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ABSTRACT This paper proposed a PM 2.5 forecasting model using Long Short-Term Model (LSTM)
sequence to sequence combined with the statistical method. Correlation Analysis, XGBoost, and Chemical
processed are used as the methods to select the essential features. The air pollution data is extracted from
Taiwan Environmental Protection Agency (EPA) for the Taichung City dataset in 2014-2018. The study
points out that chemical processed model of particulate matter 10 micrometers or less in diameter (PM10),
Sulfur Dioxide (SO2), and Nitrogen Dioxide (NO2) have the highest accuracy or lowest Root Mean Square
Error (RMSE) and more short training and testing time among the other models. The chemical processed
model of PM10, SO2, and NO2 (model B) has the highest accuracy (lowest RMSE), approximately 1 point
lower RMSE values, and the shortest training and testing period among the other models. Furthermore,
RMSE calculations based on the stations reveal that training with the entire station dataset has a 3 point
higher RMSE value than training with each station dataset.

INDEX TERMS Air pollution monitoring, LSTM seq2seq, PM2.5, XGBoost, feature selection, correlation

analysis, deep learning.

I. INTRODUCTION
Internet of Things (IoT) is an interconnection of various
instruments, networks, techniques, and human resources for a
common purpose. Various loT-based apps are used in differ-
ent industries and have been able to offer enormous advan-
tages to users. The information produced from IoT devices
is valuable only when the data is analyzed and presented in
the graph, map, or table diagram [31]. Data analytics is used
to examine large and small information sets with different
data characteristics to draw significant findings and practical
insights. These findings are generally in the form of trends,
patterns, and statistics that support businesses in the proactive
use of information for efficient decision-making.

Sequence prediction often includes predicting the follow-
ing value for an input sequence in a real-value sequence
or producing a class label. It is commonly referred to as
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a one-to-one or many-to-one sequence forecast problem.
A more complicated form of sequence prediction problem
takes a sequence as input and requires a sequence prediction
as output [30]. These are referred to as sequence-to-sequence
prediction (seq2seq) problems. The fact that the input and
output sequences can vary in length poses a challenge. This
problem is known as a sequence-to-many type prediction
problem since there are many input time steps and many
output time steps.

Feature selection is one of the key ideas in machine
learning that greatly influence model efficiency. The feature
characteristics used for training the data have a significant
impact on the accuracy of the model [24], [26]. Irrelevant
features or partially relevant ones can adversely affect the
efficiency of the model. Feature selection should be one of
model designing’s most significant steps. Irrelevant features
will decrease the accuracy of the model, also lead to false
learning of the model. The feature selection functions have
three advantages. First, it reduces over-fitting; having less
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redundant information implies fewer noise-based choices.
Second, it improves the accuracy by improving the preci-
sion of modeling implies less inaccurate information. Third,
it reduces training time; fewer information points decrease
the algorithms® complexity and more quickly train algo-
rithms [3], [9], [23].

Predicting PM2.5 has been paid more attention to many
scientists. A review study by Bai ef al. [10] summarizes dif-
ferent models to forecast air pollutants (including PM2.5),
such as statistical methods, artificial intelligence methods,
and hybrid three-dimensional models, and other methods.
Their statistical models demand less time to build mod-
els but depend on the data time series approach. Artificial
Intelligence (AI) methods work well with nonlinear data;
however, they are unstable and high dependent on data.
Hybrid methods have good robustness, low risk, and strong
adaptability [2], [6], [7], [24].

The PM2.5 forecasting model is proposed in this
paper using the sequence-to-sequence Long Short-Term
Model (LSTM) combined with the statistical method. Analy-
sis of correlation, XGBoost, and processed chemistry is used
to select the essential features. Air pollution data is collected
in 2014-2018 from the Taiwan Environmental Protection
Agency (EPA) for the Taichung City dataset. Accordingly,
this paper is organized as follows. Section II describes the
background review used to examine theoretical foundations,
experimental theories, and prior works. Section III presented
the methods applied in the paper. Section IV is the experimen-
tal results of our work. Finally, we summarized this research
in Section V.

