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ABSTRACT This paper proposed a PM 2.5 forecasting model using Long Short-Term Model (LSTM)
sequence to sequence combined with the statistical method. Correlation Analysis, XGBoost, and Chemical
processed are used as the methods to select the essential features. The air pollution data is extracted from
Taiwan Environmental Protection Agency (EPA) for the Taichung City dataset in 2014–2018. The study
points out that chemical processed model of particulate matter 10 micrometers or less in diameter (PM10),
Sulfur Dioxide (SO2), and Nitrogen Dioxide (NO2) have the highest accuracy or lowest Root Mean Square
Error (RMSE) and more short training and testing time among the other models. The chemical processed
model of PM10, SO2, and NO2 (model B) has the highest accuracy (lowest RMSE), approximately 1 point
lower RMSE values, and the shortest training and testing period among the other models. Furthermore,
RMSE calculations based on the stations reveal that training with the entire station dataset has a 3 point
higher RMSE value than training with each station dataset.

INDEX TERMS Air pollution monitoring, LSTM seq2seq, PM2.5, XGBoost, feature selection, correlation
analysis, deep learning.

I. INTRODUCTION
Internet of Things (IoT) is an interconnection of various
instruments, networks, techniques, and human resources for a
common purpose. Various IoT-based apps are used in differ-
ent industries and have been able to offer enormous advan-
tages to users. The information produced from IoT devices
is valuable only when the data is analyzed and presented in
the graph, map, or table diagram [31]. Data analytics is used
to examine large and small information sets with different
data characteristics to draw significant findings and practical
insights. These findings are generally in the form of trends,
patterns, and statistics that support businesses in the proactive
use of information for efficient decision-making.

Sequence prediction often includes predicting the follow-
ing value for an input sequence in a real-value sequence
or producing a class label. It is commonly referred to as
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a one-to-one or many-to-one sequence forecast problem.
A more complicated form of sequence prediction problem
takes a sequence as input and requires a sequence prediction
as output [30]. These are referred to as sequence-to-sequence
prediction (seq2seq) problems. The fact that the input and
output sequences can vary in length poses a challenge. This
problem is known as a sequence-to-many type prediction
problem since there are many input time steps and many
output time steps.

Feature selection is one of the key ideas in machine
learning that greatly influence model efficiency. The feature
characteristics used for training the data have a significant
impact on the accuracy of the model [24], [26]. Irrelevant
features or partially relevant ones can adversely affect the
efficiency of the model. Feature selection should be one of
model designing’s most significant steps. Irrelevant features
will decrease the accuracy of the model, also lead to false
learning of the model. The feature selection functions have
three advantages. First, it reduces over-fitting; having less
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redundant information implies fewer noise-based choices.
Second, it improves the accuracy by improving the preci-
sion of modeling implies less inaccurate information. Third,
it reduces training time; fewer information points decrease
the algorithms’ complexity and more quickly train algo-
rithms [3], [9], [23].

Predicting PM2.5 has been paid more attention to many
scientists. A review study by Bai et al. [10] summarizes dif-
ferent models to forecast air pollutants (including PM2.5),
such as statistical methods, artificial intelligence methods,
and hybrid three-dimensional models, and other methods.
Their statistical models demand less time to build mod-
els but depend on the data time series approach. Artificial
Intelligence (AI) methods work well with nonlinear data;
however, they are unstable and high dependent on data.
Hybrid methods have good robustness, low risk, and strong
adaptability [2], [6], [7], [24].

The PM2.5 forecasting model is proposed in this
paper using the sequence-to-sequence Long Short-Term
Model (LSTM) combined with the statistical method. Analy-
sis of correlation, XGBoost, and processed chemistry is used
to select the essential features. Air pollution data is collected
in 2014-2018 from the Taiwan Environmental Protection
Agency (EPA) for the Taichung City dataset. Accordingly,
this paper is organized as follows. Section II describes the
background review used to examine theoretical foundations,
experimental theories, and prior works. Section III presented
themethods applied in the paper. Section IV is the experimen-
tal results of our work. Finally, we summarized this research
in Section V.

