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ABSTRACT Anomaly detection in videos is challenging due to the scarcity and variance in positive
samples. Current anomaly detection methods can be categorized into reconstruction models and future
frame prediction-based models. However, reconstruction models might be exceptionally adapted to abnor-
mal events due to the learning capacity and generalization ability of deep neural networks, whereas
prediction-based methods can be sensitive to noise. In this study, we propose an anomaly detection model
based on the latent feature space, which combines advantages from both sides. We argue that the constraints
in the latent feature space can promote reconstruction; moreover, the optical flow is also considered to intro-
duce temporal information.We use SPyNet for accurate and efficient optical flow estimation.We extensively
validate our method on the UCSD Ped1, UCSD Ped2, CUHK Avenue, and ShanghaiTech datasets. The
results demonstrated the feasibility of the proposed method and the benefit of utilizing information in the
latent feature space.

INDEX TERMS Anomaly detection, GAN, latent feature vector, SPyNet.

I. INTRODUCTION
Video anomaly detection is an important research field in
computer vision. Typically, samples with normal behavior
represent the majority of the dataset, whereas only limited
abnormal samples are available. The imbalance of sam-
ples, as well as the variance in abnormal behaviors and
the complexity of monitoring scenarios, lead to difficulties
in anomaly detection. Normally, deep learning models are
trained in a supervised manner, which requires considerable
annotated data and computing resources. However, this is not
always feasible in the anomaly detection field.

Therefore, some studies considered anomaly detection
based on reconstruction. Specifically, the model is trained
with only normal samples for the reconstruction task. Various
methods have been proposed to enhance the reconstruc-
tion. Reference [1] trained a fully convolutional autoen-
coder with manually annotated temporal and spatial data,
and anomaly detection was based on reconstruction loss.
Reference [2] used time-coherent sparse coding to encode
two adjacent frames with similar reconstruction coefficients,
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thereby reducing the number of calculations, optimizing,
and accelerating anomaly detection. In this type of method,
the anomaly is recognized by monitoring the reconstruction
error. Since the model is trained with normal samples only,
it is expected to have high loss when anomalous samples are
presented. However, due to the high learning capacity and
the generalization ability of a convolutional neural network,
it might fit abnormal events unexceptionally, leading to fail-
ure in anomaly detection.

Different from the reconstruction-based methods, the
future frame prediction model compared the predicted frame
with the real frame for anomaly detection. To realize future
frame prediction in normal samples, GANs are usually used
to enhance the predictive ability [3]–[10]. Moreover, con-
straints in motion and gradient are also proven effective.
Reference [11] proposed a framework based on future frame
prediction to detect anomalies. However, the future frame
prediction method can be sensitive to noise and perturbation,
especially in scenes with illumination changes, leading to
inferior robustness in anomaly detection.

The double U-net [12] structure used in [13] has achieved
good experimental results. In the reconstruction experiment,
we found that although the U-net structure can recognize the
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FIGURE 1. The pipeline of our method.

multiscale distribution in the image space, the low-latitude
information of the image cannot be fully recognized. Inspired
by the literature [11], [13], this paper proposes an anomaly
detection model based on latent feature constraints. The
model combines the advantages of the reconstruction method
and the future frame prediction method. At the same time,
it minimizes the reconstruction error of the potential feature
vector in the image so that the global information can be more
fully identified and reconstructed. In addition, the motion
constraint in the previous literature uses the FlowNet [14]
optical flow method. In our method, we use SPyNet [15]
to constrain the predicted frame to be consistent with the
ground truth. Since SPyNet is a pyramid structure, the model
structure is smaller and more straightforward, only 4% of
FlowNet, and its accuracy and calculation speed are better
than FlowNet.

The frame of our method is shown in Figure 1. The
main contributions of this paper are as follows: (1) An
anomaly detection model based on latent feature con-
straints is designed, which combines the advantages of
prediction-basedmethods and reconstruction-basedmethods.
(2)We use SPyNet for accurate and efficient optical flow esti-
mation, which enhances the reconstruction and future frame
predictionmodules. (3) The proposedmethod is validated and
compared with several competingmethods onmultiple public
datasets, demonstrating the effectiveness of the utilization
of constraints in the latent feature space and optical flow in
anomaly detection.

II. RELATED WORK
A. TRADITIONAL ANOMALY DETECTION
In the past, the anomaly detection field usually adopted
three types of methods, including feature extraction-based
methods, classification-based methods and clustering-based
methods, and sparse reconstruction-based methods.