Il. BACKGROUND REVIEW

PM2.5 in the atmosphere is derived from a primary and
secondary source of precursors. Direct emissions are related
to naturals, such as volcanoes, dust storms, forest fires,
and anthropogenic, like fossil fuels’ burning. Secondary
emissions come from chemical reactions occurring in the
atmosphere. Secondary particulates dominate most ambi-
ent monitoring stations of PM2.5 with the contribution of
ammonium, sulfate, and nitrate, which are substances result-
ing from SOx and NOx emission correspondingly [16].
For instance, a study on PM2.5 composition in urban and
rural areas in some cities in the United States, Canada,
and Mexico reveals more than 77%, on average, gener-
ated from secondary sources [17]. Hence, there is a high
correlation between PM2.5 and SOx, NOx in the ambient
air. However, the relationship between ozone and PM2.5 is
complicated and change in time and space and throughout
the day. Zhao et al. [28], showed the trends of PM2.5 and
03 between 2015 and 2019 over 367 cities in China. As a
result, the increase of O3 and decrease of PM2.5 concentra-
tions simultaneously happen to range from 47.2% (spring)
to 74.9% (summer) of the studied Chinese cities. In the
time of the COVID-19 crisis in Baghdad, Iraq, for instance,
NO2 and PM2.5 together decreased while O3 increased when
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comparing these factors before lockdown within partial and
total lockdown [29]. Therefore, NOx, SOx, and O3 and tem-
perature are critical factors affecting PM2.5 concentration in
the atmosphere.

Neural networks like Long Short-Term Memory (LSTM)
can handle model problems almost seamlessly with different
input factors. It is a significant benefit in time series fore-
casting where traditional linear methods can be challenging
to fit into multivariate or multiple problems of input fore-
casting. An LSTM auto-encoder is implemented to sequence
time-series data using an Encoder-Decoder LSTM architec-
ture. Once aligned, the sample encoder part can then be
used to encode or compress sequence data for use as a fea-
ture vector input in a supervised learning model [5], [8].
Liu et al. [1] explained the slow pace of the seq2seq training
to replace the first RNN encoder with a fully connected
encoder to accelerate the training process. They also intro-
duced position embedding to detect sequential relationships
in the fully connected encoder between source sequences.
The accumulation of mistakes generated by the recurrent
prediction is another element. The n-step recurrent fore-
cast has been suggested to solve this issue. Their experi-
mental results verified that the AAQP with n-step recurrent
forecasting had excellent performance since the accumu-
lation of error was decreased, and when compared to the
initial seq2seq attention model, the training time was sub-
stantially reduced. Viswanath ef al. [4] have suggested that
LSTM seq2seq models depend on deep learning to cate-
gorize monsoon days that are finally assembled to detect
spells. Dry and wet days are classified with 95% and 87%
of accuracies, respectively. It is observed that the prediction
of break spells is more accurate than the active spells. The
seq2seq model has also been shown to be more effective
than the long-term memory model. They also perform bet-
ter than typical monsoon spells at detecting classification
models.

Luoetal. [20] developed and implemented a high-
precision real-time PM2.5 forecasting system in Taiwan.
Their paper suggests a predictive method called the Adap-
tive Iteration Forecast (AIF) that can forecast the value of
PM2.5 for the next couple of hours based on historical
data patterns. They have shown through various compara-
tive studies that their model can generate significant results.
A gradient-boosting-based machine learning method was
proposed by Linetal [21] and Lee et al. [22]. The pro-
posed mechanism is tested using Taiwan’s EPA and Central
Weather Bureau (CWB), which contains data from 77 sta-
tions of air monitoring and 580 weather stations that took
hourly assessments for a year. According to their findings,
the most notable increase in predictive efficiency was found
in central Taiwan. They also compared the performance
of the prediction model in Taiwan, Taipei, and London.
Since Taipei and London have similar topography (basin),
the findings show that these two cities have similar prediction
results.
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lll. METHODS

