
Received April 2, 2021, accepted April 28, 2021, date of publication May 4, 2021, date of current version May 17, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3077295

A Novel Method for Detecting Future Generations
of Targeted and Metamorphic Malware
Based on Genetic Algorithm
DANIAL JAVAHERI 1, (Member, IEEE), POOIA LALBAKHSH 2,
AND MEHDI HOSSEINZADEH 3,4
1Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
2Euler Capital, Drysdale, VIC 3222, Australia
3Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
4Department of Computer Science, University of Human Development, Al Sulaimaniyah 0778-6, Iraq

Corresponding author: Mehdi Hosseinzadeh (mehdihosseinzadeh@duytan.edu.vn)

ABSTRACT This paper presents a novel solution for detecting rare and mutating malware programs and
provides a strategy to address the scarcity of datasets for modeling these types of malware. To provide
sufficient training data for malware behavioral modeling, genetic algorithms are used together with an
optimization strategy that selectively creates generations of mutated elite malware samples. In our unique
method, a sequence of system API calls is extracted using tracker filter drivers in a sandbox environment.
The most obfuscated and metamorphic malware are chosen by an elite selection method. The behavioral
chromosomes are formed by mapping extracted APIs to genes using linear regression. Our analysis system
includes an Internet simulator and a human emulator to deceive intelligent classes of malware to successfully
execute themselves and prevent system halting. The evolution process is performed through crossover and
permutation of genes, which are encoded based on the addresses of the kernel-level system functions.
An objective function has been defined to optimize the vital indicators of malignancy and tracking rate with
a linear time complexity. This guarantees that new generations of malware are more destructive and stealthy
than their parents. J48 and deep neural networks were employed in our experiments as they are two popular
modeling and classification strategies in the area of behavioral malware detection. Real-world malware
samples from valid references were used for the performance evaluation of our approach. Comprehensive
scenarios were involved in the experiments to evaluate the performance of our proposed strategy. The results
demonstrate significant improvement in detection accuracy - up to 5% considering rare and metamorphic
malware. The results also demonstrated a considerable enhancement in true positive rate for the proposed
deep-learning algorithm.

INDEX TERMS Malware detection, malware unpacking, genetic algorithm, metamorphism, obfuscation,
data mining, cyber security.

I. INTRODUCTION
The number of malware attacks has considerably increased
in recent years. More than 1.1 billion pieces of malware were
released in 2020 alone, of which more than 89 million were
created specifically for the Microsoft Windows platform [1].
Figure 1 represents the number of releasedmalware programs
in the last decade for three major Operating Systems (OS);
Microsoft Windows, Android, and Apple macOS, according
to the recent reference data. This chart illustrates that the

The associate editor coordinating the review of this manuscript and

approving it for publication was Frederico Guimarães .

number of malware programs produced for the Microsoft
Windows OS is approximately thirty times greater than the
Android OS, and one hundred and thirty times greater than
the Mac OS. This has been brought about by the popularity
of Microsoft Windows which means this platform is a large
target for malware attacks. The consequences of malware
attacks in business are considerable. For example, the damage
inflicted on business organizations by ransomware attacks
in 2019 was estimated in the hundreds of millions of dol-
lars [2]. The increasing growth ofmalware activity has always
been a core concern for researchers in the field of cyber
security.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 69951

https://orcid.org/0000-0002-7275-2370
https://orcid.org/0000-0001-9267-2610
https://orcid.org/0000-0003-3040-1801
https://orcid.org/0000-0001-9238-8839


D. Javaheri et al.: Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware

One of the important lessons learned from the recent
increase in malware attacks is that many of the new mal-
ware programs are duplicates of existing programs but with
changes in their executable code made to deceive and cir-
cumvent updates to anti-malware tools andmalware detection
modules. The proliferation of malware programs is partly
brought about by the advances in areas such as automated
code generation tools, novel code protection methods [3],
obfuscation engines, and packers. These advances have been
used maliciously to develop novel intelligent malware with
polymorphic and metamorphic characteristics. The existence
of these tools and technologies has created an opportunity
for malicious programmers to harness the power of self-
modification and obfuscation already provided in ready-to-
use engines to release hundreds of executable versions of
a basic malware. All these malware programs are pursuing
a single malicious goal - but from different channels. This
is why obfuscation and metamorphic engines play a critical
role in the development of a large number of perilous mal-
ware programs in today’s IT environment [4]. Consequently,
there is a never-ending battle between malware developers
and security analyzers, which is evolving as rapidly as the
complexity of malware advances [5].

The focus of our study is on malware programs with
three main characteristics. They are: (a) rare (b) created with
customized packers (c) extremely obfuscated and intelligent.
These types of malware programs have not been discussed
in most related studies in the area of malware behavioral
modeling and detection. Hence, this paper is focused on
(a) unpacking and executing the malware (b) extracting nec-
essary features (c) evolving possible mutations to train a
classifier that would be able to accurately detect such mal-
ware. Therefore, this paper argues that an effective malware
detection strategy can be defined using a combination of a
concise feature extraction method and creation of optimized
datasets using a modified genetic algorithm.

This paper is organized as follows. The main problem
and underlying challenges of malware modeling and mal-
ware detection are described in Section 2. Section 2 also
provides reviews of relevant key concepts and technologies.
Section 3 includes malware behavior analysis and a review of
related works. Section 4 provides a detailed description of the
authors proposed method for extracting features, and gener-
ating and optimizing required datasets for training a malware
detection model to detect activities related to metamorphic
malware. Section 5 evaluates and discusses the performance
of our proposed method by estimating the quality of the
generated and optimized dataset used for the data mining
process. Finally, Section 6 forms the conclusion.

II. STATEMENT OF THE PROBLEM
Besides the significant growth of malware, malware have
been created to be more intelligent, complex, targeted, and
shrewd [6]. They have been equipped with a wide range of
techniques to deceive and evade any antivirus scanners and

FIGURE 1. The amount of malware produced for different platforms in
the last decade.

mislead analyzers. The underlying reasons for these abilities
are described next.

A. PACKING
Packing is a popular method malware producers may use
to conceal malicious activities. Packing malware conceals
most of the software attributes in a portable executable (PE)
structure that may be targeted in the static anti-malware
analysis. This may include API names, names and attributes
of the imported libraries, and the control flow graph (CFG).
Hence, static anti-malware scanners which ignore the exe-
cution phase and only check the source code [7] would not
recognize the true nature of the file, therefore the malware
passes the detection phase. Figure 2 shows a targetedmalware
sample where the names of API calls in the import address
table (IAT) were encrypted by an (unknown) packer. The
structural information of this malware has been extracted
using the open-source tool Detect It Easy.1

The packing status of a piece of malware can be obtained
by measuring the entropy of the code. A drastic change in
the entropy of machine code created by standard compil-
ers indicates that the file has been packed. Many types of
packers such as UPX,2 FSG, Yoda’s,3 ExeStealth,4 PETite,5

ASPack,6 UPack, and VMProtect7 can be detected by look-
ing for a unique sequence of byte codes [8], though the
unpacking patterns and decryption keys are not detectable
using this method. The complexity and ambiguity of malware

1 https://github.com/horsicq/Detect-It-Easy
2https://upx.github.io/
3https://sourceforge.net/projects/yodap/
4http://www.webtoolmaster.com/exestealth.htm
5https://www.un4seen.com/petite/
6 http://www.aspack.com
7 https://github.com/eaglx/VMPROTECT

69952 VOLUME 9, 2021



D. Javaheri et al.: Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware

FIGURE 2. Encryption of system API calls of obfuscated malware
extracted by detect it easy.

activities prompts analysts towards dynamically monitoring
and analyzing malware’s behavior in order to discover the
true nature of obfuscated files. No matter how complicated
the obfuscation behavior coded into the malware to conceal
its malicious behavior during its static phase (stored on a
disk), it has to unpack and decrypt what is hidden inside
in the execution phase to be able to use system resources
and deliver its requests to the OS. Therefore, it is possible
to determine the behavior of an anonymous file based on its
interactions with the OS by closely monitoring the allocation
of system resources during the program’s execution phase.
To prevent the malware from doing damage, the anonymous
file is executed inside a risk-free, isolated environment such
as a sandbox. Here system API calls are monitored during
the actual execution of the program. However, the difficulty
of implementing a sandbox environment with proper virtual-
ization and resource simulation is the major challenge of this
method [9]. Symbolic execution is another strategy that can
be employed. This method symbolically executes an anony-
mous file under the environment of a processor emulator and
abstractly interprets the behavior of the file through symbol
analysis [10]. The majority of dynamic behavior analysis
methods are based on the two techniques just described. Our
proposed solution is based on dynamic behavioral analysis
using a risk-free sandbox to extract necessary features.

