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ABSTRACT In recent years, there has been a growing interest in smart e-Health systems to improve people’s
quality-of-life by enhancing healthcare accessibility and reducing healthcare costs. Continuous monitoring
of health through the smart e-Health system may enable automatic diagnosis of diseases like Arrhythmia at
its early onset that otherwise may become fatal if not detected on time. In this work, we developed a cognitive
dynamic system (CDS)-based framework for the smart e-Health system to realize an automatic screening
process in the presence of a defective or abnormal dataset. A defective dataset may have poor labeling and/or
lack enough training patterns. To mitigate the adverse effect of such a defective dataset, we developed a
decision-making system that is inspired by the decision-making processes in humans in case of conflict-of-
opinions (CoO). We present a proof-of-concept implementation of this framework to automatically identify
people having Arrhythmia from single lead Electrocardiogram (ECG) traces. It is shown that the proposed
CDS performs well with the diagnosis errors of 13.2%, 9.9%, 6.6%, and 4.6%, being in good agreement with
the desired diagnosis errors of 25%, 10%, 5.9%, and 2.5%, respectively. The proposed CDS algorithm can be
incorporated in the autonomic computing layer of a smart-e-Health-home platform to achieve a pre-defined
degree of screening accuracy in the presence of a defective dataset.

INDEX TERMS Autonomic decision-making system, autonomic computing layer, cognitive dynamic
system (CDS), cognitive decision making (CDM), non-Gaussian and non-linear environment, NGNLE,
screening, smart systems, defective dataset, e-health, smart home, conflict of opinions.

I. INTRODUCTION
Currently, the autonomic decision-making systems (ADMS)
[1]–[3] for smart interactive cyber-physical systems (CPS)
are attracting much attention from researchers and technol-
ogy providers [1]–[7]. The CDS is inspired by the neu-
roscience model of the human brain presented in [8] and
it is built on the principles of cognition, i.e., perception-
action cycle (PAC), memory, attention, intelligence, and lan-
guage [9]–[16]. CDS has found applications in the smart
home [3], [9], smart e-Health home [3], [10], and long-
haul fiber-optic link [11]–[15]. It is proposed as an alterna-
tive to typical artificial intelligence (AI) methods for many
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AI applications [16]. In this paper, we present a cognitive
dynamic system (CDS) for the screening process in smart e-
Health systems based on the perception and multiple action
cycles (PMAC) and the decision-making processes in humans
in case of a conflict of opinion (CoO).

The algorithmic presentation of a CDS reported in [16] was
based on linear and Gaussian environments (LGEs). How-
ever, health-related physiological data, which are measured
to assess health conditions are generally not normally dis-
tributed, i.e. they are non-Gaussian [17], [18].Moreover, most
features extracted from the measured physiological signals
vary in a non-linear manner with the human health condi-
tion. Therefore, human health and smart e-Health systems
can be considered as non-Gaussian and non-linear health
environments (NGNLHEs) as reported in the case of breast
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cancer modeling in [18]. In a NGNLHE healthcare system,
the outputs are not linearly dependent on the inputs. Further-
more, the outputs of such a system do not follow Gaussian
distributions.

In [11]–[15], a CDS was proposed for smart fiber optic
communication systems to demonstrate its high precision
decision-making ability in complex smart systems. It should
be noted that we use the term cognitive decision mak-
ing (CDM) to define decision making using CDS. The CDS
was presented in [10]–[15] as an enhanced-AI that exploited
the maximum probability (MAP) approach for the CDM.
The CDS thus implemented resulted in a high-performance
CDM, which however used a reliable dataset to train the
model. When the datasets are not reliable due to poor labeling
and/or insufficient training patterns defective or abnormal,
the PAC-based CDS cannot perform well enough to sat-
isfy requirements to provide reliable results for predefined
healthcare policy. This can be explained with an analogy
to the decision-making process of the human brain when it
makes a judgment based on some ambiguous information,
thus running a risk of making a wrong decision. In this paper,
we propose a CDS algorithm to realize a reliable screening
method in a smart e-Health system from a defective dataset.
Here, we exploited the concept of CoO to realize the CDM
for the NGNLHE system. We also generalized the concept
of PAC in the PAC-based CDS to perception-multi actions
cycles (PMAC) to implement the CoO.

The basic model of a CDS based on PMAC is presented
in Fig. 1. There are three main subsystems in a CDS: (1) Per-
ception by the Perceptor; (2) a Feedback channel for sending
the multiple raw internal rewards; and (3) the Executive to
perform multiple actions on the environment.

FIGURE 1. Block diagram of a cognitive dynamic system (CDS) based-on
PMAC: Perception multiple actions cycle.

The main contributions of this work can be summarized as
follows:

1) The PAC-based CDS for the NGNLHE based on MAP
CDM [10]–[15] is enhanced as the proposed CDS with
the PAC and CoO-based CDM for the screening pro-
cess. This improvement allows for the mitigation of
screening inaccuracies due to a defective dataset.

2) The structure of a PMAC-based CDS is designed as
the first stage of the screening process. In this paper,
we aim to screen human health condition automati-
cally between two binary (healthy and unhealthy) states
based on subjects’ single lead ECG traces. We imple-
mented a CoO-based CDM in the second stage to
achieve a desired level of diagnosis error at an accept-
able, high false alarm rate. The first stage was based on
the diagnostic test or low false alarm policy presented
in [10] using a PAC-based CDS.

3) Algorithms for decision making between healthy and
unhealthy conditions in a NGNLE system is presented
based on the screening process.

4) A proof-of-concept case study is presented in which a
PMAC-based CDS is applied to screen for Arrhythmia
from a defective dataset. It is shown that the proposed
CDS performs well, giving good agreement with the
desired diagnosis errors of 25%, 10%, 5.9%, and 2.5%,
achieving average final diagnosis errors of 13.2%,
9.9%, 6.6%, and 4.6%, respectively. These diagnosis
errors correspond to a clinically acceptable false alarm
rates [19] of 20.1%, 25%, 28.4%, and 54.7% respec-
tively, even with a defective dataset.

II. RELATED WORKS
In this section, we present a brief review of related works
based onmachine learning (ML) or artificial intelligence (AI)
techniques. These techniques are widely used in decision
making or false alarm reduction in healthcare applica-
tions [21]–[43]. Recently, owing to the increasing popularity
of wearable and portable health sensors, a large number
of health-related databases were developed [20]. To predict
clinical outcomes or identify clinical problems from available
datasets, clinicians, and researchers have a growing interest
in using machine learning and AI techniques [21]. Also,
machine learning is being used in the diagnosing of various
diseases such as diabetic retinopathy [22], skin cancer [23]
and prostate cancer [24], [25]. Furthermore, these techniques
can also be used for optimizing disease treatment, control and
decision making [26]–[28].

In [29], a machine learning technique was used to
reduce false alarm rates in detecting Arrhythmia from the
electro-cardiogram (ECG) signals. Machine learning tech-
niques were also used to generate reports from medical
images [30], [31]. In ML-based techniques, a generalized
prediction model is developed from an initial set of data that
subsequently allows for extracting patterns from the mea-
sured data. These extracted patternsmay helpmedical doctors
(MDs) to perform more personalized clinical prediction and
plan customized intervention strategies [32].

