computationally intensive ICT.
Its dense encoder EP(·) indexes all M passages in a continu-
ous, low-dimensional (d) space that could effectively retrieve
top relevant passages for a query at run time. A separate
encoder EQ(·) is deployed for the query and d-dimensional
vector to map at run time, that retrieves k passages which
are most relevant to the question vector. The dot product
computation between the query and passage determines their
similarity. sim (q, p) = EQ (q)T .EQ(q). The goal is to learn
a superior embedding function via training encoders that
involve the creation of vector space where the relevant ques-
tion, passage pairs possess smaller distances i.e., greater
similarity than irrelevant ones. Assume training data with
m instances D = {〈.yi, qi, p

+

i , p
−

i,1, .., p
−

i,n.〉}
m
i=1

where each
instance contains one query qi, one positive (relevant) passage

FIGURE 18. RAG’s parametric and retrieval model architecture.

p+i with n negative (irrelevant) passages p−i,j. The loss function
can be optimized as the negative log-likelihood of the positive
passage.

L
(
qi, p

+

i , p
−

i,1, .., p
−

i,n

)
=−log

esim
(
qi,p
+

i

)
esim

(
qi,p
+

i

)
+
∑n

j=1 e
sim

(
qi,p
−

i,j

)
(84)

VIII. LONG SEQUENCE MODELS
Vanilla Transformers break input sequences into chunks if
their length exceeds 512 tokens, which results in loss of
context when related words exist in different chunks. This
constraint results in a lack of contextual information leading
to inefficient prediction and compromised performance and
dawned the rise of such models.

A. DEEPER SELF-ATTENTION
This 64 layered Transformer [92] was built based on the
discovery that it possessed greater character level modeling of
longer-range sequences. The information was swiftly trans-
mitted over random distances as compared to RNN’s unitary
step progression. However, the three following supporting
loss parameters were added to the vanilla Transformer which
accelerated convergence and provided the ability to train
deeper networks.

(i) Prediction across Multiple positions :Generally causal
prediction occurs at a single position in the final layer,
however in this case all positions are used for predic-
tion. These auxiliary losses compel themodel to predict
on smaller contexts and accelerate training without
weight decay.

(ii) Predictions on Intermediate Layer : Apart from the
final layer, predictions from all intermediate layers are
added for a given sequence, as training progresses,
lower layers weightage is progressively reduced. For n
layers, the contribution of l th intermediate layer ceases
to exist after completing l/2n of the training.

(iii) Multiple Target Prediction : The model is modified to
generate two or greater predictions of future characters
where a separate classifier is introduced for every new
target. The extra target losses are weighed in half before
being added to a corresponding layer loss.

The above 3 implementations are expressed in figure 19.
For sequence length L, the language model computes

VOLUME 9, 2021 68693

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

FIGURE 19. Accelerated convergence via multiple target token prediction
across multiple positions through intermediate layer.

joint probability autoregressive distribution over token
sequences.

P (t0:L) = P(t0)
L∏
i=1

P(ti | t0:i−1) (85)

B. TRANSFORMER-XL
To mitigate context fragmentation in vanilla Transformers,
XL incorporates lengthier dependencies where it reuses and
caches the prior hidden states from where data is propagated
via recurrence. Given a corpus of tokens x = (x1, x2..., xT),
a language model computes the joint probability P (x) autore-
gressively, where the context x<t is encoded into a fixed size
hidden state.

P (x) =
∏
t

P(xt | x<t) (86)

Assume two consecutive sentences of length L, sτ =
[xτ,1, . . . , xτ,L] and sτ+1 = [xτ+1,1, . . . , xτ+1,L] where nth

layer hidden state sequence produced by the τ th segment
sτ as hnτ ∈̇R

L×d , where d is the hidden dimension. The nth

hidden layer state for the segment sτ+1 is computed as
follows:

h∼n−1r+1 =

[
SG

(
hn−1r

)
• hn−1r+1

]
(87)

qnr+1, k
n
r+1, v

n
r+1 = hn−1r+1W

T
Q , h

∼n−1
r+1 W T

K , h
∼n−1
r+1 W T

V (88)

hnr+1 = Transformer − Layer
(
qnr+1, k

n
r+1, v

n
r+1
)

(89)

where SG(·) represents stop-gradient, [hu • hv] is the two
hidden sequence concatenation, and W the model param-
eters. The key distinction from the original Transformer
lies in modeling the key knr+1 and value vnr+1 concerning
the extended context h∼n−1r+1 and hence preceding hn−1r are
cached. This can be demonstrated fromfigure 20 abovewhere
prior attention span is cached by the latter forming an elon-
gated caching mechanism.

Such recurrence is applied to every two consecutive
segments to create a segment level recurrence via hidden
states. In the original transformer the attention score within
the same segment between query (qi) and key (ki) vector

FIGURE 20. Elongated context capture combining (a) and (b).

FIGURE 21. Longformer’s different sparse attention configurations.

is:

Aabsi,j = ETxiW
T
q WkEx j + ETxiW

T
q WkUj

+UT
i W

T
q WkEx j + UT

i W
T
q WkUj (90)

From a perspective of relative positional encoding, the above
equation is remodeled in the following manner

Areli,j = ETxiW
T
q Wk,EEx j + ETxiW

T
q Wk,RRi−j +

+uTWk,EEx j + vTWk,RRi−j (91)

C. LONGFORMER
This architecture provides sparsity to the full attention matrix
while identifying input location pairs attending one another
and implements three attention configurations:
(i) SlidingWindow : For a fixedwindow sizew, each token

attends to a sequence length (n) of w/2 on either side.
This leads to the computational complexity of O(n ×
w) that scales linearly with input sequence length and
for efficiency purposes w < n. A stacked ′l ′ layered
transformer enables receptivity sized ′l × w′ over the
entire input ′w′ across all layers. Different ′w′ values
can be chosen for efficiency or performance.