B. OBFUSCATION AND METAMORPHISM
Depending on the obfuscation technique used by a given
malware, various challenges need to be addressed after the
unpacking process. Various obfuscation techniques could
be used including random dead code and unconditional
branch insertion [11], dynamic code loading [12], identifier
renaming, instruction reordering [13], runtime code genera-
tion (RTCG) and integration [14]. Each of these techniques
should be addressed in a different way.

Metamorphic engine technology provides a platform to
create new generations of one or a set of basic malware pro-
grams. It provides an easy platform for creating new instances
of malware. One solution to deal with this threat is to iden-
tify the class of malware generated by well-known existing
metamorphic engines. Although metamorphic engines try to

create generationswith characteristics different from the orig-
inal, they cannot prevent passing down commonalities to new
generations. Therefore, the similarity between generations
will never reach zero. Some of the most famous engines
of this sort are PS-MPC, G2, MPCGEN, NGVCK, and
VCL32 [15]. P. Desai conducted a study showing that the
minimum,maximum and average similarity level in the struc-
ture of a malware program compared to a benign application
is 14%, 93%, and 35% respectively [16]. In order to deceive
malware detection methods, metamorphic engines also try to
increase the similarity of the newly generated malware with
benign entities. By examining the malware produced by these
engines and comparing themwith basic samples, e.g. samples
that have not been affected by the metamorphic process,
it is possible to detect the utilized metamorphic pattern to
some extent and provide solutions for the normalization of
the malware produced by such engines. This is mainly made
possible by using pattern recognition algorithms. However,
the drawback of using these engines is the size of the binary
code, which is increased due to the injection of junk code
with false conditions, permutation of instructions, and/or the
redundancy of ametamorphic stub in the generatedmalware’s
file. As an example, in [17] a code emulator tool has been
specifically designed to detect the inserted dead code in every
malware file. The resulted data from the code emulator is used
to improve HMM-based detection algorithm for detecting
metamorphic viruses produced by such engines.

Polymorphic engines transform the structure of malware
program to a new version. This generates a new behavioral
signature every time the malware executes. Therefore, it fol-
lows a different path to achieve its purpose. This relates
to the fact that any detection strategy should expect new
unknown behavior from newly generated malware programs.
To make necessary changes, malware needs to execute the
self-modifying stub embedded in the body of its executable
file during each run. The existence of the stub is detectable
by calculating the starting address of the original entry
point (OEP) of the executable code, which can be obtained
by adding two values: the image base address and a variable
value retrieved from the OS version. Standard compilers put
the OEP address at the beginning of the .text section, while
the malware must execute its own metamorphic stub before
executing its original code. Therefore, the OEP value in such
malware is reset to the first line of the metamorphic stub
code [18]. The complexity here is that the mere detection of
the existence of a metamorphic engine cannot properly detect
the type of malware generated by that engine. Intelligent
malware programs also utilize artificial intelligence strategies
such as the method described in [19]. These methods use
deep and reinforcement learning through interaction with
anti-malware programs. The ability to predict and detect
future mutations of the malware is a necessity to create
robust and reliable malware detection modules. This chal-
lenge has been precisely addressed in our proposed method
by producing a dataset containing potential mutations of
malware.

VOLUME 9, 2021 69953



D. Javaheri et al.: Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware

C. SCARCENESS OF TARGETED MALWARE
Creating high-end targeted malware programs with the men-
tioned capabilities requires proper funding and a high-level
of technological support. These malware are designed and
developed in a very complex way to sabotage specific tar-
gets such as modern weapons of cyber warfare [20]. This
is why these types of malware are almost impossibly diffi-
cult to detect. The small number of high-end targeted mal-
ware always has been a big challenge when attempting to
study their behavior and when tailoring defense and detection
strategies against them. Implementing intelligent diagnostic
models to detect them, particularly model training, would not
be possible when there is not a sufficient dataset. This argu-
ment is valid for different categories of malware programs
such as rootkits, exploiters, evaders, file-less malware, and
particular classes of spyware and malware that are specifi-
cally designed to work at the level of the master boot record
(MBR) and hypervisor.

Bootkit malware is capable of infecting the MBR loads
prior to the OS startup process to control the operating sys-
tem and modify drivers before anti-malware scanners start
running. This is the most potent method for attackers to
silently infiltrate a targeted machine [21]. Another rare mal-
ware is Blocker ransomware which disrupts the communi-
cation between the OS and input peripherals at the kernel
level by hooking interrupt service routines (ISRs) [6]. This
type of hook modifies the addresses in the interrupt descrip-
tor table (IDT). The kernel-level rootkit malware family is
another example, and is designed to hide traces of other
malware, including running processes, files stored on the hard
disk, registry keys, and the names of the registered services.
Exploiter malware is another category that is programmed to
be aware of OS zero-day (unpublished) vulnerabilities and
uses them to bypass security mechanisms in the OS including
kernel path protection (KPP) and user access control (UAC),
to undertake their malicious activities. The File-less malware
class is stored in the main memory space and is disposable.
Its main target is servers in data and service centers, which
run constantly, for a long period of time. Evader malware
programs are able to assess their environment and recog-
nize analysis environments, such as sandboxes and virtual
machines (VM), and also decoy environment like a honeypot.
Collecting this information helps them to avoid the execu-
tion phase in such monitoring and/or analysis environments.
Finally, there are Malware programs that function at the
ring-1 (hypervisor) level and have the ability for performing
Hyperjacking attacks in the IaaS cloud environment, like a
‘blue pill’. Themost important classes of raremalware, which
are studied in this paper, have been tabulated in Table 1.

Malware programs can be very deceptive and stealthy.
In order to illustrate this we will outline a sample scenario of
a spyware attack that has been designed and built quite pur-
posefully. The spyware is transmitted to the victim’s system
through a known zero-day vulnerability or a backdoor created
by a piece of malware that has already infected the victim’s
system. The malware silently launches itself by finding the

TABLE 1. The rare classes of malware.

right condition through monitoring the environment. The
existence of this malware is concealed by a rootkit malware
during its runtime so that anti-malware scanners or analysts
are not able to detect it. The malware is also able to assess the
environment to determine if a monitoring tool is running so it
does not reveal its malicious behavior. It waits for a suitable
time to send the stolen data to its command and control
(C&C) center. C&C is a node dominated by a malicious
attacker to send commands to the compromised computer by
malware. It also receives the hijacked information from the
victim’s system through a covert channel using authorized
network protocols such as ICMP, The data is combined with
regular network traffic in order to avoid detection. To prevent
any forensic analysis, the malware then receives the desired
commands from the C&C to remove its footsteps and commit
suicide after completing its mission.

Undoubtedly, designing such a multifaceted malware, e.g.
a malware program that consists of more than an executable
file and running process simultaneously, requires plenty of
financial support and time. Therefore, accessing their exe-
cutable files for behavior extraction is quite difficult and
expensive. Researchers continually face restrictions in devel-
oping strategies to detect and deal with these types of mal-
ware. Extracting features of these classes of malware and
training a classifier to detect them, and predicting the next
future mutations are some important contributions of this
paper. This will be outlined in the following.

D. CONTRIBUTION OF THE PAPER
Data scarcity of targeted malware, which is a severe restric-
tion when machine learning and data mining algorithms are
adopted for malware detection, is not the only challenge.

69954 VOLUME 9, 2021



D. Javaheri et al.: Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware

As described, the relevant executable files are extremely
obfuscated and encrypted using anonymous obfuscators and
customized packers. This makes the unpacking process
almost impossible using conventional methods [28].

Our proposed method provides an architecture for unpack-
ing and extracting necessary features from targeted malware.
After the feature extraction phase, a genetic algorithm is used
to generate the essential dataset and then optimizes it to train
a behavioral model for detecting rare classes of malware as
well as predicting their potential mutations in the future. The
contribution and innovations of our proposed method can be
summarized as follows:

X Extracting features from extremely obfuscated and intel-
ligent malware.

X Solving the problem of sample scarcity for trainingmod-
els, particularly when rare classes ofmalware are consid-
ered, through generating new and qualified populations.

X Higher prediction accuracy of the behavior of metamor-
phic malware in future mutations using the optimized
dataset through a deep learning algorithm.

X Understanding the behavior of the compound malware,
which is formed as a crossover between different com-
ponents, each belonging to a specific class.

X Reducing the difficulty of detecting malware programs
that have been created with various metamorphic tech-
nologies through crossover between the chromosomes of
old-released and newly released malware.