A. CORRELATION ANALYSIS

PM2.5 might be classified as main or secondary precur-
sors in the atmosphere. Primary PM2.5 is formed directly
by anthropogenic and natural pollutants, while secondary
PM2.5 is emitted due to chemical reactions in the atmosphere.
The existence of primary PM2.5 and suitable gaseous pre-
cursors affects secondary aerosols. Secondary PM2.5 forma-
tion is significantly linked to SO2, NO2 precursor gases for
PM2.5. This connection is demonstrated in the 2005-2015
Taiwan Air Quality Studies of Lee eral [14]. Besides,
in 31 Chinese cities between 2013 and 2014, Xie et al. [15]
in 2015 asserted a medium to elevate the relationship of
PM2.5 with SO2, NO2 accumulation in 286 surveillance
locations. In the attempt to evaluate secondary of the forming
of PM2.5 for the air spreading model, the US EPA also
proposed using SO2, NO2/NOx.

B. XGBoost

XGBoost is a highly effective, versatile, and portable dis-
tributed gradient boosting library [13], [27]. Under the Gradi-
ent Boosting structure, it uses machine learning algorithms.
XGBoost offers a parallel boost to the tree (also known as
GBDT, GBM), which quickly and accurately solves many
data science issues. The same code operates on a signifi-
cant distributed setting (Hadoop, SGE, MPI) and can solve
issues beyond billions of examples. The advantage of using
decision-tree methods such as gradient boost is that they can
automatically provide feature-scale estimates from a trained
predictive model.

C. LSTM SEQUENCE TO SEQUENCE
The LSTM encoder-decoder [18] is a recurrent neural net-
work that is intended to deal with sequence to sequence
issues, often known as seq2seq. Prediction issues from
sequence to sequence are challenging since the input and
output sequence items can differ. Examples of seq2seq issues
are text translation and learning to run programs. In par-
ticular, input sequences and output sequences have distinct
lengths (for example, machine translation), and it requires
the entire input sequence to begin predicting the target. They
need a more sophisticated configuration, which is frequently
referred to by individuals when they mention ‘‘sequence
to sequence models” without any other context. LSTM
sequence to sequence operates as following [3]:
1) The RNN layer (or stack of it) serves as an ‘“‘encoder”
to process the input sequence. Note that we discard the
RNN encoder output only when the status is recovered.
In the next stage, this state serves as the decoder’s
“context’. The equation of the encoder is as follows:

ht= / WIh_(r — 1)+ WHx_r) (1

2) Another RNN layer (or stack) functions as a
“decoder”: it gives prior characters of the destination
sequence, and it is trained to predict the next target
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sequence characters. In particular, the training process
is trained to convert the target sequences into the same
sequences but will be offset in a single step in the future.
The encoder utilizes the encoder’s vectors as its original
state; how the decoder gets data is about what it should
produce. Indeed, the decoder learns to generate targets
[t + 1...], depending on the input sequence, given
targets [. . . t]. The equation of the decoder is as follows:

ht= / (W1 — 1)) )

D. ROOT MEAN SQUARED ERROR (RMSE)

The RMSE is the standard deviation of residuals (prediction
errors). The residuals are an indicator of how far these data
points are from the regression line. As well as the RMSE is
an estimate of how far these residuals are. In other words,
it shows us how close the real-values are to the best-fit axis.
RMSE is commonly used to verify experimental results in cli-
matology, prediction, and regression analysis. The following
is a description of the equation:

3

where n is the sample size, y; is the actual expected output,
and y; is the model’s prediction.

E. MACHINE LEARNING SYSTEM FLOW
A system workflow was designed to perform model training.
There are total 30 training set were conducted in this exper-
iment based on five categories of feature selections and six
regions of all stations, Chungming, Dali, Fengyuan, Shalu,
and Xitun station. In each training experiment, first, when the
missing data is found, the preprocessing phase is necessary
to prepare the data for the mode of training. The information
Not Available (NA) was substituted by 0 in this stage. Then
the dataset is divided into components of practice and testing.
The training and testing were carried out after setting the
parameters outlined in detail in the Table. Finally, RMSE
calculations continued. Figure 1 shows the flow diagram of
this project.