Machine learning techniques are applied for specific
healthcare screening applications. For example, deep learn-
ing was used for breast-cancer screening using mammogra-
phy [33] or screening the glaucoma progression [34], [35].
Also, semi-supervised learning was used for screening glau-
coma progression [36]. Machine learning was also used
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for screening diabetic retinopathy and other ocular findings
using telemedicine in [37]. In addition, ML can be used
for early detection or screening of autism [38]–[40]. Fur-
thermore, ML can use walking patterns to screen elderly
health issues [41]–[42]. Applications of AI/ML were dis-
cussed in [43] for disease classification. Moreover, ref. [43]
provided two limitations of AI/ML regarding implementa-
tion for healthcare applications. First, the ML performances
depend on the dataset, and poor ML performances are results
from the defective datasets. On the other hand, the dataset
contains observations and measurement errors, or artifacts
can result in poor results. Second, AI has a major chal-
lenge in the context of brain-inspired/biomedical decision-
making: the typical AI reasoning step should be visible to
the medical doctors and clinician, so they can interpret in
an intelligible way. However, typically, AI algorithms lead
to complex information processing and reasoning steps that
may not be understandable to a human. Especially, the ML
algorithm may learn complex rules, which results in good
accuracy. However, it is very difficult for even a healthcare
expert to understand these processing and reasoning steps
and rules. In this paper, we presented PMAC-based CDS
as a brain-inspired using CoO-decision making to mitigate
AI/ML limitation in presence of defective datasets. Also,
our proposed system can improve the understanding of the
reasoning procedure of the algorithm for medical doctors
using semi-human decision making with PMAC, CoO, and
posterior extraction.

III. WHY A COGNITIVE DYNAMIC SYSTEM?
In this section, we present a brief discussion on conventional
machine learning approaches and how CDS can become an
efficient alternative to them. Machine learning approaches
are generally employed in AI to build intelligent machines.
This ML-based AI is however different from the symbolic
rule-based AI. Unlike the rule-based AI, where decisions are
made based on some predefined rules, ML-based AI learns
from annotated classified datasets, examples, and experi-
ences. In ML-based AI, a model is developed based on the
information from the dataset, when it used for prediction.
Also, the algorithm can learn to optimize models based on
the dataset and policies for a specific task, for example,
a screening process with an acceptable high false alarm
policy.

A. MACHINE LEARNING APPROACHES
Machine learning enables some degree of intelligence in
machines by extracting and using the information about
patterns in datasets, examples, and experiences. There are
several, machine learning approaches such as supervised
learning, reinforcement learning, semi-supervised learn-
ing, unsupervised learning, and transfer learning. However,
we will focus on two approaches that are more relevant
to this work i.e. supervised learning and reinforcement
learning.

1) SUPERVISED LEARNING
A popular approach in machine learning for practical applica-
tions such as predicting recovery time, medication response
and health condition, is supervised learning (SL) because,
it can find patterns present in the dataset. In general, the SL
algorithm learns from the dataset (input predictors x) to create
a classifier to predict the output response y. The SL algorithm
extracts a mapping function f where y = f (x). An algorithm
with a set of input data {x1, x2, . . . , xn} builds the classifier,
which outputs {y1, y2, . . . , yn} in response to the correspond-
ing inputs (Fig. 2a).

Supervised learning can be divided into two main
branches: (1) learning prediction and (2) learning by model-
ing. The first category of SL-based prediction can be divided
into regression or classification problems. To estimate the
values of the response, regression learning methods are more
suitable whereas, algorithms such as logistic regression, naive
Bayes, decision trees or support vector machines (SVM) are
more useful for classification [44]. In the second category of
SL, a predictive discriminative model is extracted using ML
approaches such as decision trees and SVM algorithms which
determine the decision boundaries within the data based on
the learning objective. In the case of machine learning meth-
ods such as naive Bayes or Bayesian approaches, the model

FIGURE 2. Schematic of two popular machine learning approaches
(a) supervised learning (SL) (b) reinforcement learning (RL).
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makes predictions by learning the probability distributions of
the data.

In summary, the SL algorithm builds a predictive model
from a labeled database. This model can then be used to
estimate or classify the output in response to a new set of input
data. Supervised learning algorithms are used in prediction
and classification problems, such as in image recognition or
filtering of spam emails (Fig. 2a).

2) REINFORCEMENT LEARNING
Reinforcement learning (RL) resolves a decision-making
problem by learning and evolving through a trial-and-error
approach (Fig. 2b), realized by the interaction between a
computing agent and a dynamic environment [45]. While
searching in the state-action space, the computing agent
attempts to reach the highest reward (or lowest penalty) based
on the feedback received from the dynamic environment. For
example, in healthcare applications, the RL algorithm tries
to improve the model parameters by iteratively simulating
the states e.g. a user health’s condition. Then, after applying
the action (e.g. activating or deactivating sensors, amount of
medication delivery, or modeling accuracy), the computing
agent obtains the feedback reward from the environment
(healthy or unhealthy - decision made by the MDs in the
clinic). The RL algorithm finally converges to a model that
may generate optimal decisions [16]. Unlike the SL algo-
rithm, RL algorithms typically do not require a prior database
and can automatically find the most appropriate actions by
optimizing the feedback reward/penalty received from the
dynamic environment.

B. CDS IMPLEMENTATION USING ML APPROACHES
In the earlier implementations of CDS [10]–[15], the PAC
was realized by combining conventional ML approaches,
such as RL, and SL. Here, we focus on how a PAC-based CDS
and the proposedCDS in this paper can overcomeweaknesses
of SL and RL.

1) TYPICAL PAC-BASED CDS
A PAC-based CDS can be implemented by combining both
SL and RL techniques of conventional machine learning.
Figure 3 shows the block diagram of a PAC-basedCDS for the
healthcare environment. The Perceptor of the CDS can extract
a model using the SL algorithm. The Perceptor then generates
an internal reward and predicts the outcome of the dynamic
environment (human health in this case) using the extracted
model [16]. The Executive receives the internal reward from
the Perceptor through the feedback channel. The Executive
is built upon an RL-based ML approach that based on the
internal reward in the current PAC finds an action, which can
optimize the internal reward for the next PAC. The internal
reward gives the CDS self-awareness, self-consciousness,
and independence from the dynamic environment (Fig. 3).

In short, the RL-based Executive of a PAC-based CDS
uses the internal reward produced by the model extracted in
the SL-based Perceptor to apply a cognitive action on the

FIGURE 3. Conceptual implementation of PAC-based CDS.

dynamic environment. Therefore, a PAC-based CDS can be
considered as an enhanced AI.

In typical RL, the agent applies the actions on a trial
and error basis to receive feedback from the environment,
whereas the CDS has a ‘‘conscience’’ about the actions.
Therefore, the CDS is a more appropriate choice in intelligent
machine applications, especially to ensure safety and security
in healthcare applications.

2) PROPOSED PMAC-BASED CDS
In a typical PAC, the CDS applies an action on the environ-
ment and then uses the calculated reward (internal/external)
to gain experience. The RL in the Executive then opti-
mizes the reward in the following PAC by finding the most
appropriate action. As mentioned before, the Perceptor of a
PAC-based CDS uses SL to extract a model of the environ-
ment that requires a well-labeled dataset with enough number
of training patterns to enhance the reliability of the model.
For example, in the case of orthogonal frequency division
multiplexing (OFDM) long-haul fiber optic communication
systems [11]–[15] when the CDS operates in the bit error
rate (BER) improvement mode, the internal rewards and
model converges after N = 512 frames.
Unlike fiber-optic communications, where training data

with accurate labeling are available at a much faster rate,
the number of training patterns in the available datasets
for healthcare applications is generally limited. In addition,
the labeling of the healthcare dataset can be erroneous owing
to its dependence on human skills. Moreover, a dataset can be
inherently defective or manipulated by hidden cyber-attack.
These shortcomings in the available data may result in an
overfitted model, potentially causing the test accuracy of
the model to drop significantly compared to the training
accuracy. In such a case, one can infer that the used dataset
for model extraction is badly labeled and/or lacks enough
training patterns required to extracting a reliable, accurate and
convergedmodel.Without a convergedmodel in a PAC-based
CDS, the SL-based perception process based on PAC and
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internal reward generation can limit the accuracy and con-
sistency of the performance of the Executive in the case of
healthcare applications.

