
Received March 31, 2021, accepted April 29, 2021, date of publication May 4, 2021, date of current version May 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3077242

Differential Evolution Mutations: Taxonomy,
Comparison and Convergence Analysis
ALI WAGDY MOHAMED 1,2, ANAS A. HADI 3, AND ALI KHATER MOHAMED4
1Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt
2Wireless Intelligent Networks Center (WINC), School of Engineering and Applied Sciences, Nile University, Giza 12588, Egypt
3College of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
4Faculty of Computer Science, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt

Corresponding author: Ali Wagdy Mohamed (aliwagdy@gmail.com)

ABSTRACT During last two decades, Differential Evolution (DE) proved to be one of the most popular
and successful evolutionary algorithms for solving global optimization problems over continuous space.
Proposing new mutation strategies to improve the optimization performance of (DE) is considered a
significant research study. In DE, mutation operation plays a vital role in the performance of the algorithm.
Therefore, in this paper, comprehensive analysis of the contributions on basic and novel mutation strategies
that were proposed between 1995 and 2020 is presented. A new taxonomy based on the structure of the novel
mutations is proposed. Numerical experiments on a set of 30 test problems from the CEC2017 benchmark
for 10, 30, 50 and 100 dimensions, including a comparison with classical DE schemes and recent mutations
schemes are executed. Furthermore, theoretical, and empirical convergence behavior analysis of all mutations
is discussed. The paper also presents many recommendations, guidelines, insights, and suggestions for
experienced practitioners and interested researchers in designing and developing effective and efficient DE
algorithms to address various optimization problems in different fields.

INDEX TERMS Evolutionary computation, global optimization, differential evolution, mutation strategy,
taxonomy, correct and false convergence.

I. INTRODUCTION
Differential Evolution (DE) proposed by Storn and
Price [1], [2], is a stochastic population-based search method.
It exhibits excellent capability in solving a wide range of opti-
mization problems with different characteristics from several
fields and many real-world application problems. Similar
to all other Evolutionary algorithms (EAs), the evolution-
ary process of DE uses mutations, crossover, and selection
operators at each generation to reach the global optimum.
Besides, it is one of the most efficient evolutionary algo-
rithms (EAs) currently in use. In DE, each individual in
the population is called target vector. Mutation is used to
generate a mutant vector, which perturbs a target vector using
the difference vector of other individuals in the population.
After that, crossover operation generates the trial vector by
combining the parameters of the mutation vector with the
parameters of a parent vector selected from the population.
Finally, according to the fitness value and selection operation
determines which of the vectors should be chosen for the
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next generation by implementing a one-to-one completion
between the generated trail vectors and the corresponding
parent vectors [3], [4]. The performance of DE basically
depends on the mutation strategy, the crossover operator.
Besides, the intrinsic control parameters (population size NP,
scaling factor F, the crossover rate CR) play a vital role in
balancing the diversity of population and convergence speed
of the algorithm [5]–[8]. The advantages are the simplicity of
implementation, reliability, speed, and robustness [9], [10].
Thus, it has been widely applied in solving many real-
world applications of science and engineering, such as {0-
1} Knapsack Problem [11], [12], financial markets dynamic
modeling [13], feature selection [14], admission capacity
planning higher education [15], [16], and solar energy [17],
for more applications, interested readers can refer to [18].
However, DE has many weaknesses, as all other evolutionary
search techniques do w.r.t the ‘‘no free lunch’’ (NFL) theo-
rem. Generally, DE has a good global exploration ability that
can reach the region of global optimum, but it is slow at the
exploitation of the solution [19]. Additionally, the parameters
of DE are problem dependent and it is difficult to adjust
them for different problems. Moreover, DE performance
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decreases as search space dimensionality increases [20]–[22].
Finally, the performance of DE deteriorates significantly
when the problems of premature convergence and/or stag-
nation occur [20]. Consequently, researchers have suggested
many techniques to improve the basic DE. From the litera-
ture [18], [23]–[28], these proposed modifications, improve-
ments, and developments on DE focus on adjusting control
parameters in an adaptive or self-adaptive manner while
there are a few attempts in developing new mutations rule.
In fact, the main objective of this study is to discuss the
advantages and disadvantages of these mutations and provide
future recommendations, guidelines, insights, and sugges-
tions for experienced practitioners and interested researchers
in designing and developing effective and efficient DE algo-
rithms.

Therefore, to accomplish this objective, the main origi-
nality our work in this paper goes in four directions. The
first direction is to provide a comprehensive review to the
contributions on basic and novel mutation strategies that were
proposed between 1995 and 2020 to investigate the similari-
ties and differences in their mathematical and/or probabilistic
structure and design.

Thus, for this purpose, which is the second direction of
our work, two novel taxonomies are proposed in this research
study. Based on the structure of the mutations, the first tax-
onomy (section III, Figure.2) is proposed to eliminate any
ambiguity related to classifying any DE mutation and as a
helper tool for all researchers to fully understand and dif-
ferentiate between mutation strategies. The new theoretical
classification comprises two research area regarding the con-
tribution type to the mutation strategies of Differential Evo-
lution algorithm (Novel Mutation and Novel concept). In the
first area, an innovative mutation scheme is added to basic
DEmutation. However, unlike novelty of mutation, regarding
the second area, a new technique is proposed to enhance
the selection process of the individuals to form the muta-
tion scheme. Based on the structure of the novel mutations,
it can be further classified into three groups: (a) random,
(b) directed, and (c) probabilistic. Then, based on the design
of mutation scheme, the directed mutation can be classified
into two main categories: (1) partially directed and (2) fully
directed.

On the other hand, based on experimental results, analysis
and comparisons of the performance of all mutations on
CEC2017 benchmark test problems [29] with 10, 30, 50 and
100 dimensions, the second taxonomy (section IV-Figure 4) is
a new taxonomy proposed to classify the Mutation strategies
of DE algorithms into four categories (algorithms show excel-
lent performance and continuous improvement, algorithms
show unstable performance and slight diminishes, algorithms
show descent performance with complete and/or significant
deterioration, algorithms show stable moderate or poor per-
formance with insignificant improvement).

The third direction of this work is to statistically compare
and analyze the performance of mutations. Besides, the con-
vergence behavior of top ten algorithms and the superior

performance of all algorithms that provided minimum mean
function error on the CEC 2017 functions with all dimen-
sions are presented. Finally, detailed theoretical background,
definitions, explanation, and new classifications for correct
and false convergence scenarios are given. Besides, based on
the results provided by all mutations, numerical experiments,
and complete analysis of the convergence behavior for all
mutations are presented.

To the best of our knowledge, this is the first study that
reviews all these different types of mutations, proposes theo-
retical classifications for all mutations and carry out empirical
evaluation and comparison.

The rest of the paper is organized as follows. Section II
gives a brief introduction to canonical DE algorithm, includ-
ing its typical mutation operators, crossover, and selection
operators. Section III provides the first taxonomy that classi-
fies and reviews the published work on mutations of DE algo-
rithms. Next, in Section IV, the proposed second taxonomy
based on experimental results and comparison of all DEmuta-
tions. Besides, statistical analysis, convergence analysis and
superior analysis for all algorithms are introduced. Section V
discusses the theoretical and empirical convergence behavior
for all mutations. In section VI, future recommendations,
guidelines, insights, and suggestions for experienced prac-
titioners and interested researchers in designing and devel-
oping effective and efficient DE algorithms are presented.
Finally, Section VII concludes the paper and summarizes the
objectives addressed.

II. BASIC DIFFERENTIAL EVOLUTION
This section provides a brief summary of the basic Differen-
tial Evolution algorithm. In a simple DE, generally known
as DE/rand/1/bin [2], [30], an initial random population,
denoted by P, consists of NP individual. Each individual is
represented by the vector xi = (x1,i, x2,i, . . . xD,i), where
D is the number of dimensions in solution space. Since the
population will be varied with the running of evolution-
ary process, the generation times in DE are expressed by
G = 0, 1 . . . ,Gmax, where Gmax is the maximal times of
generations. For the ith individual of P at the G genera-
tion, it is denoted by xGi = (xG1,i, x

G
2,i . . . , x

G
D,i). The lower

and upper bounds in each dimension of search space are
respectively recorded by XL = (x1,L , x2,L . . . , xD,L) and
XU = (x1,U , x2,U . . . , xD,U ). The initial population P0 is ran-
domly generated according to a uniform distribution within
the lower and upper boundaries (XL ,XU ). After initialization,
these individuals are evolved by DE operators (mutation and
crossover) to generate a trial vector. A comparison between
the parent and its trial vector is then done to select the
vector which should survive to the next generation [23], [31].
DE steps are discussed below:

A. INITIALIZATION
In order to establish a starting point for the optimization
process, an initial population P0 must be created. Typically,
each jth component (j = 1, 2 . . . ,D) of the ith individuals
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(i = 1, 2 . . . ,NP) in the P0 is obtained as follow:

x0j,i = xj,L + rand (0, 1) .(xj,U − xj,L) (1)

where rand(0, 1) returns a uniformly distributed random
number in [0, 1].

B. MUTATION
At generation G, for each target vector xGi , a mutant vector
vGi is generated according to the following:

vGi = xGr1 + F .
(
xGr2 − x

G
r3

)
, r1 6= r2 6= r3 6= i (2)

where r1, r2, r3 ∈ {1, 2, . . . ,NP are three randomly chosen
indices. F is a real number to control the amplification of the
difference vector (xGr2−x

G
r3). According to Storn and Price [2],

the range of F is in [0, 2]. In this work, if a component of a
mutant vector violates search space, then the new value of this
component is generated a new by (1).

C. CROSSOVER
There are two main crossover types, binomial, and exponen-
tial.We here elaborate the binomial crossover. In the binomial
crossover, the target vector is mixed with the mutated vector,
using the following scheme, to yield the trial vector uGj,i.

uGj,i =

{
vGj,i, if (rand ≤ CRorj = jrand
xGj,i, otherwise

}
(3)

where rand j,i(i ∈ [1,NP] and j ∈ [1,D]) is a uniformly
distributed random number in [0,1], CR ∈ [0, 1] called
the crossover rate that controls how many components are
inherited from the mutant vector, jrand is a uniformly dis-
tributed random integer in [1, D] that makes sure at least one
component of trial vector is inherited from the mutant vector.

D. SELECTION
DE adapts a greedy selection strategy. If and only if the trial
vector UG

i yields as good as or a better fitness function value
than XGi , then U

G
i is set to XG+1i . Otherwise, the old vector

XGi is retained. The selection scheme is as follows (for a
minimization problem):

xG+1i =

{
uGi , f

(
uGi
)
≤ f

(
xGi
)

xGi , otherwise

}
(4)

A detailed description of standard DE algorithm is given
in Figure 1.

III. MUTATIONS IN DIFFERENTIAL EVOLUTION
DE/rand/1 is the fundamental mutation strategy developed
by Storn and Price [1], [2] and is reported to be the most
successful and widely used scheme in the literature [23].
Obviously, in this strategy, the three vectors are chosen from
the population at random for mutation and the base vector
is then selected at random among the three. The other two
vectors form the difference vector that is added to the base
vector. Consequently, it is able to maintain population diver-
sity and global search capability with no bias to any specific

FIGURE 1. Description of standard DE algorithm. rand [0,1) is a function
that returns a real number between 0 and 1. randint (min, max) is a
function that returns an integer number between min and max.
rndreal(0,1) returns a real random number between 0 and 1 NP, Gmax,
CR and F are user-defined parameters. D is the dimensionality of the
problem.

search direction, but it slows down the convergence speed
of DE algorithms [32]. Thus, proposing new mutation strate-
gies to improve the optimization performance of differential
evolution (DE) are considered an important research study.
Virtually, during the past 15 years, many researchers have
been working on the improvement of the mutation strategies
of DE.

In fact, the contribution to the mutation strategies of Dif-
ferential Evolution algorithm is divided into two main areas,
depending on the contribution proposed. The two areas are (1)
novel mutation and (2) novel concept.

In the first area, an innovative mutation scheme is added
to basic DE mutation. However, unlike novelty of mutation,
regarding the second area, a new technique or method is
proposed to enhance the selection process of the individuals
to form the mutation scheme. Thus, these methods have
been applied using the existing mutation schemes without
any modifications or improvement to the existing mutation
schemes.

Based on the structure of the novel mutation, it can be
further classified into three groups: (a) Random, (b) directed,
and (c) probabilistic. Then, the directed mutation can be clas-
sified into two main categories: (1) partially directed and (2)
fully directed.

Concerning the first group, random mutations, the mutant
vector is generated or created using randomly selected indi-
viduals in the current population i.e., random mutation does
not include the incorporation of the objective function value
of the selected individuals in the mutation scheme itself.
However, in contrast to randommutations, directedmutations
includes the incorporation of the objective function value of
the selected individuals in the mutation scheme itself.
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FIGURE 2. New classification illustrating the position of every mutation scheme according to the suggested taxonomy.