The feature extraction-based method manually designs
a description of a video. For example, in a crowd scene,
themoving speed of a target can be considered. Other descrip-
tions were also used in the literature. For example, [16]
used optical flow as an effective target motion description
feature. Reference [17] used context information to use
space-time blocks as basic events. Many pieces of literature

used different features for anomaly detection. Some docu-
ments used features such as target position, target contour,
and target trajectory [18]–[21].

The literature [22] used various features to express the
essential events jointly and then used the multicore learning
method to train the classifier for abnormal event detection.
The literature [23] defined anomalies as having local tem-
poral and spatial features. The distance between the normal
video and the test video K-nearest neighbors (K-NN) is used
to calculate the anomaly score. The literature [24] proposed
an algorithm for trajectory clustering, which clustered the
detected objects’ motion trajectories and then distinguished
between normal behavior and abnormal behavior according
to the different degrees of trajectory clustering.

Sparse Representations. The usual practice for abnormal
event detection is to build a normal event dictionary. The
criterion for judging whether the event is abnormal is to use
the weighted sum of the reconstruction error and the sparse
constraint of the solution coefficient as the objective function
and calculate whether the function’s minimum value exceeds
a predefined threshold. The literature [25] treated anomalous
event detection as a low-rank matrix reconstruction problem
and decomposed each column of thematrix with low rank and
then reconstructed it. A threshold was defined based on the
reconstruction error for anomaly detection.

B. RECONSTRUCTION-BASED METHODS
Deep neural networks can autonomously learn to express
features from images and videos [26]. Researchers no longer
need to spend much time and energy manually labeling data,
bringing a high degree of convenience and speed to the field
of anomaly detection research. The reconstruction method
trains the model on a given normal behavior sample and
lets the model generate images that are as consistent as
possible with the normal sample. When testing the model,
the abnormal event samples that have not been trained are
input, and the reconstruction error is relatively large. Con-
versely, when inputting normal behavior samples, the recon-
struction error value is relatively small. This distinguishes
abnormal frames from normal frames [1], [3]. Reference [27]
improved MemAE, a self-encoder, which was reconstructed
by querying related memory items. During the training phase,
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the memory content was constantly updated, and elements
representing normal sample data were encouraged. In the test
phase, thememory content was fixed, making themodel more
distinguishable between normal and abnormal frames. Refer-
ence [28] used CNN for appearance coding, and ConvLSTM
memorized motion information. Combining the two modules
with the ConvLSTM-AE autoencoder can well reconstruct
normal frames. Reference [29] designed a reconstruction
structure of the appearance decoder and amotion decoder that
shares an encoder by learning the correspondence between
the appearance of the target and its related motion.

C. PREDICTION-BASED METHODS
Due to the rapid development of reconstructionmethods, their
learning ability is very strong. Sometimes, they can achieve a
good reconstruction of abnormal frames and obtain smaller
reconstruction errors to make the system misjudge. There-
fore, anomaly detection methods based on predicting future
frames are attracting attention. Because predicting future
frames trains and learns from consecutive frames in the video,
the motion characteristics and appearance characteristics of
the predicted frames and the ground truth are minimized
through some constraints. We Judge things beyond the fore-
cast as abnormal. Therefore, based on the prediction method,
it is expected that the reconstruction error of abnormal frames
increases and the accuracy of abnormal detection is proven.
Reference [30] trained a convolutional network to predict
future frames from video sequences and proposed three dif-
ferent feature learning strategies. This research promoted
future frame prediction research. Reference [31] proposed a
spatiotemporal autoencoder, which learns spatiotemporal fea-
tures through three-dimensional convolution and introduces
a prediction loss to generate future frames. Reference [11]
proposed for the first time a method for predicting future
frames based on U-net’s generation of confrontation net-
work structure, which is a benchmark for predicting future
frame anomaly detection. The method in [13] is based on the
improvement of [11], which connects the prediction module
and the reconstruction module in series.