In this paper, we extended the typical PAC to the proposed
PMAC (Fig. 4) in an attempt to mitigate the inherent defi-
ciency of SL. In the PMAC-based CDS, the Executive applies
multiple actions simultaneously on the health environment
in one cycle, for example, activates different ECG leads,
or the Photoplethysmogram (PPG) sensor. The Perceptor
receives new measurements from the environment to extract
model(s) and uses the model(s) to generate multiple raw
internal rewards for the Executive. In the following cycle,
the Executive performs multiple actions on the environment
to optimize each internal reward based on some pre-defined
policies by the users. The Executive also provides weighted
internal rewards using the cost-to-go-functions based on the
received raw internal rewards through the feedback channels.
These weighted internal rewards can be used by the CoO for
CDM (Fig. 4).

FIGURE 4. Conceptual implementation of PMAC based CDS.

For the screening process, the PAC-based CDS initially
assumes that the user is ‘Unhealthy’. In the case of a ‘Healthy’
user, the CDS applies some actions on the environment (user
body) and finds the relevant evidence of the user being
‘Healthy’. Then, the CDS feeds the evidence i.e. the newly
measured parameters from the environment (user body) into
the extracted model in the Perceptor and changes the decision
about the user’s health state to ‘Healthy’. Similar to the
PAC-based CDS, the PMAC-based CDS also assumes an
‘Unhealthy’ state as the initial decision for the user’s health.
However, unlike the PAC-based CDS, the Executive of the
PMAC-based CDS applies two actions simultaneously for
two states - ‘Healthy’ and ‘Unhealthy’ - on the environment
(user body), to find evidence in favor of each state separately.

In the case of conflicting outcomes, when the CDS has
evidence in favor of both states, the amount of evidence in
favor of a particular state plays a crucial role in resolving
the conflict in decision making. For example, 100 evidence
in favor of ‘Healthy’ state with 99% assurance provides a
final reward of 99, while 105 evidence in favor of ‘Unhealthy’
state with 95% assurance results in a final reward of 99.75.
Thus, the final decision of the CDS about the user under
test (UUT) would be ‘Unhealthy’, as this state results in
a higher reward than the ‘Healthy’ state. In this work,

we termed this method of decision making as the Conflict-
of-Opinions (CoOs) approach.

In summary, unlike a PAC-based CDS, the Executive of
the proposed CDS uses multiple evidence generated from
the model extracted by the Perceptor and applies multiple
cognitive actions on the dynamic environment. The inter-
nal rewards generated in favor of every possible decision
state give the PMAC-based CDS information to make a
final decision by comparing among the rewards, giving the
CDS self-awareness, self-consciousness about the dynamic
environment, and independence from a defective dataset.
The PMAC-based CDS thus has the ‘‘conscience’’ about
the actions and non-reliability of the extracted model by the
Perceptor. To generate multiple internal rewards, a CoO-
based decision-making algorithm is applied in the Executive.
In contrast, a PAC-based CDS uses the MAP rule for decision
making based on a single internal award at each PAC, relying
on the dataset and extractedmodel from the SL-based Percep-
tor. Therefore, in an intelligent healthcare screening process,
the PMAC-based CDS is a more appropriate choice rather
than a PAC-based because the SL cannot extract a converged
reliable model from the defective dataset.

IV. PROPOSED ADMS USING CDS ARCHITECTURE
AND ALGORITHMS
In this section, we describe the proposed CDS architecture
and algorithm using a CoO-based decision-making approach
for the screening process. The detailed architecture of the
proposed CDS for health screening is shown in Fig. 5. Similar
to the PAC-based CDS, a PMAC-based CDS has two main
subsystems: (i) the Perceptor, and (ii) the Executive with a
feedback channel linking them and it operates in three modes:
(i) training, (ii) reasoning, and (iii) steady-state.

During the training mode, the data and information col-
lected from the dataset will be converted to a ‘model library’
in the Perceptor and an ‘action library’ in the Executive.
Also, the CDS in the training mode dynamically updates the
knowledge in the Perceptor and the ‘‘action-library’’ in the
Executive when the database is updated through the e-Health
network. This update can be done in real-time in parallel to
the reasoning mode, or during the steady-state mode.

The CDS will use the knowledge in the Perceptor ‘‘model
library’’ for prediction of the health conditions of users with
unknown health states. In the case when an anomaly in the
user’s health is detected or a request is placed by the user,
the CDS can initiate the prediction mode. The trained CDS
collects evidence about the user’s health state and uses that
information from the user to reason and predict the health
state of the user, and then to determine whether any action is
required based on a pre-defined set of policies and objectives.
The policy can be, for example, a certain level of false alarm
rate is acceptable in screening between the ‘Healthy’ and
‘Unhealthy’ states.

When the CDS makes a final decision based on current
measurements, or there is no new request from the user,
it goes into the steady-state mode. However, in specific
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FIGURE 5. Block diagram of proposed CDS architecture for the ADMS of a smart e-Health home.

situations or upon receiving the user’s request, the CDS will
switch from steady-state to reasoning mode.

In brief, the following modes and functionalities constitute
the proposed CDS as shown in Fig. 5.

I CDS training mode

a. Perceptor training mode.
b. Executive training mode.

II CDS reasoning mode

a. Feedback channel (multiple assurance factor
calculation).

b. Executive (planner).
c. Executive (policy).
d. Executive (reinforcement learning and rewards

calculation).
e. Executive (CoO-based CDM for screening

process).

A. TRAINING MODE: PERCEPTOR AND EXECUTIVE
In a conventional CDS, the Perceptor uses Bayesian filter-
ing based on the Kalman filter [16]. However, the Kalman
filter cannot be used for non-Gaussian environments as the
filter equations are extracted for a LGE [16]. Therefore,
the Bayesian filter is not suitable for the proposed CDS.
We exploited the decision tree to extract the posterior in
CDS applied to NGNLE systems [10], [15]. This concept of
posterior extraction using decision trees is extended in the
proposed PMAC-based CDS. Extracting the posterior using
decision trees is a common method in machine learning. The

CDS training mode can be summarized in the following four
parts:

a. Creating a jungle of decision-making trees.
b. Extracting the posterior
c. Extracting the knowledge- and action-space from the

database
d. Action refinement in the Executive library based on a

predefined policy.

Initially, when there exists no relevant model in a model
library, the four-layered Bayesian modeling in the Perceptor
extracts the statistical model of the system (see [10] for
further details) using decision trees. The Bayesian modeling
consists of four layers for an arbitrary focus level m. Here,
in this paper, the decision tree level m is considered as the
focus level m for the CDS.