X Maintaining a balance between the classes of rare mal-
ware and other common malware in model training
which results in a more robust and accurate model.

III. RELATED WORKS
The most important relevant studies on malware detection are
reviewed next, based on the behavior analysis strategy. Then,
details of our proposed strategy will be provided.

Over recent years, dynamic behavior analysis has become
a key strategy in detecting new and obfuscated malware
programs during their execution phase. Machine learning and
data mining techniques are popular methods for malicious
behavior modeling and malware detection according to the
literature [29]. However, dynamic strategies are empowered
by static methods to improve their detection capabilities [30].
Modeling malware activities is conducted based on several
features such as system API calls, values of registry keys,
opcodes, and power consumption. Artificial intelligence and
machine learning techniques are employed. These include
neural networks [31], deep learning [32], image process-
ing [33], reinforcement learning [34], and ontology [35].
Trivial classifiers such as k-nearest neighbor (KNN), naive
Bayes (NB), decision tree (DT), support vector machines
(SVM), and hidden Markov model (HMM) were also widely
utilized in the modeling stage.

Extracting influential features for training a model is
another critical part of a malware detection software. Dif-
ferent studies used alternate methods for feature extraction

as well as various classification algorithms. The first part of
this section provides details of studies that have utilized the
malware analysis procedure to extract features at first, then
have attempted to address the problem of malware classi-
fication. The process of investigating malware programs to
realize their functionality, discover the source of propagation
and possible impacts is described as malware analysis. This
process is vital for any infrastructure in order to respond to
cybersecurity attacks and incidents [5]. The second part of
this section includes related works that have only focused on
malware classification and have not been engaged in malware
analysis in order to extract behavioral features. These works
have used datasets that contain malware behavior in the form
of PNG images or CSV files. Obviously, the first category is
more challenging since various obstacles need to be tackled
when facing packed, obfuscated, and metamorphic malware
in the real world. Further, a precise report of malware behav-
ior during execution is required to develop a removal tool
in order to eliminate malware files and disinfect the OS by
rolling back all malware activities. Our study is placed in the
first of the two categories.

A. MALWARE ANALYSIS AND CLASSIFICATION
Mohaisen et al. [36] developed a malware detection method
using dynamic behavior analysis. The authors also considered
the possibility of manual detection of unknown malware.
Four system resources, e.g. registry, memory, network, and
file system, were used to extract relevant information for
behavior modeling. The model was trained on 4,000 samples
and tested on 115,000 samples to prove the scalability of their
tool for implementing in the edge of the Internet for enterprise
and industry. The best result for recall and precision of the
model was reported as 99.6% and 99.5%, respectively.

Imran et al. [37] established a hybrid method of sequence
classification based on HMM and similarity-based meth-
ods for training and classification of malware. Their hybrid
method creates a symbolic reference to 120 system API calls
from 20 categories. Evaluation of different classifiers in the
similarity-based method demonstrated that a random forest
classifier performs better than other classifiers on malware
similarity vectors by a precision of 88%.

Liu et al. [38] presented a new malware detection method
based on machine learning. Using the n-gram pattern of the
malware opcode, they created black-and-white images, which
were applied to extract features for clustering the anony-
mous malware based on the shared nearest neighbor (SSN)
algorithm. In order to assess their model, the authors used
a dataset of 20,000 samples, including a mix of malware
samples and benign files. Their results showed that the best
accuracy for classifying anonymous malware was 98.9%.
Also, the average accuracy of their method for the detection
of modern malware samples was reported as 86.7%.

Javaheri et al. [6] developed a method to detect and
remove spyware, including keyloggers, screen recorders, and
blockers. This method introduced an efficient architecture
for kernel level tracking and dynamic behavior analysis.

VOLUME 9, 2021 69955



D. Javaheri et al.: Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware

The reported performance evaluation demonstrated that their
method accurately detected more than 92% of the malware
and could successfully remove 81% from the OS. According
to the literature, this reported study is the only one that pro-
vides amethod for disinfection ofmalware on top of detection
and classification.

Khan et al. [39] used GoogleNet and ResNet models from
two different platforms in their work to identify new obscure
classes of malware by using deep learning techniques through
image processing. Microsoft datasets, including nine classes
of such malware with a dataset of benign files, were used to
train and validate the model. The precision was evaluated at
more than 74% and 88% on GoogleNet and ResNet models
respectively. The experiments indicated that ResNet152 has
the highest accuracy while GoogleNet has the best execution
time.

Image processing techniques were also used in the study
conducted by Vinayakumar et al. [32]. The authors proposed
a hybrid method using deep learning to detect zero-day mal-
ware. The authors claimed that their introduced architecture
worked better than traditional learning algorithms. The inno-
vation of their approach is in combining machine vision and
deep learning algorithms. The proposed detector can also be
used with big data for real-time malware detection.

Wang et al. [40] present a malware detection method called
LSCDroid for realizing the malware’s intention through
behavioral analysis for the Android platform. The proposed
method used sequences of local sensitive API invocation and
function-call graphs to recognize the behavioral pattern of
malware through manually static code analysis. A machine
learning algorithm was then used for malware classification.
The results indicated that the precision of this method for
malware classification was more than 96%.

Makkar et al. have proposed a machine learning frame-
work [41] using five different models based on refined input
features to address security concerns in IoT devices, includ-
ing spam detection. The authors used the REFIT smart home
dataset to validate their proposed method. The evaluation
indicated that the accuracy of the proposed method was
between 79.8% and 91.8% for five different learning models.

B. MALWARE CLASSIFICATION
Kalash et al. [31] proposed a deep learning framework for
malware classification rather than shallow learning algo-
rithms. The authors adopted a deep learning approach using
convolutional neural networks (CNN) to classify malware
programs. Performance evaluation of this strategy showed
that this method resulted in 98.52% and 99.97% accuracy for
the Malimg and Microsoft datasets respectively. The authors
claimed that there is a higher detection ability for deep
learning when compared to traditional shallow learners such
as SVM.

Roseline et al. [33] presented a method for visualizing
malware within 2D images. They used a random forest
feature selection strategy to detect dominant features and
then employed deep learning for the classification phase.

The accuracy of malware detection and classification tasks
for this method was estimated between 97.2% and 98.6% for
Malimg, BIG 2015, and MaleVis malware datasets
respectively.

A deep learning method using convolutional neural net-
work was employed by Kumar et al. at [42] to identify
unknown malware programs. The authors visualized mali-
cious codes in the form of gray-scale images to address
the challenge of malware identification and classification.
Dataset of Vision Research Lab, including more than nine
hundred samples from twenty-five groups in addition to three
hundred benign files, were used in this study. The experi-
ments demonstrated an accuracy of 98%.

C. COMPARISION OF RELATED WORKS
Table 2 compares related studies in terms of the type of
detection strategies and other attributes such as platform,
the type of the behavioral analysis and feature selection
(if utilized). The table also includes the dataset, scale, clas-
sification algorithm and also the accuracy of the model.
According to the literature, targeted samples and datasets of
malware obfuscated by anonymous obfuscators and packed
by customized packers are not easily available, and themajor-
ity of the related studies merely focused on available datasets
in their model generation and performance evaluation. This
shows that limited access to rare classes of malware has led to
neglecting these classes in the area of malware detection. This
is because model training with a limited number of samples
is not robust, accurate, and reliable; models create by limited
data cannot appropriately fit the problem search space and
cover all possible ways that a malicious programmer may use
to implement the malware.

IV. THE PROPOSED METHOD
This section describes our proposed method for detecting
rare classes of malware as well as possible and potential
future mutations caused by metamorphic engines. Many of
the malware classes we focused on are extremely rare and
obfuscated.Wewere able to collect and acquire some relevant
data for these classes fromAdminus [43], VirusSign [44], and
VirusShare [45] malware datasets.

To create the initial population, we randomly chose sam-
ples from seven classes of rare malware, including stealth
spyware, kernel rootkit, injector, blocker, bootkit, evader, and
file-less. All samples from the early population malware were
extremely packed and protected by robust packers mentioned
in Subsection A of Section 2, in addition to several unknown
packers to prevent detection and disclosure of their action
mechanism. The size of the initial population is not large
enough to enable accurate and robust classification. This
problem was addressed by generating a new dataset so that
the size and quality of the populationwould become sufficient
for reliable training. In the following subsection, we explain
how to extract behavioral features for the modeling
stage.

69956 VOLUME 9, 2021



D. Javaheri et al.: Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware

TABLE 2. Comparison of related works.