(ii) Dilated SlidingWindow :To conserve computation and
extend the receptive field size to ′l × d × w′, where
′d ′ variable-sized gaps are inducted for dilations in
window size ′w′. Enhanced performance is achieved via

68694 VOLUME 9, 2021

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

enabling few dilation-free heads (smaller window size)
for attention on local context (lower layers) and remain-
ing dilated heads (increased window size) attending
longer context (higher layers).

(iii) Global Attention : The prior two implementations do
not possess enough flexibility for task-precise learn-
ing. Hence ‘‘global attention′′ is implemented on few
pre-designated input tokens (n) where a token attends to
all sequence tokens and all such tokens attend to it. This
preserves the local and global attention complexity to
O(n).

Its attention complexity is the sum of local and global
attention versus RoBERTa’s quadratic complexity which is
explained by the following mathematical expressions.

local attention = (n× w)

where n ∈ (input sequence size) ,w ∈ (window size)

global attention = (2× n× s)

where s ∈ (number of tokens with full attention)

Window Attention Size = n0, hence (n0 = w)

Total attention complexity = n (n0 + 2s) εO (n)

if n0 6= n

Total Memory Requirements

= n (n0 + 2s)× Number of Transforer Layers

Global attention enables chunk-less document processing,
however, its space-time complexity will be greater than
RoBERTa, if sequence length exceeds the window size.{

O (RoBERTa) = O (n0)2
}
<

{
O (Longformer)
= O (n (n0 + 2s))

}
ifn > n0

D. EXTENDED TRANSFORMER CONSTRUCTION: ETC
ETC is an adaptation of the Longformer design which
receives global (ng) and long (nl) inputs where ng � nl .
It computes four global-local attention variations: global-
to-global (g2g), global-to-long (g2l), long-to-global (l2g),
and long-to-long (l2l) to achieve long sequence processing.
Global inputs and the other three variations possess limitless
attention to compensate for l2l ′s fixed radius span to achieve
a balance between performance and computational cost. Fur-
ther, it replaces the absolute with relative position encodings
which provide information of input tokens concerning each
other.

E. BIG BIRD
Mathematically Big Bird proves randomly sparse attention
can be Turing complete and behaves like a Longformer aided
with random attention. It is designed such as (i) a global
token group g attending to all sequence parts (ii) there exists
a group of r random keys that each query qi attends to
(iii) a local neighbor window w block that each local node
attends to. Big Bird’s global tokens are constructed using a
two-fold approach (i) Big Bird-ITC: Implementing Internal

FIGURE 22. (a) Sparse transformer architecture (b) Decoder based full
attention with causal masking (c) Stridden sparsity (d) Fixed sparsity.

Transformer Construction (ITC) where few current tokens are
made global that attend over the complete sequence. (ii) Big
Bird-ETC: Implementing Extended Transformer Construc-
tion (ETC), essential additional global tokens g are included
[CLS] that attend to all existing tokens.

Its definitive attention process consists of the following
properties: queries attend to r random keys where each query
attends to w/2 tokens to the left and right of its location and
have g global tokens which are derived from current tokens
or can be supplemented when needed.

IX. COMPUTATIONALLY EFFICIENT ARCHITECTURES
A. SPARSE TRANSFORMER
This model’s economical performance is due to the alien-
ation from the full self-attention procedure that is modified
across several attention steps. The model’s output results are
derived from a factor of the full input array i.e., (

√
N) where

N ∈̇Sequence Length as expressed in Figure 22. This leads
to a lower attention complexity of O(N

√
N) in contrast to

Transformer’s O(N 2). Further, it deciphers sequences thirty
times longer than its predecessors. Its factorized self-attention
consists of p distinct heads where the mth head defines a
subset of attention indices A(m)i ⊂ {j : j ≤ i} and to generate

sparsity
∣∣∣A(m)i

∣∣∣ ∝ p
√
n leads to efficient choices for set A.

The strided attention is implemented in two dimensions
where one head attends to previous l locations and the other
attends to each l th location, where stride l value is close to

√
n.

This is expressed as A(1)i = {t, t+1, .., i} for t = max(0, i−l)
and A(1)i = {j : (i− j)mod l = 0}. This linear transformation

VOLUME 9, 2021 68695

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

leads to this dense attention:

Attention (X) = Wp.attend(X , S) (92)

whereWp is the post attentionmatrix. Similarly, to implement
factorized attention heads, one attention type is used alterna-
tively per residual block or interleaved or a hyperparameter
determines the ratio.

Attention (X) = Wp.attend(X ,A(rmod p)) (93)

where r is the current residual block index and p is the
factorized headcount. An alternative merged head approach
incorporates one head attend to target locations where both
factorized heads would attend to. This approach is computa-
tionally more expensive by a constant factor.

Attention (X) = Wp.attend

(
X ,

p⋃
m=1

A(m)
)

(94)

A third alternative uses multiheaded attention, where atten-
tion products (nh) are parallelly computed and concatenated
along the feature dimension.

Attention (X) = Wp(attend(X ,A)i)i∈̇{1,−−,nh} (95)

Multiple heads gave superior results whereas, for longer
sequences where attention determines computation, sequen-
tial attention is preferred.