Therefore, the partially directed mutations, the mutant vec-
tor is generated or created using some randomly selected
individuals in addition to the neighbor best or worst vector(s)
and/or global best or worst vector(s) found so far in the
current population, it must be noted that any difference vector
in mutation scheme includes best or worst information, not
both or the base vector is either best vector or worst vec-
tor. Besides, regarding full directed mutations category, the
mutant vector is generated or created using some randomly
selected individuals in addition to the neighbor best and worst
vector(s) and/or global best and worst vector(s) found so
far in the current population, thus, some difference vectors
is directed from worst vector(s) to best vector(s) i.e., both
vectors will be used to form the mutation scheme. Alterna-
tively, it is based on randomly selected individuals that are
sorted in ascending order, from best to worst, according to
their objective function values. On the contrary, regarding
probabilistic mutations group, the mutant vector is generated
or created using a probabilistic distribution such as uniform,
Gaussian, Cauchy, and other well-known distributions. Taken
into consideration that the required parameters of the selected
distribution are determined based on the available statisti-
cal information about the entire population such as neigh-
bor/global best vector(s), mean, median, worst, and standard
deviation vector(s). It must be noted that the effectiveness
of all novel concept techniques has been previously proved
as excellent alternative methods for improving the perfor-
mance of basic and novel mutations. Virtually, the main
objective of this study is to evaluate the individual effect

of each mutation in solving CEC 2017 test functions under
the same experimental conditions. Thus, in order to exclude
joint effect i.e. (novel or basic mutation combined with the
novel concept), it is not considered for further evaluation and
comparison. Actually, based on the structure of themutations,
it is noteworthy to mention that this is the first research paper
that proposes a new taxonomy to classify the contributions
of DE mutations. As listed in Figure 2 and Table 1, there
are 30 novel mutations and 6 novel concepts that have been
reviewed and classified according to the new taxonomy. They
will be discussed in the next subsections.

A. NOVEL MUTATIONS
In this subsection, we will briefly discuss the innovative
mutation schemes that are added to basic DE mutation.

1) RANDOM MUTATIONS
a: DE/RAND/1
Price and Storn [1] presented a new heuristic approach for
solving non-continuous and non-differentiable continuous
space functions called Differential Evolution. The authors
tested many variants in order to represent the most promising
variant DE/rand/1.In which, the mutant vector is generated
for each individual in the population by randomly selecting
3 mutually exclusive vectors that are different from the base
vector using the following equation:

vi,g = xr1,g + F ∗
(
xr2,g − xr3,g

)
r1, r2, r3 ∈ [1,NP] , r1, 6= r2 6= r3 6= i (5)
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TABLE 1. The classification of mutations schemes.

b: DE/RAND/2
Price, Storn and Lampinen [33] proposed this scheme in order
to obtain the mutant vector by choosing 5 mutually exclusive

vectors from the population to form 2 differences following
the equation:

vi,g = xr1,g + F ∗
(
xr2,g − xr3,g

)
+ F ∗

(
xr4,g − xr5,g

)
r1, r2, r3, r4, r5 ∈ [1,NP] ,

r1, 6= r2 6= r3 6= r4 6= r5 6= i (6)

c: DE/CURRENT-TO-RAND/1
Mezura-Montes, Reyes, and Coello [34] presented a variant
to generate the mutant vector using 3 mutually exclu-
sive vectors that are different from the base vector.
The 3 vectors with the base vector form 2 difference vec-
tors that are added to the current base vector using the
equation:

vi,g = xi,g + F ∗
(
xr1,g − xi,g

)
+ F ∗

(
xr2,g − xr3,g

)
r1, r2, r3 ∈ [1,NP] , r1, 6= r2 6= r3 6= i (7)

d: NSDE (NEIGHBORHOOD SEARCH DIFFERENTIAL
EVOLUTION)
Yang et al. [35] proposed a neighborhood search differential
evolution based on the generalization of Neighborhood strat-
egy (NS). Cauchy and Gaussian random numbers are used
for long and small jumps, respectively. The mutant vector is
generated using the equation:

vi,g = xr1,g +
{
di,g ∗ N (0.5, 0.5) rand i (0, 1) < 0.5
di,g ∗ δ otherwise

}
di,g = xr2,g − xr3,g (8)

where N (0.5,0.5) is a Gaussian random number with mean
0.5 and standard deviation 0.5, δ is a Cauchy random number
variable with scale parameter t = 1.

e: DE/RAND/3
Elsayed et al. [36] presented a framework that uses a pool
of 4 mutations. The population is divided into for equal
subpopulations, each subpopulation has its own individuals,
and the value of scale parameter is self-adaptive. The mutant
vector is obtained as follows:

vi = xr1 + F ∗ (xr2 − xr3 + xr4 − xr5 + xr6 − xr7) (9)

To calculate F, a Gaussian number N (0.5,0.15) is generated
for each individual in the population.

F = Fr1,G + N (0, 0.5) ∗
(
Fr2,G − Fr3,G

)
+ N (0, 0.5)

∗
(
Fr4,G − Fr5,G

)
+ N (0, 0.5) ∗

(
Fr6,G − Fr7,G

)
(10)

It must be mentioned that DE/rand/3 is proposed by Ting and
Huang [37] without self-adaptive scaling factor.

f: DE/RAND-TO-CURRENT/2
This scheme is presented by Elsayed et al. [36]. The mutant
vector is obtained as follows:

vi = xr1 + F ∗ (xr2 − xi + xr3 − xr4) (11)
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To calculate F, a Gaussian number N (0.5,0.15) is generated
for each individual in the population.

F = Fr1,G + N (0, 0.5) ∗
(
Fr2,G − Fr3,G

)
+N (0, 0.5) ∗

(
Fr4,G − Fr5,G

)
(12)

g: DEGD (DIFFERENTIAL EVOLUTION WITH GENERALIZED
DIFFERENTIALS)
Ali [38] proposed a new mutation strategy called DEGD,
in which amutant vector is generated only for worse solutions
instead of generating trial vectors for all the population.
DEGD generates more than one trial point per target vector
(q points) until a successful trial point is found or the q
number of trial points are reached. The first q-1 points are
created using various values for F1 and F2 using the equation:

v = xr1 + F1 ∗ xr2 − F2 ∗ xr3 (13)

while the qth point is found by vector projection as follows:

v =

(
xTr1 ∗ xr2
xTr2 ∗ xr2

)
∗ xr2 (14)

where F1 = F2 = 0.5, q = 3

h: GPBX-α
Dorronsoro and Bouvry [39] proposed a new operator
for generating the mutant vector called Gaussian PBX-α
(GPBX-α). The mutant vector is generated as follows:

vi,j = xr0,j + Gaussian (0.0, 1.0) ∗ F

∗
(
UPi,j − LOW i,j

)
UPi,j = min(max j, xr0,j − Ij.α)

LOW i,j = max(minj, xr0,j + Ij.α)

Ij = xr1,j − xr2,j (15)

where Gaussian (0.0,1.0) is a random number from a Gaus-
sian distribution centered at 0.0 with deviation 1.0, max j and
minj are the upper and lower allowed bounds for variable j.

α =

{
0.2+ 0.6 ∗ rand1 if rand 2 ≤ 0.1

α otherwise

}
F ∈ [0.1, 1.0]

(16)

i: IMMSADE
Wang et al. [40] proposed an improved version of the
DE/rand/1 mode called IMMSADE, in which a new control
parameter ωi that is associated with the base vector is intro-
duced. And each individual in the population has its own ωi
and Fi. The mutant vector is generated according to equation:

vt+1i = ωi ∗ x tr1 + Fi ∗
(
x tr2 − x

t
r3
)
,where ωi

∈ [0.7, 1.0] ,Fi ∈ [0.1, 0.8] (17)

2) PARTIALLY DIRECTED MUTATIONS
a: DE/CURRENT-TO-BEST/1
The scheme is presented by Price and Storn [1]. This ver-
sion works typically like the DE/rand/1 except that there are

2 difference vectors in this version and also it incorporates the
best vector found so far in order to enhance the greediness of
the scheme. the mutant vector is generated according to the
equation:

vi,g = xi,g + F ∗
(
xbest,g − xi,g

)
+ F ∗

(
xr1,g − xr2,g

)
r1, r2 ∈ [1,NP] , r1, 6= r2 6= i (18)

b: DE/BEST/1
Proposed by Price and Storn [33], in which two random
vectors are used to generate the difference vectors. The base
vector is chosen as the best individual.

vi,g = xbest,g + F ∗
(
xr1,g − xr2,g

)
r1, r2

∈ [1,NP] , r1, 6= r2 6= i (19)

c: DE/BEST/2
Price, Storn, and Lampinen [33] presented this scheme, like
the DE/best/1 but with one additional difference vector.

vi,g = xbest,g + F ∗
(
xr1,g − xr2,g

)
+ F ∗

(
xr3,g − xr4,g

)
r1, r2,r3,r4 ∈ [1,NP] , r1, 6=r2 6= r3 6= r4 6= i (20)

d: DE/RAND-TO-BEST AND CURRENT/2
Presented by Elsayed et al. [36], the mutant vector is gener-
ated as follows:

vi = xr1 + F∗(xbest − xr2 + xr3 − xi) (21)

To calculate F, a Gaussian number N (0.5,0.15) is generated
for each individual in the population.

F = Fr1,G + N (0, 0.5) ∗
(
Fr2,G − Fr3,G

)
+ N (0, 0.5)

∗
(
Fr4,G − Fr5,G

)
(22)

It must be mentioned that DE/rand-to-best-and-current/2is
proposed by Mezura-Montes et al. [41], but without self-
adaptive scaling factor.

e: DE/RAND-TO-BEST/1
Referring to the DE literature. Qin et al. [42] developed this
strategy that combines the strategies relying on the best solu-
tions found so far and two-difference-vectors-based strategies
in order to gain the benefits of those two strategies. The
mutant vector is generated according to the equation:

vi,g = xr1,g + F ∗
(
xbest,g − xr1,g

)
+ F ∗

(
xr2,g − xr3,g

)
r1, r2,r3 ∈ [1,NP] , r1, 6=r2 6= r3 6= i (23)

f: JADE
Zhang and Sanderson [43] proposed a new DE algorithm,
JADE, by implementing a new mutation strategy DE/current-
to-pbest/1 with the optional archive in order to improve the
optimization process.
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g: DE/CURRENT-TO-PBEST/1 (WITHOUT ARCHIVE)
The mutant vector is generated using the equation:

vi,g = xi,g + Fi ∗
(
xpbest,g − xi,g

)
+ Fi∗(xr1,g − xr2,g) (24)

where xpbest,g is randomly chosen as one of the top 100p%
individuals in the population, p ∈ [0, 1] , p = 5%. Fi: muta-
tion factor associated with each xi, generated each generation
using Cauchy distribution. Fi = randc (0.5, 0.1)

h: DE/CURRENT-TO-PBEST/1 (WITH ARCHIVE)
A set of archived inferior solutions ‘‘A’’ that contains the
Recently explored inferior solutions, when compared to the
current population ‘‘P’’, is used in order to provide additional
information about the promising progress dimension. The
mutant vector is generated as follows:

vi,g = xi,g + Fi ∗
(
xpbest,g − xi,g

)
+ Fi∗(xr1,g − x

′

r2,g)

Fi = randc (0.5, 0.1) , cauchydistribution (25)

where xi,g, xr1,g, x
p
best,g are selected from P while x

′

r2,g is ran-
domly chosen from the union P∪A of the current population
and archive. The archive starts empty, and then filled with
the parent who failed in selection in each generation. If the
archive exceeds the size, some elements are deleted from it
in order to keep the max size of the archive.