The model’s training experiments are divided into five
category models, as follows.

o Model A: Training using 17 parameters

o Model B: Training based on PM10, SO2, and NO2

« Model C: Training based on O3 and Ambient Tempera-
ture

o Model D: Training based on Correlation Analysis

o Model E: Training based on XGBoost feature selection

F. TRAINING NETWORK AND PARAMETERS

Table 1 shows the training and network parameters by
sequencing 30 hours to forecast the next 2 hours using the
Adam optimizer. The Adam optimization algorithm is a vari-
ant of stochastic gradient descent, which has recently gained
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FIGURE 1. System flow diagram.

TABLE 1. The training and network parameters.

Parameter Value
Number of stacked LSTM layers | 2
learning rate 0,01
lambda reg 0,003
Gradient Clipping 2,5
Size of LSTM cell 24
epoch 100
batch size 16
keep rate 0,5

popularity in deep learning applications for computer vision

and natural language processing.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the experimental results are divided into
four parts: the dataset, the selected parameters, the accuracy,
the training and testing time, and the PM2.5 visualization.

A. DATASET

The dataset was acquired for 2014-2018 from the Taiwan
EPA [11]. It comprises five stations in Taichung City, Taiwan,
including Fengyuan, Chungming, Xitun, Shalu, and Dali. The
characteristics of air monitoring consist of 18 parameters as
outlined in Table 2.

B. SELECTED PARAMETERS

This study compares five models of PM2.5 prediction in
terms of accuracy, training time, and testing time. The five
models consist of (1) model A: using LSTM seq2seq for
17 parameters; (2) model B: using LSTM seq2seq for PM10,
NO2, SO2; (3) model C: using LSTM seq2seq for PM10, O3,
AMB TEMP; (4) model D: using LSTM seq2seq for top 5
parameters selected by correlation analysis; and (5) model E:
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TABLE 2. Dataset parameters.

No. Parameter Unit Name

1 PM2.5 ug/m3 | Fine aerosol

2 CH4 ppm Methane

3 AMB_TEMP Celsius | Ambient temperature
4 NMHC ppm Non-methane hydrocarbons
5 NO ppb Nitrogen monoxide

6 NOx ppb Nitrogen oxide

7 CO ppm Carbon monoxide

8 NO2 ppb Nitrogen dioxide

9 03 ppb Ozone

10 PM10 ug/m3 | Aerosol

11 RAINFALL mm ppb

12 RH % ppm

13 SO2 ppb Sulfur dioxide

14 THC ppm Tetrahydrocannabinol
15 WIND_DIREC | degree | Wind direction hourly
16 | WS_HR m/s Wind speed hourly

17 WIND_SPEED | m/s Wind speed

18 WD_HR degree Wind direction hourly

using LSTM seq?2seq for top 5 parameters selected by feature
selection. For model D and model E, five parameters that
have the most crucial role in predicting PM2.5 are presented.
Model D is based on correlation analysis shown in a heat-map
matrix in Fig. 2.

Model E is based on XGBoost Feature selection as
described in Fig. 3

The five feature selections of Model D and Model E are
listed in Table 3.

C. PREDICTION RESULTS

A plot diagram is used to visualize the comparison of real
value and prediction. In this diagram, we can see how close
the prediction against the real value. In the following graphs,
we can see that the predictions are more close to the real

VOLUME 9, 2021
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TABLE 3. Top 5 parameter selected by model D and model E.