B. REFORMER
Reformer reduces the Transformer attention complexity to
O(L log L) via local sensitive hashing (LSH). This assigns
each vector x to a hash h(x), where neighboring vectors
obtain the same hash within hash buckets of similar size with
high probability and remote ones do not. The modified LSH
attention equation:

oi =
∑
j∈̇Pi

exp
(
qi.kj − z (i,Pi)

)
vj (96)

where Pi = {j : i ≥ j}
Pi belongs to the set where ith position query attends to, z

is the partition function that contains a range of nearby keys
to which a query attends to. For batching purposes, attention
is performed over P̃i = {0, 1 − −l} Pi where Pi is a subset
of P̃i and elements not in Pi are masked.

oi =
∑
j∈̇P̃i

exp(qi.kj − m(j,Pi)− z (i,Pi))vj

where m(j,Pi) =

{
∞, if j /∈ Pi
0 otherwise

(97)

Decoder implements masking to prevent access to future
query positions. The set Pi target items can only be attended
by a query at ith position, by enabling attention within a single
hash bucket. To further reduce the probability of similar items

FIGURE 23. (a) Bucket formation of similar Attention vectors (b) Simple
bucketing of a Query-Key pair (c) Query-Key sequence distribution based
on (a) before Bucketing (d), (e) Bucketing and Chunking of (c).

falling in different buckets, several parallel hashing (nrounds)
is performed with distinct hash functions {h(1), h(2), ..}

Pi=

nrounds⋃
r=1

Pri where Pri =
{
j : h(r) (qi) = h(r)

(
qj
)}

(98)

Attention is done on chunks of sorted keys queries and keys
to batch:

P̃
(r)
i =

{
j :

⌊
s(r)i
m

⌋
− 1 ≤

⌊
s(r)j
m

⌋
≤

⌊
s(r)i
m

⌋}
(99)

From (96) and (97) we can write,

oi =
∑

j∈̇P̃i
exp(qi.kj − m(j,Pi)− z (i,Pi))vj (100)

68696 VOLUME 9, 2021

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

FIGURE 24. Rev-Nets skipping intermediate storage via precomputation.

=

∑nrounds

r=1
exp(z(i,P(r)i − z(i,Pi))

∑
j∈P̃(r)i

1
Ni,j

× exp(qi.kj − m(j,P
(r)
i)− z(i,P(r)i))vj (101)

=

∑nrounds

r=1
exp(z(i,P(r)i − z(i,Pi))o

(r)
i (102)

o(r)i =
∑

j∈P̃(r)i
exp(qi.kj − m(j,P

(r)
i)− z(i,P(r)i))vj (103)

The following example in figure 23 comprehensively demon-
strates the various working mechanisms of the Reformer.

Reversible Residual Networks [93] is another driving force
behind Reformer’s economical memory consumption where
activation values are reconstructed on the fly during back-
propagation excluding requirements to save activations in
memory. From figure 24 below each layer’s reversible block
are recomputed from the next layer’s activations as:

Y1 = X1 + f
(
X2Layer2

)
, Y2 = X2 + f

(
X1Layer1

)
(104)

X1 = Y1 − f
(
Y2Layer2

)
, X2 = Y2 − f

(
Y1Layer1

)
(105)

C. A LITE BERT: ALBERT
ALBERT, within a single model, integrates the following
two-parameter reduction techniques that result in a mere 12M
parameters as shown in figure 25. This results in almost
90% parameter reduction than BERT-base while maintaining
competitive benchmark performances.
(i) Factorized Embedding Parameterization : For optimal

results, NLP tasks require a large vocabulary V , where
(embedding size) E ≡ H (hidden layer) and embed-
ding matrix V × E size can scale up to billion param-
eters. ALBERT factorizes the embedding space E into
two smaller matrices where embedding parameters are
reduced from O(V × H) to O(V × E + E × H).

(ii) Cross − Layer Parameter Sharing : ALBERT is
built to share attention parameters across layers via
a feed-forward network (FFN). Consequently, its
inter-layer transitions were considerably smoother as
results indicated weight sharing’s stabilizing effect on
network parameters.

Like BERT’s NSP, ALBERT’s sentence-order predic-
tion (SOP) loss incorporated two-pronged learning from two
positive successive text segments that also included its cor-
responding negative samples with orders reversed as demon-
strated in figure 26. This influences themodel to learn contex-
tually the finer-grained discrepancies in any discourse giving
superior coherent performances. Its MLM target implements
n-gram masking that comprises up to 3-character sequences,

FIGURE 25. (a) Smaller model via embedding size reduction (b) effective
learning via sharing of attention parameters.

FIGURE 26. (a) BERT’s NSP learning via simple non-reversed pair order
(b) ALBERT’s SOP dual sentiment learning via sentence order reversal.

FIGURE 27. Replaced token detection via model’s combined training.

like ‘‘World Cup Football’’ or ‘‘Natural Language Process-
ing’’.

p (n) =
1/n∑n
k=1 1/k

(106)

D. ELECTRA
The advantage lies in its contextual learning via effec-
tive discrimination, where it learns from all. input tokens
unlike BERT’s that learn from a mere 15% masked-out
subset. ELECTRA implements ‘‘replaced token detection’’,
as shown in figure 27, where contamination occurs by replac-
ing few random tokens with probabilistic meaningful substi-
tutions via Generator (G), a small ‘masked language model’.

Simultaneously, via binary classification, a larger model
Discriminator (D) is jointly pre-trained to predict if each
token was restored correctly via the generator.

LMLM (x, θG) = E
(∑

i∈m
−logpGxi|xmasked)

)
(107)

LDisc (x, θD) = E
(∑n

t=1
−1(xcorrt = xt) logD

(
xcorr , t

)
− 1(xcorrt 6= xt)log(1− D(xcorr , t))

)
(108)

VOLUME 9, 2021 68697

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

The two encoder-based networks (G, D) transform an input
token sequence x = [x1, .., xn] into a contextualized vector
representation hx = [h1, .., hn]. Via Softmax, G yields the
likelihood of generating a t th position token xt , where xt =
[MASK].

pG (xt | x) =
exp

(
e (xt)T hG (x)t

)∑
x ′ exp

(
e (x ′)T hG (x)t

) (109)

The combined loss over a large corpus χ is minimized
as:

min
θG,θD

∑
x∈χ

LMLM (x,θG)+ λLDisc (x, θD) (110)

E. LINFORMER
It demonstrates [94] that attention weights are dominated by a
few key entries, hence sequence length is down projected to a
target output matrix via low-rank self-attention that achieves
linear time and space complexity O(1). During computa-
tion of keys and values, two linearly projected matrices are
added Ei,Fi ∈ Rn×k , where (n× d)− dimensional key,
value layers KWK

i and VWV
i are projected into (k × d)−

dimensional key, value layers, thereafter resulting (n× k)−
dimensional context mapping is computed using scaled dot-
product attention.