II. BACKGROUND REVIEW
PM2.5 in the atmosphere is derived from a primary and
secondary source of precursors. Direct emissions are related
to naturals, such as volcanoes, dust storms, forest fires,
and anthropogenic, like fossil fuels’ burning. Secondary
emissions come from chemical reactions occurring in the
atmosphere. Secondary particulates dominate most ambi-
ent monitoring stations of PM2.5 with the contribution of
ammonium, sulfate, and nitrate, which are substances result-
ing from SOx and NOx emission correspondingly [16].
For instance, a study on PM2.5 composition in urban and
rural areas in some cities in the United States, Canada,
and Mexico reveals more than 77%, on average, gener-
ated from secondary sources [17]. Hence, there is a high
correlation between PM2.5 and SOx, NOx in the ambient
air. However, the relationship between ozone and PM2.5 is
complicated and change in time and space and throughout
the day. Zhao et al. [28], showed the trends of PM2.5 and
O3 between 2015 and 2019 over 367 cities in China. As a
result, the increase of O3 and decrease of PM2.5 concentra-
tions simultaneously happen to range from 47.2% (spring)
to 74.9% (summer) of the studied Chinese cities. In the
time of the COVID-19 crisis in Baghdad, Iraq, for instance,
NO2 and PM2.5 together decreased while O3 increased when

comparing these factors before lockdown within partial and
total lockdown [29]. Therefore, NOx, SOx, and O3 and tem-
perature are critical factors affecting PM2.5 concentration in
the atmosphere.

Neural networks like Long Short-Term Memory (LSTM)
can handle model problems almost seamlessly with different
input factors. It is a significant benefit in time series fore-
casting where traditional linear methods can be challenging
to fit into multivariate or multiple problems of input fore-
casting. An LSTM auto-encoder is implemented to sequence
time-series data using an Encoder-Decoder LSTM architec-
ture. Once aligned, the sample encoder part can then be
used to encode or compress sequence data for use as a fea-
ture vector input in a supervised learning model [5], [8].
Liu et al. [1] explained the slow pace of the seq2seq training
to replace the first RNN encoder with a fully connected
encoder to accelerate the training process. They also intro-
duced position embedding to detect sequential relationships
in the fully connected encoder between source sequences.
The accumulation of mistakes generated by the recurrent
prediction is another element. The n-step recurrent fore-
cast has been suggested to solve this issue. Their experi-
mental results verified that the AAQP with n-step recurrent
forecasting had excellent performance since the accumu-
lation of error was decreased, and when compared to the
initial seq2seq attention model, the training time was sub-
stantially reduced. Viswanath et al. [4] have suggested that
LSTM seq2seq models depend on deep learning to cate-
gorize monsoon days that are finally assembled to detect
spells. Dry and wet days are classified with 95% and 87%
of accuracies, respectively. It is observed that the prediction
of break spells is more accurate than the active spells. The
seq2seq model has also been shown to be more effective
than the long-term memory model. They also perform bet-
ter than typical monsoon spells at detecting classification
models.

Luo et al. [20] developed and implemented a high-
precision real-time PM2.5 forecasting system in Taiwan.
Their paper suggests a predictive method called the Adap-
tive Iteration Forecast (AIF) that can forecast the value of
PM2.5 for the next couple of hours based on historical
data patterns. They have shown through various compara-
tive studies that their model can generate significant results.
A gradient-boosting-based machine learning method was
proposed by Lin et al. [21] and Lee et al. [22]. The pro-
posed mechanism is tested using Taiwan’s EPA and Central
Weather Bureau (CWB), which contains data from 77 sta-
tions of air monitoring and 580 weather stations that took
hourly assessments for a year. According to their findings,
the most notable increase in predictive efficiency was found
in central Taiwan. They also compared the performance
of the prediction model in Taiwan, Taipei, and London.
Since Taipei and London have similar topography (basin),
the findings show that these two cities have similar prediction
results.
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III. METHODS
A. CORRELATION ANALYSIS
PM2.5 might be classified as main or secondary precur-
sors in the atmosphere. Primary PM2.5 is formed directly
by anthropogenic and natural pollutants, while secondary
PM2.5 is emitted due to chemical reactions in the atmosphere.
The existence of primary PM2.5 and suitable gaseous pre-
cursors affects secondary aerosols. Secondary PM2.5 forma-
tion is significantly linked to SO2, NO2 precursor gases for
PM2.5. This connection is demonstrated in the 2005-2015
Taiwan Air Quality Studies of Lee et al. [14]. Besides,
in 31 Chinese cities between 2013 and 2014, Xie et al. [15]
in 2015 asserted a medium to elevate the relationship of
PM2.5 with SO2, NO2 accumulation in 286 surveillance
locations. In the attempt to evaluate secondary of the forming
of PM2.5 for the air spreading model, the US EPA also
proposed using SO2, NO2/NOx.