Model ALL Stations Xitun Fengyuan Dali Chungming Shalu

1. PM10 1. PM10 1. PM10 1. PM10 1. PM10 1. PM10
2.NO2 2.NO2 2.NO2 2.CO 2.CO 2.CO

Model D | 3.CO 3.CO 3.S02 3.502 3.NO2 3. RAINFALL
4. NOx 4.502 4. NOx 4. NMHC 4. NMHC 4.NO2
5.502 5.NMHC 5.03 5. NOx 5. NOx 5. NOx
1. PM10 1. PM10 1. PM10 1. PM10 1.PM10 1. PM10
2. WIND_SPEED | 2. 03 2.CO 2.03 2.03 2. WIND_SPEED

Model E | 3. WS_HR 3.CO 3.03 3.502 3.CO 3. WS_HR
4.03 4.502 4.502 4. CO 4.S02 4 NOx
5. NOx 5.AMB_TEMP | 5.RH 5.AMB_TEMP | 5. WD_HR 5.RH

ALL STATIONS

_ - . - |-
S B B R
- -EEEEEERR- - : g " E.!l
1 CH e B mmm hmm
' Fengyuan Chungming
- M - - -

A.I

ALL Stations

Fengyuan

o aw w0 mw 0000 200 400

FIGURE 3. The XGBoost of 10 important features.

values. However, for Model E (XGBoost), the Chungming
station has a very low accuracy among the other stations.
Also, Model E is not good in Xitun, Dali, Shalu, and
Fengyuan stations. Figure 4, 6, 8, 10, 12, and 14 describe the
comparison of the real and the predicted values.
1) Figure 4 shows the plot diagram of PM2.5 real values
and predictions based on all stations.
Figure 5 presents the list of PM2.5 real values and
predictions based on all stations.
2) Figure 6 shows the plot diagram of PM2.5 real values
and predictions based on Chungming stations.
Figure 7 presents the list of PM2.5 real values and
predictions based on Chungming stations.
3) Figure 8 shows the plot diagram of PM2.5 real values
and predictions based on Dali stations.
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Figure 9 presents the list of PM2.5 real values and
predictions based on Dali stations.

4) Figure 10 shows the plot diagram of PM2.5 real values
and predictions based on Fengyuan stations.
Figure 11 presents the list of PM2.5 real values and
predictions based on Fengyuan stations.

5) Figure 12 shows the plot diagram of PM2.5 real values
and predictions based on Shalu stations.
Figure 13 presents the list of PM2.5 real values and
predictions based on Shalu stations.

6) Figure 14 shows the plot diagram of PM2.5 real values
and predictions based on Xitun stations.
Figure 15 presents the list of PM2.5 real values and
predictions based on Xitun stations.

D. MODEL ACCURACY

RMSE is applied to evaluate the accuracy of these mod-
els. As shown in Fig. 16, model B and model D has the
lowest value of RMSE. However, the value in model B
seems to be homogeneous in different stations. In terms of
training all stations, the RMSE values are high in all mod-
els. It means that all trained stations have not good perfor-
mance compared to each station. Model A and B have a
similar pattern in RMSE values, but model B is more good
than model A. While in model C, the Shalu station has
a weak accuracy than other models. In model D, the Dali
station is the most inferior performance among other models.
In model E, some stations like Xitun and Chungming have
a lousy performance. In detail, the average RMSE value
in training all stations for model A, B, C, D, and E have
12.177 RMSE values. Xitun stations have 9.941, Fengyuan
stations reach 9.260, Dali stations are at 10.188, Chungming
stations have 9.920, and Shalu stations have 10,412 RMSE
rate values. From the point of each model, models A,
B, C, and E have an average of 10.499, 9.065, 10.771,
10.280, and 10.969, respectively. It can be seen that model
B has the lowest RMSE value that reflected the excellent
model.

E. TRAINING TIME AND TESTING TIME
The training and testing time are displayed in Fig. 17 and
Fig. 18. The training and testing time of model B with PM10,
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FIGURE 8. The plot diagram of PM2.5 real values and predictions based on Dali stations.

NO2, SO2 execute with the shortest value, about 15 seconds
and 20 seconds, respectively. However, there is not much
different time consumption between these models.