1) LAYER I: NORMALIZATION
The extracted features from the measured physiological sig-
nals could have any value, and hence a large number of
discretized cells are required for saving vacant spaces. For
example, the output of the ECG signal can be represented as
a set of features,

O = [feature(1), . . . , feature(l), . . . , feature(L)]. (1)

where, L is number of extracted features from the dataset.
Therefore, we normalize all extracted features as

Ō(l) = feature(l) =
feature(l)

max{abs(blmin), abs(b
l
max)}

(2)
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Here, blmin and blmax are the minimum and maximum value
of the lth feature. The data normalized in this way is sent
to Layer II as the Ō for further processing. In this layer,
the perceptor calculates Lm as the number of global nodes
at focus level m, and 1 ≤ m ≤ M using permutation with
repetition equation as:

Lm =
(
L
m

)
(3)

For example, in Fig. 6 we have five extracted features in the
dataset as [sex, age, height, breathing rate (BR), heart rate
(HR)]. Therefore, using equation (3) at focus level 1, the
number of global nodes is five. Similarly, number of new
global nodes are 10 at focus level 2.

FIGURE 6. Example of global nodes of jungle of trees (here, 5 trees).

2) LAYER II: CREATING A JUNGLE OF TREES
In Layer II, the normalized values related to features are
discretized with discretization steps 1xki , and 1 ≤ i ≤ m.
Here, k is the PAC number and m is the current focus level.
For simplicity, we define a discretization factor (DFki ) of
features for focus level i as:

DFki = 101xki , 1 ≤ i ≤ m (4)

DFk,m = [DFk0 ,DFk1 , · · · ,DFki , · · · , DFkm], (5)

N k,i,l
x =

10(xk,i,lmax − x
k,i,l
min )

DFki
, (6)

Fki =
Li∑
l=1

N k,i,l
x , 1 ≤ i ≤ m, Fk0 = 1. (7)

Here, N k,i,l
x is the number of discretized cells in the x-axis

for feature number Ô
k,i
DF (li) = feature(li,DFi, i). Also, x

k,i,l
min

and xk,i,lmax are the minimum and maximum of the normalized
feature (abs(xk,i,lmin ) ≤ 1, abs(xk,i,lmax ) ≤ 1).
Furthermore, Fki corresponds to the number of decision-

trees branches (Eqs. (3) and (7)). For the desired complex-
ity threshold, the CDS can update the current focus level
m,DFk,m. Then, Layer II will send the discretized set of
features Ô

k,m
DF and DFk,m to Layer III (Eqs. (2) and (8)).

Ô
k,m
DF = [Ôk,mDF , Ôk,m−1DF , . . . , Ôk,iDF , . . . , Ôk,1DF ],

Ôk,iDF = [feature(1,DFi, i), . . . ,

feature(li,DFi, i), . . . ,

feature(Li,DFi, i)].

O
k,m+1

= [feature(1,m+ 1), . . . ,

feature(lm+1,m+ 1), . . . ,

feature(Lm+1,m+ 1)]. (8)

It should be noted that the required memory for saving
models and action-space will increase as the number of focus
levels increases in the CDS. Thus, to address the increas-
ing algorithms complexity when the number of focus levels
increase, we can define a bound for the maximum possible
focus level as the Complexity threshold. Then, we can calcu-
late the total acceptable branches of the decision tree as:

F total,km =

m∏
f=2

Fki , m ∈ {1, 2, . . . ,M} , and

and, F total, km ≤ Complexity threshold . (9)

Furthermore, F total,km corresponds to the maximum number of
tree branches at focus level m and perception action cycle k.
For the desired predefined Complexity threshold, the CDS
cannot increase the focus level more thanM.

3) LAYER III: ESTIMATION OF PROBABILITIES AND
DISCRETIZATION
In this layer, the system estimates the probability of a
HDk

n ∈ {‘‘Healthy’’,‘‘Unhealthy’’} for a given set of fea-
tures, Ok,m+1

= [Ok,1,Ok,2, . . . ,Ok,i, . . . ,Ok,m,Ok,m+1],
i.e. P(HDk

n|O
k,m+1). This is approximated as the probability

of Õk,m+1
= [Ō

k,m+1
, Ô

k,m
] (see eq. (8) and Fig. 7) for

a given HDk
n, using the Monte-Carlo method and a jungle

of decision trees as P(HDk
n|Õ

k,m+1), where n is the discrete
time. Therefore, the extracted posterior P(HDk

n|Õ
k,m+1) can

consider the correlations among (m + 1) features in each
branch of tree in the jungle of trees. These estimated probabil-
ities are saved in the Perceptor ‘‘model library’’ for future use.
The Executive will use the extracted statistical probabilities
for prediction by receiving them through the internal feed-
back channel to evaluate the actions virtually before applying
them on the environment and creating the ‘action-library’.

FIGURE 7. Example of decision boundaries extraction and action-library
creation.

4) LAYER IV: CREATING ACTION-LIBRARY AND EXTRACTION
OF EVIDENCE BOUNDARIES
In this layer, based on the applied system policy, the Exec-
utive estimates the decision boundaries and creates the
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action-library. The action-library is the library of all pos-
sible actions the Executive can take for screening decision
about the UUT. Here, we describe the process how the CDS
finds the evidence that a UUT is healthy with an assurance
of 100%. We use Eq. 10 to find the decision boundaries,
which provide an assurance of 100% in favor of the ‘Healthy’
or ‘Unhealthy’ states (Fig. 7).

P(HDk
n|R

k,m+1,l,b
min ≤ Ō

k,m+1
(lm+1) ≤ Rk,m+1,l,bmax , Ô

k,m
DF ) = 1

(10)

Here, b ∈
{
1, 2, . . . ,Blm+1

}
and Blm+1 are the total number

of desired actions required for achieving a decision boundary
containing evidence of 100% ‘Healthy’ state (or ‘Unhealthy’
state) at the focus level (m + 1), and branch l (see Fig. 7).
The evidence boundaries of Rk,m+1,l,bmin and Rk,m+1,l,bmax will be
saved in the model-library of the Perceptor.

In addition, the precision factor (PF) or the number of users
within the decision boundaries (Healthy or Unhealthy) of the
features are

PFk,lb,m+1 = Utot × P(Rk,m+1,l,bmin

≤ Ō
k,m+1

(lm+1) ≤ Rk,m+1,l,bmax , Ô
k,m
DF ) (11)

Here, Utot is total number of users in the training dataset.
Therefore, PFk,lb,m+1 is the number of training patterns
between Rk,m+1,l,bmin and Rk,m+1,l,bmax that are all ‘Healthy’ or
‘Unhealthy’. The Executive keeps a record of PFk,lb,m+1,

[Ô
k,1
DF (l1), . . . , Ô

k,i
DF (li), . . . , Ô

k,m
DF (lm), Ō

k,m+1
DF (lm+1)] and

information about the sensors required to extract the feature
set of [Ô

k,1
DF (l1), . . . , Ô

k,i
DF (li), . . . , Ô

k,m
DF (lm), Ō

k,m+1
DF (lm+1)]

in the action-library. The action-space can be defined as
follows:

C =


ck

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ck =

1− Actuating sensor
(Healthy/Unhealthy evidence) :

ck (Õk,m+1)
1.1− Time domain features

1.2− Frequency doman features
1.3− Statistical features
5− Internal commands :
Increase m, (m+ 1) < M


. (12)

Also, all decision boundaries for action space can be shown
as:

Rhealthy or unhealthy

=

{
rm,l,b
k for ck

∣∣∣∣∣rm,l,b
k = [Rk,m+1,l,bmin ,Rk,m+1,l,bmin ],

PFk,lb,m+1(r
m,l,b
k ).