CR = randn (0.5, 0.1) , normaldistribution

i: DEGL: DE USING A NEIGHBORHOOD-BASED MUTATION
OPERATOR
Das et al. [20] proposed a new variant that is based on utiliz-
ing the concept of the neighborhood of each individual in the
population. The idea based on that there is a DE population
PG = [x1,G, x2,G, . . . , xNP,G] at generation G. The vector
indices are sorted randomly for every xi,G. They define a
neighborhood of radius k, k > 0, k ∈ [0, (NP − 1)/2]} con-
sisting of vectors xi−k,G, . . . , xi,G, . . . , xi+k,G. The vectors
are organized on a ring topology with respect to their indices,
such that vectors xNP,G and x2,G are the two immediate
neighbors of the vector x1,G. Then, for every member in the
population, calculate
Local donor Li,G = xi.G + α ∗(

xn−best − xi,G
)

+β ∗ (xp,G − xq,G)
xn−best : the best vector in the
neighborhood.
p,q ∈ [i− k, i+ k]p 6= q 6= i

Global donor gi,G = xi.G+α∗
(
xg−best − xi,G

)
+β ∗ (xr1,G − xr2,G)
xg−best : the best vector in the
entire population at generation
G.
r1, r2 ∈ [1,NP] r1 6= r2 6= i

α,β : scaling fac-
tors

The mutant vector is generated using the equation

vi,G = wi,G ∗ gi,G +
(
1− wi,G

)
∗ Li,G,wi,G ≈ rand [0, 1]

(26)

With k = 10% ∗ NP and α = β = 0.8.

j: A 2-OPT BASED DIFFERENTIAL EVOLUTION FOR GLOBAL
OPTIMIZATION
Chiang et al. [44] proposed DE/2-opt/1 and DE/2-opt/2 in
order to overcome the problem of long computational time
of DE.

k: DE/2-OPT/1

vi =
{
xr1 + F ∗ (xr2 − xr3) if f (xr1) < f (xr2)
xr2 + F ∗ (xr1 − xr3) otherwise

}
(27)

l: DE/2-OPT/2

vi =


xr1 + F ∗ (xr2 − xr3)
+F ∗ (xr4 − xr5) if f (xr1) < f (xr2)

xr2 + F ∗ (xr1 − xr3)
+F ∗ (xr4 − xr5) otherwise

 (28)

r1, r2, r3, r4, r5 are mutually exclusive and picked randomly
from the population and are different from i.

Where F = 0.5

m: DE/BEST/3
Presented by Elsayed et al. [36]

vi = xbest + F ∗ (xr2 − xr3 + xr4 − xr5 + xr6 − xr7) (29)

To calculate F, a Gaussian number N (0.5,0.15) is generated
for each individual in the population.

F = Fr1,G + N (0, 0.5) ∗
(
Fr2,G − Fr3,G

)
+ N (0, 0.5)

∗
(
Fr4,G − Fr5,G

)
+ N (0, 0.5) ∗ (Fr6,G − Fr7,G) (30)

n: MDE-pBX
Islam et al. [45] proposed MDE-pBX algorithm with a new
mutation operator, DE/current-to-gr_best/1, that uses an indi-
vidual from the best q% individuals in the current population
to generate the mutant vector according to the equation:

vi,g = xi,g + Fi ∗ (xgr−best,g − xi,g + xr1i,g − xr2i,g) (31)

where xgr−best,g is the best of the q% vectors randomly
chosen from the current population. xr1i,g and xr2i,g are two
distinct vectors picked up randomly from the current popula-
tion and none of them is equal to xgr−best,g or the target vector.
The authors used q = 15% and Fi = Cauchy(0.5, 0.1).

o: IMDE
Zhou et al. [46] proposed a novel mutation called intersect
mutation differential evolution (IMDE), in which all individ-
uals are ranked from worse to better according to their fitness
value. Then the population is divided into 2 main parts (better
part and worse part).
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p: FOR THE BETTER PART
The mutant vector is generated using one individual from the
worst part and two individuals were chosen from the best part
using the equation:

vi,g+1 = xwr1,g + F ∗ (xbr1,g − xbr2,g)

br1 6= br2 6= wr1 6= i (32)

where xwr1,g is an individual from the worse part,
xbr1,g, xbr2,g are two individuals from the better part.

q: FOR THE WORSE PART
The mutant vector is generated using one individual from the
best part and two individuals from the worse part using the
equation:

vi,g+1 = xbr1,g + F ∗ (xwr1,g − xwr2,g)

br1 6= wr1 6= wr2 6= i (33)

where F = 0.5

r: MMS
Ali et al. [47] presented a novel mutation strategy
called (MMS) that uses the information from either the best or
a randomly selected individual in order to increase the quality
of solutions. In this method, the choice of base vector is
different from DE. The mutant vector is generated according
to the following equations:

If ( xbest (t)− xbest (t − 1)) < ε, where ε = 1 ∗ 10e−6

v =
(
a1xbestj (t)+ a2xr1,j (t)+ a3xr2,j (t)

)
+F ∗ (xr1,j (t)− xr2,j (t)) (34)

Else

v =
(
a1xr1,j (t)+ a2xr2,j (t)+ a3xr3,j (t)

)
+F ∗ (xr1,j (t)− xr2,j (t)) (35)

where a1, a2, a3 are chosen randomly from the interval [0,1],∑
∀a
a = 1, F∈ [0.5, 0.9]

s: MPADE
Cui et al. [48] presented a novel adaptive multiple sub-
population based DE algorithm named MPADE, that is
inspired by the concept of work specialization. the algorithm
divides the entire population into several sub-groups that are
responsible for different tasks due to their capabilities.

First, all individuals are sorted based on fitness.
Second, the population is divided into 3 sub-populations
◦ Inferior sub-pop of size: w1 ∗ NP
◦ Medium sub-pop of size: w2 ∗ NP
◦ Superior sub-pop of size: w3 ∗ NP

Where wi ∈ [0, 1] and
∑3

i=1 wi = 1
Third, each individual selects ns closest individuals and rs

farthest individuals based on the Euclidean distance

ns =
NP
10
+ ceil

(
2NP
5
∗

(
1−

g− 1
Gmax

))
(36)

rs =
NP
10
+ ceil

(
2NP
5
∗

(
g−
Gmax

))
(37)

For the inferior subpopulation, the mutant vector is gener-
ated as follows:

vi = xi + Fi ∗ (xbest − xi)+ Fi ∗ (xr1 − xr2)

+Fi ∗ (xr3 − xr4) (38)

where, xbest is the best individual among the relatives of the
target vector. xr1, xr2, xr3, xr4 are randomly chosen from the
current population.

For the superior subpopulation, the mutant vector is gen-
erated as follows:

vi = xi + Fi ∗ (xnbest − xi)+ Fi ∗ (xr1 − xr2)

+Fi ∗ (xr3 − xr4) (39)

where, xnbest is the best individual among the relatives of the
target vector.

For the medium sub population, the mutant vector is
generated as follows:

vi = xi + Fi ∗
(
xpbest − xi

)
+ Fi ∗ (xr1 − xr2)

+Fi ∗ (xr3 − xr4) (40)

where, xpbest is the best individual of the ps vectors that are
randomly selected from the current population.

Fi = cauchy (0.5, 0.1)

3) FULLY DIRECTED MUTATIONS
a: TRIGONOMETRIC MUTATION (TDE)
Developed by Fan and Lampinen [30] to increase the conver-
gence velocity of the DE. In this methodology, a new local
search operation is introduced in order to speed up the DE
when optimizing expensive objective functions. The mutant
vector is generated according to the equation:

vi,g+1 =


[xr1,g+xr2,g+xr3,g]

3
+ (p2 − p1) ∗

(
xr1,g − xr2,g

)
+ (p3 − p2) ∗

(
xr2,g − xr3,g

)
+ (p1 − p3) ∗

(
xr3,g − xr1,g

)
 (41)

where:

p1 =

∣∣f (xr1,g)∣∣
p′

, p2 =

∣∣f (xr2,g)∣∣
p′

, p3 =

∣∣f (xr3,g)∣∣
p′

p
′

=
∣∣f (xr1,g)∣∣+ ∣∣f (xr2,g)∣∣+ ∣∣f (xr3,g)∣∣
r1, r2,r3 ∈ [1,NP] , r1, 6=r2 6= r3 6= i

b: ADE
Mohamed et al. [49] presented an alternative differential evo-
lution algorithm (ADE). The new directedmutation scheme is
proposed based on the weighted difference between the best
and worst individuals at a particular generation. The mutant
vector is generated as follows:

vg+1i = xgr + F ∗
(
xgb − x

g
w
)

(42)
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where xr is chosen randomly from the population at gener-
ation g, xb is the best individual at generation g and xw is
the worst individual at generation g. F is a uniform random
number between [0, 1].

c: TRIANGULAR
Mohamed [50] proposed a novel mutation called triangular
mutation. In which, three vectors are randomly selected. The
three vectors are sorted ascendingly due to their objective
function values to get xbest,j, xbetter,j, xworst,j. The mutant vec-
tor is generated according to the equation:

vg+1i,j = x̄gc,j + Fi ∗
(
xgbest,j − x

g
better,j

)
+Fi ∗

(
xgbetter,j − x

g
worst,j

)
+ Fi ∗

(
xgbest,j − x

g
worst,j

)
(43)

where:

Fi is a uniform random number between[0.2, 0.8]

x̄gc,j = w1∗xbest + w2∗xbetter + w3 ∗ xworst

wi ≥ 0,
3∑
i=1

wi = 1

wi =
Pi

3∑
i=1

Pi

, i = 1, 2, 3

P1 = 1,P2 = rand (0.75, 1) and P3 = rand (0.5,P2)

d: IDM: INDIVIDUAL DEPENDENT MUTATION
Tang et al. [51] proposed a novel variant of DE with an
individual dependent mechanism. In the mechanism the pop-
ulation is divided into two non-overlapping sets: superior and
inferior, the superior proportion is in the equation ps, and the
mutant vector is generated according to the equation:

vi,g =


xi + F∗(xr1 − xi)+ F ∗ (xr2 − dr3)

i ∈ superior
xi + F ∗ (xbetter − xi)+ F ∗ (xr2 − dr3)

i ∈ inferior

 (44)

where F = 0.5, xbetter is randomly selected from a set supe-
rior.

d jr3,g =
{
L j + rand (0, 1) ∗

(
U j
− L j

)
rand (0, 1) < pd

x jr3 otherwise

}
pd = 0.1∗ps

ps = 0.1+ 0.9 ∗ 105∗(
g

gmax−1) (45)

e: AGDE
Mohamed and Mohamed [52] presented a novel mutation
scheme by utilizing the information on good and bad individ-
uals in the population, the algorithm named AGDE. In each
generation, the population is divided into three clusters (best,
better, and worst) of sizes 100p%, NP-2∗(100p%) and 100p%
respectively. Three vectors are selected randomly, one from
each partition to generate the mutant vector based on the

following equation:

vg+1i = xgr + F ∗
(
xgp−best − x

g
p−worst

)
(46)

where xgr is chosen randomly from the middle NP-
2∗(100p%), xgp−best , x

g
p−worst are chosen randomly from the

top and bottom 100p%, where p = 10%, F is a uniform
random number between [0.1,1].

4) PROBABILISTIC MUTATIONS
a: GBDE
Wang et al. [53] proposed a new mutation operator called
Gaussian Bare-Bones De (GBDE). The mutant vector is gen-
erated by a Gaussian distribution based on the current and the
best individual at the current generation as follows:

vi,g = N (µ, σ ) (47)

where N (µ, σ ) is a Gaussian random function with mean µ
and standard deviation σ

µ =
xbest,g − xi,g

2
σ =

∣∣xbest,g − xi,g∣∣ .
The algorithm is Explorative at the start, but as the generation
increases the difference between the best and any individual
will decrease, and the average will go toward the best.

B. NOVEL CONCEPT
b: PRODE
Epitropakis et al. [54] proposed a novel framework called
proximity-based DE (ProDE), in which neighbors of a parent
vector, rather than the random ones will be used to generate
the donor vector. The framework consists of 3 steps to gener-
ate the mutant vector as follows:

• Compute the pair-wise distance between all members of
the population.

R = [rij]NP∗NP (48)

where rij is the distance between the ith and the jth members
of the population.

• Probability matrix is calculated:

Rp (i.j) = 1−
rij∑NP
k=1 rik

(49)

where the minimum distant neighbor of a vector will have the
highest probability to be selected as ri index.

• Select three vectors with indices r1, r2 and r3 based on
the Rp(i, :)

vi = xr1 + F ∗ (xr2 − xr3) (50)

Then update R and Rp for the new offspring.
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c: RANK-DE
In nature, good species always contain valuable informa-
tion. Gong and Cai [55] proposed a new idea, Rank-DE,
inspired by the phenomenon. Where parents are proportion-
ally selected according to their ranks in the current popula-
tion. The algorithm based on 3 steps:
• The population is Sorted based on the fitness of each
individual.

• A selection probability is calculated for each individual

Pi =
Ri
NP
, i = 1, 2, . . . ,NP

where Ri = NP− i
• Two individuals xr1, xr2 are selected based on their
selection probability, and the third one is selected ran-
domly from the population xr3 in order to generate the
mutant vector.

vi,g = xr1 + F ∗ (xr2 − xr3) (51)

d: NDI-DE
Cai and Wang proposed [56] a new idea based on the neigh-
borhood and direction called neighborhood and direction
information-based DE (NDI-DE). The mutant vector is gen-
erated as follows:

vi,g = xbase,g + F∗xdiff ,g + DT i,g, , , , ,F = 0.5 (52)

• For calculating xbase and xdiff :
Based on the neighborhood information, a probability to each
vector of the population is generated based on the Euclidean
distance from the target individual I for any vector j

Pj = 1−

∥∥xi, xj∥∥∑NP
j=1

∥∥xi, xj∥∥ (53)

A roulette wheel selection is used for selecting xr1, xr2, xr3
based on the probability values in the previous equation.