A. MALWARE BEHAVIORAL FEATURE EXTRACTION
In this work, we extracted behavioral features and modeled
the behavior of highly protected and obfuscated malware by
dynamically unpacking them and tracking their system API
calls at the kernel-level for Microsoft Windows OS. This
process was performed by installing tracker hooks. Dynamic
unpacking was performed by deceiving and executing mal-
ware in an isolated environment and eventually dumping the
process memory at an appropriate time and rewriting it in the
form of an executable file - based on the method explained
in [28]. This reference provides an accurate method for
dynamic unpacking based on kernel-level memory dumping.
Success in the unpacking process is essential for extracting
behavioral features since it has a direct effect on the accu-
racy of model training for detecting metamorphic malware.
After finalizing the unpacking process, attributes necessary to
model the malware behavior - including the names of the API
calls and libraries - are extracted by parsing the PE header.
It should be noted that the names of the API calls stored in the
header of the PE file alone do not provide enough information
to infer the actual behavior of this class of malware. The
reason is that many function names may be unrealistic and
might have been inserted in the IAT or the export address
table (EAT) of the PE file to confuse scanners to be passed.

These names do not necessarily refer to the functions invoked
by a given malware in the execution phase. Moreover,
some novel intelligent malware programs use dynamic pro-
gramming and runtime code generation methods, making it
impossible to extract their behavior without real execution.
Thus, the malware executable files are executed in a virtual
machine environment equipped with tracker hooks. In this
environment, the chains of the relevant system API calls
are also recorded. Tracker hooks are created by installing a
Kernel-Mode Driver Framework (KMDF) filter driver [46]
in the I/O stack space of the OS with group ordering and a
very precise offset from the base address to track the malware
input/output request packet (IRP).

Our strategy was designed in such a way that by fol-
lowing a logical and structured procedure, the precision of
the analysis and the degree of transparency of the analy-
sis environment are maximized. This is because the perfor-
mance of detecting intelligent malware is critically dependent
on extracting behavioral features [47]. The architecture and
workflow of our proposed method are illustrated in Figure 3.
As shown, the process begins by delivering a malware file
collected by a honeypot, or from a valid source, to a static
analysis module. In the first step, the necessary information
for behavior analysis, such as section properties and the

VOLUME 9, 2021 69957



D. Javaheri et al.: Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware

FIGURE 3. The architecture of the proposed method for the malware behavior extraction.

information related to the IAT and EAT tables, are extracted
using a PE structure analysis tool. The packing status of
the malware file is determined by calculating the entropy
for each section of the file. If the file is packed, it is not
possible to extract many properties, and this step must be
repeated after the unpacking process. In the second step,
a deep statistical analysis is performed on the malware file.
At this stage, the relevant assembly binary code is extracted
from the executable file and then a corresponding control
flow graph is generated using disassembler tools or human
analysts, if required. This step concludes by translating the
assembly code into a high-level language such as pseudo-C
using a decompiler. The extracted information from step one
and step two, including PE header properties, CFG, and the
pseudo-C code, is then stored in a database, and the malware
is transferred to the third and fourth steps in order to finalize
the dynamic behavior analysis. In the third step, a multi-
scanner system scans the malware file to detect and approve
their predicted class. If the malware was merely detected
and not classified correctly, it is not possible to clarify that
the result is a true positive or a false positive. Our multi-
scanner consists of twenty different antivirus programs, all
installed on VMs running different versions of the Microsoft
Windows OS kernels. Table 7 includes the configuration of
our multi-scanner system used for labeling malware samples
for conducting a supervised learning process. In the fourth
step, the malware file is delivered to an isolated VM-based
sandbox environment in which the system routine observer
hooks are installed. The malware file is automatically exe-
cuted by a launcher, and its dynamic behavior log file is

created and recorded. This step of the analysis was auto-
mated as it is a time-consuming process, especially for a
large number of malware samples. In order to accelerate
the analysis, 30 VMs were used for parallelization, where
a load balancer was responsible for dispatching tasks and
managing load balancing amongVMs. Eventually, in the fifth
and last step of malware analysis, the malware’s dedicated
memory was extracted and dumped three times using the
method described in [28], and the values were rewritten and
aggregated in a new file which was further used an input for
a Volatility 2.58 memory forensic tool. The new malware file
contained the necessary unpacked parts, including PE header,
Data Directories, .text section, IAT, and EAT tables, used for a
statistical analysis. In the case of file-less malware, for which
only the memory dump is available, the process of analyzing
and extracting the behavior begins from this step.

The need for communicating and interacting with the out-
side world (for example, interaction with the C&C) through
the network when the malware is running inside the virtual
machine environment is an important point that must be
carefully addressed. Using the open-source tool INetSim,
a simulated Internet network was provided to the malware so
that its requests for a network connection can be handled in a
controlled manner. Another important issue is the malware’s
need to interact with the user through peripheral devices
such as a mouse or keyboard (for example, a user entering a
password using a keyboard). Given the fact that the analysis
process for today’s large amount of malware is performed

8 https://www.volatilityfoundation.org/releases

69958 VOLUME 9, 2021



D. Javaheri et al.: Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware

automatically, a tool mimicking human behavior (Monkey)
was designed and embedded in the VMs in order to address
this challenge.

B. GENETIC ALGORITHMS FOR METAMORPHISM
The Genetic Algorithm (GA) is one of the most popular
evolutionary algorithms to generate high-quality solutions for
optimization problems. GA was inspired by the Darwinian
evolutionary theory where every solution maps to a chro-
mosome, and each parameter indicates a gene. GA evalu-
ates the quality of each generation using fitness functions to
improve iterative solutions [48]. GA has been utilized in a
wide range of domains and applications such as disease diag-
nosis, cancer prognosis, abnormality detection in medical
images, stock price prediction, particle swarm optimization,
predicting energy consumption, spatial modeling of climate
data, fault diagnosis [49], and other problems in the area of
optimization algorithms.

Over the recent years, variants of genetic algorithms have
been adopted to address a wide range of problems such as
hierarchic genetic scheduler (HGS), smart genetic algorithm
(SGA), panmictic genetic algorithm (PGA), interval genetic
algorithm (IGA), and hybrid genetic algorithm (HGA) for
scheduling tasks workflow, especially in the cloud comput-
ing [50] or quantum genetic algorithm (QGA) for quantum
computing [51].

This work utilizes GA to generate and optimize a dataset of
rare and metamorphic malware in order to increase detection
accuracy.

C. MALWARE BEHAVIORAL MODELING
After the initial population was formed and their behavioral
features were extracted, the systemAPI calls and their param-
eters were stored in a database. This database contains the
log file of each malware behavioral features. In our pro-
posed method, each chromosome represented the behavior
of malware in which each system API call is mapped to a
gene together with its effective parameters. Each genome is
a sequence of corresponding system API calls that repre-
sent a specific malicious behavior. Genes are sorted based
on the time sequence in which their corresponding system
functions are called and arranged in a chromosome. There-
fore, the length of each chromosome is equal to the number
of invoked system functions. The time sequence of calls
is determined using a timestamp. The encoding modes in
the proposed method are performed in a 10-bit binary sys-
tem. A total number of 1024 genes or 1024 correspond-
ing system calls were defined, which is sufficient for the
main kernel-level system calls of the Microsoft Windows OS
(NT 6.1+) (which has about 700 system calls available) [52].
The major challenge in gene encoding is to find the addresses
of system functions. For this purpose, the system service
descriptor table (SSDT) at the OS kernel mode was used.
This table holds the addresses of 400 system functions [33].
The addresses of the remaining functions, mainly used for
graphical operating system interactions, are stored in the

SSDT shadow table. The addresses of the system functions
at the kernel level were determined using Equation 1.

Original Add .=ServiceTableBase+SysEnterAdd .×4 (1)

where ServiceTableBase is the beginning address of the
SSDT table and SysEnterAdd indicates the address of the
SysEnter command, which maps the user-level APIs onto
kernel-level APIs in Microsoft Windows NT OS Family [53].
The encoding is performed based on addresses of the
functions in the OS kernel, therefore, their assembly equiv-
alence can be searched in the unpacked version of the mal-
ware file. It is important to note that the addresses differ
in different versions of the OS kernel. In addition, because
of the randomization of the addresses by the address space
layout randomization (ASRL) andKPP security mechanisms,
a fixed address for some functions cannot be found (mainly
the functions of the sensitive modules, which start with Nt)
using the tools provided with the OS, such as the GetPro-
cessAddress routine call. In order to resolve this problem,
a unique sequence from the body of the desired function,
known as function ID was looked up. It is possible to find an
ID by debugging the OS kernel with tools such asWindbg and
Ollydbg. Refer to [52], where some of these IDs are provided.
Table 3 contains the encoding of the proposed method for
45 different functions. These are the functions with signifi-
cant effects on malware’s behavior. This is considered one of
the key findings of this study.