F. DISCUSSION

The proposed model implemented feature selection methods
and analyzed the model between all stations compared to each
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station in machine learning implementation. The experiments
show that a separation model centered on each station is
superior to a model of unity in all stations. Furthermore,
the use of the feature selection method has improved the
model’s accuracy and speed. The model performance was
the most stable when secondary particulates of PM 10, SO2,
and NO2 (model B) were applied. As compared to other

VOLUME 9, 2021



E. Kristiani et al.: PM2.5 Forecasting Model Using Combination of Deep Learning and Statistical Feature Selection IEEEACC@SS

Model A Model B Model C Model D Model E
PM2.5_real_value PM2.5_prediction PM2.5_real_value PM2.5_prediction PM2.5_real_value PM2.5_prediction PM2.5_real_value PM2.5_prediction PM2.5_real_value PM2.5_prediction
0 19.0 12.272552 0 19.0 22850000 0 19.0 23.636180 0 19.0 13.304157 0 19.0 19.037182
1 33.0 16.051889 1 330 18.587334 1 330 21.151993 1 330 10.580834 1 330 19.219254
2 33.0 14.816353 2 330 23.705936 2 330 24677307 2 330 14657253 2 330 20249012
3 280 18.195492 3 280 19.582508 3 280 22117010 3 28.0 11.660388 3 28.0 20.705229
4 280 19.779955 4 280 31132067 4 28.0 35.985699 4 28.0 21.595922 4 280 29.037868
17499 10 3.514891 17489 40 6.927874 17499 40 7.300762 17499 40 6637554 17499 40 10.045384
17500 40 0.942234 17500 4.0 5.974545 17500 40 5.820921 17500 40 7.399473 17500 40 11.020772
17501 10 5851551 17501 10 6.934477 17501 10 7.509253 17501 1.0 6.274939 17501 1.0 10.168192
17502 10 -0.485586 17502 10 5.733646 17502 1.0 5.434603 17502 10 6.809088 17502 10 10.774175
17503 1.0 4578331 17503 10 6.820251 17503 10 7.182121 17503 10 5.591497 17503 10 9.913426

17504 rows x 2 columns 17504 rows x 2 columns 17504 rows x 2 columns 17504 rows x 2 columns 17504 rows x 2 columns

FIGURE 9. The plot diagram of PM2.5 real values and predictions based on Dali stations.
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FIGURE 10. The plot diagram of PM2.5 real values and predictions based on Fengyuan stations.

Model A Model B Model C Model D Model E
PM2.5_real_value PM2.5_prediction PM2.5_real value PM2.5_prediction PM2.5_real_value PM25_prediction PM2.5_real_value PM25_prediction PM2.5_real_value PM2.5_prediction
0 16.0 5943104 0 16.0 21635847 [ 16.0 26.891947 0 16.0 10.848573 0 16.0 13.503645
1 100 7.542581 1 10.0 23155748 1 10.0 25.418766 1 10.0 11.080423 1 100 13.325950
2 10.0 11.087011 z 10.0 23.089268 2 10.0 27.350998 2 10.0 11.004876 2 100 14.001757
3 190 11.861835 3 19.0 2474049 3 19.0 26.004620 3 19.0 11.619187 E 190 13.600977
4 19.0 17672722 4 19.0 26.433323 4 19.0 28104122 4 19.0 16.439091 4 190 19.339527
17499 30 9653838 17499 30 13.761362 17499 3.0 13.344814 17499 3.0 9865240 17499 30 11.992433
17500 30 6.163793 17500 3.0 11430156 17500 3.0 12.308096 17500 3.0 7.390811 17500 30 11.420259
17501 10 7.721551 17501 10 11.941680 17501 10 12.723070 17501 10 8.990746 17501 10 11.623506
17502 10 6.300754 17502 10 10.647337 17502 10 11.759480 17502 10 7.239293 17502 1.0 11.001265
17503 40 7.788065 17503 40 11.010245 17503 40 12.362282 17503 40 9.091197 17503 40 11.225766
17504 rows x 2 columns 17504 rows x 2 columns 17504 rows x 2 columns 17504 rows x 2 columns 17504 rows x 2 columns
FIGURE 11. The plot diagram of PM2.5 real values and predictions based on Fengyuan stations.
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FIGURE 12. The plot diagram of PM2.5 real values and predictions based on Shalu stations.