III. ANOMALY DETECTION BASED ON LATENT FEATURE
CONSTRAINTS
According to the previous introduction, on the one hand,
anomaly detection based on the reconstruction method is a
network structure with strong modeling ability and strong
generalization ability. Nevertheless, with such a powerful
ability, it is easy to reconstruct abnormal frames. The recon-
struction error of the abnormal frame is not large. On the
other hand, anomaly detection based on predicting future
frames attempts to improve the defects of the reconstruction
method. It defines the unexpected event as an abnormal event,
inputs consecutive frames, and, through some constraints,
forces the future frames to be consistent with the ground truth.
In the experiment, we found that if we add Gaussian noise to
the training samples and test samples, the AUC value of [11]
drops faster. Its anti-noise ability is poor. It is impossible to

obtain an accurate reconstruction error value for the test video
with considerable noise, which easily causes misjudgment
of normal frames. Thus, it is not competent for anomaly
detection in more complex monitoring scenarios.

The U-net network structure in the reconstruction module
does not consider the factors of the potential feature vector of
the reconstructed frame [13], which makes the reconstruction
result not as expected.

In summary, this article combines the prediction module
and the reconstruction module in the generative adversarial
network training framework and imposes latent feature con-
straints and SPyNet constraints in the reconstruction module,
minimizes the reconstruction error value of the image and
latent feature vectors on the reconstructed frame, which helps
the model learn according to the normal distribution and
completes better reconstruction work. The model structure of
this article is introduced as follows.

A. STRUCTURE DESCRIPTION
Figure 1 shows the entire anomaly detection model. The
whole model contains three parts: the prediction module,
the reconstruction module, and the generative adversarial
network module.

1) FUTURE FRAME PREDICTION MODULE
The prediction module is a U-net network with input frames
F = (F1,F2, · · ·Ft ) to generate an intermediate frame F̂p.
F̂p contains some vital information in the prediction module.
Figure 2 shows the U-net network structure [12], [13]. After
adding a layer of layers, the convolution and deconvolution
kernel size is 3 × 3, and the size of the maximum pooling
layer is set to 2× 2. We adjust the shape of all frames in the
datasets to 256× 256.

FIGURE 2. U-net network structure.

2) RECONSTRUCTION MODULE
The reconstruction module encodes and reconstructs the
frame input sequence, which can be used for future frame
prediction F̂t+1.

We use the U-net structure to reconstruct and retain the
multiscale distribution information, minimize the distance
between F̂t+1 and the ground truth under the constraints of
latent features, and F̂t+1 conforms to the normal distribution

68110 VOLUME 9, 2021



Y. Qiang et al.: Anomaly Detection Based on Latent Feature Training in Surveillance Scenarios

learning of the ground truthFt+1. Themotion information can
also be better reconstructed under the constraints of SPyNet.
In addition, we also used other constraints. The structure of
the latent feature encoder is shown in Figure 3. The encoder
reads the input frame through the convolutional layer, batch
norm, and leaky ReLU activation. F̂t+1 and Ft+1 are com-
pressed into latent feature vectors o and ô, respectively.

FIGURE 3. The structure of the latent feature encoder.

3) GAN MODULE
The prediction module and the reconstruction module form
the generator. D in Figure 1 is the discriminator, and the
role of D is to compare the reconstructed frame F̂t+1 with
the ground truth Ft+1 to determine whether the input is
real or fake. The discriminator structure refers to the patch
discriminator [32].

B. LOSS FUNCTIONS
Therefore, the entire structure needs to be carefully designed
with the loss function. The following loss functions are com-
bined into an objective function to make the image training
more accurate and effective by means of adversarial training
and reducing distances regarding latent vectors.

1) FEATURE ENCODER LOSS
To make the reconstructed frame F̂t+1 coincide with the
context of the ground truth Ft+1, the latent feature vector
o in the anomaly detection frame is approximated to the
feature vector ô, where o = G(F̂t+1) and ô = G(Ft+1).
We use the feature encoder loss LFE to minimize the dis-
tance between o and ô. The L2 loss function can make the
training converge faster when the discrepancy is large and is
formulated as:

LFE =
∥∥∥G(F̂t+1)− G(Ft+1)∥∥∥

2
. (1)

2) GRADIENT LOSS AND CONTEXTUAL LOSS
The gradient constraint aims to make the reconstructed frame
retain the gradient with the ground truth. The gradient loss
is defined as the difference between the absolute gradient
along with the reconstructed frame and the ground truth in the
space dimension. The contextual loss will make the predicted
frame approach the ground truth from each pixel value. Ref-
erence [32] shows that the L1 loss can improve the sharpness
of the generated image compared to the L2 loss [33].