head i = softmax

(
QWQ

i

(
EiKWK

i

)T
√
dk

)P̄:n×k
.(FiVWV

i)
k×d

(111)

If k � n, then a significant reduction of memory and space
consumption is achieved. For further efficient optimization,
parameter sharing between projections is performed at three
levels: (i) Headwise Sharing: for each layer two projection
matrices E and F are shared where Ei = E , Fi = F
through all heads i. (ii) Key-Value Sharing: including (i)
key, value projections are shared where each layer’s single
projection matrix E = Ei = Fi is created for each key-value
projection matrix for all heads i (iii) Layer-wise Sharing: a
single projection matrix E implemented for all layers, heads,
keys, and values. For a 12-layer, 12-head Transformer, (i),
(ii), (iii) will incorporate 24, 12, 1 distinct linear projection
matrices, respectively.

F. PERFORMER
The standard attention (QL×d .K

T
d×L).V L×d results in

quadratic time complexity of O(L2d), preferable imple-
mentation of QL×d .(KT

d×L .V L×d) leads to O(d2L) where
L � d . However, attention decomposition of query-key
product into its pristine form is not possible after imple-
menting the softmax non-linear function. However, pre soft-
max decomposition of attention is possible via approxi-
mation of lower-ranked queries and keys enabling greater
efficiency, specifically Q′K

′T ∼= softmax(QK
T

√
d
) ∼=

exp(QKT). This is achieved via kernel approximation
function K (x, y) = ∅(x)T∅(y), the dot product of a

FIGURE 28. Graphical representation of language model performance.

high-dimensional feature map ∅. Contrary to the ker-
nel trick where the dimensionality is increased, the Per-
former [95] decomposes the attention matrix A(i, j) =
K (qi, kj) = exp(qi, kTj) to a lower-dimensional feature
map ∅.

X. MODELING CLASSIFICATION OF LMs
Transformer based language models (LM) can be classified
into 3 categories [96] from a modeling perspective:

(i) Autoregressive: These are pre-trained feedforward
models that predict future tokens from token his-
tory. Here output yt is dependent on the input at
time instant xt and previous time step inputs x<t .
These are primarily decoder-based Transformers that
incorporate causal masking where attention heads
are prevented from attending to future tokens. Such
models are generally fine-tuned for text genera-
tion purposes and deploy zero-shot learning in the
GPT series.

(ii) Auto-Encoded: These Encoder based models have
full access to the input array, devoid of any mask-
ing. To learn they are pre-trained via incorporating
input token masking schemes and then fine-tuned to
reproduce the masked tokens as output. These mod-
els (BERT) are generally appropriate for sequence or
token classification tasks.

(iii) Sequence to Sequence: These Encoder-Decoder-based
generativemodels create data post learning from amas-
sive dataset. Unlike discriminative distribution P(Y |X),
they model the joint distribution P(X ,Y) of input X
and target Y where input can be corrupted on several
schemes. Decoder-based causal masking is deployed
to maximize learning for subsequent target generation.
Models like BART and T5 perform best on NMT,
summarization, or QA tasks.

A comprehensive overview of the above-mentionedmodeling
classification is presented in figure 29.

68698 VOLUME 9, 2021

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

FIGURE 29. Tabular representation of language modeling classification.

XI. LANGUAGE MODEL PERFORMANCE COMPARISON
The quantitative performance of few major NLP models
is shown in figure 28 that is based on the Glue and
SuperGlue benchmarks. These benchmarks contain a vari-
ety of datasets that judge the model on several NLP tasks.
With the highest number of trainable parameters, GPT-3 is
the largest model in this comparison. Since GPT-3 is the

newest model here, it does not participate in the older Glue
benchmark.

From a qualitative perspective, the T5 within the same
model uses the same loss function and hyperparameters
spread across a variety of tasks leading to a multi-task
learning environment. It performs the best as this scalable
text to text generative (NLG) model couples the denoising

VOLUME 9, 2021 68699

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

objective during its training with massive amounts of unla-
belled data. This leads to superior learning and greater gener-
alized performances over NLU models like RoBERTa which
are fine-tuned for individual downstream tasks after pre-
training.

The primary motive of several rounds of fine-tuning in
NLU models is to achieve strong performance on multiple
tasks. The major disadvantages are the requirement for a new
and typically large dataset for each task. This amplifies the
potential for poor out-of-distribution generalization leading
to unfair comparison with human-level abilities. GPT-3 does
not operate on fine-tuning as its focus is to deliver task-
agnostic execution. However, there is the scope of minimal
fine-tuning in GPT-3 which leads to one or few-shot learning.
The idea is to perform zero or minimal gradient updates post
pre-training a huge model on a massive dataset.

Though GPT-3 does not rank highly with the SuperGlue
benchmark, the key is that this generative model is the
quickest in learning any task at inference time. It matches
performance with SOTA fine-tuned models on several NLP
tasks in the zero, one, and few-shot settings. It also generates
high-quality samples and gives solid qualitative performance
at tasks defined on the fly.

XII. CONCLUSION AND FUTURE DIRECTIONS
We provide a comprehensive and detailed summary of the
major language models that have led to the current SOTA
in NLP performance. Since the launch of the Attention
mechanism and Transformer architecture, NLP has advanced
exponentially. We presented a high-level mind map of model
classifications via a taxonomy. These classifications are pri-
marily based on Transformer derivative architectures, built
for specialized tasks like Language Understanding and Gen-
eration, Model Size Reduction via Distillation, Quantiza-
tion and Pruning, Information Retrieval, Long Sequence
Modeling, and other Generalized Model Reduction tech-
niques. Recent language models are primarily driven by
attaining higher NLP performance requiring huge computing
resources. Thus, model scaling has been the natural pathway
in industry. This exponential scaling coupled with higher
attention complexity makes these models infeasible to access
at a global scale. Subsequently, significant efforts have been
made to engineer reasonably sized models and an efficient
attention computation to speed upmodel convergence leading
to lower latency in models.