After the selection of xr1, xr2, xr3, the winner of the tour-
nament is xbase and the other 2 vectors will form the xdiff
• For calculating DT (the direction):

One of the next 3 cases is chosen (each is tested separately to
check its effect):

DA: directional attracted, derived from the best near neigh-
bor individual.

DAi = IDA ∗ (xibest − xi) (54)

where xibest is the best individual nearest neighbor
DR: directional repulsion, derived from the worst near

neighbor individual

DRi = −IDR ∗ (xiworst − xi) (55)

where xiworst is the worst individual nearest neighbor.
DC: directional convergence, derived from the combina-

tion of the best and worst near neighbor individuals

DC i = IDC1 ∗ (xibest − xi)− IDC2∗ (xiworst − xi) (56)

where IDA, IDR, IDC are scaling factors.

e: ADAPTIVE GREEDY
Yu et al. [57] introduced new mutation strategies that utilize
the information of top t individuals in the current population.
The parent vector is randomly selected from the top t solu-
tions in the current population. The new strategies are:
• DE/atbest/1

vi,g = x tbest,g + F∗(xr1,g − xr2,g) (57)

• DE/atbest/2

vi,g = x tbest,g + F∗
(
xr1,g − xr2,g

)
+ F ∗

(
xr3,g − xr4,g

)
(58)

• DE/current-to-atbest/1

vi,g = xi,g + F∗
(
x tbest,g − xi,g

)
+ F ∗ (xr1,g − xr2,g)

(59)

Each individual in the population is associated with a value of
t, that is selected randomly between [1, NP]. Where F = 0.5.

f: UDE
Sharifi-Noghabi et al. [58] presented a Union Differential
Evolution (UDE) to intelligently select the mutation vectors
considering the advantages of both design and fitness spaces
criteria. The mutant vector is generated as follows:

vi = xFS1 + F ∗ (xFS2 − xr1)+ F ∗ (xDS − xr2) (60)

where xr1, xr2 are selected randomly from the population.
xFSi is the parent vector chosen by fitness space criterion,

to obtain the xFSi:
• Sort the population in increasing order (from best to
worst) due to fitness value.

• Calculate the selection probability for each individual

Pi =
NP− i
NP

, i = 1, 2, . . . ,NP (61)

• Select 2 members xFS1, xFS2 using roulette wheel.
xDS is the vector selected by design space criterion, to obtain
xDS :
• Based on the Euclidean distance between all the individ-
uals in the population, the distance matrix DM is:

DM =

 ‖x1 − x1‖ · · · ‖x1 − xNP‖...
. . .

...

‖xNP − x1‖ . . . ‖xNP − xNP‖

 (62)

• Based on DM, calculate the probability matrix PM

PM (i, j) = 1−
DM (i, j)∑
∀k DM (i, k)

(63)

• Roulette wheel selection without replacement is per-
formed on every row of PM matrix (for each member
of the population) in order to choose xDS .
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g: FPS
Cai et al. [59] presented a new selectionmethod called, fitness
and position-based selection (FPS). The new method utilizes
the population information in order to select individuals for
mutation. The method has 3 steps and applied on 6 mutation
strategies from the literature.
Step 1: Calculate the influence value of each individual

INF i
(
xj,g
)
=

FPRi(xj,g)∑NP
k=1 and k 6=i FPRi(xk,g)

+ ε, ε = 0.001

FPRi
(
xj,g
)
=

Mf (xj,g)
Md,j(xj,g)

Mf
(
xj,g
)
=
∣∣f (xj,g)− f (xworst,g)∣∣

Md,i
(
xj,g
)
=
∥∥xi,g, xj,g∥∥ (64)

where, xworst,g is the worst individual in the current popula-
tion, ‖a, b‖ is the Euclidean distance between a and b.
Step 2: Calculate the selection probability of each individ-

ual

Pi,j,g =
INF i(xj,g)∑NP
k=1 INF i(xk,g)

(65)

Step 3: Roulette wheel selection is made in order to select
the parents based on the probability.

Then, the mutant vector vi,g is calculated using 6 mutation
schemes from the literature:

FPS-DE/rand/1 FPS-DE/rand/2
FPS-DE/best/1 FPS-DE/best/2
FPS-DE/current-to-best/1 FPS-DE/rand-to-best/1

IV. NUMERICAL EXPERIMENTS AND COMPARISONS
In fact, there is an important question that needs to precise and
concise answer. How much improvement could be achieved
by the proposed mutations? Thus, in order to answer this
question and as a guideline for researchers, practitioners
and interested scientists, the best mutations must be identi-
fied for further improvement as well as the worst mutations
must be also identified for further investigation with the
possible repair. Consequently, in this section, to evaluate the
performance of all mutations, the computational results of
all mutations along with appropriate statistical analysis are
discussed.

A. EXPERIMENTS SETUP
The performance of the proposed DE-based algorithms using
these mutations was tested on 30 benchmark functions pro-
posed in the CEC 2017 special session on real-parameter
optimization. A detailed description of these test functions
can be found in [29]. These 30 test functions can be divided
into four classes:
• Unimodal functions f 1− f 3;
• Simple multimodal functions f 4− f 10;
• Hybrid functions f 11− f 20;
• Composition functions f 21− f 30.

Note that f 2 has been excluded because it shows unstable
behavior especially for higher dimensions.

B. PARAMETER SETTINGS
To evaluate the performance of these algorithms using the
proposed mutations, experiments were conducted on the test
suite. We adopt the solution error measure (f (x) − f (x∗)),
where x is the best solution obtained by algorithms in one run
and x∗ is the well-known global optimum of each benchmark
function. Error values and standard deviations smaller than
10−8 are taken as zero. The dimensions (D) of function
are 10, 30,50 and 100, respectively. The maximum number
of function evaluations (FEs), the terminal criteria, is set
to 10000 ×D, all experiments for each function and each
algorithm run 51 times independently. Besides, for fair com-
parison and to test the individual effect of the mutation on
the optimization process, adaptation and/or self-adaptation
schemes for control parameters are not allowed and disabled.
Thus, the population size NP is set to 100. The binomial
crossover operator is utilized in all mutations strategies due
to its popularity in many DE literatures [33], [42], as shown
in (3). The crossover factor (CR) is set to 0.9. However,
regarding scaling factor (F), it is considered as a part of
the mutation itself. Thus, as aforementioned in section III,
the constant value of 0.5 or random values using a specific
probability distribution asmentioned in the original algorithm
are allowed. the presentation of the experimental results is
divided into two subsections. First, an empirical taxonomy
based on an overall performance and comparison between all
mutations over all dimensions is provided. Second, to com-
pare and analyze the solution quality from a statistical angle
of different algorithms and to check the behavior of the
stochastic algorithms (García et al.) [60], the results are com-
pared using two non-parametric statistical hypothesis tests:
(i) the Friedman test (to obtain the final rankings of different
algorithms for all functions). (ii) multi-problem Wilcoxon
signed-rank test (to check the differences between all algo-
rithms for all functions); at a 0.05 significance level, where
R+ denotes the sum of ranks for the test problems in which
the first algorithm performs better than the second algorithm
(in the first column), and R− represents the sum of ranks for
the test problems in which the first algorithm performs worse
than the second algorithm (in the first column). Larger ranks
indicate larger performance discrepancy. As a null hypoth-
esis, it is assumed that there is no significance difference
between the mean results of the two samples. Whereas the
alternative hypothesis is that there is significance in the mean
results of the two samples, the number of test problems
N = 29 for D = 10, 30, 50 and 100 dimensions and 5%
significance level. Use the p-value and compare it with the
significance level. Reject the null hypothesis if the p-value
is less than or equal the significance level (5%). All the p
values in this paper were computed using SPSS (the version
is 20.00). Third, the convergence behavior of top ten algo-
rithms is analyzed. Then, the performance of all algorithm
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that provided minimum mean function error on the CEC
2017 functions with all dimensions is presented.

C. EXPERIMENTAL RESULTS AND COMPARISON
The statistical results of all algorithms on the benchmarks
with 10, 30, 50 and 100 dimensions are summarized in the
supplemental file (Tables S1-S30). It includes the obtained
mean and the standard deviations of error from the optimum
solution of all algorithms over 51 runs for all 29 benchmark
functions.

1) EMPIRICAL TAXONOMY AND COMPARISON
In order to analyze and compare all results provided by all
algorithms, ranking of the algorithms on the CEC 2017 func-
tions with 10, 30, 50 and 100 dimensions are given in Fig-
ure 3. Firstly, it can be observed from Figure 3 that most
of the algorithms perform differently on different dimen-
sions. Generally, according to the growth of the search-space
dimensionality from 10D to 100D, the performance of all
algorithms can be classified into four main categories as
depicted in Figure 4. The first category includes algorithms
with excellent performance that show outstanding continuous
improvement as the dimension of the search-space increases
i.e., it has a better rank in 100D than its rank in 10D with
continuous improvement. The second category includes algo-
rithms show unstable performance and slight diminishes as
dimensions of the functions increases i.e., it has good rank
in 10D with good performance, but its performance slightly
fluctuates with slight deterioration with 30D, 50D, and 100D.
The third category includes algorithms show descent perfor-
mance with complete and/or significant deterioration with
the growth of the search-space dimensionality i.e., it has
a better rank in 10D than its rank in 100D with contin-
uous diminishes. The fourth category includes algorithms
show stable moderate or poor performance with insignificant
improvement in all dimensions and/or they get the lower
ranking in most cases. Actually, it can be obviously shown
from Fig.3 that AGDE belongs to the first category as it
gets the sixth, first, second and first ranking in 10D, 30D,
50D and 100D, respectively. Therefore, AGDE shows perfect
performance with continuous improvement as the dimension
of the functions increases. it is still more stable, efficient and
robust against the curse of dimensionality. Besides, JADE,
GBPX, and MPADE also get 11th, 16th and 14th ranking
in 10D, 6th, 13th, 10th ranking in 30D, 6th, 8th, 11th ranking
in 50D and 2nd, 4th, 6th ranking in 100D followed by ADE,
DE/best/3 and DEGL although they get lower ranking, they
follow the same pattern. Furthermore, the performance of
AGDE, JADE, GBPX andMPADE algorithms does not affect
by switching off self-adaptive mechanism of crossover and
scaling factor that has been used along with the proposed
novel mutation. Thus, it is noteworthy to mention that these
mutations represent role model mutations as they still have
outstanding performance during the optimization process.
Due to its performance with slight fluctuations and deterio-
rations, it can be obviously seen from Figure 3 that DE/rand-

to/current/2, DE/rand-to-best and current/2, DE/rand/3, Tri-
angular, JADE without an archive, DE/current-to-rand/1,
DE/best/2 and MMS belong to the second category. Besides,
on the contrary of the first category, the third category
includes all algorithm with complete deterioration as dimen-
sions increases such NSDE, DE/2-opt/1, DEGD, IMDE,
DE/rand/1 and MDE-pBX algorithms. For instance, it can
be deduced from Figure 3 that NSDE, DE/2-opt/1, and
DEGD get 1st, 3rd, and 2nd ranking in 10D, 8th, 9th and
7th ranking in 30D, 9th, 10th and 7th ranking in 50D and
10th, 11th and 9th ranking in 100D. Finally, regarding the
fourth category, GPDE, Trigonometric, and DE/best/1 were
the weaker in performance in addition to the remain-
ing algorithms DE/rand/2, DE/current-to-best/1,DE/2-opt/2,
DE/rand-to-best/1, IMMSADE and IDM get lower ranking
with the most of dimensions.

2) STATISTICAL ANALYSIS
On the other hand, Table 2 lists the Average ranks for all algo-
rithms across all problems and all dimensions according to
Friedman test. The best ranks are shown in bold and the sec-
ond ranks are underlined. Besides, the rank of all algorithms
on the CEC 2017 functions is shown in Figure 5. The p-value
computed through Friedman test is 0.00E+00. Thus, it can
be concluded that there is a significant difference between
the performances of the algorithms. It can be clearly seen
from Table 2 that, regarding mean ranking, AGDE gets the
first ranking followed by DE/rand-to/current/2, DE/rand-to-
best, and current/2 and JADE gets fourth ranking. Taking into
consideration that regarding ranking DE/rand-to/current/2,
DE/rand-to-best and current/2 perform better than JADE in
30D and 50Dwhile JADE outperforms DE/rand-to/current/2,
DE/rand-to-best and current/2 in 100D.