According to the following formula:

LGT =
∑
i,j

∥∥∥|F̂i,j − F̂i−1,j| − |Fi,j − Fi−1,j|∥∥∥
1

+

∥∥∥|F̂i,j − F̂i,j−1| − |Fi,j − Fi,j−1|∥∥∥
1
, (2)

where i, j denote the spatial index.

LCL =
∥∥∥F̂t+1 − Ft+1∥∥∥

1
. (3)

3) OPTICAL FLOW LOSS
Although the feature encoder loss and gradient loss described
above can make the reconstruction and the encoded latent
vector similar to the ground truth, it is not guaranteed that the
motion estimation in the video prediction frame is reasonable.
The SPyNet optical flow calculation method [15] is a method
that combines a spatial pyramid structure and deep learning
to calculate optical flow. The advantages of this method are
listed as follows. First, the model has few parameters, which
makes the operation more efficient. Second, the convolution
filter is improved compared to FlowNet making the optical
flow estimation more accurate. In this paper, SPyNet is used
to estimate the optical flow, and then the temporal loss is
used to constrain the optical flow of the predicted frame and
the ground truth. Defining f () as the optical flow estimation
performed by SPyNet, the optical flow loss can be formulated
as follows:

LOF =
∥∥∥f (F̂t+1,Ft )− f (Ft+1,Ft )∥∥∥

1
. (4)

4) ADVERSARIAL LOSS
GAN is composed of a generator G and a discriminator D.
D is trained to determine whether the input is from a real
distribution or is generated by G. In contrast, G is trained to
deceive D by generating samples that are indistinguishable
from real samples.
D is expected to classify the ground truth video frame

Ft+1 as class 1 (1 represents the ‘real’ label) and classifies
the video prediction frame F̂t+1 = G(F) generated by G
as class 0 (0 represents the ‘fake’ label). The mean absolute
error (MAE) loss function is shown below:

LDadv(F̂,F) =
∑
i,j

1
2
LMAE (D(F)i,j, 1)

+

∑
i,j

1
2
LMAE (D(F̂)i,j, 0), (5)

where i, j is the spatial index and the LMAE function is:

LMAE (Ẑ ,Z ) =
∣∣∣Ẑ − Z ∣∣∣ , (6)

where Ẑ ∈ [0, 1], and Z = 1 or Z = 0.
G is trained to generate video prediction frames F̂t+1

and make the discriminator D output ‘real’ when a gen-
erated frame is shown. The loss for adversarial training is
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FIGURE 4. Examples of predicted future frames.

formulated as:

LGadv(F̂) =
∑
i,j

1
2
LMAE (D(F̂)i,j, 1). (7)

C. OBJECTIVE FUNCTION
The above constraints are combined: feature encoder loss,
gradient loss, optical flow loss, and adversarial loss to form
the objective function:

LG = λFELFE (F̂t+1,Ft+1)+ λGTLGT (F̂t+1,Ft+1)

+ λCLLCL(F̂t+1,Ft+1)+ λOFLOF (F̂t+1,Ft+1,Ft )

+ λadvLGadv(F̂t+1), (8)

LD = LDadv(F̂t+1,Ft+1), (9)

where λFE , λGT , λCL , λOF , λadv are weight coefficients,
which balance the influence of each loss in the objective
function.

D. ANOMALY CRITERION
After training, the entire model can distinguish abnormal
behavior from normal behavior. The test video is input to
check the detection effect of the model. We use the Euclidean
distance to calculate the reconstruction error of all pixel val-
ues between the ground truth and the video prediction frame,
as shown in formulas (10) and (11).

e(t) =
1
N

N∑
t=1

(Ft − F̂t )2, (10)

e(t) is further normalized to the interval [0,1] using:

s(t) = 1−
e(t)− e(t)min

e(t)max
, (11)

where s(t) is the regularized value.
The test experiment s (t) can determine when an abnormal

event occurs in the video sequence. When a normal event
occurs, the value s (t) corresponds to a larger value, and when
an abnormal event occurs, the value s (t) corresponds to a
lower value.

Figure 4 is a graphical illustration where some normal
events, anomalous events, predicted frames, and ground truth
in the dataset are shown. The video scene is a pedestrian zone
that can be well predicted when pedestrians walk normally.
When some abnormal behavior occurs, such as someone
riding a bicycle, the prediction is blurred.