Incorporating a Mixture of Expert (MoE) [97] methodol-
ogy is an effective way for large models to achieve compu-
tational efficiency, as only a subset of the neural network is
activated for every input. Consequently, this leads to sparsity,
and although sparsity training is an active research area,
current GPUs are better suited for densematrix computations.
While MoE models have demonstrated promise in training
sparse matrices, their communication costs and complexity
impede wide-scale deployment. Further, larger models are
prone to memorize training data leading to overfitting and
reduced learning [98]. To overcome this, models are only

trained for a single epoch on de-duplicated instances on huge
datasets, thereby exhibiting minimal overfitting.

Thus, MoE design coupled with a robust training paradigm
in the future might lead to highly scalable and efficient mod-
els. These models will possess superior language understand-
ing, as data memorization would be minimized. The current
approach in SOTA models relies on supervised learning on
huge datasets. A promising area of future enhancements
in NLP would be incorporating reinforcement learning in
Machine Translation, text summarization, and Q&A tasks.

REFERENCES
[1] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,

pp. 436–444, May 2015.
[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. NeurIPS,
2017, pp. 1–11.

[3] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, ‘‘Improv-
ing language understanding with unsupervised learning,’’ OpenAI Blog,
San Francisco, CA, USA, Tech. Rep., 2018.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ in Proc.
NAACL-HLT, 2019, pp. 4171–4186.

[5] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman, ‘‘GLUE:
A multi-task benchmark and analysis platform for natural language under-
standing,’’ in Proc. BlackboxNLP@EMNLP, 2018, pp. 353–355.

[6] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill,
O. Levy, and S. R. Bowman, ‘‘SuperGLUE: A stickier benchmark for
general-purpose language understanding systems,’’ in Proc. NeurIPS,
2019, pp. 1–29.

[7] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, ‘‘Benchmark analysis
of representative deep neural network architectures,’’ IEEE Access, vol. 6,
pp. 64270–64277, 2018.

[8] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, ‘‘SQuAD: 100,000+
questions for machine comprehension of text,’’ 2016, arXiv:1606.05250.
[Online]. Available: https://arxiv.org/abs/1606.05250

[9] P. Rajpurkar, R. Jia, and P. Liang, ‘‘Knowwhat you don’t know: Unanswer-
able questions for SQuAD,’’ 2018, arXiv:1806.03822. [Online]. Available:
http://arxiv.org/abs/1806.03822

[10] A. Warstadt, A. Singh, and S. R. Bowman, ‘‘Neural network acceptabil-
ity judgments,’’ Trans. Assoc. Comput. Linguistics, vol. 7, pp. 625–641,
Nov. 2019.

[11] R. T. McCoy, J. Min, and T. Linzen, ‘‘BERTs of a feather do not generalize
together: Large variability in generalization across models with simi-
lar test set performance,’’ 2020, arXiv:1911.02969. [Online]. Available:
http://arxiv.org/abs/1911.02969

[12] H. Elsahar andM.Gallé, ‘‘To annotate or not? Predicting performance drop
under domain shift,’’ in Proc. EMNLP/IJCNLP, 2019, pp. 2163–2173.

[13] S. Ruder and B. Plank, ‘‘Learning to select data for transfer learning with
Bayesian optimization,’’ in Proc. EMNLP, 2017, pp. 372–382.

[14] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le,
‘‘XLNet: Generalized autoregressive pretraining for language understand-
ing,’’ in Proc. NeurIPS, 2019, pp. 1–18.

[15] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, ‘‘RoBERTa: A robustly optimized
BERT pretraining approach,’’ 2019, arXiv:1907.11692. [Online]. Avail-
able: http://arxiv.org/abs/1907.11692

[16] B. McCann, N. S. Keskar, C. Xiong, and R. Socher, ‘‘The natural
language decathlon: Multitask learning as question answering,’’ 2018,
arXiv:1806.08730. [Online]. Available: http://arxiv.org/abs/1806.08730

[17] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,
W. Li, and P. J. Liu, ‘‘Exploring the limits of transfer learning with a unified
text-to-text transformer,’’ J. Mach. Learn. Res., vol. 21, pp. 140:1–140:67,
2020.

[18] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed,
O. Levy, V. Stoyanov, and L. Zettlemoyer, ‘‘BART: Denoising sequence-
to-sequence pre-training for natural language generation, translation,
and comprehension,’’ 2020, arXiv:1910.13461. [Online]. Available:
http://arxiv.org/abs/1910.13461

68700 VOLUME 9, 2021

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

[19] Y. Liu, J. Gu, N. Goyal, X. Li, S. Edunov,M. Ghazvininejad,M. Lewis, and
L. Zettlemoyer, ‘‘Multilingual denoising pre-training for neural machine
translation,’’ Trans. Assoc. Comput. Linguistics, vol. 8, pp. 726–742,
Dec. 2020.

[20] C. Rosset, ‘‘Turing-NLG: A 17-billion-parameter language model by
Microsoft,’’ Microsoft Blog, Redmond, WA, USA, Tech. Rep., 2019.

[21] Z. Xie, G. Genthial, S. Xie, A. Ng, andD. Jurafsky, ‘‘Noising and denoising
natural language: Diverse backtranslation for grammar correction,’’ in
Proc. NAACL-HLT, 2018, pp. 619–628.