Due to its outstanding performance and being first rank-
ing, the multi-problem Wilcoxon signed-rank test between
AGDE and other algorithms in 10D, 30D, 50D and 100D
are summarized in Tables III,IV,V and VI, respectively. From
Table 3, we can see that AGDE obtains higher R+ values than
R– in most of the cases, while slightly lower R+ value than
R-value in comparison with JADE, JADE with no archive,
MDE-pBX, DE/rand-to-best and current/2 and MMS algo-
rithms. However, in the cases of AGDE versus DE/2-opt/1,
NSDE, IMDE, DEGD and DE/rand/1, they get higher R–
than R+ values. The reason is that AGDE gains the perfor-
mance far away of what these five algorithms do on some
functions, resulting in higher ranking values. According to the
Wilcoxon’s test at α = 0.05, the significant difference can be
observed in 11 cases, whichmeans that AGDE is significantly
better than 9 algorithms out of 29 algorithms on 29 test
functions while it is significantly outperformed by NSDE and
DEGDalgorithms. However, there is no significant difference
in the remaining 18 cases. Regarding 30D, 50D and 100D
problems, the results of multi-problem Wilcoxon’s test in
Tables IV, V and VI shows that AGDE obtains higher R+
values than R– in all cases with exception of DE/rand-to-
current/2 algorithms in D = 50, and JADE and MPADE
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algorithms in D = 100. According to the Wilcoxon’s test at
α = 0.05, the significance difference can be observed in 23,
21 and 16 cases in D = 30, 50 and 100, respectively, while
there is the insignificant difference in all remaining cases.
Thus, the performance of AGDE is always better than or equal
to other compared algorithms in D = 30, 50 and 100D. Alter-
natively, to be more precise, it is obvious from Tables III-VI
that AGDE is inferior to, equal to, superior to other algorithms
in 227,109, 505 out of the total 841 cases in 10D, 133, 41,
667 out of the total 841 cases in 30D, 167, 5, 669 out of the
total 841 cases in 50D, 177,4,660 out of the total 841 cases in
100D, respectively. In summary, AGDE is inferior to, equal
to, superior to other algorithms in 704, 159, 2501 cases,
respectively out of total 3364 cases. Note that a total number
of cases is given such that (29 algorithms ∗ 29 problems ∗
4 dimensions = 3364). Thus, it can be concluded that the
performance of AGDE is almost better than the performance
of compared algorithms in 74.4 % of all cases, respectively,
and it is just outperformed by other compared algorithms
in 20.9 % of all problems in all dimensions. Furthermore,
it can be obviously deduced from Fig.6 that the superiority
of the AGDE algorithm against the compared algorithms
increases as the dimensions of the problems increases from
10 to 100 dimensions.

3) CONVERGENCE BEHAVIOR ANALYSIS
Furthermore, convergence behavior is another important fac-
tor that must be considered in comparison among all proposed
algorithms. Therefore, for better presentation, the conver-
gence behavior of top ten algorithms will be analyzed. Thus,
the convergence characteristics in terms of the best fitness
value of the median run of all algorithms for some functions
with dimensions 10,30, 50 and 100 is illustrated in the sup-
plemental file (Figure S1). Regarding Unimodal functions
f 1− f 3, From Figure S1, it can be observed that JADE
covered to better solutions faster than all other algorithms.
Moreover, it provides better solutions than other compared
algorithms especially on D = 50 and 100. Concerning the
remaining functions, Simple multimodal functions f 4− f 10,
Hybrid functions f 11 − f 20; and Composition functions
f 21− f 30 it can be obviously seen that, on the same prob-
lem, most of the algorithms converge differently on differ-
ent dimensions. JADE provides better solutions than other
compared algorithms in f 12 on D = 50, f18on D = 50,100,
and f 19 on D = 100. AGDE shows superior performance
in solving problems f 11 and f 14 on D = 10, f 14 on all
dimensions, f 17 on D = 50 and 100, f 20 on D = 50, f 21 on
D= 50 and 100, f 26 on D= 30. Generally, it is clear that the
convergence speed of the majority of these algorithms is fast
in the early stage of the optimization process for all functions
with different shapes, complexity, and dimensions. Further-
more, the convergence speed is dramatically decreased, and
its improvement is found to be significant in the middle and
later stages of the optimization process. Additionally, the con-
vergent figure suggests that many algorithms can reach the
global solution or better solution in most problems in a fewer

TABLE 2. Average ranks for all algorithms across all problems and all
dimensions according to friedman test.

number of generations less than the maximum predetermined
number of generations. In general, the majority of the top ten
algorithms are scalable enough and can balance greatly the
exploration and exploitation abilities until the maximum FEs
is reached.

4) SUPERIOR PERFORMANCE ANALYSIS
On the other hand, to have a closer look at an outstanding
performance of all algorithms, it is better to highlight each
algorithm that provides superior performance on any problem
with any dimension. Therefore, the minimum mean function
error over 51 runs provided by an algorithm on the CEC
2017 functions with D = 10,30,50 and 100 are summarized
in Table 7. It must be noted that the empty cell means more
than one algorithm provides the same mean function error.
Besides, the number of cases in which each Algorithm pro-
vided minimum mean function error on the CEC 2017 func-
tions with D = 10,30,50 and 100 is shown in Figure 7.
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FIGURE 3. The rank of all algorithms on the CEC 2017 functions with D = 10,30,50 and 100 according to function error.

FIGURE 4. The classification of all algorithms according to their performances dimension of the space increases.

It can be clearly seen from Table 7 that 19 algorithms out
of 30 algorithms can provide superior performance in solving
at least one function with any dimension. Moreover, although
no clear pattern can be observed, few algorithms provide

outstanding performance in many cases relative to others.
Besides, it is clearly seen from Figure 7 that five, three
and three algorithms provided minimum mean function error
in one, two and three cases, respectively. Besides, AGDE,
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FIGURE 5. The mean rank of all algorithms on the CEC 2017 functions overall dimensions
according to function error.

TABLE 3. Results of multiple-problem Wilcoxon’s test between AGDE and
other algorithms for D = 10.

IMDE, and DE/ rand-to-current/2 get the first, second and
third ranking as it can provide minimum mean function error
in 16, 14 and 12 cases, respectively. Taking into considera-
tion that regarding the algorithms that provided the largest
number of cases with minimum mean function error in each
dimension, GPBX, DE/2-opt/1 and DE/rand/1 provide the
minimum mean function error in 4 cases in D = 10, AGDE
provide superior performance in 7 and 6 cases in D= 30 and
50, respectively. In 100 dimensions, MPADE provides the
minimum mean function error in 7 cases. Nonetheless, it can
be obviously deduced that AGDE provides more consistent

TABLE 4. Results of multiple-problem Wilcoxon’s test between AGDE and
other algorithms for D = 30.

results and stable performance than MPADE in D = 100 as
AGDE gets the first ranking whileMPADE gets sixth ranking
according to Friedman test.

V. CORRECT CONVERGENCE VERSUS FALSE
CONVERGENCE
In this section, the theoretical background, and the tax-
onomy of the convergence behavior of population-based-
algorithm (general case) and DE algorithm (special case)
are discussed. Besides, based on the results provided by all
mutations, numerical experiments, and complete analysis of
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TABLE 5. Results of multiple-problem Wilcoxon’s test between AGDE and
other algorithms for D = 50.

TABLE 6. Results of multiple-problem Wilcoxon’s test between AGDE and
other algorithms for D = 100.

the convergence behavior using two metrics, the diversity of
population and success rate for all mutations are presented.
Finally, the relationship between the quality of solution,
diversity of population and success rate of mutation as is
investigated.

A. THEORETICAL BACKGROUND AND TAXONOMY OF THE
CONVERGENCE BEHAVIOR
In fact, Similar to all other Evolutionary algorithms (EAs),
the evolutionary process of DE uses mutations, crossover, and

FIGURE 6. Statistical comparison results of AGDE against other recent
and state-of-the-art mutations with the growth of the dimensionality.

selection operators at each generation to reach the global opti-
mum. In simple DE, generally known as DE/rand/1/bin [2],
an initial random population, denoted by PG= 0, consists of
NP individual. Each individual is represented by the vector
Xi = (x1i, x2i, . . . , xDi), where D is the number of dimen-
sions in solution space. Since the population will be varied
with the running of the evolutionary process, the generation
times in DE are expressed by G = 0, 1, 2, . . . . . .GEN ,
where G is the current generation and GEN is the maximal
times of generations. For the ith individual of P at the G
generation, it is denoted by XGi = (xG1i, x

G
2i, . . . , x

G
Di). The

lower and upper bounds in each dimension of search space
are respectively recorded by XL = (x1L , x2L , . . . , xDL) and
XU = (x1U , x2U , . . . , xDU ). The initial population PG= 0

is randomly generated according to a uniform distribution
within the lower and upper boundaries (xL , xU ). After initial-
ization, these individuals are evolved by DE operators (muta-
tion and crossover) to generate a trial vector. A comparison
between the parent and its trial vector is then done to select
the vector which should survive to the next generation [23].
After that, during many generations of optimization process,
the convergence of the population at last generation pG=Gmax

will be either correct or false. Correct convergence means
that the DE algorithm has succeeded to reach the global
optimal solution during the optimization process within a pre-
determined or specifiedmaximum number of generations i.e.,
the population successfully converges to the global optimal
solution. On the contrary, false convergence means that the
algorithm has failed to reach the global optimal solution
during the optimization process within a pre-determined or
specified maximum number of generations i.e., the popula-
tion did not truly converge to the global optimal solution.
In fact, the success of the population-based search algorithms
is based on balancing two contradictory aspects: global explo-
ration ability and local exploitation tendency [49]. Actually,
the effectiveness and efficiency of any population-based algo-
rithm is measured by its capability of producing high quality
solution with high convergence rate, respectively. Moreover,
the mutation scheme plays a vital role in DE search ability
to produce high quality solution with high convergence rate.
Virtually, the main cause of correct convergence is the ability
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TABLE 7. The minimum mean function error over 51 runs provided by an
algorithm on the CEC 2017 functions with D = 10,30,50 and 100, The
empty cell means more than one algorithm provides the same mean
function error.

of the DE algorithm in balancing two contradictory aspects
the global exploration capability and the local exploitation
tendency. On the other hand, false convergence can be caused
due to three different situations: (1) slow convergence (2)
premature convergence and (3) stagnation. In these three
situations, False convergencemeans that (1) the DE algorithm
is unable to balance between both exploration capability
and local tendency, (2) the DE algorithm favors consider-
ably exploitation due to design of the mutations, (3) the DE

TABLE 8. The algorithmic design status in four convergence scenarios.

algorithm favors considerably exploration due to design of
the mutations, during the search process, respectively. Thus,
it must be noted that the exploration and exploitation abilities
exist in the algorithmic design in case of slow convergence,
but it is unable to balance both of them during the opti-
mization process. However, the exploration capability may be
very weak or does not exist in algorithmic design in case of
premature convergence. Besides, regarding stagnation case,
there is a lack of exploitation tendency or it may be does not
exist in the algorithmic design of mutation. Table 8 describes
these four convergence scenarios.

Actually, there are three possible reasons for false con-
vergence such as (1) inappropriate configurations and/or
improper adaptation schemes used to control the three main
control parameters of DE (NP) population size, (F) Scaling
factor and crossover rate (CR), (2) the mutation strategy may
be either unable to balance both exploration and exploitation
tendency or it favors one of both (exploration or exploitation)
over another one due to its algorithmic design, or (3) both
of them. Thus, the main objective of this section is to give a
clear definition and theoretical explanation to describe these
four scenarios of convergence behavior. Therefore, in order
to accomplish this target, very important two metrics must
be defined. Population diversity metric and success rate of
mutation metric [39]. Besides, the mathematical definitions
for both correct and false convergence must be given.

DPG =
1
NP

cot

√√√√√ NP∑
i=1

∥∥∥∥∥∥xGi − 1
NP

cot
NP∑
j=1

xGj

∥∥∥∥∥∥
2

(66)

SRG =
NSG

NP
(67)

where DPG denotes the diversity of the population at the G
generation. SRG is the success rate of the population, andNSG

denotes the number of successful updates in generation G.
Thus, the diversity of the population for each generation can
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FIGURE 7. Number of cases in which each algorithm provided minimum mean function error on the CEC
2017 functions with D = 10,30,50 and 100.

be measured by the standard deviations of the individuals.
Success rate can be measured by the number of trial vectors
among the entire population that can successfully enter the
next generation as they are better than their parents i.e., the
number of trial vectors that survive to the next generation.

Besides, the correct convergence and false convergence can
be expressed mathematically, respectively, as follows:

Correct convergence is given by

lim
G→GEN

f (x) = f (x∗) (68)

False convergence is given by

lim
G→GEN

f (x) 6=f (x∗) (69)

where G is the generation number, GEN is the maximum
number of generations, f (x) denotes the objective func-
tion value of the best solution (x) obtained by algorithm
in G generation, and f (x∗) is the objective function value
of the well-known global optimum (x∗) of each benchmark
function. Thus, regarding correct convergence scenario, it is
clearly seen from Eq. 68 that as G gets close to the GEN,
the value of the function f (x) gets close to f (x∗), which
means f (x) converges to the true optimal solution. On the
contrary, concerning false convergence, it is clearly seen from
Eq. 69 that as G gets close to the GEN, the value of the
function f (x) does not get close to f (x∗), which means f (x)
does not converge to the true optimal solution.