}
. (13)

Here, ck is the action at the kth PAC and m is the focus
level. The action-space contains information about all pos-
sible actions that the Executive can perform during the rea-
soning mode to provide evidence in favor of ‘Healthy’ or
‘Unhealthy’ state. Using the complexity threshold defined in
eq. (9). Using eqs. (14)-(16), we can obtain the number of
training users in each branch of decision trees:

U k,l
m+1 = Utot × P(xk,m+1,lmin ≤ Ō

k,m+1
(lm+1)

≤ xk,m+1,lmax , Ô
k,m
DF ) (14)

U k,l
m+1 ≥ Umin, (15)

Umin =
5

ThresholdDE
. (16)

Here, U k,l
m+1 is number of training data in branch l of the

decision tree and focus level (m+1). Also, in eq. (16),Umin is
the minimum required number of users for the lth branch and
focus level (m + 1) to enable extraction of a reliable model.
In eq. (15), the ThresholdDE is a predefined desired diagnostic
error. Then, the information related to the extracted decision
trees is saved in the memories of the Perceptor and Executive.

The procedure for finding an evidence of 100% assurance
that the UUT is ‘‘Unhealthy’’ follows a similar approach.

B. REASONING MODE: CALCULATING RAW INTERNAL
REWARDS IN FEEDBACK CHANNEL
As mentioned earlier, unlike the typical RL, the internal
reward gives the CDS self-awareness, self-consciousness
about the dynamic environment, and independence from
a defective dataset. In this section, we explain a simple
approach to estimate the possible error using the fuzzy nature
of the assurance factor concept [10].

Fuzzy logic means that the ‘‘logic’’ values of a variable
can be a real number between 0 and 1 [46]–[48]. Also, fuzzy
logic is widely used for medical decision making in health
environments such as Value-Laden choices [49], medical
decision making in the intensive care unit (ICU) [50], and
atrial fibrillation detection [51], [52]. Also, the fuzzy nature
of the PAC process in CDSwas described in [10]. Fuzzy logic
can be used as the assurance prior to making a decision. For
example, a person or machine can make a wrong decision
when the assurance is less than 1. Similarly, the proposed
CDS measures the assurance of a decision between 0 and 1
after taking actions on the environment.

The estimation process of internal reward (or diagnosis
error) for the proposed CDS can be explained with the help
of Fig. 8. The estimation process of false alarm follows a
similar approach. As mentioned earlier, the initial decision
of the CDS about the UUT (Utest ) is ‘Unhealthy’. The CDS
performs some actions on the environment and uses the CoO

FIGURE 8. Example for diagnosis error (DE) and false alarm (FA)
estimation. The precision factor (PF) is introduced for each case.
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to reach a final decision. Once the CDS finds stronger evi-
dence in favor of the ‘‘Healthy’’ state than the ‘‘Unhealthy’’
state, it changes the decision to ‘Healthy’. For example, in the
case of PF = 4, there are 4 healthy users from the training
dataset whose data remain with a range of r , i.e. within the
range r , all 4 users from the training dataset are healthy. Now
if the data of the UUT falls within the range r , the conditional
probability error (estimated diagnosis error) for a decision of
‘‘Healthy’’ would be 0.2 (see Fig. 7).

In general, we can define the AF for the UUT as ‘Healthy’
using, (defining the AF for the UUT as ‘Unhealthy’ follows
similar procedure)

P(Utest = Healthy|

Rk,m+1,l,bmin,Healthy ≤ Ō
k,m+1
Utest (lm+1) ≤ R

k,m+1,l,b
max,Healthy, Ô

k,m
DF,Utest )

=
PFk,l,Healthyb,m+1

PFk,l,Healthyb,m+1 + 1
, (17)

AFkDE =
PFk,l,Healthyb,m+1

PFk,l,Healthyb,m+1 + 1
. (18)

Here, AFkDE is the assurance factor in favor of the ‘Healthy’
state and DE stands for the estimated diagnosis error. Similar
to AFkDE , the assurance factor for false alarm, AFkFA can be
estimated at k th PAC as

P(Utest = Unhealthy|

Rk,m+1,l,bmin,Unhealthy ≤ Ō
k,m+1
Utest (lm+1) ≤ R

k,m+1,l,b
max,Unhealthy, Ô

k,m
DF,Utest )

=
PFk,l,Unhealthyb,m+1

PFk,l,Unhealthyb,m+1 + 1
, (19)

AFkFA =
PFk,l,Unhealthyb,m+1

PFk,l,Unhealthyb,m+1 + 1
. (20)

C. REASONING MODE: PERCEPTOR AND
SIMPLE EXECUTIVE
The CDS initiates the reasoning mode when an anomaly
in the user’s health is detected or a request is placed by
the user. The trained CDS gathers evidence about the user’s
health state and uses that information to reason and predict
the health state of the user. The CDS then determines whether
any action is required based on a pre-defined set of policies
and objectives.

The Executive is an essential part of any CDS. It is respon-
sible for improving the decision-making accuracy by apply-
ing action on the NGNLHE. For example, the Executive
can activate the actuators in the smart home or send the
internal commands to the Perceptor for changing the mod-
eling configurations such as DFk,m. The Executive provides
non-monotonic reasoning to the CDS by using the internal
reward and changing its focus level. The Executive designed
in this work includes three parts (see Fig. 5): planner includ-
ing the action-library, policy, and learning using a cost-to-go
function [10]–[15].

Algorithm 1 Conflict of Opinions (CoOs)
CDS initial decision: UUT is Unhealthy
1: if THealthy = 0 then
2: Keep decision to Unhealthy.
3: Stop process and turn on steady state.
4: elseif TUnhealthy = 0 then
5: Keep decision as Unhealthy.
6: Stop process and turn on steady state.
7: elseif k ≤ TUnhealthy&k ≤ THealthy then
8: if (k × (1− rwkDE ))

wDE > (k × (1− rwkFA))
wFA then

9: Change decision to Healthy.
10: else
11: Keep/change decision as Unhealthy.
12: end of if
13: elseif k > TUnhealthy& k ≤ THealthy then
14: if (k × (1− rwkDE )

wDE > TUnhealthy× (1− rwkFA))
wFA

then
15: Change decision to ‘‘Healthy’’.
16: Stop process and turn on steady state.
17: else
18: Keep/change decision as Unhealthy.
19: end of if
20: elseif k ≤ TUnhealthy& k > THealthy then
21: if (THealthy × (1− rwkDE ))

wDE > (k × (1− rwkFA))
wFA

then
22: Change decision to ‘‘Healthy’’.
23: else
24: Keep/change decision as Unhealthy.
25: Stop process and turn on steady state.
26: end of if
27: else
28: if (THealthy × (1 − rwkDE ))

wDE > (TUnhealthy × (1 −
rwkFA))

wFA then
29: Change decision to Healthy.
30: Stop process and turn on steady state.
31: else
32: Keep/change decision as Unhealthy.
33: Stop process and turn on steady state.
34: end of if
35: end of if

1) PLANNER AND POLICY
In a CDS, the policy is defined as the desired goals that the
CDS attempts to achieve in each PAC during the screen-
ing process. Here, the goal is to achieve a pre-defined
ThresholdDE of diagnosis error (DE) by minimizing the false
alarm (FA) rates. Then, based on the ThresholdDE , the actions
for providing evidence in favor of 100% healthy state in the
action-space can be refined by the planner as:

PFk,lb,m+1,Healthy ≥ PF
k,l,min
b,m+1,Healthy =

1
ThresholdDE

− 1.

(21)

For example, if the predefined desired diagnosis error thresh-
old is 10% at focus level 3, then the number of training
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patterns within the range with 100% ‘‘Healthy’’ states should
be PFk,lb,3,healthy ≥ PFk,l,min

b,3,healthy ≥ 9. Then, the acceptable
actions that can give evidence in favor of 100% ‘Unhealthy’
state can be refined by the planner using eqs. (22) and (23).