In our proposed method, system functions (mainly the
kernel-level system functions) were used to model the behav-
ior of malware programs. The reason for this choice is that,
in most cases, a certain number of user-level system functions
are mapped to a smaller number of equivalent functions at the
kernel level. Similarly, kernel-level routines are mapped to a
smaller number of corresponding IRPs; the IRPs are mapped
to a smaller number of (ISRs), and they are further mapped
to a smaller number of relevant interrupts [28]. Therefore,
from the user level to the kernel level and from the kernel
level to the hardware, the abstraction of functions increases.
It therefore becomes more difficult to interpret the resulting
behavior as well as the implementation of tracker hooks.
As for the user-level functions, although these functions are
less abstract and easier to implement, due to the large number
of functions of the state space, the problem of finding optimal
solutions becomes an instance of a NP-hard problem. Gener-
ally, the kernel-level system functions can be considered as
middle-state functions, so they create the most appropriate
zone for modeling the behavior of a given malware.

After extracting the names of the system functions used
by a given malware, the malicious behavior based on the
order of the system API calls and their call frequencies can
be modeled, and the corresponding chromosomes can be
formed.We used linear regression to model both the behavior
and chromosome formation. The chromosome of malicious
behavior is formed according to:

Chr .1 = A× XA + B× XB + C × XC + . . . (2)

VOLUME 9, 2021 69959



D. Javaheri et al.: Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware

TABLE 3. Encoding for chromosome formation in the proposed method.

where A, B, and C are the system API calls, and XA, XB,
and XC are their repetition frequencies. Chr .1 is a behavioral
chromosome formed based on a chain of system API calls
and their repetition frequency. Two malicious chromosomes
extracted from the code injector and self-propagating classes
of malware are shown in Figure 4.

Chromosomes shown in this figure represent two types
of malicious behavior: code injection and self-propagation.
In the first chromosome, a sequence of nine genes rep-
resents the malicious behavior of injecting code into the
memory of a running process. This behavior is used mainly
for obtaining control of the victim process, including the
victim’s access privileges to misuse its signature for UAC.
In the second chromosome, a sequence of seven genes

indicates a self-replication behavior for another sample of the
malware.

D. MUTATION IN THE MALWARE BEHAVIOR TO CREATE
MALWARE DATASETS
In this section, we describe how the dataset was created con-
taining malware with more stealth and destructive qualities.
Through data mining, we conducted a careful examination of
the structure and parameters of system functions in several
chromosomes extracted from a primary population of mal-
ware samples. These samples were extracted from Adminus,
VirusSign, and VirusShare malware datasets. We found that it
was possible to replace some genes with other corresponding

69960 VOLUME 9, 2021



D. Javaheri et al.: Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware

FIGURE 4. Chromosomes of malicious behavior for two samples of parent malware and their mutant child.

system functions to cause mutations. For instance, in the first
gene of a chromosome, code injection could create a handle
to a running process using theCreateProcess system function
instead of the OpenProcess function, which is considered as
a rule in changing the malware gene and inducing mutation.
The other mutation could replace the LdrLoadDll function
with the seventh gene in the same chromosome, i.e. LoadLi-
brary, which is used to load a binary file, usually a Dynamic
Link Library (DLL), into the memory of the victim process.
Also, for the self-propagating behavior chromosome, the sec-
ond gene, i.e.OpenObject, can be mutated by substituting the
CreateFileA/W and WriteFileA/W system functions. A new
chromosome is thus created with mutated genes that pursue
the same purpose as previously but in a slightly different man-
ner. The mutations induced by changing the function codes
also changed the malware signature. Again, it was possible to
induce a newer mutation within the new generation chromo-
some in the gene corresponding to theReadFile andWriteFile
functions by replacing them with the NtReadFileScatter and
NtWriteFileGather functions, respectively. This process may
continue as long as the rules of the knowledge base (KB) can
find the possibility of non-repetitive mutations in malware
chromosomes. This KB includes all possible states for gene
substitution. This KB supports a rule-based module based on
JRip algorithm to define and manage the cross over function
between chromosomes [54]. It should be noted that these
functions have not been documented by the manufacturer
(the Microsoft Corporation) as they are highly sensitive. The
structure of this function and some other undocumented sys-
tem functions were derived from [55].

The crossover process in malware genes is more compli-
cated. In this case, at least two basic samples of malware were
required for gene crossovers. For instance, in extracted chro-
mosomes, a crossover operation can be defined as an insertion
of the first and third genes of self-propagation behavior into
the genes for the code injection behavior. This created a new
compoundmalware that exhibited its self-propagation behav-
ior by code injection. Therefore, the new generation of mal-
ware emerged from the crossover of the two chromosomes
that inherited features from each parent. This new malware
can self-propagate by injecting code into the memory of the
victim processes. The original purpose - i.e. self-propagation
- was clearly achieved, but in a different manner. In either case
the new generation behaved in a much more complex way
than its parents. Moreover, its chain of calls is now longer
as two genes are crossed over. The crossover and mutation
process for the encoded genes of the mentioned samples
along with the related flowchart are illustrated in Figure 5.

In the proposed method, the candidates for producing a
new generation were chosen by an elite selection method
from the initial population. Elite Selection is performed by
maximizing the malignancy rate (MR) and minimizing the
tracking rate (TR). The MR component indicates the malig-
nancy of the malware behavior and is determined according
to the method described in [56]. In our study, the malware
was executed in a very advanced sandbox environment, and
after assessing its behavior, the sandbox provided a complete
report and accurate rate of malware malignancy based on the
damage malware afflicted the system resources (according
to YARA and Sigma rules). TR is the detection rate of the

VOLUME 9, 2021 69961



D. Javaheri et al.: Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware

scanners showing the percentage of the correctly classified
malware classes. The malware file was scanned by over
70 anti-malware scanners available in [57] simultaneously.
The TR was computed using the following formula:

TR =

∑N
i=1AV (Classified Correctly)×W∑N

i=1AV×W
(3)

As shown in Equation 3, TR is the ratio of the number
of scanners that detect the malware and classify it correctly
to the total number of scanners and their weights. N is the
number of scanners and W indicates the weight of each
scanner calculated according to the ranking list released by
AV-Test in 2020 [58]. The list has been sorted by the measure
of protection obtained during testing scanners by AV-Test.

In other words, an elite malware has the most mali-
cious behavior when it is detected by the least number of
anti-malware tools. Elites in each class of malware were
selected as candidates for evolution and reproduction. Pos-
sible states according to rules of the KB were then applied to
mutate and reproduce a new generation by substitution and
one-point/multi-point crossover in the parents’ chromosome
genes. The quality of the new generation was calculated by a
fitness function which was then compared with the parents’
quality. The fitness function described in Equation 4 maxi-
mizes MR and minimizes TR.

∀Classi(Fit.Func.i) = Max (MR) ∩Min(TR) (4)

If the MR value is more than those of the parents and the
TR value less than those of the parents, the child was accepted
and added to the new population. Otherwise, the child
was removed and a new state of possible substitutions and
crossovers created and tested. Consequently, each child chro-
mosome is a behavior indicator of a new sample of malware,
which is more destructive and more secretive than its parents.
The termination condition in the proposed method was to
achieve a certain rate of quality or to produce a certain number
of entity samples. If all states for crossover or mutation in the
malware genes are traversed, the algorithm also terminates.
The following pseudocode shows how new generations are
created according to our method.

The input for Algorithm 1 includes two samples of rare
malware. On these, gene substitution and the crossover func-
tion were triggered to create new generations. Next, the fit-
ness function measured the malignancy and tracking rate of
new generations to determine if they qualify for selection
and keeping. The result is a dataset with more stealth and
therefore more destructive samples of malware.

Previous works have not discussed detecting rare and tar-
geted malware equipped with complex packing and obfusca-
tion techniques, nor the lack of sufficient training samples
in any format (such as binary, assembly, source code, and
image). Hence, this paper focusses on addressing this chal-
lenge. It is noteworthy that the method proposed in this paper
was designed to produce new, high-quality entity samples to
include in training and classification in order to accurately
detect complex and rare classes of malware.