Model A Model B Model C Model D Model E
PM2.5_real_value PM2.5_prediction PM2.5_real_value PM2.5_prediction PM2.5_real_value PM2.5_prediction PM2.5_real_value PM2.5_prediction PM2.5_real_value PM2.5_prediction
0 290 28.192841 0 29.0 31.000528 0 290 24.007874 0 290 23.339308 0 290 30.219866
1 270 26.051842 1 270 28.559307 1 270 18.620577 1 270 22.198296 1 270 32680946
2 270 29.874529 2 270 31.738888 2 270 24306206 2 270 23.849180 2 27.0 30.298920
2 240 27.732162 3 240 29.407627 2 240 18.590137 3 240 22.773336 3 240 32767754
4 240 31.345968 4 24.0 32.561321 4 240 22.049681 4 240 22016258 4 240 30.071827
17498 120 32188221 17499 120 9.442549 17498 120 4137135 17498 12.0 7172380 17499 12.0 16.029804
17500 12.0 29.773811 17500 12.0 11.669968 17500 12.0 5241247 17500 12.0 6.393732 17500 120 16.211796
17501 12.0 32.740845 17501 12.0 9.061449 17501 12.0 4.141748 17501 120 6.214449 17501 120 15.981589
17502 120 23.389635 17502 120 13.317537 17502 120 6.839685 17502 120 8.100367 17502 12.0 16.350384
17503 100 21.365139 17503 10.0 10.402833 17503 100 5.510702 17503 10.0 7.725975 17503 10.0 16.139381
17504 rows x 2 columns 17504 rows x 2 columns 17504 rows x 2 columns 17504 rows x 2 columns 17504 rows x 2 columns
FIGURE 13. The plot diagram of PM2.5 real values and predictions based on Shalu stations.
models, model B has a significant improvement in all stations load time can be reduced. According to the results, among
and each station. Therefore, when the model is implemented the other models, model B has the highest accuracy (lowest
in the application, the precision is more excellent, and the RMSE), approximately 1 point lower RMSE values, and the
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FIGURE 14. The plot diagram of PM2.5 real values and predictions based on Xitun stations.