PFk,lb,m+1,Unhealthy ≥ PFk,l,min
b,m+1,Unhealthy, (22)

PFk,l,min
b,m+1,Unhealthy = floor(

P(Utest = Unhealthy)
P(Utest = Healthy)

×PFk,l,min
b,m+1,Healthy)

if PFk,l,min
b,m+1,Unhealthy < 1⇒ PFk,l,min

b,m+1,Unhealthy = 1 (23)

The reason behind multiplying PFk,l,min
b,m+1,Healthy with the ratio

of ‘Unhealthy’ prior, P(Utest = Unhealthy) to the ‘Healthy’
prior P(Utest = Healthy) in Eq. 23 can be explained by
an example. Let us assume a dataset where there are 1000
‘Healthy’ and 100 ‘Unhealthy’ training patterns. Therefore,
because the prevalence of healthy training patterns are more
than unhealthy training patterns, it more likely to find a subset
of at least 50 ‘Healthy’ persons, whose data remain within
a certain range (PFk,l,minb,m+1,Healthy = 50) than to find such a
subset of 50 ‘Unhealthy’ persons. In such a case, the CDS
uses eq. 23 and finds a subset with at least 5 ‘Unhealthy’
persons, whose data remain within a certain range. Therefore,
the Bayesian statistics inspired by Eq. 23 represents a better
approach of applying the desired predefined policy to refine
actions by the planner.

2) ERROR CALCULATION AND CoO-BASED
DECISION MAKING
The assurance factor (AF) measures the expected assurance
about the decision after the current action ck . Therefore,
multiple final rewards for the estimation of false alarm (FA)
and diagnosis error (DE) can be calculated as:

rwkFA =

1−
k∑
t=1

AF tFA

k k ≤ TUnhealthy
rw

TUnhealthy
FA k > TUnhealthy

(24)

rwkDE =

1−
k∑
t=1

AF tDE

k k ≤ THealthy
rw

THealthy
DE k > THealthy

(25)

Here, TUnhealthy and THealthy are the maximum number of
actions available in the action-space to provide evidence of
100% ‘Unhealthy’ and 100% ‘Healthy’ states, respectively.
Also, rwkFA and rw

k
DE is the estimated false alarm and the esti-

mated diagnosis error for the UUT, respectively. The process
of CoO uses the estimated rewards in eqs. (24) and (25) that
are presented in Algorithm 2.

For the screening process, the initial decision of the CDS
about the UUT at the beginning of the PMAC (k = 0) is
‘Unhealthy’. For a specific UUT or based on the pre-defined
policy, if there exists no such action in the action-space
that can provide 100% evidence that the UUT is ‘Healthy’,
the Executive does not change its initial decision and moves
to the steady-state with a final decision of ‘Unhealthy’ about

Algorithm 2 CDS for User-Health Prediction (planner, Rein-
forcement Learning and Policy in Executive, Running Diag-
nostic Test in the Perceptor)
Input: The observables and features from the database for
each user for the focus level m, models, ranges, policy
(screening process, desired diagnosis error, wDE ,wFA, . . .),
a database of users
Output: Decision about the health state of the UUT

Initialization:
c0 ← The actions, [Vital signs and portable sensors,
· · · ] apply on the user
Start advanced actions such as 12 leads ECG or . . . if c0
shows an anomaly in the user’s health or a request is
placed by the user.
Load the model at focus level m = 0 and action-space
C , Decision = 0 (UUT unhealthy), ThresholdDE .
ck=0← an action randomly selected from C and focus
level 0
Apply to ck=0 to UUT
Extract features Õk=0,1 and choose one of them with
maximum PFk=0,lb,1 , load rm=0,l,bk=0
Calculate rwk=0DE and rwk=0FA

1: while k ≤ (K − 1) then
2: Update features based on
1) Planning
3: C_buf ← C(m)

Learning
4: for all actions (s ∈ C_buf ) do
5: for l = 1 to Lm do
6: for b = 1 to Blm+1
7: Calculate rwk+1,sDE
8: Calculate rwk+1,sFA
9: Calculate f (k+1)s (rwk+1,sDE , rwk+1,sFA )

10: End for
11: End for
12: End for
13: Extract S ′,L ′ and B′

14: Remove S ′ from C_buf
15: if S ′ < 1 then
16: Calculate F total, km+1
17: if F total, km+1 ≤ Complexity threshold then
18: Increase focus level m by 1 (if Umin met)
19: k ← k + 1
20: else
21: Message: Not meeting ThresholdDE
22: Decision = Unhealthy
23: Return Decision
24: end if
25: else
26: Apply action (sensor activation) S ′ on user (cS

′

k+1)
27: k ← k + 1

Run screening process
28: OUtest ← Extracted features of cS

′

k+1
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Algorithm 2 (Continued.) CDS for User-Health Prediction
(planner, Rein- forcement Learning and Policy in Executive,
Running Diag- nostic Test in the Perceptor)

29: if Rk,m+1,L
′,B′

min ≤ Ō
k,m+1
Utest (L ′) ≤ Rk,m+1,L

′,B′
max and

Ô
k,m
DF,Utest then

30: Calculate rwkDE
31: Calculate rwkFA
32: Run Algorithm 1 for CoO Decision making
33: End while

the UUT. If the CDS finds 100% evidence of the UUT
being ‘Healthy’ but does not find 100% evidence of the user
being ‘Unhealthy’, the CDS changes the final to decision to
‘Healthy’ and moves to the steady-state. However, in the case
when the CDS finds 100% evidence for the UUT in favor
of both the ‘Healthy’ and ‘Unhealthy’ states, then the CDS
checks whether the eq. (26) is satisfied at kth PMAC (Details
are provided in Algorithm 2):

(k × (1− rwkDE ))
wDE > (k × (1− rwkFA))

wFA (26)

Here, wDE and wFA are arbitrary pre-defined weights associ-
ated with the diagnosis error and the false alarm, respectively,
and are determined based on the trade-off between them.

3) LEARNING USING PREDICTION
a: EXECUTIVE ACTIONS
The purpose of the Executive is to find prospective actions
that can optimize the cost-to-go function. Then, the system
will apply some relevant actions on the NGNLHE based
on the actions required for finding 100% evidence in favor
of ‘Healthy’ or ‘Unhealthy’ states. Here, relevant actions
can be, for example, asking for related information to the
user or activating sensors for new measurements. For each
health condition, the Executive activates the sensors to obtain
maximum information about the health conditions using the
planning and learning sections. Reinforcement learning will
be done once the database is updated with new information
or the smart e-Health system is upgraded with new sensors.
The data obtained from the Executive through reinforcement
learning can also be updated with new measurements from
the sensors at a later time.