IV. EXPERIMENTS
In the experiments, multiple public video datasets for
anomaly detection were used to validate our method. All the
experiments were run on a server equippedwith an Intel Xeon
E5-2683 v3 processor and NVIDIA GeForce GTX 1080Ti
GPUs. The experimental framework used TensorFlow [34].
Before training, the size of the video frame in the training
sample was set to 256 × 256. Then, the pixels of all video
frames were normalized to [−1,1]. As shown in Figure 1,
we took five consecutive video frames, and T = 4, accord-
ing to the algorithm proposed by Adam [35]. In the public
dataset, UCSD Ped1 and UCSD Ped2 are grayscale images.
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FIGURE 5. Normal and abnormal events of public datasets.

The learning rate of G and D ware 0.0001 and 0.00001.
The video frames in CUHK Avenue and ShanghaiTech are
color images. The learning rate of G and D ware 0.0002 and
0.00002. The values λFE , λGT , λCL , λOF , λadv in each
public dataset were different. The values were set according
to the experiment.

The frame-level discriminator followed the patch discrim-
inator [13], [32] scheme and consisted of four convolutional
layers and a fully connected layer. The core size of each layer
was 5× 5, and the activation function was leaky ReLU. The
output value of the discriminator was used as the basis for
judging the abnormal score of the frame. When the score was
low, it indicated that the frame contained anomalous events.

Figure 5 shows several normal events and abnormal events
as examples in the UCSD Ped1, UCSD Ped2, CUHKAvenue,
and ShanghaiTech datasets, where the red boxes indicate the
abnormal behavior that appeared in the video.

A. DATASETS
This article uses three public datasets to train the model:
the UCSD Ped1 and Ped2 datasets [36], the CUHK Avenue
dataset [37], and the ShanghaiTech campus dataset [11].
These public datasets include normal event videos and abnor-
mal event videos. The model in this paper uses the normal
event videos in these data for training and then uses the
abnormal event videos as detection samples for anomaly
detection. The feasibility and accuracy of the model were
tested according to the above work.

• UCSD Ped1. The video scenes collected by this dataset
are pedestrians walking on a road in the lawn, and
the pedestrian walking direction is perpendicular to the
surveillance video frame. Ped1 consists of 34 training
video samples and 36 test video samples. The abnormal
events are cart, wheelchair, skater, and biker shuttled
between pedestrians.

• UCSD Ped2. The surveillance scene in UCSD Ped2 is a
horizontal sidewalk. The dataset has 12 test samples and
16 training samples. Abnormal events include skaters,
wheelchairs, bicycles, and trolleys.

• CUHK Avenue. This dataset was taken on the cam-
pus avenue of the Chinese University of Hong Kong.

It has 16 training video samples and 21 test video sam-
ples. The training video records normal events, while
the test video includes normal events and abnormal
events. Abnormal events are divided into three cate-
gories: strange action, wrong direction, and abnormal
object.

• ShanghaiTech Campus dataset. The ShanghaiTech cam-
pus dataset contains 13 different scenarios and has
more than 270,000 training frames and 130 abnormal
behaviors. Abnormal behaviors include chasing, run-
ning, cycling, and wheelbarrow.

B. ANOMALY DETECTION
Referring to [1], [37], the general evaluation scheme was
to change the regularization score threshold to calculate the
receiver operation characteristic (ROC). Then, the area under
the curve (AUC) was used as the evaluation standard for
abnormal event detection performance. The higher the value
was, the better the detection performance. This paper used the
calculated AUC to test the performance of the experiment.

Reference [11] proposed a prediction-based method for
anomaly detection. It has excellent performance, and we set
it as the baseline of this study. In addition, we also compare
the method of [13]. We conducted ablation experiments in the
UCSDPed1, UCSDPed2, CUHKAvenue, and ShanghaiTech
datasets. The experimental results are shown in Table 1.
We found that the AUC value of our method gained 2.1%,
1.7%, 0.7%, and 0.9% compared to [11]. Comparedwith [13],
our method gained 0.5%, 0.8%, 0.7%, 0.7%. Therefore,
the effectiveness of our method is verified, and it is superior
to the existing advanced methods.

The whole experiment normalized the detected video
frame’s reconstruction error and judged whether the video
behavior was abnormal according to the rule score of for-
mula (11). Thresholds were set according to different surveil-
lance video scenes so that the accuracy and effectiveness of
anomaly detection were guaranteed.