Algorithm 1 Generating and Optimizing Malware Dataset
Input: two samples of rare malware
Output: more destructive and stealth generations
1. i = 0;
2. k = 0;
3. DataSet = 0;
4. M = Rare Malware Dataset;
5. Initialize (Pi (EliteSelection(M)));

-Choosing parent 1
6. Initialize (Pk (EliteSelection(M)));

-Choosing parent 2
7. While KBisNotTerminated() do
8. Mutation (Pi);
9. Mutation (Pk);
10. Child← Crossover(Pi, Pk);

-Generating new child
11. FitnessFunction(Child, Pi);

-Comparing with parent 1
12. If (MRChild >MRPi & TRChild <TRPi)
13. FitnessFunction(Child, Pk);

-Comparing with parent 2
14. If (MRChild >MRPk & TRChild <TRPk)
15. DataSet← Child

-Adding child to the dataset
16. i = i+1;
17. k = k+1;
18. Next;
19. End.

V. EVALUATION AND DISCUSSION OF THE RESULTS
In this section, we discuss the performance of our method in
terms of the quality of the generated and optimized dataset.
The accuracy of the trained models for detecting rare classes
of malware and its future mutations are also addressed.

A. EVALUATION OF THE QUALITY OF THE NEW
GENERATIONS
In our proposed method, modification of API calls after
each mutation changes the child’s structural and behavioral
signatures. This change in the signature can be confirmed by
performing MD5 and SHA-1 hashes on new generations to
compare them with their parents’ signatures.

According to Equation 4, the mutant malware should
behave more destructively when compared to its parents, and
be more secretive than them. Figure 6 shows the malignancy
rate that occurred for new generations produced by our pro-
posed method.

As the diagram in Figure 6 illustrates, the new mutant gen-
erations in all seven classes described in this work behaved
far more destructively than their parents. The values for TR
for new generations are provided in Table 4. As shown, new
generations were far more stealthy compared to their parents.
To improve data clarity, TR values have been provided as a
line chart in Figure 7.

69962 VOLUME 9, 2021



D. Javaheri et al.: Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware

FIGURE 5. Crossover and mutation of the malware encoded genes in the proposed method.

TABLE 4. The tracking rate for new generations of seven rare classes of
malware.

As Table 4 and Figure 7 show, the mutant generations in
each class were detectable by fewer anti-malware scanners.
This illustrates that the behavior of the new generations was
more secretive than their parents.

From both Figure 6 and 7, we can infer that the increase
in the malignancy rate of malware samples as well as the
decrease in their tracking rate, were higher in the first gen-
erations compared to their parents, and as the generations
evolve, the rate diminished so that after amultiple generations
mutation evolution moves to a steady state, in which MR and
TR can no longer be improved. In our study, a steady state
was met after the fifth generation for exploiter spyware and
after the sixth generation for the injector classes of malware.
Gene substitution could not improve the figures for both MR
and TR beyond this point.

FIGURE 6. The graph of malignancy rate in mutant generations.

B. MODEL TRAINING
In this subsection, we trained two classifiers, a popular one
from traditional machine learning approaches and another
from new deep learning techniques. We used Weka UI9 ver-
sion 3.7.4 and H2O-310 to perform classification in our pro-
posed method. A comprehensive evaluation and comparison

9 https://www.cs.waikato.ac.nz/ml/weka/
10https://github.com/h2oai/h2o-3

VOLUME 9, 2021 69963



D. Javaheri et al.: Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware

FIGURE 7. The graph of tracking rate in mutant generations.

have been provided to prove the effectiveness of our proposed
method.

1) DATASETS
As previously mentioned, Adminus [43], VirusSign [44],
and VirusShare [45] datasets were used in our work. These
datasets have been collected during the seven years between
2013 and 2020. We chose 66% of our data as training data
and the remaining 33% as testing data. The total popula-
tion of the datasets used for training the classifiers includes
11632 records, of which 7563 sampleswere seven rare classes
mentioned in Table 4, and 4069 samples of benign files from
the three safe classes. Table 5 indicates the number of samples
for each dataset.

TABLE 5. The number of samples for each dataset.

The distribution of malware and benign classes for training
data have been illustrated as a pie chart in Figure 8. Benign
files have been collected from Windows system files, soft-
ware applications, and games.

It is worth mentioning that the proposed GA needed real
binary samples of malware to generate and optimize the
dataset of possible future mutations of malware. Other exist-
ing datasets such as Microsoft Big 2015, Malimg, Malheur,11

and MaleVis12 that do not contain malware binaries cannot

11 https://www.sec.cs.tu-bs.de/data/malheur/
12 https://web.cs.hacettepe.edu.tr/∼selman/malevis/

FIGURE 8. The frequency of dataset classes used to train the model.

be used for the proposed methods. Microsoft Big 2015 and
Malheur 2016 recorded malware behavior as CSV and XML
files, and MaleVis 2015 and Malimg 2011 have consisted
of PNG images. Malicia13 was another malware dataset for
2013 – but its project is discontinued now, so its distribution
was stopped by the provider due to aging. It is not possible to
detect unknown and zero-day malware if the model has not
been trained by the latest releases of the dataset. This issue
indicates how essential model updating is. The datasets used
in our work were updated daily by the relevant vendors.

Creating a newly generated dataset that contains malware
samples with higher MR and lower TR led to a significant
enhancement in the accuracy of the predictor model since
the model was trained with a better-quality dataset in our
approach. The behavioral model not only detects rare and
unknownmalware, but it is also able to detect changes caused
by metamorphic and polymorphic engines. The data pre-
sented in Table 4 shows that without any mutation in the
stealth spyware class, 70% of the scanners were not able to
detect malware programs, while with the resulting mutations,
this figure reached 94%, so that only 6% of anti-malware
programs could detect malware programs correctly. It should
be noted thatmaximizing themalignancy rate andminimizing
the tracking rate in new generations have led to high-quality
data being produced for better training, and consequently
a better model. This is more obvious when the model is
used to detect rare, polymorphic, and metamorphic classes
of malware. Some characteristics of the dataset used to train
these models include:
• The comprehensiveness of the training data. All classes
and subclasses of the malware are included in the rele-
vant domain as much as possible.

• Data mining is performed on an appropriate amount
of malware samples. Definitely, it is not applicable to
include all classes of malware in our training dataset.

13http://malicia-project.com/dataset.html

69964 VOLUME 9, 2021



D. Javaheri et al.: Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware

Modeling must be done on an optimal scale and should
be scalable and reliable.

• The model was created according to a balanced dataset.
Obviously, unbalanced training has adverse effects on
the total accuracy of the classification.

• Appropriate time distribution was considered. Malware
programs behave differently depending on the technolo-
gies available at the time of their construction. There-
fore, if the statistical population for training is limited
to a particular timeframe, then older or newer malware
might not be detectable by the resulted model. However,
if malware programs with quite different release times
are sampled, the accuracy of the model will decrease
because of the outliers. Hence, we performed sampling
at an appropriate interval of malware release time, which
should be constantly updated.

2) SHALLOW MACHINE LEARNING ALGORITHMS
The J48 decision tree algorithm provided by Weka was used
as the classifier to train our model based on supervised
learning. The reason for choosing a decision tree (DT) is its
popularity for modeling cybersecurity attacks [59]. DT algo-
rithms are also consistent with rule-based KBs and are able
to perform high-speed file scanning tasks, particularly when
the KB is structured as a rule-based system.

3) DEEP NEURAL NETWORKS
We have used both machine learning algorithm and deep
neural network (DNN) for training and testing the malware
detectionmodel based on our optimized dataset. According to
the literature, J48 is a popular classification algorithm in the
category of traditional machine learning strategies. It should
be noted that DNN is a modern algorithm that can handle
higher dimensions which results in more accurate and robust
models.

A DNN is a feedforward artificial neural network (ANN)
with many hidden layers between the input and output lay-
ers [60]. A deep neural network needs to have more than three
layers, in which the number of hidden layers indicates the
depth of the network. Neural networks have been widely used
in various domains such as machine vision, natural language
processing, speech recognition, handwriting recognition, sen-
timent analysis, and medical image analysis [49], [60]. Here
we have utilized DNN for training a malware detection and
classification model. The structure of the DNN is illustrated
in Figure 9 [61].

As Figure 9 shows, ‘a’ demonstrates neurons, ‘x’ is neuron
input, ‘y’ is neuron output, and ‘W’ indicates the weight
matrix.