B. XGBoost
XGBoost is a highly effective, versatile, and portable dis-
tributed gradient boosting library [13], [27]. Under the Gradi-
ent Boosting structure, it uses machine learning algorithms.
XGBoost offers a parallel boost to the tree (also known as
GBDT, GBM), which quickly and accurately solves many
data science issues. The same code operates on a signifi-
cant distributed setting (Hadoop, SGE, MPI) and can solve
issues beyond billions of examples. The advantage of using
decision-tree methods such as gradient boost is that they can
automatically provide feature-scale estimates from a trained
predictive model.

C. LSTM SEQUENCE TO SEQUENCE
The LSTM encoder-decoder [18] is a recurrent neural net-
work that is intended to deal with sequence to sequence
issues, often known as seq2seq. Prediction issues from
sequence to sequence are challenging since the input and
output sequence items can differ. Examples of seq2seq issues
are text translation and learning to run programs. In par-
ticular, input sequences and output sequences have distinct
lengths (for example, machine translation), and it requires
the entire input sequence to begin predicting the target. They
need a more sophisticated configuration, which is frequently
referred to by individuals when they mention ‘‘sequence
to sequence models’’ without any other context. LSTM
sequence to sequence operates as following [3]:

1) The RNN layer (or stack of it) serves as an ‘‘encoder’’
to process the input sequence. Note that we discard the
RNN encoder output only when the status is recovered.
In the next stage, this state serves as the decoder’s
‘‘context’’. The equation of the encoder is as follows:

h_t =
∫
(W (hh)h_(t − 1)+W (hx)x_t) (1)

2) Another RNN layer (or stack) functions as a
‘‘decoder’’: it gives prior characters of the destination
sequence, and it is trained to predict the next target

sequence characters. In particular, the training process
is trained to convert the target sequences into the same
sequences but will be offset in a single step in the future.
The encoder utilizes the encoder’s vectors as its original
state; how the decoder gets data is about what it should
produce. Indeed, the decoder learns to generate targets
[t + 1 . . .], depending on the input sequence, given
targets [. . . t]. The equation of the decoder is as follows:

h_t =
∫
(W (hh)h_(t − 1)) (2)

D. ROOT MEAN SQUARED ERROR (RMSE)
The RMSE is the standard deviation of residuals (prediction
errors). The residuals are an indicator of how far these data
points are from the regression line. As well as the RMSE is
an estimate of how far these residuals are. In other words,
it shows us how close the real-values are to the best-fit axis.
RMSE is commonly used to verify experimental results in cli-
matology, prediction, and regression analysis. The following
is a description of the equation:

RMSE =

√√√√1
n

n∑
i=1

(
yi − ŷi

)
(3)

where n is the sample size, yi is the actual expected output,
and ŷi is the model’s prediction.

E. MACHINE LEARNING SYSTEM FLOW
A system workflow was designed to perform model training.
There are total 30 training set were conducted in this exper-
iment based on five categories of feature selections and six
regions of all stations, Chungming, Dali, Fengyuan, Shalu,
and Xitun station. In each training experiment, first, when the
missing data is found, the preprocessing phase is necessary
to prepare the data for the mode of training. The information
Not Available (NA) was substituted by 0 in this stage. Then
the dataset is divided into components of practice and testing.
The training and testing were carried out after setting the
parameters outlined in detail in the Table. Finally, RMSE
calculations continued. Figure 1 shows the flow diagram of
this project.