In order to fully understand and clearly differentiate
between four scenarios, the diversity of the population DPG

and the success rate of the population SRG must be analyzed
for each scenario. Regarding correct convergence, it can be
clearly deduced that from (68) that upon the best so far
solution in G generation gets close to the global optimum
solution, the remaining vectors will be attracted to the best
solution and hence they will be clustered around it within
few generations. Thus, the diversity of population DP will be
gradually decreasing to 0, but SR is larger than 0 as there are
many successful updates for trial vectors due to the attraction

process. On the other hand, slow convergence means that the
maximum number of generations has been reached while the
population has not converged to a fixed point. Thus, there is
neither clustering around the best so far solution nor attrac-
tion effect as there is no best solution found which means
there is still slow continuous improvement for all population.
Accordingly, the values of both metrics DP and SR greater
than 0. Similar to slow convergence, stagnation means that
the maximum number of generations has been reached while
the population has not converged to a fixed point, but the
population is unable to generate better solutions than current.
Hence, the value of DP is greater than 0 while SR is 0. Pre-
mature convergence means that the population has converged
to an inaccurate fixed point while the maximum number of
generations has not been reached, Therefore, the diversity is
completely lost within very few generations which implies
that the values of both metrics DP and SR are 0. Actually,
all vectors are clustered around the local best solution with
zero distance and hence they have been quickly attracted to it
within few generations and no more available updates. Using
both DP and SR metrics, Table 9 presents the four scenarios
and the classification of four convergence scenarios is further
depicted in Figure 8. On other words, based on the values
of DP and SR metrics, it can be deduced from Table 9 and
Figure 8 that if SR is greater than 0 then the convergence
behavior is based on the DP value. If DP is approximately
zero, then it is the correct convergence scenario. Otherwise,
it is the slow convergence scenario i.e., DP is greater than
zero. On the other hand, if SR is approximately zero then
the convergence behavior is based on the DP value. If DP
is approximately zero, then it is the premature convergence
scenario. Otherwise, it is the stagnation scenario i.e., DP is
greater than zero.

Furthermore, to investigate the four scenarios of conver-
gence based onDP and SR, the convergence behavior, DP and
SR graphs (median curves) of AGDE algorithm on 10, 30 and
100-dimensional for some selected test functions are shown
in Figure 9. Note that the median curves of AGDE algorithm
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TABLE 9. The four convergence scenarios with corresponding metrics
values.

FIGURE 8. The classification of four convergence scenarios using DP and
SR metrics.

on 10,30,50 and 100 dimensions for all test functions are
illustrated in the supplemental file (Figure S2).

It can be seen from Figure 9 (a) that DP gradually decreases
to 0, but SR is larger than 0. Thus, it is the correct convergence
scenario. Second, it can be seen from Figure 9 (b) that DP
and SR gradually decrease to a value that is larger than
0 steadily. This phenomenon is called slow convergence.
Third, concerning stagnation scenario, it can be seen from
Figure 9 (c) that DP gradually decreases to a value that is
larger than 0, and then it remains unchanged. Besides, SR also
decreases to close to 0, and then it remains unchanged as well.
Finally, it can be obviously seen from Figure 9 (d) that both
DP and SR reduce to 0 simultaneously. This is the premature
convergence case.

B. CONVERGENCE ANALYSIS FOR ALL ALGORITHMS
In section IV, based on the solution quality provided
by all algorithms, the performance of all mutations has
been evaluated. Furthermore, it has been noted in previous
sub-section V.A that the exploration capability of the muta-
tion can be measured by evaluating the population diversity
during the generations of the optimization process. Besides,
the success rate SR measures the convergence ability of the
mutation i.e., its ability of continuous improvement of trial
vectors during the generations of the optimization process
to reach a better solution. In this subsection, in order to
analyze the superior and inferior performance of all algo-
rithms, a complete analysis of the convergence behavior for
all mutations are presented using aforementioned algorithmic
design status and convergence scenarios classifications.

FIGURE 9. Illustration of correct convergence, slow convergence
stagnation, and premature convergence.
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FIGURE 9. (Continued.) Illustration of correct convergence, slow
convergence stagnation, and premature convergence.

Firstly, Table 10 lists the average and final ranks for all
algorithms across all problems and all dimensions according
to success rate (SR). The best ranks are shown in bold and
the second ranks are underlined. Besides, the final rank of all
algorithms on the CEC 2017 functions is shown in Figure 10.
It can be clearly seen from Table 10 that, regarding final
ranking, IDM gets the first ranking followed by DE/current-
to-rand/1 and DEGD while GBDE was the worst algorithm
as it gets 30th ranking.

In order to analyze and compare all success rates (SR)
provided by all algorithms, the ranking of the algorithms on
the CEC 2017 functions with 10, 30, 50 and 100 dimensions
are given in Figure 11. Firstly, similar to Figure 4 in sub-
section IV.C, it can be observed in Figure 11 that most of
the algorithms perform differently on different dimensions.
Generally, according to the growth of the search-space dimen-
sionality from 10D to 100D, the success rate (SR) of all
algorithms can be classified into four main categories as
depicted in Figure 12.

The first category includes algorithms with excel-
lent success rates (SR) that show outstanding continuous
improvement in the value of their success rates (SR) as the
dimension of the search-space increases i.e., it has a better
rank in 100D than its rank in 10D with continuous improve-
ment. The second category includes algorithms show instable
success rates (SR)and slight diminishes in the value of their
success rates (SR) as dimensions of the functions increases
i.e., it has good rank in 10D with good performance, but its
performance slightly fluctuates with slight deterioration with
30D, 50D, and 100D. The third category includes algorithms
show descent success rates (SR) with complete and/or signifi-
cant deterioration in the value of their success rates (SR)with
the growth of the search-space dimensionality i.e., it has a
better rank in 10D than its rank in 100D with continuous
diminishes. The fourth category includes algorithms show
stable moderate or poor success rates (SR) with insignificant
improvement success rates (SR) with all dimensions and/or

they get the lower ranking in most cases. It can be obvi-
ously shown from Figure 12 that MDE-pBX, ADE, NSDE,
MMS, JADE with no archive, JADE, DEGL, DE/best/3,
DE/best/2 mutations belong to the first category. The second
category includes Triangular, IMMSADE, DEGD mutations.
the third category contains DE/rand-to-best/1, IMDE, IDM,
GPBX, DE/rand-to-current/2, DE/rand-to-best and current/2,
DE/rand/3, DE/rand/2, DE/rand/1, DE/current-to-rand/1,
DE/current-to-best/1, DE/2-opt/2, DE/2-opt/1, AGDE muta-
tions. Finally, TDE, MPADE, GBDE, DE/best/1 mutations
belong to the fourth category. Actually, it must be noted that
not all algorithms that belong to a specific category show the
same amount of improvement or deterioration in the value of
their success rates (SR)with the growth of the search-space
dimensionality. However, they show the same pattern. For
instance, although DE/Current-to-rand/1 and DE/Current-to-
best/1 belong to the third category, they show slight and
considerable deteriorations respectively, in the value of their
success rates (SR) such that DE/Current-to-rand/1 gets 3rd,
3rd, 4thand 6th ranking while DE/Current-to-best/1 2nd,
1st, 8th and 22nd ranking in 10D, 30D, 50D and 100D,
respectively.

On the other hand, regarding the diversity of the popula-
tion (DP), Table 11 lists the average and final ranks for all
algorithms across all problems and all dimensions according
to population diversity (DP). The best ranks are shown in
bold and the second ranks are underlined. Besides, the final
rank of all algorithms on the CEC 2017 functions is shown
in Figure 13. It can be clearly seen from Table 11 that,
regarding final rank, DE/rand/2 gets the first ranking followed
by GBDE and DE/2-opt/2while DE/rand-to-best/1 was the
worst algorithm as it gets 30th ranking.

In order to analyze and compare all diversity of the pop-
ulation (DP) provided by all algorithms, the ranking of the
algorithms on the CEC 2017 functions with 10, 30, 50 and
100 dimensions are given in Figure 14. Firstly, similar to
Figure 11, it can be observed from Figure 14 that most of the
algorithms perform differently on different dimensions. Gen-
erally, according to the growth of the search-space dimension-
ality from 10D to 100D, the diversity of the population (DP)
of all algorithms can be classified into four main categories
as depicted in Figure 15. The first category includes algo-
rithms with an excellent diversity of the population (DP)
that show outstanding continuous improvement in the value
of their diversity of the population (DP) as the dimension
of the search-space increases i.e., it has a better rank in
100D than its rank in 10Dwith continuous improvement. The
second category includes algorithms show unstable diversity
of the population (DP) and slight diminishes in the value
of their diversity of the population (DP) as dimensions of
the functions increases i.e., it has good rank in 10D with
good performance, but its performance slightly fluctuates
with slight deterioration with 30D, 50D, and 100D. The third
category includes algorithms show descent diversity of the
population (DP) with complete and/or significant deteriora-
tion in the value of their diversity of the population (DP) with
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FIGURE 10. The final rank of all algorithms on the CEC 2017 functions overall dimensions according to
success rate (SR).

FIGURE 11. The rank of all algorithms on the CEC 2017 functions with D = 10,30,50 and 100 according to Success Rate
(SR).

the growth of the search-space dimensionality i.e., it has a
better rank in 10D than its rank in 100D with continuous
diminishes. The fourth category includes algorithms show
stable moderate or poor diversity of the population (DP) with
insignificant improvement diversity of the population (DP)
with all dimensions and/or they get the lower ranking in most
cases.

It can be obviously shown from Figure 15 that triangular,
NSDE, MMS, IMDE, GPBX, DEGD, DE/rand/1, DE/best/3,
DE/best/2, DE/2-opt/2, DE/2-opt/1DE/rand/2 mutations
belong to the first category. The second category includes
MPADE, JADE with no archive, AGDE mutations.
the third category contains JADE, IMMSADE, IDM,
GBDE, DE/rand-to-current/2, DE/ rand-to-best and cur-
rent/2, DE/rand/3, DE/current-to-rand/1, DE/current-to-best/
1mutations. Finally, MDE-pBX, TDE, ADE, DE/rand-to-
best/1, DEGL, DE/best/1mutations belong to the fourth cate-
gory. Actually, in the same context with success rate (SR),

it must be noted that not all algorithms that belong to a
specific category show the same amount of improvement
or deterioration in the value of their success rates (SR)with
the growth of the search-space dimensionality. However,
they show the same pattern. For instance, although GBDE
and IDM belong to the third category, they show slight and
considerable deteriorations respectively, in the value of their
success rates (SR) such that DE/Current-to-rand/1 gets 1st,
2nd, 3rdand 3rdranking while IDM 10th, 17th, 21st and 21st
ranking in 10D, 30D, 50D and 100D, respectively.

In fact, it can be obviously seen from Figure 12 and
Figure 15 that most of the algorithms belong to different
categories according to the classifications of SR and DP
Which are considered as empirical verification and practical
validation to the theoretical contradictory aspects between
both population diversity and convergence rate. For instance,
JADE belongs to the first category according to the classifi-
cation of (SR) while it belongs to the third category according
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TABLE 10. Average ranks for all algorithms across all problems and all
dimensions according to success rate SR.

to the classification of (DP). Thus, it means that JADE shows
excellent success rate with continuous improvement while
it shows Descent population diversity with significant dete-
rioration as the dimension of the space increases. On the
contrary, IMDE shows excellent population diversity with
continuous improvement while it shows Descent success rate
with significant deterioration as the dimension of the space
increases.

Finally, in order to accomplish the target of this section,
an empirical investigation of the four scenarios of the con-
vergence behavior for all algorithms is applied. Therefore,
using the error value, DP and SR values of the median run
of all algorithms on10, 30, 50 and 100-dimensional for all
test functions, the four scenarios of convergence behavior are
presented in Table 12. Furthermore, the percentage of cor-

TABLE 11. Average ranks for all algorithms across all problems and all
dimensions according to the diversity of population DP.

rect (C), slow (SL), premature convergence (P) and stagnation
(S) scenarios provided by all algorithms on10, 30, 50 and
100-dimensional for all test functions are shown in Figure 16.

From Figure 16, it can be obviously seen that JADE,
DE/rand-to-best and current/2, trigonometric and GBDE get
the first ranking with the highest percentage of correct con-
vergence, slow convergence, premature convergence, and
stagnation, respectively. Besides, the percentage of four con-
vergence scenarios behavior provided by all algorithms on the
CEC 2017 functions overall dimensions is also presented.