[22] T. Brown et al., ‘‘Language models are few-shot learners,’’ 2020,
arXiv:2005.14165. [Online]. Available: https://arxiv.org/abs/2005.14165

[23] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun,
N. Shazeer, and Z. Chen, ‘‘GShard: Scaling giant models with conditional
computation and automatic sharding,’’ 2020, arXiv:2006.16668. [Online].
Available: http://arxiv.org/abs/2006.16668

[24] E. Strubell, A. Ganesh, and A. McCallum, ‘‘Energy and policy consid-
erations for deep learning in NLP,’’ 2019, arXiv:1906.02243. [Online].
Available: http://arxiv.org/abs/1906.02243

[25] G. E. Hinton, O. Vinyals, and J. Dean, ‘‘Distilling the knowledge in a neu-
ral network,’’ 2015, arXiv:1503.02531. [Online]. Available: https://arxiv.
org/abs/1503.02531

[26] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, ‘‘DistilBERT, a dis-
tilled version of BERT: Smaller, faster, cheaper and lighter,’’ 2019,
arXiv:1910.01108. [Online]. Available: https://arxiv.org/abs/1910.01108

[27] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and Q. Liu,
‘‘TinyBERT: Distilling BERT for natural language understanding,’’ 2020,
arXiv:1909.10351. [Online]. Available: http://arxiv.org/abs/1909.10351

[28] Z. Sun, H. Yu, X. Song, R. Liu, Y. Yang, and D. Zhou, ‘‘MobileBERT:
A compact task-agnostic BERT for resource-limited devices,’’ in Proc.
ACL, 2020, pp. 1–13.

[29] S. Han, H. Mao, and W. Dally, ‘‘Deep compression: Compressing deep
neural networks with pruning, trained quantization, and Huffman coding,’’
in Proc. Comput. Vis. Pattern Recognit., 2016, pp. 1–14.

[30] K. Lee, M.-W. Chang, and K. Toutanova, ‘‘Latent retrieval for weakly
supervised open domain question answering,’’ 2019, arXiv:1906.00300.
[Online]. Available: http://arxiv.org/abs/1906.00300

[31] K. Guu, K. Lee, Z. Tung, P. Pasupat, and M.-W. Chang,
‘‘REALM: Retrieval-augmented language model pre-training,’’ 2020,
arXiv:2002.08909. [Online]. Available: http://arxiv.org/abs/2002.08909

[32] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler,
M. Lewis, W.-T. Yih, T. Rocktäschel, S. Riedel, and D. Kiela, ‘‘Retrieval-
augmented generation for knowledge-intensive NLP tasks,’’ 2020,
arXiv:2005.11401. [Online]. Available: http://arxiv.org/abs/2005.11401

[33] V. Karpukhin, B. Oğuz, S. Min, P. Lewis, L. Wu, S. Edunov,
D. Chen, and W.-T. Yih, ‘‘Dense passage retrieval for open-domain
question answering,’’ 2020, arXiv:2004.04906. [Online]. Available:
http://arxiv.org/abs/2004.04906

[34] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov,
‘‘Transformer-XL: Attentive language models beyond a fixed-length con-
text,’’ 2019, arXiv:1901.02860. [Online]. Available: http://arxiv.org/abs/
1901.02860

[35] I. Beltagy, M. E. Peters, and A. Cohan, ‘‘Longformer: The long-document
transformer,’’ 2020, arXiv:2004.05150. [Online]. Available: http://arxiv.
org/abs/2004.05150

[36] J. Ainslie, S. Ontañón, C. Alberti, V. Cvicek, Z. Fisher, P. Pham, A. Ravula,
S. Sanghai, Q. Wang, and L. Yang, ‘‘ETC: Encoding long and structured
inputs in transformers,’’ in Proc. EMNLP, 2020, pp. 268–284.

[37] M. Zaheer, G. Guruganesh, A. Dubey, J. Ainslie, C. Alberti, S. Ontañón,
P. Pham, A. Ravula, Q. Wang, L. Yang, and A. Ahmed, ‘‘Big bird:
Transformers for longer sequences,’’ 2020, arXiv:2007.14062. [Online].
Available: http://arxiv.org/abs/2007.14062

[38] N. Kitaev, Ł. Kaiser, and A. Levskaya, ‘‘Reformer: The efficient
transformer,’’ 2020, arXiv:2001.04451. [Online]. Available: https://arxiv.
org/abs/2001.04451

[39] R. Child, S. Gray, A. Radford, and I. Sutskever, ‘‘Generating long
sequences with sparse transformers,’’ 2019, arXiv:1904.10509. [Online].
Available: http://arxiv.org/abs/1904.10509

[40] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
‘‘ALBERT: A lite BERT for self-supervised learning of language rep-
resentations,’’ 2020, arXiv:1909.11942. [Online]. Available: http://arxiv.
org/abs/1909.11942

[41] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, ‘‘ELECTRA: Pre-
training text encoders as discriminators rather than generators,’’ 2020,
arXiv:2003.10555. [Online]. Available: http://arxiv.org/abs/2003.10555

[42] B. A. Plummer, N. Dryden, J. Frost, T. Hoefler, and K. Saenko,
‘‘Shapeshifter networks: Cross-layer parameter sharing for scalable and
effective deep learning,’’ 2020, arXiv:2006.10598. [Online]. Available:
https://arxiv.org/abs/2006.10598

[43] M. Joshi, D. Chen, Y. Liu, D. S.Weld, L. Zettlemoyer, and O. Levy, ‘‘Span-
BERT: Improving pre-training by representing and predicting spans,’’
Trans. Assoc. Comput. Linguistics, vol. 8, pp. 64–77, Dec. 2020.

[44] Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov,
and C. D. Manning, ‘‘HotpotQA: A dataset for diverse, explainable multi-
hop question answering,’’ 2018, arXiv:1809.09600. [Online]. Available:
http://arxiv.org/abs/1809.09600

[45] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using
RNN encoder-decoder for statistical machine translation,’’ 2014,
arXiv:1406.1078. [Online]. Available: http://arxiv.org/abs/1406.1078

[46] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[47] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, ‘‘Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,’’ 2014,
arXiv:1412.3555. [Online]. Available: http://arxiv.org/abs/1412.3555

[48] M.-T. Luong, H. Pham, and C. D. Manning, ‘‘Effective approaches to
attention-based neural machine translation,’’ 2015, arXiv:1508.04025.
[Online]. Available: http://arxiv.org/abs/1508.04025

[49] D. Bahdanau, K. Cho, and Y. Bengio, ‘‘Neural machine translation
by jointly learning to align and translate,’’ CoRR, vol. abs/1409.0473,
pp. 1–15, 2015.