The model’s training experiments are divided into five
category models, as follows.
• Model A: Training using 17 parameters
• Model B: Training based on PM10, SO2, and NO2
• Model C: Training based on O3 and Ambient Tempera-
ture

• Model D: Training based on Correlation Analysis
• Model E: Training based on XGBoost feature selection

F. TRAINING NETWORK AND PARAMETERS
Table 1 shows the training and network parameters by
sequencing 30 hours to forecast the next 2 hours using the
Adam optimizer. The Adam optimization algorithm is a vari-
ant of stochastic gradient descent, which has recently gained
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FIGURE 1. System flow diagram.

TABLE 1. The training and network parameters.

popularity in deep learning applications for computer vision
and natural language processing.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, the experimental results are divided into
four parts: the dataset, the selected parameters, the accuracy,
the training and testing time, and the PM2.5 visualization.

A. DATASET
The dataset was acquired for 2014-2018 from the Taiwan
EPA [11]. It comprises five stations in Taichung City, Taiwan,
including Fengyuan, Chungming, Xitun, Shalu, andDali. The
characteristics of air monitoring consist of 18 parameters as
outlined in Table 2.

B. SELECTED PARAMETERS
This study compares five models of PM2.5 prediction in
terms of accuracy, training time, and testing time. The five
models consist of (1) model A: using LSTM seq2seq for
17 parameters; (2) model B: using LSTM seq2seq for PM10,
NO2, SO2; (3) model C: using LSTM seq2seq for PM10, O3,
AMB TEMP; (4) model D: using LSTM seq2seq for top 5
parameters selected by correlation analysis; and (5) model E:

TABLE 2. Dataset parameters.

using LSTM seq2seq for top 5 parameters selected by feature
selection. For model D and model E, five parameters that
have the most crucial role in predicting PM2.5 are presented.
Model D is based on correlation analysis shown in a heat-map
matrix in Fig. 2.

Model E is based on XGBoost Feature selection as
described in Fig. 3

The five feature selections of Model D and Model E are
listed in Table 3.

C. PREDICTION RESULTS
A plot diagram is used to visualize the comparison of real
value and prediction. In this diagram, we can see how close
the prediction against the real value. In the following graphs,
we can see that the predictions are more close to the real
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TABLE 3. Top 5 parameter selected by model D and model E.

FIGURE 2. The correlation analysis matrix.

FIGURE 3. The XGBoost of 10 important features.

values. However, for Model E (XGBoost), the Chungming
station has a very low accuracy among the other stations.
Also, Model E is not good in Xitun, Dali, Shalu, and
Fengyuan stations. Figure 4, 6, 8, 10, 12, and 14 describe the
comparison of the real and the predicted values.

1) Figure 4 shows the plot diagram of PM2.5 real values
and predictions based on all stations.
Figure 5 presents the list of PM2.5 real values and
predictions based on all stations.

2) Figure 6 shows the plot diagram of PM2.5 real values
and predictions based on Chungming stations.
Figure 7 presents the list of PM2.5 real values and
predictions based on Chungming stations.

3) Figure 8 shows the plot diagram of PM2.5 real values
and predictions based on Dali stations.

Figure 9 presents the list of PM2.5 real values and
predictions based on Dali stations.

4) Figure 10 shows the plot diagram of PM2.5 real values
and predictions based on Fengyuan stations.
Figure 11 presents the list of PM2.5 real values and
predictions based on Fengyuan stations.

5) Figure 12 shows the plot diagram of PM2.5 real values
and predictions based on Shalu stations.
Figure 13 presents the list of PM2.5 real values and
predictions based on Shalu stations.

6) Figure 14 shows the plot diagram of PM2.5 real values
and predictions based on Xitun stations.
Figure 15 presents the list of PM2.5 real values and
predictions based on Xitun stations.

D. MODEL ACCURACY
RMSE is applied to evaluate the accuracy of these mod-
els. As shown in Fig. 16, model B and model D has the
lowest value of RMSE. However, the value in model B
seems to be homogeneous in different stations. In terms of
training all stations, the RMSE values are high in all mod-
els. It means that all trained stations have not good perfor-
mance compared to each station. Model A and B have a
similar pattern in RMSE values, but model B is more good
than model A. While in model C, the Shalu station has
a weak accuracy than other models. In model D, the Dali
station is the most inferior performance among other models.
In model E, some stations like Xitun and Chungming have
a lousy performance. In detail, the average RMSE value
in training all stations for model A, B, C, D, and E have
12.177 RMSE values. Xitun stations have 9.941, Fengyuan
stations reach 9.260, Dali stations are at 10.188, Chungming
stations have 9.920, and Shalu stations have 10,412 RMSE
rate values. From the point of each model, models A,
B, C, and E have an average of 10.499, 9.065, 10.771,
10.280, and 10.969, respectively. It can be seen that model
B has the lowest RMSE value that reflected the excellent
model.