Besides, it can be observed from Table 12 that all algo-
rithms perform differently on different dimensions which
means that the frequency of each scenario changes over the
dimensions. Firstly, the percentage of the correct convergence
of all algorithms is very low due to the difficulty of the
benchmark test functions especially as the dimension of the
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TABLE 12. The frequency and overall percentage of each convergence scenario provided by all algorithms on the CEC 2017 functions overall.

problem increases. Secondly, for the remaining three scenar-
ios, in order to identify the common scenario that is followed
for each algorithm, the following rule based on the median
values is applied. By excluding the percentage of the correct
convergence scenario, if the percentage of one scenario is
greater than the sum of the percentages for the other two sce-
narios or it represents at least 50% of total percentages of the
three scenarios, this scenario is considered the most typical
one for this algorithm i.e., it represents the trend of the search
mechanism of this algorithm. Otherwise, this algorithm
shows mixed convergence scenarios during optimization pro-
cess with no obvious trend for a specific scenario. Conse-
quently, based on the percentages of all scenarios provided by
all algorithms, it can be clearly observed from Table 12 that
the algorithms can be classified into four groups as depicted
in Figure 17. The first group includes all algorithm that shows
slow convergence behavior which are AGDE, Triangular,
DE/rand-to-current/2, JADE with no archive, MDE-pBX,
DE/ rand-to-best and current/2, DEGD, GPBX, IDM, MMS,
NSDE, DE/current-to-rand/1 and DE/rand/3. The group of
premature convergence behavior contains DE/rand-to-best/1,
TDE, DE/best/1 and DE/best/3. Regarding the stagnation

behavior group, it includes MPADE, GBDE, IMDE, IMM-
SADE, ADE, DE/2-opt/2, DE/rand/1 and DE/rand/2.Finally,
JADE, DEGL, DE/2-opt/1, DE/best/2 and DE/current-to-
best/1 belong to mixed convergence behavior group. In fact,
regarding the first group, according to algorithmic design sta-
tus in Table 8 and results in Table 12, all these mutations suf-
fer from imbalance both global exploration ability and local
exploitation tendency i.e., they are unable to reach the optimal
solution within the maximum number of function evalua-
tions (FEs). Nonetheless, the advantage of this group is the
high success rate of improving the quality of solutions. There-
fore, all these mutations are reliable and can be lonely used to
design effective and efficient DE algorithm with satisfactory
performance. However, further, improvement is a must to
reach more accurate solutions to the global optimal solution.
One possible suggestion is to adjust the parameters of muta-
tion itself if exist. Another suggestion is to find manually or
adaptively the optimal settings of the control parameters NP,
CR and F to reach the basin of global optimal solution within
the required maximum number of function evaluations (FEs).
In the same context, the main drawback of the fourth group
is that they show unstable pattern of convergence behavior
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FIGURE 12. The classification of all algorithms according to their Success rate (SR) as the dimension of the space increases.

FIGURE 13. The mean rank of all algorithms on the CEC 2017 functions overall dimensions according to the diversity of population (DP).

although they still have a good tendency for slow convergence
scenario. Therefore, the performance of these mutations can
be easily further improved by following the same sugges-

tions for the first group which is improving the mutation
and/or control parameters to at least increase its tendency
for slow convergence scenario which in turn decreases the
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FIGURE 14. The rank of all algorithms on the CEC 2017 functions with D = 10,30,50 and 100 according to the diversity of population (DP).

FIGURE 15. The classification of all algorithms according to their diversity of the population (DP) as the dimension of the space increases).

cases of premature convergence and stagnation. For instance,
JADE algorithm shows mixed convergence scenarios due to
switching off its adaptive schemes of CR and F. Therefore,

it can be deduced that the outstanding performance of JADE
is mainly due to embedded adaptation mechanisms for CR
and F parameters.
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FIGURE 16. The percentage of four convergence scenarios behavior provided by all algorithms on the CEC 2017 functions overall dimensions.

On the other hand, concerning second and third group,
according to Table 9, the success rate of these mutations in
both situations is approximately zero. From Table 8, the pre-
mature convergence group has excessive exploitation ten-
dency with very bad diversity while the stagnation group
has excellent exploration ability with complete inability of
improving solutions. Therefore, all these mutation strategies
are not qualified enough to be lonely used in construct-
ing an effective and efficient DE algorithm because their
search mechanism must be repaired. The main idea behind
repairing is that exploration ability must be added to pre-
mature convergence group and exploitation tendency must
be added to stagnation group i.e., the search mechanism
of each group can be balanced by adding its complement
search ability. In fact, there are many possible suggestions to
accomplish this target. Firstly, themathematical expression of
the mutation must be analyzed. For instance, it can be obvi-
ously seen from Table 12 and Figure 17 that the DE/best/1,
DE/best/2 and DE/best/3 mutation strategies show fluctuate
premature convergence behavior i.e., it is high, low and mod-
erate, respectively. As a matter of fact, increasing difference
vectors implies to higher diversity. Thus, it is expected that
DE/best/2 and DE/best/3 mutation strategies show moderate
and low premature convergence behavior, respectively. How-
ever, the effect of the best vector on the performance of these

mutations is higher than the effect of the difference vector(s).
Thus, one possible suggestion to improve these mutations is
to be mathematically formulated again as a linear combina-
tion between the best vector and the other difference terms
and set the small value to the coefficient of the best vector and
large value to the coefficient of difference vectors to reduce
the excessive exploitative capability and increase the explo-
ration ability. Furthermore, it can be clearly deduced from
Table 12 and Figure 17 that the performance of DE/rand/1,
DE/rand/2, and DE/rand/3 is considerably enhanced as the
number of difference vectors increases and the base vector
is random. Therefore, the second suggestion for repairing
is by combining different mutation strategies with different
features together to complement each other. Finally, to over-
come the shortcoming of these mutations, hybridization with
other evolutionary algorithms, local search operators is one
alternative possible solution.

C. THE RELATIONSHIP BETWEEN THE THREE METRICES
In fact, in order to investigate the relationship between the
three metrics diversity of the population, success rate and the
quality of solution, the ranking of all algorithms according
to the three metrics is shown in Figure 18. From Figure 18,
as mentioned previously, it is obviously deduced that there
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FIGURE 17. The classification of all algorithms according to their most typical convergence behavior scenario.

is contrary relationship between success rate and diversity
of population such that they move in opposite directions
for all algorithms with exception to DE/rand/3, DE/best/1,
AGDE, DE/rand-to-current/2 and trigonometric mutations
they get almost the same rank with both metrics. Besides,
the performance of all DE-based algorithms is highly depen-
dent on these two metrics. Thus, the quality of solution is
significantly affected by population diversity and success
rate. Accordingly, it would be greatly beneficial to derive the
mathematical relationship between the quality of solution as
the dependent variable and the diversity of population and
success rate as independent variables.

Therefore, in order to derive the mathematical relationship
between the quality of solution (QS) as dependent variable
and the diversity of population (DP) and success rate (SR)
as independent variables, the sum of median function errors
(FES), the sum of median diversity of population and sum of
median success rates across all problems of all algorithms in
D = 10 according to these three metrics were considered.
Three outlier values provided by the three algorithms

IMMSADE, GBDE and trigonometric were removed. Curve
fitting tool in MATLAB R2014a was used to fit a polynomial
model of this relationship. Figures 19, 20, and 21 demonstrate
the pattern of the scatter diagrams between the quality of
solution (QS) as dependent variable and the diversity of popu-
lation (DP) and success rate (SR) and between the diversity of
population (DP) and success rate (SR), respectively. The rela-

tionship seems linear regarding (DP) and nonlinear regarding
(SR). Besides, there is nonlinear relationship between (DP)
and (SR). The generated model was:

QS = a1+ a2 ∗ DP+ a3∗SR+ a4 ∗ DP ∗ SR

+ a5∗SR ∧ 2+ a6 ∗ DP ∗ SR ∧ 2+ a7 ∗ SR ∧ 3

+ a8 ∗ DP∗SR ∧ 3+ a9 ∗ SR ∧ 4

Estimated values of coefficients a1-a9 are shown in Table 13.
The goodness of fit for this model was (R-square: 0.9677,
Adjusted R-square: 0.9533, and RMSE: 665.5). This means
that the estimated mathematical model is highly fitted to
predict future data of quality of solution when the sum of the
median values of (DP) and (SR) for D= 10 is given. Note that
D= 10 is considered as a case study. Figure 22. Illustrates this
model.

VI. RECOMMENDATIONS, INSIGHTS, AND GUIDELINES
Obviously, from the above results, comparisons and discus-
sion, the following recommendations, insights, and guide-
lines must be taken into consideration when interested
researchers would like to design effective and efficient DE
algorithm. To be more precise and for a better explanation,
recommendations, insights, and guidelines will be discussed
form two directions: (1) quality of solution which is discussed
in section 4, (2) convergence behavior which is discussed in
section 5.
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FIGURE 18. The ranking of all algorithms according to the three metrics success rate, diversity of population and quality of solution.

TABLE 13. Estimated values of coefficients a1− a9 for the model
representing the relationship between QS,SR, and DP.

Firstly, regarding the quality of solution, which reflect
the effectiveness of all evolutionary algorithms (in general)
the DE-based algorithm (special case). The following rec-
ommendations, insights, and guidelines must be taken into
consideration:

1) AGDE algorithm is of better searching quality, effi-
ciency, and robustness for solving small, moderate,
and high dimensions unconstrained global optimiza-
tion problems. It is clear that AGDE algorithm per-

FIGURE 19. Scatter plot for the diversity of population (DP) and quality of
solution (QS).

forms well and it has shown its outstanding superi-
ority with separable, non-separable, unimodal, multi-
modal, hybrid and composition functions with shifts
in dimensionality, rotation, multiplicative noise in fit-
ness and composition of functions. Consequently, its
performance is not influenced by all these obstacles.
Contrarily, it greatly keeps the balance the local opti-
mization speed and the global optimization diversity
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FIGURE 20. Scatter plot for success rate (SR) and quality of solution (QS).

FIGURE 21. Scatter plot for the diversity of population (DP) and success
rate (SR).

FIGURE 22. The fitted polynomial surface of the three metrics quality of
solution (QS), diversity of population (DP) and success rate (SR).

in challenging optimization environment with invariant
performance. Besides, its performance is superior and
competitive with the performance of the recent and
state-of-the-art well-known algorithms.

2) Obviously, the outstanding performance and great suc-
cess of AGDE is due to the utilization of the incorpo-
ration of the objective function value in the mutation
scheme. To be more precise, the fully directed pertur-
bations in the proposed mutation of AGDE resembles
the concept of the gradient as the difference vector
is directed from the worst vectors to the best vectors.

Thus, it is considerably used to explore the landscape
of the objective function being optimized in different
sub-region around the best vectors within search space
through optimization process [52].

3) Consequently, it can be deduced that by utilizing and
sharing the best and worst information of the DE
population, the proposed fully directed mutation of
AGDE balances both global exploration capability and
local exploitation tendency. However, it must be noted
that AGDE, triangular, IDM, ADE and trigonomet-
ric get 1st, 5th, 21st, 25th and 29th ranking accord-
ing to Friedman test. Therefore, although all these
algorithms belong to fully directed mutation category,
AGDE and triangular algorithms perform well and
show outstanding and competitive performance com-
pared with other algorithms in different categories.
However, the remaining algorithms IDM, ADE, and
trigonometric show poor performance on the majority
of functions. Thus, it is not guaranteed that all fully
directed mutations will show superior performance.
It depends on the design of the mutation itself. By the
way, it is noteworthy tomention that the idea of directed
mutation scheme was firstly proposed by Mohamed,
Sabry and Khorshid [49] as a novel contribution in
designing ADE algorithm.

4) DE/rand-to-current/2 and DE/rand-to-best and cur-
rent/2 get the second and third ranking although they
belong to random and directed mutations groups,
respectively. Furthermore, they maintain effectively
the balance between the global exploration and local
exploitation abilities during the search process and
they outperform JADE in D = 10,30 and 50. Actu-
ally, it must be noted that the design of these two
mutations is better than another basic, classical and
state-of-the-art mutations i.e. mutations with standard
DE/X/Y/Z notation where DE denotes differential evo-
lution, X denotes the target or base vector, Y denotes
the number of randomly selected difference vectors and
Z indicates type of crossover operator 23]. Really, these
two mutations are highly recommended for further
improvement.

5) In general, although JADE shows good performance
with continuous improvement as the dimension of
the functions increases, it is ranked fourth. Moreover,
it seems that JADE is significantly deteriorated with-
out archive as it gets 12th ranking which proves that
the concept of the archive has the main effect on the
performance of mutation of JADE. Accordingly, this
concept must be widely used, and it must be enhanced.

6) Generally, the ranking of top ten algorithms are as fol-
lows: AGDE, DE/rand-to-current/2, DE/rand-to-best
and current/2, JADE, triangular, DEGD, DE/rand/3,
NSDE, DE/2-opt/1, and MPADE. it can be clearly
seen that 7 algorithms out of 10 belong to directed
mutation group while the others 3 algorithms belong to
random group algorithm. Besides, out of seven directed
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algorithms, 2 algorithms (AGDE and Triangular) are
fully directed while the other five algorithms (DE/rand-
to-best and current/2, JADE, NSDE, DE/2-opt/1, and
MPADE) belong to partially directed group. Thus,
it implies that the incorporation of the objective func-
tion value in the design of mutation scheme is better
than pure randomness although bothmust be improved.