[50] R. Pascanu, T. Mikolov, and Y. Bengio, ‘‘On the difficulty of training
recurrent neural networks,’’ in Proc. ICML, 2013, pp. 1310–1318.

[51] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean, ‘‘Efficient estimation
of word representations in vector space,’’ CoRR, vol. abs/1301.3781,
pp. 1–12, Jan. 2013.

[52] J. Pennington, R. Socher, and C. Manning, ‘‘Glove: Global vectors for
word representation,’’ in Proc. EMNLP, 2014, pp. 1532–1543.

[53] O.Melamud, J. Goldberger, and I. Dagan, ‘‘Context2vec: Learning generic
context embedding with bidirectional LSTM,’’ in Proc. CoNLL, 2016,
pp. 51–61.

[54] B. McCann, J. Bradbury, C. Xiong, and R. Socher, ‘‘Learned in translation:
Contextualized word vectors,’’ in Proc. NIPS, 2017, pp. 1–12.

[55] P. Ramachandran, P. J. Liu, and Q. V. Le, ‘‘Unsupervised pretraining
for sequence to sequence learning,’’ 2017, arXiv:1611.02683. [Online].
Available: http://arxiv.org/abs/1611.02683

[56] J. Howard and S. Ruder, ‘‘Universal language model fine-tuning for text
classification,’’ in Proc. ACL, 2018, pp. 328–339.

[57] X. Liu, P. He, W. Chen, and J. Gao, ‘‘Multi-task deep neural networks
for natural language understanding,’’ 2019, arXiv:1901.11504. [Online].
Available: http://arxiv.org/abs/1901.11504

[58] J. L. Ba, J. R. Kiros, and G. E. Hinton, ‘‘Layer normalization,’’ 2016,
arXiv:1607.06450. [Online]. Available: http://arxiv.org/abs/1607.06450

[59] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, ‘‘Deep contextualized word representations,’’ in Proc.
NAACL-HLT, 2018, pp. 2227–2237.

[60] Y. Wang, W. Che, J. Guo, Y. Liu, and T. Liu, ‘‘Cross-lingual BERT trans-
formation for zero-shot dependency parsing,’’ 2019, arXiv:1909.06775.
[Online]. Available: http://arxiv.org/abs/1909.06775

[61] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
‘‘Languagemodels are unsupervisedmultitask learners,’’ Tech. Rep., 2019.

[62] I. Sutskever, O. Vinyals, and Q. V. Le, ‘‘Sequence to sequence learning
with neural networks,’’ in Proc. NIPS, 2014, pp. 1–9.

[63] G. Lample and A. Conneau, ‘‘Cross-lingual language model pretraining,’’
in Proc. NeurIPS, 2019, pp. 1–11.

[64] K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu, ‘‘MASS: Masked sequence
to sequence pre-training for language generation,’’ in Proc. ICML, 2019,
pp. 1–11.

[65] G. Wenzek, M.-A. Lachaux, A. Conneau, V. Chaudhary, F. Guzmán,
A. Joulin, and E. Grave, ‘‘CCNet: Extracting high quality monolingual
datasets from Web crawl data,’’ 2020, arXiv:1911.00359. [Online]. Avail-
able: https://arxiv.org/abs/1911.00359

[66] M. Artetxe, G. Labaka, and E. Agirre, ‘‘Learning bilingual word embed-
dings with (almost) no bilingual data,’’ in Proc. ACL, 2017, pp. 451–462.

[67] G. Lample, M. Ott, A. Conneau, L. Denoyer, and M. Ranzato,
‘‘Phrase-based & neural unsupervised machine translation,’’ 2018,
arXiv:1804.07755. [Online]. Available: https://arxiv.org/abs/1804.07755

VOLUME 9, 2021 68701

S. Singh, A. Mahmood: NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures

[68] T. T. Baldwin and J. K. Ford, ‘‘Transfer of training: A review and direc-
tions for future research,’’ Personnel Psychol., vol. 41, no. 1, pp. 63–105,
Mar. 1988.

[69] K. Clark, U. Khandelwal, O. Levy, and C. D. Manning, ‘‘What does
BERT look at? An analysis of BERT’s attention,’’ 2019, arXiv:1906.04341.
[Online]. Available: http://arxiv.org/abs/1906.04341

[70] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, ‘‘Rethinking the
value of network pruning,’’ 2019, arXiv:1810.05270. [Online]. Available:
http://arxiv.org/abs/1810.05270

[71] A. Fan, E. Grave, and A. Joulin, ‘‘Reducing transformer depth on demand
with structured dropout,’’ 2020, arXiv:1909.11556. [Online]. Available:
http://arxiv.org/abs/1909.11556

[72] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[73] L. Wan, M. D. Zeiler, S. Zhang, Y. LeCun, and R. Fergus, ‘‘Regular-
ization of neural networks using dropconnect,’’ in Proc. ICML, 2013,
pp. 1058–1066.