The false alarm and diagnosis error due to the virtual
environmental action of csk+1 can be predicted by,

rwk+1,sFA =

1−
k∑
t=1

AF tFA+AF
k+1,s
FA

k+1 (k + 1) ≤ TUnhealthy
rw

TUnhealthy
FA (k + 1) > TUnhealthy

,

(27)

rwk+1,sDE =

1−
k∑
t=1

AF tDE+AF
k+1,s
DE

k+1 k + 1 ≤ THealthy
rw

THealthy
DE k + 1 > THealthy

, (28)

AFk+1,sFA =
PFk+1,l,sb,m+1,Unhealthy

PFk+1,l,sb,m+1,Unhealthy + 1
. (29)

AFk+1,sDE =
PFk+1,l,sb,m+1,Healthy

PFk+1,l,sb,m+1,Healthy + 1
. (30)

Here, s ∈ {1, 2, . . . , S} and S is the total number of desired
actions that can be applied for the screening process. Also,

in eqs. (29) and (30), PFk+1,l,sb,m+1,Healthy and PF
k+1,l,s
b,m+1,Unhealthy

are the precision factors received through the internal feed-
back from the Perceptor corresponding to the ‘Healthy’ and
‘Unhealthy’ states, respectively. Then, the cost-to-go function
for the desired action csk+1 can be calculated using eq. (31) as,

f (k+1)s (rwk+1,sDE , rwk+1,sFA )

=


(rwk+1,sDE −rw

k
DE )

wDE

(rwk+1,sFA −rwkFA)
wFA

, s ∈ {1, 2, . . . , S}

f k (rwkDE , rwkFA) s = 0
, (31)

(feature_location)(k+1)s = [l, b]. (32)

Therefore, we can find the action cS
′

k+1 that minimizes the
cost-to-go function as,

S
′

= argmin
S∈{0,1,2,3,...,S}

(f k+1s ). [L
′

,B
′

] = f k+1
s′

. (33)

As a result, the actions to be applied on the environment can
be selected as,

ck+1 = cS
′

k+1, for S ′ ≥ 1. (34)

Therefore, ck+1 is the best action to be applied on the
environment to improve the CoO-based decision-making
performance based on the desired policy set by the user.
Algorithm 2 shows the outline of the main processes of the
global PAC of the proposed CDS.

V. CASE STUDY: SCREENING OF A USER WITH OR
WITHOUT ARRHYTHMIA
Cardiovascular disease (CVD) is among the leading causes
of death in the world [53]. Arrhythmia or irregular heartbeat
is the most common CVD in persons older than 35 years
with millions of people in the world having some forms of
Arrhythmia [54], [57]. In the USA, 850,000 persons are hos-
pitalized each year due to Arrhythmia [54]. In addition, about
326,000 out-of-hospital sudden cardiac arrests (OHSCA)
can happen in the USA every year with a survival rate of
10-11% [54] and more than 80% of sudden cardiac death
results from ventricular Arrhythmia [55], [56]. However,
the survival rate in the case of OHSCA can be improved to
33% if it occurs in front of another person(s) [55] which
makes early identification of arrhythmia critical. It was found
that 16-17%ofCanadians are not aware of having anArrhyth-
mia [58], making them vulnerable to potential fatal con-
sequences. Therefore, continuous monitoring for and early
identification of arrhythmia is of paramount significance to
avoid potentially fatal consequences.
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In clinical settings, Arrhythmia is generally diagnosed by
the 12-leads ECG [59] or by the Holter monitor [60]. How-
ever, these methods can only diagnose about 50% of Arrhyth-
mia [61]. Also, portable single-lead ECG devices are gaining
popularity as a tool for continuous, in-home monitoring of
cardiovascular activity.

We used the proposed CDS to distinguish between ‘Arryth-
mia’ and ‘Normal’ ECG as a proof-of-concept application of
CDS for health screening in presence of a defective dataset.
Here, we chose a dataset of single-lead ECGs posted in Phys-
ioNet Computing in Cardiology Challenge (CINC) 2017 [62]
to implement the proposed algorithm.

The CINC 2017 dataset can be considered as an example
of defective dataset, because all submitted trained models
have problems of overfitting, resulting the performance of
the models to drop significantly in the testing phases [62].
It was mentioned in [63] that estimation of the health state
using the CINC 2017 database is a non-trivial problem.
In addition, the examiners concluded that the number of
training patterns in the CINC 2017 dataset are not enough
to provide advantage for complicated algorithms over simple
algorithms (Defective database) [63]. It is also mentioned
in [63] that more training patterns and better labeling of CINC
2017 dataset are required for better performance. Although,
the defective CINC 2017 dataset may not be reliable for
accurate arrhythmia diagnostic test, it may still be useful
for primary screening [63]. Figure 9 shows the extracted
Heart rate (HR) using an available MATLAB program from
the Physionet website for CINC 2017 database [64] and
the HR in clinically valid MATLAB (UCI) dataset. The
details about the MATLAB dataset are provided in [10].
The MATLAB dataset contains newborn to elderly peo-
ple. However, in the CINC 2017 database, age and sex are
not provided. Figure 9 shows that normal HR should be
between 55-101 Beats/min based on MATLAB dataset [10].
Thus, HR lower than 55 Beat/min is called Bradycardia
or slow HR and HR higher than 101 Beat/min is called
Tachycardia or fast HR. Both Bradycardia and Tachycardia
are two well-known Arrhythmia classes. Figure 9 shows
that 1371 out of 5076 (∼27% of normal rhythms) are out
of normal HR range and this misleads any ML-based AI
approach that trusts the dataset and labeling. Therefore,
we selected CINC 2017 as the defective dataset to implement
a proof-of-concept case study of the proposed PMAC-based
CDS.

The provided ECG recordings in the CINC 2017 database
are collected using a US Food and Drug Administra-
tion (FDA) approved single-lead portable ECG device,
KardiaMobile from AliveCor [62]. The database contains
8,528 single-lead ECG recordings from 9 s to just over 60 s
collected at a sampling rate of 300Hz. Table 1 shows the num-
ber of ECG waveforms in each of the four classes. However,
we used this dataset to screen between two binary classes
of healthy (normal rhythms) and unhealthy (AF and other
rhythms and noisy recordings) states as a proof-of-concept
application of our proposed CDS.

TABLE 1. Prevalence in CINC 2017 database (priors).

FIGURE 9. Heart rate of persons labeled as normal rhythms in
CINC2017 [51] and MATLAB dataset [10].

A. SIMULATION PARAMETERS AND CoO DECISION
MAKING EXAMPLE FOR CASE STUDY
Here, we used a validation dataset from [51], [52] and
removed them from the training dataset to verify the perfor-
mance of the proposed CDS. Detailed information related to
training dataset and validation dataset can be found in [62].
The simulation parameters used for the CDS-based screening
process are presented in Table 2. We extracted the features
using the available MATLAB program from the Physionet
website [64]. The program extracts 188 features from each
ECG signal [64]. For simplicity, the CDS uses only feature
80 as the node at focus level 1, while at focus level 2,

TABLE 2. Simulation parameters of CDS.
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TABLE 3. Summary of simulation results for proposed CDS.

the remaining 187 features are used (see Sections 4.A.1-
4.A.4, Figs. 6 and 7). At focus level 3, the CDS extracts
important features from the measured ECG signals that carry
information corresponding to the healthy or unhealthy state of
the UUT. Also, all features are normalized to their absolute
maximum value at focus level 0 (see Table 2 ).

FIGURE 10. Example of decision-making based on conflict of opinions
(CoO) (PF k,l,min

b,3 (Healthy ) = 3, PF k,l,min
b,3 (Unhealthy ) = 2, N: Normal

rhythm/Healthy).

Figure 10 shows an example of the CoO-inspired decision-
making process. The UUT in this example had an ECG with
‘Normal rhythm’, and was therefore, considered to be in a
‘Healthy’ state. As shown in Fig. 10, the decision about the
UUT’s health state is ‘Unhealthy’ in all PACs from 0 to 19.
However, the CDS changes the decision to ‘‘Healthy’’ in PAC
20 through non-monotonic reasoning i.e. the earlier decision
was invalidated by adding new evidence. The CDS stays on
the decision of ‘‘Healthy’’ based on the current measurement
from the sensor as 1) there remains nomore evidence showing
that the person is ‘‘Unhealthy’’ and 2) the weight of the
evidence in favor of a ‘Healthy’ state is higher (See section
4.C.2, Eq. (26) and Algorithm 1). However, if the CDS finds
new evidence in favor of the ‘‘Unhealthy’’ state in future
measurements, it may change the decision to ‘‘Unhealthy’’.