In order to make the optimized dataset compatible for
training by DNN, we transformed all malware and benign
binaries into grayscale images. There were two methods for
this conversion. The first method converts malware binary
files into 8-bit vectors consisting of a string of zeros and ones,
then converts vectors to grayscale or RGB images [31]–[33].
The second method disassembles malware binary files into

FIGURE 9. The structure of the deep neural network [61].

assembly code and then converts the assembly code into a
grayscale image, much like the method described in [38]. The
latter method has increased challenges as it needs to reverse
the malware binary. There are also some obstacles regarding
reversing obfuscated and packed malware, including packer
identification and decrypting ciphered sections [8], normal-
izing metamorphic codes [13], and executing time-limited
malware - malware that only runs on a specific point or period
of time. However, its efficiencywas proven compared to other
methods, and the amount of data required for creating the
corresponding images is smaller than the former method.
In our work, the disassembling malware binary files method
was used since assembly codes for each malware binary were
already available at step 2 of our analysis architecture, e.g.
deep static analysis through disassembling by IDA Pro in
Figure 3. We converted each ASM code to a 512 × 512
grayscale image, and each pixel was valued at 0 to 255. This
resolution makes it possible to convert ASM files with the
maximum size of 256 KB, which is sufficient for different
malware types with the minimum data loss. Next, a deep
neural network algorithm was utilized to classify samples
using H2O-3 platform. H2O-3 is an open-source platform to
provide an integrated and scalable framework for machine
learning and deep learning [62]. It can be installed and used
locally or online over well-known clouds such as Amazon14

and Aquarium15 - through a web-based user interface.
We performed supervised learning in algorithm training

mode running on ml.c4.8xlarge instance type in H2O-3.
Supervised learning was possible through labeling data using
our multi-scanner - this architecture has been described
in Table 7. H2O-3 provides various functions and a wide
range of automatic and manual options for tuning deep
learning hyperparameters to reach the optimal set of hyper-
parameters including learning rate (step size), batch size,
momentum, and weight decay. Gradient descent was used
as an optimization technique and Softmax as an activator
function.

14https://amzn.to/3bMUI7l
15 https://www.h2o.ai/test-drive/

VOLUME 9, 2021 69965



D. Javaheri et al.: Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware

TABLE 6. Comparison of accuracy, Error rate, TPR, and FPR between models trained by different datasets.

C. MODEL VALIDATION
We used 10-fold cross-validation to train and validate the
model in the experiments. And a grid search with cross-
validation was used for deep learning to search for the best
configuration during cyclical learning rate between 0.80 to
0.85 to avoid overfitting and cyclical momentum in bound-
aries of 0.99 down to 0.90. Weight decay remained constant
without causing instabilities. We set a cutoff up to 56 for the
number of iterations and a max depth of {5, 10, 15, 20};
dimensions of the multiplications matrix, batch size, and
the number of epochs have been automatically tuned by the
H2O-3 in order to achieve the optimal state and the highest
possible accuracy.

Both J48 and DNN classifiers were trained on three
datasets and were compared to the classifiers trained by our
optimized dataset in eight separate experiments. The obtained
results demonstrate the effectiveness of the proposed GA in
detecting rare malware. In the experiments, 3781 real-world
malware samples and 2035 benign files were used as test data.
This was necessary for determining how accurate the trained
model was in detecting unknown and zero-day malware.
Footprints of more than 150 metamorphic and obfuscator
engines were found in the test data samples by searching the
n-gram of the remaining unique subsequences, indicating all
samples are packed and obfuscated. All experiments were
repeated three times to avoid environmental errors such as
VM crashes during the scanning process, or any mistakes that
may have been made by the analyzer while recording results.
The results of the performance evaluation are presented

in Table 6. This shows accuracy, error (mis-classification)
rate, true positive rate, and false positive rate.

The values in Table 6 were created by calculat-
ing the accuracy and classification error according to
Equations 5 and 6 [63].

Acc. =
TP+ TN

TP+ TN + FP+ FN
Avg.Acc. =

∑N
i=0 Acc.i
N

(5)

Err . =
FP+ FN

TP+ TN + FP+ FN
Avg.Err . =

∑N
i=0 Err .i
N

(6)

where Acc. and Err. indicate the accuracy and the error rate
when detecting each class of malware. N demonstrates the
total number of classes used in model training, TP (True Posi-
tive) and TN (True Negative) are correctly classified malware
samples and benign files, respectively. FN (False Negative)
indicates the number of malware samples mistakenly classi-
fied as benign, whileFP (False Positive) indicates the number
of benign files mistakenly recognized as malware. Avg. Acc.
and Avg. Err. refer to the average accuracy and the average
error rate for the total N classes, respectively. True Positive
Rate (TPR), also called sensitivity, and False Positive Rate
(FPR), also called specificity, were calculated according to
Equation 7.

TPR =
TP

TP+ FN
FPR =

FP
FP+ TN

(7)

69966 VOLUME 9, 2021



D. Javaheri et al.: Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware

D. DISCUSSION
As it can be understood from Table 6, after utilizing our
proposed method, there was an improvement in detecting
all malware classes. However, the rate of improvement is
variable for each class. The most improvement was for stealth
spyware and injector classes, and the least improvement was
for bootkit and kernel-level rootkit classes. This is because
the detection accuracy is correlated tightly with the quality of
samples that existed in the training dataset, as well as their
quantity. Also, it depended on how successful we were in
unpacking malware executables and normalizing their obfus-
cated behavior in order to extract essential features for train-
ing. Some classes that are more significant and costly for their
developers were equipped with dedicated facilities, such as
customized packers and anonyms obfuscator engines, to pre-
vent any malware analysis and unpacking process. Therefore,
since real-world malware samples have been studied in our
approach the effects of a successful or unsuccessful unpack-
ing on the accuracy is inevitable.

The averaged values obtained from the successful trials are
provided in Figure 10. This shows that the average accuracy
for the classification of rare and metamorphic malware for
both J48 and DNN classifiers was higher when the models
were trained on the optimized dataset. Also, the average error
rate was less for our method.

Figure 10 also shows that there was between 4% and 5%
improvement in the average accuracy for our method when
the DNN classifier was employed compared to other datasets.
There was also a 3% to 5% improvement when J48 was
utilized. These results also show that TPR and FPR were
significantly improved in our approach. The average TPR of
seven classes was increased between 12% and 14% in com-
parison with other datasets for DNN Classifier, and between
12% and 17% for the J48 Classifier. Additionally, the average
FPR decreased between 3% and 4% for both classifiers.

Low accuracy in detecting rare malware classes was due to
the lack of relevant samples in a dataset since vulnerabilities
for such malware classes are unpublished and not easily
accessible, so they cannot be hunted by AVs or Honeypots.
The proposed GA has effectively addressed these challenges
by increasing the population of such classes and enhancing
their stealth as well. The following subsection compares the
accuracy of the classifiers used in our experiments.

E. COMPARISON OF THE CREATED MODELS
In our experiments, two classifiers were trained on four
datasets. A Receiver Operating Characteristics (ROC) and
Area under the Curve (AUC) were conducted to provide a
comprehensive comparison between the classifiers trained on
each dataset.

A ROC curve is plotted against TPR and FPR for different
thresholds in [60]. By illustrating a ROC curve, it is possible
to make a trade-off between TPR and FPR rates that are
already obtained from Equation 7. The area under the ROC
curve (AUC) is calculated using Equation 8. AUC values

FIGURE 10. The comparison between classifiers and datasets.

close to 1 indicates a higher stability for the classifier.

AUC =
∫ 1

0

TP
TP+ FN

d
FP

TN + FP
(8)

ROC curve and AUC for each classifier have been calcu-
lated during all eight experiments (Figure 11).

FIGURE 11. ROC curve and AUC analysis for each classifier.

As demonstrated in Figure 11, the value of AUC for the
DNN method with the optimized dataset was larger than all
other classifiers. This illustrates that deep learning generates
a more discriminative model considering all datasets, except
VirusSign in which J48 had a better performance. Adminus
had the smallest value of AUC for both J48 and deep learning
classifiers, which indicates that the quality of samples in this
dataset is lower than other datasets while the quality of our
evolved dataset is better than others.

VOLUME 9, 2021 69967



D. Javaheri et al.: Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware

TABLE 7. The configuration of our multi-scanner system.

F. TIME COMPLEXITY AND SYSTEM CONFIGURATION
The time complexity for the genetic algorithm section of our
method can be calculated as O(g. (n.m+ n.m+ n)) where g
is the number of generations, n is the population size, and
m is the sample size. Hence, the time complexity can be
considered as an order of O(g.n.m).
In the case of classification of new generations of modern

malware, mostly created using metamorphic engines, an opti-
mal population should be considered statistically, otherwise,
handling a large set of metamorphic and polymorphic mal-
ware can push the problem into an infinite state that practi-
cally cannot be solved with optimization algorithms having
linear time complexity. The importance of time complexity
is further evident when detecting malicious behavior during
run-time.