[74] H. Sajjad, F. Dalvi, N. Durrani, and P. Nakov, ‘‘Poor man’s BERT: Smaller
and faster transformer models,’’ 2020, arXiv:2004.03844. [Online]. Avail-
able: https://arxiv.org/abs/2004.03844

[75] S. Narang, E. Elsen, G. Diamos, and S. Sengupta, ‘‘Exploring sparsity in
recurrent neural networks,’’ 2017, arXiv:1704.05119. [Online]. Available:
http://arxiv.org/abs/1704.05119

[76] M. Zhu and S. Gupta, ‘‘To prune, or not to prune: Exploring the efficacy
of pruning for model compression,’’ 2018, arXiv:1710.01878. [Online].
Available: http://arxiv.org/abs/1710.01878

[77] Z. Wang, J. Wohlwend, and T. Lei, ‘‘Structured pruning of large language
models,’’ 2020, arXiv:1910.04732. [Online]. Available: https://arxiv.
org/abs/1910.04732

[78] E. Voita, P. Serdyukov, R. Sennrich, and I. Titov, ‘‘Context-aware neural
machine translation learns anaphora resolution,’’ 2018, arXiv:1805.10163.
[Online]. Available: http://arxiv.org/abs/1805.10163

[79] R. Tang, Y. Lu, L. Liu, L. Mou, O. Vechtomova, and J. Lin, ‘‘Distilling
task-specific knowledge from BERT into simple neural networks,’’ 2019,
arXiv:1903.12136. [Online]. Available: http://arxiv.org/abs/1903.12136

[80] E. Voita, D. Talbot, F.Moiseev, R. Sennrich, and I. Titov, ‘‘Analyzingmulti-
head self-attention: Specialized heads do the heavy lifting, the rest can be
pruned,’’ in Proc. ACL, 2019, pp. 5797–5808.

[81] Y. Ding, Y. Liu, H. Luan, and M. Sun, ‘‘Visualizing and understanding
neural machine translation,’’ in Proc. ACL, 2017, pp. 1150–1159.

[82] P. Michel, O. Levy, and G. Neubig, ‘‘Are sixteen heads really better
than one?’’ 2019, arXiv:1905.10650. [Online]. Available: https://arxiv.
org/abs/1905.10650

[83] D. Zhang, J. Yang, D. Ye, and G. Hua, ‘‘LQ-Nets: Learned quanti-
zation for highly accurate and compact deep neural networks,’’ 2018,
arXiv:1807.10029. [Online]. Available: http://arxiv.org/abs/1807.10029

[84] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, ‘‘Incremental network
quantization: Towards lossless CNNs with low-precision weights,’’ 2017,
arXiv:1702.03044. [Online]. Available: http://arxiv.org/abs/1702.03044

[85] X. Lin, C. Zhao, andW. Pan, ‘‘Towards accurate binary convolutional neu-
ral network,’’ 2017, arXiv:1711.11294. [Online]. Available: http://arxiv.
org/abs/1711.11294

[86] S. Shen, Z. Dong, J. Ye, L. Ma, Z. Yao, A. Gholami, M. Mahoney, and
K. Keutzer, ‘‘Q-BERT: Hessian based ultra low precision quantization of
BERT,’’ in Proc. AAAI, 2020, pp. 8815–8821.

[87] O. Zafrir, G. Boudoukh, P. Izsak, and M. Wasserblat, ‘‘Q8BERT:
Quantized 8bit BERT,’’ 2019, arXiv:1910.06188. [Online]. Available:
https://arxiv.org/abs/1910.06188

[88] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, ‘‘Quantization and training of neural networks
for efficient integer-arithmetic-only inference,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 2704–2713.

[89] Y. Bengio, N. Léonard, and A. Courville, ‘‘Estimating or propagating
gradients through stochastic neurons for conditional computation,’’ 2013,
arXiv:1308.3432. [Online]. Available: http://arxiv.org/abs/1308.3432

[90] P. Qi, X. Lin, L. Mehr, Z. Wang, and C. D. Manning, ‘‘Answering com-
plex open-domain questions through iterative query generation,’’ 2019,
arXiv:1910.07000. [Online]. Available: http://arxiv.org/abs/1910.07000

[91] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani,
V. Zhong, R. Paulus, and R. Socher, ‘‘Ask me anything: Dynamic mem-
ory networks for natural language processing,’’ in Proc. ICML, 2016,
pp. 1378–1387.

[92] R. Al-Rfou, D. Choe, N. Constant, M. Guo, and L. Jones, ‘‘Character-
level language modeling with deeper self-attention,’’ in Proc. AAAI, 2019,
pp. 3159–3166.

[93] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse, ‘‘The reversible
residual network: Backpropagation without storing activations,’’ 2017,
arXiv:1707.04585. [Online]. Available: http://arxiv.org/abs/1707.04585

[94] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma, ‘‘Linformer: Self-
attention with linear complexity,’’ 2020, arXiv:2006.04768. [Online].
Available: http://arxiv.org/abs/2006.04768

[95] K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane,
T. Sarlós, P. Hawkins, J. Davis, A. Mohiuddin, L. Kaiser, D. Belanger,
L. Colwell, and A. Weller, ‘‘Rethinking attention with performers,’’ 2020,
arXiv:2009.14794. [Online]. Available: http://arxiv.org/abs/2009.14794

[96] Hugging Face Modeling Classification of NLP Models.
[97] W. Fedus, B. Zoph, and N. Shazeer, ‘‘Switch transformers: Scaling

to trillion parameter models with simple and efficient sparsity,’’ 2021,
arXiv:2101.03961. [Online]. Available: http://arxiv.org/abs/2101.03961

[98] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss,
K. Lee, A. Roberts, T. Brown, D. Song, Ú. Erlingsson, A. Oprea, and
C. Raffel, ‘‘Extracting training data from large language models,’’ 2020,
arXiv:2012.07805. [Online]. Available: http://arxiv.org/abs/2012.07805

SUSHANT SINGH (Member, IEEE) received the
M.S. degree in electrical engineering and the M.S.
degree in computer science from the University
of Bridgeport, Bridgeport, CT, USA, in 2013 and
2017, respectively, where he is currently pur-
suing the Ph.D. degree in computer science.
He was a Circuit Design Engineer with Advanced
Micro Devices (AMD), Austin, TX, USA. His
research interests include deep learning, natural
language processing, VLSI design, and computer
architecture.

AUSIF MAHMOOD (Member, IEEE) is currently
a Professor with the Department of Computer
Science and Engineering. He is also the Direc-
tor of the School of Engineering, University of
Bridgeport. His research interests include com-
puter vision, machine and deep learning, computer
architecture, and parallel processing.

68702 VOLUME 9, 2021