As shown in Figure 6, the scene number represents the
sequence number of the tested video frame, and the abnormal
event is distinguished from the normal event according to the
regularity score. The yellow area represents the ground truth
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FIGURE 6. Schematic diagram of the score curves of the four public datasets.

TABLE 1. AUC values of different methods in each dataset.

anomaly frame. The score is high when normal events occur,
and the score is low when abnormal events occur.

C. ABLATION STUDIES
In this study, the prediction frame module and the reconstruc-
tion module are combined to make the reconstructed frame
closer to the ground truth and improve the noise resistance
and accuracy of the anomaly detection model. It uses latent
feature loss, gradient loss, contextual loss, optical flow loss,
and adversarial loss. We conducted a series of ablation exper-
iments. The feasibility of our proposed method was verified.

1) ANTI-NOISE PERFORMANCE
The previous part of this article introduced that to solve the
characteristic of poor noise immunity of the model in the

FIGURE 7. AUC value of different models in different Gaussian noise.

baseline, the advantages of the strong generalization ability
of the reconstruction module were combined with the pre-
diction module. The reconstruction module strengthens the
anti-noise ability of the predicted frame and improves the
quality of the predicted frame generation.

We added Gaussian noise to the datasets, and on this basis,
we conducted multiple models of anti-noise performance
experiments.

As shown in Figure 7, the experimental results for UCSD
Ped2 show that with increasing Gaussian noise, the AUC
values of all methods gradually decrease. Nevertheless, our
method has better noise immunity than the baseline and IPR
with optical flow.

We added Gaussian noise to the video frame, as shown
in Figure 8. The visual effects here are Gaussian noise
of 0.02 and 0.2.
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FIGURE 8. (a) Is the original frame, and frames (b) and (c) are added with
different Gaussian noise.

FIGURE 9. ROC curves of the three models on the ShanghaiTech dataset.

TABLE 2. AUC value for different optical flow estimators.

2) CONSTRAINT ON LATENT FEATURE
To test the improvement of the anomaly detection effect of
the potential feature constraints we proposed, we conducted
an ablation experiment. Our model is divided into including
latent feature constraints and not including latent feature
constraints. In addition, to verify the fairness of the method,
we also used the same FlowNet as IPR as our optical flow
constraint in the ablation experiment.

Figure 9 shows three model tests on the ShanghaiTech
dataset. The ROC curve shows that the application of
latent feature constraints to the model improves the per-
formance of anomaly detection. A better true positive rate
is obtained, especially in the low range of false positive
rates (0.0-0.4).

As shown in Figure 10, we conducted ablation experiments
on different public datasets. Our proposed latent feature
constraint method was verified in ablation experiments to
improve the performance of anomaly detection. LFL is an
abbreviation for latent feature loss.

FIGURE 10. Latent feature constraint ablation experiment on public
datasets.

FIGURE 11. Optical flow comparison of the predicted frame with or
without the optical flow constraints.

3) CONSTRAINT ON OPTICAL FLOW
The optical flow constraint is an effective method for motion
estimation of predicted frames. As shown in Figure 11, to ver-
ify the applicability of the optical flow constraint, we per-
formed a visual comparison of optical flow between the
predicted frame without the optical flow constraint and the
predicted frame with the optical flow constraint. (f) compared
to (c), the optical flow is closer to the ground truth. The optical
flow constraint is more conducive to the motion estimation of
the predicted frame. OF is an abbreviation for optical flow,
and OFC is an abbreviation for optical flow constraint.

To verify the superior performance of SPyNet compared to
FlowNet, we conducted an ablation experiment to compare
the experimental results of the two optical flow constraints.
It is proven in Table 2 that the model in this paper uses
SPyNet optical flow constraints to improve the performance
of anomaly detection.

V. CONCLUSION
In the video anomaly detection model based on frame pre-
diction, the quality of future frame prediction is of vital
importance. Due to its poor noise immunity and ignoring
the constraints of latent features, this paper combines the
predictionmodule and the reconstruction template to improve
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the model’s noise immunity. Latent feature constraints and
SPyNet optical flow constraints are used so that the predicted
frame can obtain better reconstruction. The importance of
each component was verified by ablation experiments in
several public datasets. Experimental results show that our
method is effective and robust and is superior to the existing
advanced methods. The anomaly detection tasks of more
complex monitoring scenarios and more challenging public
data sets are future research work.
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