7) Regarding the remaining mutations in the random
group that are not included in top ten ranked mutations,
it is not recommended to be used alone in designing
DE algorithm because they are unable to maintain the
balance between the population diversity and conver-
gence speed. Some of them keep diversity but with slow
convergence speed i.e., it favors exploration while the
others are exploitative mutations i.e., it loses diversity
but with fast convergence speed. Thus, it must be hybrid
with one or more top ten mutations.

8) Concerning probabilistic group, it includes just one
mutation, GBDE with the poorest performance as it
gets the last ranking. Accordingly, it is highly rec-
ommended to pay more attention and much research
effort is needed to repair this mutation first and then to
improve this research direction.

9) Generally speaking, refereeing to the empirical taxon-
omy in sub-section IV.C.1, it is preferred to improve the
mutations in the second category, which shows unsta-
ble performance as dimension increases, by combing
them with the mutations form the first category which
shows outstanding improvement as dimension of the
search-space increases. Thus, it is recommended to
develop new hybridization using these two families of
mutations.

10) Finally, all mutations belong to third and fourth cate-
gories which show significant deterioration as dimen-
sion of the search-space increases or with all dimen-
sions, they need further investigation for possible
repair. In fact, most of these mutations suffer from
premature convergence and/or stagnation in addition
to the curse of dimensionality i.e., their performance
is significantly deteriorated as the dimension of the
search space increases. Besides, on the other hand, all
mutations belong to first and second categories show
excellent and satisfactory performance as the dimen-
sion of the search space increases. However, not all
these mutations show the same convergence behavior
i.e., they may have different merits andmay suffer from
different weakness. Therefore, it is suggested that the
diversity of population and success rate and conver-
gence speed of these mutations must be analyzed to
proposing a novel idea for repairing for the first case or
suggest an appropriate modification or improvements
for the second case.

Secondly, regarding the Convergence behavior, which
reflects the efficiency of all evolutionary algorithm (in gen-
eral) and the DE-based algorithm (special case). The follow-

ing recommendations, insights, and guidelines must be taken
into consideration:

1) In fact, the success of the population-based search
algorithms is based on balancing two contradictory
aspects: global exploration ability and local exploita-
tion tendency [49]. Actually, the effectiveness and effi-
ciency of any population-based algorithm are measured
by its capability of producing a high-quality solution
with high convergence rate, respectively. Moreover,
the mutation scheme plays a vital role in DE search
ability to produce a high-quality solution with high
convergence rate.

2) However, until now, correct convergence scenario can
be theoretically described but practically it cannot be
consistently achieved over all runs and all dimensions
with all benchmark functions due to its difficulty espe-
cially as the dimension of the search-space increases.
Thus, slow convergence scenario is virtually consid-
ered as the most appropriate objective when designing
DE-based algorithm.

3) Besides complete avoiding of the possible occurrence
of both premature convergence and stagnation scenar-
ios when solving benchmark functions with different
dimensions or even real-world problem or application
is considered impossible or at least it is a very rare
event. However, minimizing its frequent occurrence is
a must.

4) The diversity of population and success rate are two
contradictory aspects. Therefore, the eminent perfor-
mance of any evolutionary algorithm is based on bal-
ancing both of them during the optimization process.
Thus, it is impossible to find one algorithm get 1st rank-
ing in both metrics. From Table 10 and Table 11, IDM
get 1st in success rate metric, while DE/rand/2 gets
1st in the diversity of population metric, respectively.
On the contrary, it is possible to find one algorithm
get the same ranking in both metrics especially when
it shows very weak performance such as DE/best/1 get
29th ranking and trigonometric algorithms get 28th

ranking in both metrics, respectively, from Tables X
andXI. Besides, they get 28th ranking and 29th ranking
in quality of solution ranking according to Table 2,
respectively.

5) Besides, it is not guaranteed for any algorithm that
being 1st in one of these aspects will greatly improve
the performance as it may significantly deteriorate the
other aspect. For instance, regarding the quality of solu-
tions, the top four algorithms are AGDE, DE/rand-to-
current/2 and DE/rand-to-best and current/2 and JADE,
respectively. Besides, IDM and DE/rand/2 get 21st and
27th ranking, respectively. Regarding diversity of pop-
ulation and success rate, from Table 10 and Table 11,
it can be observed that none of top four algorithms get
first ranking in the diversity of population or success
rate. AGDE, DE/rand-to-current/2 andDE/rand-to-best
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and current/2 and JADE get 14th, 11th, 10th, and
15th ranking in success rate (SR) metric and they
get 15th, 10st, 12th and 26th ranking in the diversity
of population DP) metric. On the contrary, IDM and
DE/rand/2 get 1st and 25th ranking in success rate
metric, respectively, while they get 18th and 1st in
diversity metric, respectively.

6) Accordingly, Like the classification of all algorithms
according to their performances (the solution quality
provided) as the dimension of the space increases,
there are two classifications of all algorithms according
to their success rates and population diversity as the
dimension of the search space increases. The position
of most algorithms is not the same in all classifica-
tions. For instance, JADE belongs to the first cate-
gory according to the classification of (SR) while it
belongs to the third category according to the clas-
sification of (DP). Thus, it means that JADE shows
excellent success rate with continuous improvement
while it shows Descent population diversity with sig-
nificant deterioration as the dimension of the space
increases.

7) However, in above mentioned three classifications of
mutations according to their performance success rate
and diversity, it must be taken into consideration that
not all mutations that belong to a specific category
show the same pattern or the amount of improvement
or deterioration with the growth of the search-space
dimensionality. For instance, according to success rate
classification, although GBDE and IDM belong to the
third category, they show slight and considerable dete-
riorations respectively, in the value of their success
rates (SR) such that GBDE gets 1st, 2nd, 3rdand 3rd
ranking while IDM 10th, 17th, 21st and 21st ranking
in 10D, 30D, 50D, and 100D, respectively.

8) All mutations belong to slow convergence scenario and
mixed convergence scenario categories are reliable and
can be lonely used to design effective and efficient
DE algorithm with satisfactory performance. However,
further, improvement is a must to reach more accurate
solutions or very near solution to the global optimal
solution. Therefore, the performance of thesemutations
can be easily further improved by finding manually or
adaptively the optimal settings of the mutation param-
eter and/or control parameters NP, CR, F.

9) On the other hand, all mutation strategies belong to pre-
mature convergence scenario and stagnation scenario
categories are not qualified enough to be lonely used
in constructing an effective and efficient DE algorithm
because their search mechanism must be repaired.
There are three directions for possible repair such
that (1) the mathematical expression of the mutation
must be analyzed, (2) combining different mutation
strategies with different features together to comple-
ment each other must be empirically investigated,
(3) hybridization with other evolutionary algorithms,

local search operators are highly recommended as one
alternative possible solution.

10) Besides, according to the convergence behavior anal-
ysis, all mutations belong to second and third cate-
gories (Premature convergence and stagnation), need
further investigation for possible repair. Besides, all
mutations belong to first and fourth categories (slow
convergence and mixed convergence scenarios), need
further improvement but they can still be used solely
without involving other mutations to perform the opti-
mization process. However, taken into consideration
that not all algorithms that belong to a specific category
provided similar quality of solutions i.e., for any two
algorithms A and B, they may get the same percentages
of convergence scenarios but one of them may produce
better solution quality than the other. In other words,
it may prematurely converge, or it can be stagnated very
near to the global optimal solution. Alternatively, one
of them may be slowly converged to a better solution
than the other. Thus, the quality of solution provided
by many algorithms that show the same convergence
scenario must be checked to consider which algorithm
is better than the other.

Altogether, it is recommended that the two contradictory
aspects the diversity of population (DP) and the conver-
gence rate (SR) must be taken into consideration in evaluat-
ing and comparing two or more algorithms in addition to the
solution quality to perform a complete assessment.

VII. CONCLUSION
This study represents a significant step and a considerable
trend to outline the progress of existing different mutation
schemes of DE algorithm that have been developed to solve
global optimization problems. In this paper, comprehensive
review of 30 DE novel mutations and 6 DE novel concepts
that were proposed between 1995 and 2020 is proposed. This
review is based on new theoretical taxonomy. The proposed
taxonomy classifies all novel contributions of DE mutations
into two main areas (1) Novel Mutation and (2) Novel con-
cept. In the first area, an innovative mutation scheme is
added to basic DE mutation. However, regarding the second
area, a new technique or method is proposed to enhance
the selection process of the individuals to form the mutation
scheme. Then, based on the structure of the novel muta-
tion, it can be further classified into three groups: (a) Ran-
dom, (b) directed, and (c) probabilistic. Then, the directed
mutation can be classified into two main categories: (1)
partial directed and (2) full directed. Actually, it is note-
worthy to mention that this is the first research paper that
proposes a new taxonomy to classify the contributions of DE
mutations.

The performance of the proposed DE-based algorithms
using these mutations was tested on 29 benchmark functions
proposed in the CEC 2017 special session on real-parameter
optimization. Then, based on an overall performance and
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comparison between all mutations over all dimensions,
an empirical taxonomy is also provided. This taxonomy clas-
sifies all algorithms into four categories based on the per-
formance of algorithms with the growth of the search-space
dimensionality from 10D to 100D. the first category includes
algorithms with excellent performance that show outstanding
improvement as the dimension of the search-space increases.
The second category includes algorithms show slight dimin-
ishes and instable performance as dimensions of the functions
increases. The third category includes algorithms show com-
plete and/or significant deterioration with the growth of the
search-space dimensionality. The fourth category includes
algorithms show almost the same moderate to poor perfor-
mancewith insignificant improvement in all dimensions. Fur-
thermore, in order to statistically analyze the performances
of all algorithms, two non-parametric tests (the Friedman
test and Wilcoxon’s test) are used with the significance level
of 0.05.

As a summary of results, the performances of the AGDE
algorithm were statistically superior to and competitive with
other recent and well-known state-of-the-art algorithms in
the majority of functions and for different dimensions. Fur-
thermore, DE/rand-to-current/2 and DE/rand-to-best and cur-
rent/2, JADE and triangular get 2nd, 3rd, 4th, and 5th places,
respectively, and they show outstanding performance on the
majority of functions. Besides, DEGD, DE/rand/3, NSDE,
DE/2-opt/1 and MPADE get 6th, 7th, 8th, 9th, and 10th
places, respectively, with promising solutions and competi-
tive performance. Furthermore, following to theoretical tax-
onomy, 7 algorithms out of 10 belong to directed mutation
group while the others 3 algorithms belong to random group
algorithm which confirms that incorporation of objective
function value in designing mutation scheme is better than
pure randomness.

On the other hand, according to empirical taxonomy,
AGDE, JADE, GBPX, and MPADE show perfect perfor-
mance with continuous improvement as the dimension of
the functions increases while NSDE, DE/2-opt/1, DEGD,
IMDE, DE/rand/1 and MDE-pBX algorithms show com-
plete deterioration as dimension increases. Besides, the con-
vergence behavior of top ten algorithms is also analyzed.
Then, the superior performance of all algorithms is presented.
On the other hand, the theoretical background, and the tax-
onomy of the convergence behavior of population-based-
algorithm (general case) and DE algorithm (special case) are
discussed. Besides, based on the results provided by all muta-
tions, numerical experiments, and complete analysis of the
convergence behavior for all mutations are presented using
novel algorithmic design status and suggested convergence
scenarios classifications which are based on the success rate
and population diversity metrics.

Finally, recommendations, guidelines, insights, and
suggestions for experienced practitioners and interested
researchers in designing and developing effective and effi-
cient DE algorithms to address various optimization problems
in different fields are discussed.

Overall, based on results, tests, comparisons, and discus-
sion, about 15 mutations out of 30 are very useful in solving
different types of optimization problems due to its correct and
slow convergence with all dimensions. Meanwhile, the others
are not recommended to be used alone in designing DE
algorithm. In fact, most of these mutations suffer from false
convergence which may be classified as premature conver-
gence and/or stagnation or even mixed convergence behavior
in addition to the deterioration of performance as dimension
increases. Thus, analysis of population diversity, success rate
and convergence speed of mutation is a must to suggest
an appropriate modification or proposing a novel idea for
repairing by identifying the cause of defective or inefficiency.
However, without these mutations, the innovation process
might have been stopped and the top and successful mutations
might not have been proposed. Finally, future research stud-
ies must focus on applying and experimentally investigate
the proposed recommendations, insights, and guidelines to
continue improving this research field. Furthermore, Future
research studies may focus on applying these algorithms to
solve constrained, multi-objective and large-scale benchmark
optimization problems. It is highly noted that the empirical
analysis of this study may differ on another benchmark
set according to no-free-lunch theorem.
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