E. TRAINING TIME AND TESTING TIME
The training and testing time are displayed in Fig. 17 and
Fig. 18. The training and testing time of model B with PM10,
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FIGURE 4. The plot diagram of PM2.5 real values and predictions based on all stations.

FIGURE 5. The plot diagram of PM2.5 real values and predictions based on all stations.

FIGURE 6. The plot diagram of PM2.5 real values and predictions based on Chungming stations.

FIGURE 7. The plot diagram of PM2.5 real values and predictions based on Chungming stations.

FIGURE 8. The plot diagram of PM2.5 real values and predictions based on Dali stations.

NO2, SO2 execute with the shortest value, about 15 seconds
and 20 seconds, respectively. However, there is not much
different time consumption between these models.

F. DISCUSSION
The proposed model implemented feature selection methods
and analyzed themodel between all stations compared to each

station in machine learning implementation. The experiments
show that a separation model centered on each station is
superior to a model of unity in all stations. Furthermore,
the use of the feature selection method has improved the
model’s accuracy and speed. The model performance was
the most stable when secondary particulates of PM10, SO2,
and NO2 (model B) were applied. As compared to other
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FIGURE 9. The plot diagram of PM2.5 real values and predictions based on Dali stations.

FIGURE 10. The plot diagram of PM2.5 real values and predictions based on Fengyuan stations.

FIGURE 11. The plot diagram of PM2.5 real values and predictions based on Fengyuan stations.

FIGURE 12. The plot diagram of PM2.5 real values and predictions based on Shalu stations.

FIGURE 13. The plot diagram of PM2.5 real values and predictions based on Shalu stations.

models, model B has a significant improvement in all stations
and each station. Therefore, when the model is implemented
in the application, the precision is more excellent, and the

load time can be reduced. According to the results, among
the other models, model B has the highest accuracy (lowest
RMSE), approximately 1 point lower RMSE values, and the
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FIGURE 14. The plot diagram of PM2.5 real values and predictions based on Xitun stations.

FIGURE 15. The plot diagram of PM2.5 real values and predictions based on Xitun stations.

FIGURE 16. Comparison of RMSE of five models.

FIGURE 17. Comparison of training time of five models.

shortest training testing period. TheRMSE calculations based
on the stations indicate that training with the entire stations
dataset has less accuracy, with an RMSE value of about
3 points higher than training with the individual station’s
dataset.

FIGURE 18. Comparison of testing time of five models.

V. CONCLUSION
This paper demonstrated the PM2.5 forecasting model using
Long Short-TermModel (LSTM) seq2seq combined with the
statistical method. The air pollution data were extracted from
Taiwan EPA for the Taichung City dataset in 2014 - 2018.
Correlation Analysis, XGBoost, and Chemical processed
are used to select the important feature. Five models of
PM2.5 forecasting involve LSTM seq2seq for 17 parameters
(model A), LSTM seq2seq for PM10, NO2, SO2 (model
B), LSTM seq2seq for PM10, O3, AMB TEMP (model C),
LSTM seq2seq for top 5 parameters selected by correlation
analysis (model D), and LSTM seq2seq for top 5 parame-
ters selected by XGBoost (model E). The study points out
that the chemical processed model of PM10, SO2, and NO2
(model B) has the highest accuracy (lowest RMSE), approx-
imately 1 point lower of RMSE values, and the shortest
training testing time among the other models. The RMSE
calculations based on the stations show that training using all
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stations dataset has less accuracy at around 3 points higher
RMSE value than training based on each station dataset.
In the future, the comparison of the deep learning framework
and the network could be examined more with other meth-
ods, such as multi-step LSTM. Also, the ensemble learning
method could be applied in the model application.
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