B. AVERAGE ESTIMATED AND REAL LEARNING CURVES
FOR CASE STUDY FOR DIFFERENT PREDEFINED POLICIES
We simulate the CDS for four predefined goals and policies.
The objective of the CDS is to minimize the false alarm at
four different levels of desired diagnosis errors, i.e. 25%,

10%, 5.9% and 2.5% (see section 4.C.1, ThresholdDE ). The
simulation parameters and a summary of the results are pre-
sented in Table 3. The simulation results of average internal
rewards for false alarm and diagnosis error estimation (see
section 4.C.2 and Eqs. (24) and (25)) as well as the real false
alarm and diagnosis error are shown in Fig. 11 (a)-(d) with
respect to the PAC number for the desired policy of diagnosis
error (ThresholdDE ) less than 25%, 10%, 5.9% and 2.5%,
respectively. It can be seen from Figs. 11(a)-(d) that the CDS-
generated average internal rewards for diagnosis error and
false alarm reach to a good agreement at higher PMAC with
the actual average diagnosis error and average false alarm
(see Table 3, also).

It can be seen from Figs. 11 (a)-(b) and Table 3 that
the CDS can fulfill the requested policies. However, in
Figs. 11 (c) and (d) (see Table 3 also), the final diagnosis
errors are a little higher than the desired values. This is
mainly because when the policy changes from the required
DE of 5.9% to 2.5%, the number of UUTs who were success-
fully resolved by CoO decreased from 83.3% and 11.7% (see
Table 3 ). That is, the proposed CDS cannot meet the required
diagnosis errors when the number of users for CoO decrease
significantly (see Table 3 ).

In Fig. 11 (a), both the estimated and real diagnosis error
are high at the beginning. This is because actions used
at the beginning cause some actual ‘Unhealthy’ UUTs to
be falsely diagnosed as ‘Healthy’. However, as the num-
ber of PMACs increases and the CDS finds new evidence
at every PMAC, it can change the decision about them
(See Fig. 10 also). For a similar reason, the average esti-
mated diagnosis error in Fig. 11 (b) is initially high, but
showed a good agreement with the real average diagnosis
error at higher PMAC numbers. In addition, the number of
PMACs decreased from Fig.11 (a) to Fig. 11 (d). This is
due to the fact that 1) the number of users with both actions
decreases (Figs. 11 (c)-(d)); and 2) based on the policies
applied (Figs. 11 (b)-(d)), and less actions are now available
in the action-space (see section 4.C.1 and Eqs. (21)-(23)).

Like the diagnosis error, estimation of the false alarm by
the CDS also depends on the number of available users with
both available actions. The CDS performs the screening pro-
cess by minimizing the false alarm for a predefined desired
diagnosis error. It can be seen in Fig.11 (a) that there is a good
agreement between the final estimated false alarm and real
false alarm. Also, the final real false alarms are lower than
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FIGURE 11. Average internal rewards vs. average real diagnosis error and false alarm, for desired diagnosis error (DE) (a) DE≤25%, (b) DE≤10%,
(c) DE≤5.9%, and (d) DE≤2.5%.

the CDS-estimated false alarms (Fig.11 (a)-(c)). However,
in Fig. 11(d), the estimated false alarm is lower than the actual
false alarm, which results from the fact that the estimation
was done based on ∼11.7% of the users (see Table 3 ). Also,
unlike the estimated false alarm rates in Fig. 11 (a)-(b), it can
be seen in Fig. 11 (c) that the estimated false alarm is high for
the earlier PMACs, while real false alarm decreased. This is
mainly because when the policy changes to the required DE
of 5.9%, the number of UUTswhowere successfully resolved
byCoO also decreased to 83.3%. The remaining 16.7%UUTs
contribute to the inaccurate estimation of the real false alarm
in earlier PMACs.

In general, based on Table 3, the average final diagno-
sis error decreased from 13.2% in Fig. 11 (a) to 9.9% in
Fig. 11 (b), 6.6% in Fig. 11 (c) and 4.6% in Fig. 11 (d).
However, the trade-off of decreasing average final diagnosis
error is the increment of the average final false alarm from
20.1% in Fig. 11(a) to 25% in Fig. 11(b), 28.4% in Fig. 11(c)
and 57% in Fig. 11(d). It can be seen from Fig.11 (c) and
Fig. 11 (d) that the trade-off of 2% improvement of average

final diagnosis error is a 28.6% increase in the average final
false alarm. This can be attributed to the fact that the proposed
CDS can apply CoO only on 12% of users in this policy
in Fig. 11(d) (see Table 3 also). As a consequence, for improv-
ing diagnosis error more than 5.9% a significant penalty for
false alarm increment is paid.

In summary, we can conclude that the CDS should have
more than 80% (ideally, 98%) UUTs with CoO (For example
Fig. 11(a)-(c), see Table 3 also). The percentage of decisions
made by the CoO out of the total decisions can be used as
another internal metric and reward for the proposed CDS.
This metric would give the proposed CDS a ‘self-awareness’
about the reliability of its performance.

VI. CONCLUSION
In recent years, there has been a growing interest in devel-
oping smart interactive cyber-physical systems (CPS) such
as smart home and e-Health. An autonomic decision-making
system (ADMS) is of paramount importance for the auto-
nomic computing layer of such systems. The ADMS for
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a smart e-Health Home may include functionalities such
as real-time dynamic training or decision-making, screen-
ing process, treatment, healing tracking as well as recom-
mendations for healthy living. In this paper, we proposed
a PMAC-based cognitive dynamic system (CDS) for an
ADMS to enable automatic screening of human health with
an acceptable level of false alarm rates. We also proposed
a CoO-inspired decision-making algorithm that allows the
proposed CDS to make a decision at a pre-defined level of
confidence even when the training dataset itself is poorly
labeled or unbalanced.

The system architecture and algorithms are developed to
realize a health screening (i.e., healthy or unhealthy) appli-
cation with an acceptable level of the false alarm policy.
To illustrate the application of the proposed system, a proof-
of-concept case study is performed on a defective dataset of
ECG traces. The performance of the proposed CDS shows
good agreement with the desired performance metrics. For
the desired diagnosis errors equal or less than 25%, 10%,
5.9%, and 2.5%, the CDS achieved diagnosis errors of 13.2%,
9.9%, 6.6%, and 4.6%, respectively. These diagnosis errors
are achieved with acceptable false alarm rates [19] of 20.1%,
25%, 28.4%, and 54.7%, respectively. Therefore, we could
simulate the flexibility and reliability of the proposedCDS for
screening purposes even with a training dataset that is defec-
tive or tempered through a cyber-attack that may disrupt the
labeling or remove some training patterns from the dataset.

In summary, a CDS for health screening application
is proposed and implemented. This CDS incorporates
decision-making trees, non-monotonic reasoning, a decision-
making approach inspired from humans in the case of
conflict-of-opinions, prediction using the extracted model,
and the characteristics of non-Gaussian and non-linear
health features. The CDS checks only one feature in each
perception-multiple-action cycle, making the proposed algo-
rithm simple and fast. Finally, this work is the second step for
designing the ADMS for screening applications in a smart
e-Health system that can be extended for different healthcare
policies such as diagnosing the disease class, prevention and
early detection.
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