Model A Model B Model C Model D Model E
PM2.5_real_value PM2.5_prediction PM2.5_real_value PM2.5_prediction PM2.5_real_value PM2.5_prediction PM2.5_real_value PM2.5_prediction PM2.5_real_value PM2.5_prediction
0 340 35.460030 o 340 52531261 0 340 53665226 o 340 59712730 o 340 55147247
1 250 35.177658 1 250 49121746 1 250 52716080 1 250 58818718 1 250 51724934
2 250 36.183159 2 250 53239609 2 250 53877129 2 250 60.351532 2 250 56298195
3 300 35.900269 3 300 49733200 3 300 53.010319 3 300 59.361710 3 30.0 52544647
4 30.0 36.259617 4 300 50.091484 4 300 52703308 4 30.0 54.513748 4 300 52 361092
17403 60 15485996 17403 60 9599470 17403 60 11.612494 17403 6.0 13.182476 17403 60 18.186287
17404 60 22493540 17404 60 7400463 17404 60 10.116919 17404 6.0 11.298504 17404 60 15.916089
17405 120 23409378 17405 120 9424547 17405 120 11.157522 17405 120 12 963383 17405 120 17.221947
17408 120 13.076765 17406 120 5935190 17406 120 9422348 17406 120 9.494550 17408 120 14.819828
17407 70 12.511817 17407 70 7.910901 17407 70 10.625495 17407 70 10.882645 17407 70 15.924982
17408 rows x 2 columns 17408 rows x 2 columns 17408 rows x 2 columns 17408 rows x 2 columns 17408 rows x 2 columns
FIGURE 15. The plot diagram of PM2.5 real values and predictions based on Xitun stations.
RMSE value Testing Time
2 ° . .
g s 2 “
: 5
2 § 30
MODEL A MODEL B MODEL C MODELD MODEL E N
 All Stations 13,23268219 11,26121092 11,83376715 12,35373255 12,20609816 I
® Xitun 12,07076634 8,809180915 9,886113978 10,2703042 8,673261345 ¢ MODEL A MODEL B MODEL C MODEL D MODEL E
m Fengyuan 8,702971018 7,778424117 9,507581432 8,257803368 12,05491286  All Stations 22,639 22,886 35,866 22,184 20,916
Dali 8,955857299 8,228012508 9,64374418 14,25922016 9,851787424 B Xitun 31,685 18,311 28,47 26,826 57,437
® Chungming 9,529085954 8,895137714 10,26297576 8,366429894 12,54693582 m Fengyuan 23,118 18,465 33,437 23,735 34,111
m Shalu 10,50297274 9,416560784 13,49168846 8,168430495 10,48029004 Dali 33,517 17,382 48,257 35,545 58,16
Model W Chungming 47,885 19,758 27,784 36,315 52,897
m Shalu 18,859 16,36 37,183 28,343 32,17
mAll Stations W Xitun mFengyuan mDali M Chungming M Shalu
Model
. . mAll Stations W Xitun M Fengyuan mDali M Chungming ® Shalu
FIGURE 16. Comparison of RMSE of five models.
FIGURE 18. Comparison of testing time of five models.
Training Time
®
N V. CONCLUSION
o

seconds

MODELA MODEL B MODEL C MODEL D MODEL E

® All Stations 14,956 22,511 49,409 36,328 25,416
W Xitun 45,311 14,217 33,963 43,421 37,312
m Fengyuan 27,044 15,367 33,636 35,38 32,311
Dali 43,963 15,402 33,319 39,893 27,241
W Chungming 49,814 19,148 33,531 46,342 30,427
u Shalu 15,599 12,971 38,735 55,076 35,739
Model
mAllStations W Xitun MFengyuan mDali M Chungming M Shalu

FIGURE 17. Comparison of training time of five models.

shortest training testing period. The RMSE calculations based
on the stations indicate that training with the entire stations
dataset has less accuracy, with an RMSE value of about
3 points higher than training with the individual station’s
dataset.

68580

This paper demonstrated the PM2.5 forecasting model using
Long Short-Term Model (LSTM) seq2seq combined with the
statistical method. The air pollution data were extracted from
Taiwan EPA for the Taichung City dataset in 2014 - 2018.
Correlation Analysis, XGBoost, and Chemical processed
are used to select the important feature. Five models of
PM2.5 forecasting involve LSTM seq2seq for 17 parameters
(model A), LSTM seq2seq for PM10, NO2, SO2 (model
B), LSTM seq2seq for PM10, O3, AMB TEMP (model C),
LSTM seq2seq for top 5 parameters selected by correlation
analysis (model D), and LSTM seq2seq for top 5 parame-
ters selected by XGBoost (model E). The study points out
that the chemical processed model of PM10, SO2, and NO2
(model B) has the highest accuracy (lowest RMSE), approx-
imately 1 point lower of RMSE values, and the shortest
training testing time among the other models. The RMSE
calculations based on the stations show that training using all

VOLUME 9, 2021



E. Kristiani et al.: PM2.5 Forecasting Model Using Combination of Deep Learning and Statistical Feature Selection

IEEE Access

stations dataset has less accuracy at around 3 points higher
RMSE value than training based on each station dataset.
In the future, the comparison of the deep learning framework
and the network could be examined more with other meth-
ods, such as multi-step LSTM. Also, the ensemble learning
method could be applied in the model application.
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