Model training for all experiments in this work was con-
ducted on a machine with a CPU with 24 cores, 48 logical
processors. The machine had 128GB of RAM and 10TB of
SAS HDD. The configuration of our multi-scanner system is
presented in Table 7.

G. LIMITATIONS AND CONTINUATION OF THE RESEARCH
It should be noted that the proposed method for the crossover
of chromosomes requires at least two samples of malware.
Where only one sample of basic malware is available,
the crossover operation would not be plausible, and the
mutation of chromosomes will be only possible by substitut-
ing functions. Moreover, the process of monitoring malware
capable of Hyperjacking requires installing hooks at ring-3,

which is not supported by the proposed architecture due to
the lack of sufficient hardware requirements.

As discussed at the start of this paper, due to the popularity
of Microsoft Windows OS, most malware programs are cre-
ated for this platform. For this reason, this article focused on
PE type malware in x86 and x64 architectures. Our proposed
method is also consistent with and applicable to detecting new
generations of malware on other platforms such as ART on
Android and ELF on Linux.

VI. CONCLUSION
The detection of raremalware programs that were specifically
and purposefully created has always been a severe challenge
due to the lack of samples required to properly model relevant
malware detection systems. This paper defined a novel mal-
ware detection strategy that used a combination of a succinct
feature extraction method and creating an optimized dataset
utilizing a modified genetic algorithm. The method proposed
in this paper used genetic algorithms to conduct the evolution
of rare malware through crossover and mutation processes
in behavioral genes to generate a suitable dataset to train
the model for malware detection. In the evolution process,
the quality of new generations of malware was increased
and the malignancy rate and tracking rate were measured
by influential indicators. Having an evolved dataset that was
created according to the extracted behavior of obfuscated and
compound malware samples provided a conceptual guideline
for the trained model to better detect future mutations. This
thesis increased the accuracy of the model and decreased
classification errors for rare and metamorphic malware.

69968 VOLUME 9, 2021



D. Javaheri et al.: Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware

ACKNOWLEDGMENT
The authors would like to acknowledge the assistance of the
head of cyber security research center of SRBIAU and APA
specialized center of IUMS in providing them with commer-
cial datasets and tools. They also wish to thankDavidVenema
for his patience in proof-reading and offering editorial advice.

REFERENCES
[1] AV-Test Report. Accessed: 2020. [Online]. Available: https://www.av-

test.org/en/statistics/malware/
[2] A. Zimba and M. Chishimba, ‘‘On the economic impact of crypto-

ransomware attacks: The state of the art on enterprise systems,’’ Eur. J.
Secur. Res., vol. 4, no. 1, pp. 3–31, Apr. 2019.

[3] M. Madou, B. Anckaert, P. Moseley, S. Debray, B. Sutter, and
K. Bosschere, ‘‘Software protection through dynamic code mutation,’’ in
Proc. 6th Int. Conf. Inform. Secur. Appl., 2006, pp. 194–206.

[4] A. G. Kakisim, M. Nar, and I. Sogukpinar, ‘‘Metamorphic malware identi-
fication using engine-specific patterns based on co-opcode graphs,’’ Com-
put. Standards Interface, vol. 71, Aug. 2020, Art. no. 103443.

[5] D. Gibert, C.Mateu, and J. Planes, ‘‘The rise of machine learning for detec-
tion and classification of malware: Research developments, trends and
challenges,’’ J. Netw. Comput. Appl., vol. 153, Mar. 2020, Art. no. 102526.

[6] D. Javaheri, M. Hosseinzadeh, and A. M. Rahmani, ‘‘Detection and elim-
ination of spyware and ransomware by intercepting kernel-level system
routines,’’ IEEE Access, vol. 6, pp. 78321–78332, 2018.

[7] I. Ismail, M. N. Marsono, B. M. Khammas, and S. M. Nor, ‘‘Incorporating
known malware signatures to classify new malware variants in network
traffic,’’ Int. J. Netw. Manage., vol. 25, no. 6, pp. 471–489, Nov. 2015.

[8] B. Jung, S. I. Bae, C. Choi, and E. G. Im, ‘‘Packer identification method
based on byte sequences,’’ Concurrency Comput., Pract. Exper., vol. 32,
no. 8, Apr. 2020, Art. no. e5082.

[9] N. Miramirkhani, M. P. Appini, N. Nikiforakis, and M. Polychronakis,
‘‘Spotless sandboxes: Evading malware analysis systems using wear-and-
tear artifacts,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2017,
pp. 1009–1024.

[10] N. Namani and A. Khan, ‘‘Symbolic execution based feature extraction for
detection of malware,’’ in Proc. 5th Int. Conf. Comput., Commun. Secur.
(ICCCS), Oct. 2020, pp. 1–6.

[11] I. You and K. Yim, ‘‘Malware obfuscation techniques: A brief survey,’’ in
Proc. Int. Conf. Broadband, Wireless Comput., Commun. Appl., Nov. 2010,
pp. 297–300.

[12] S. Sun, X. Fu, H. Ruan, X. Du, B. Luo, andM. Guizani, ‘‘Real-time behav-
ior analysis and identification for Android application,’’ IEEE Access,
vol. 6, pp. 38041–38051, 2018.

[13] S. Jagsir and J. Singh, ‘‘Challenges of malware analysis: Obfuscation
techniques,’’ Int. J. Inf. Secur. Sci., vol. 7, no. 3, pp. 100–110, 2018.

[14] A. Cani, M. Gaudesi, E. Sanchez, G. Squillero, and A. Tonda, ‘‘Towards
automated malware creation: Code generation and code integration,’’ in
Proc. 29th Annu. ACM Symp. Appl. Comput., Mar. 2014, pp. 157–160.

[15] W. Wong and M. Stamp, ‘‘Hunting for metamorphic engines,’’ Dept.
Comput. Sci., San Jose State Univ., San Jose, CA, USA, 2006.

[16] P. Desai, ‘‘A highlymetamorphic virus generator,’’ Int. J.Multimedia Intell.
Secur., vol. 1, pp. 402–427, Jan. 2010.

[17] S. Priyadarshi, ‘‘Metamorphic detection via emulation,’’ M.S. thesis, Dept.
Comput. Sci., San Jose State Univ., San Jose, CA, USA, 2011.

[18] A. Mohanta and A. Saldanha, ‘‘Malware packers,’’ in Malware Anal-
ysis and Detection Engineering. Berkeley, CA, USA: Apress, 2020,
pp. 640–642.

[19] Z. Fang, J. Wang, B. Li, S. Wu, Y. Zhou, and H. Huang, ‘‘Evading anti-
malware engines with deep reinforcement learning,’’ IEEE Access, vol. 7,
pp. 48867–48879, 2019.

[20] C. Easttom, ‘‘An examination of the operational requirements of
weaponised malware,’’ J. Inf. Warfare, vol. 17, no. 2, pp. 1–15, 2018.

[21] B. Grill, C. Platzer, and J. Eckel, ‘‘A practical approach for generic
bootkit detection and prevention,’’ in Proc. 7th Eur. Workshop Syst. Secur.
(EuroSec), 2014, pp. 1–6.

[22] A. Fagioli, ‘‘Zero-day recovery: The key to mitigating the ransomware
threat,’’ Comput. Fraud Secur., vol. 2019, no. 1, pp. 6–9, Jan. 2019.

[23] B. Singh, D. Evtyushkin, J. Elwell, R. Riley, and I. Cervesato, ‘‘On the
detection of kernel-level rootkits using hardware performance counters,’’ in
Proc. ACM Asia Conf. Comput. Commun. Secur., Apr. 2017, pp. 483–493.

[24] D. Korczynski and H. Yin, ‘‘Capturing malware propagations with code
injections and code-reuse attacks,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Oct. 2017, pp. 1691–1708.

[25] Kaspersky Encyclopedia. Accessed: 2021. [Online]. Available:
https://encyclopedia.kaspersky.com/glossary/bootkit/

[26] McAfee Website. Accessed: 2021. [Online]. Available: https://www.
mcafee.com/enterprise/en-us/security-awareness/ransomware/what-is-
fileless-malware.html

[27] N. Rakotondravony, B. Taubmann, W. Mandarawi, E. Weishäupl, P. Xu,
B. Kolosnjaji, M. Protsenko, H. de Meer, and H. P. Reiser, ‘‘Classifying
malware attacks in IaaS cloud environments,’’ J. Cloud Comput., vol. 6,
no. 1, pp. 1–12, Dec. 2017.

[28] D. Javaheri and M. Hosseinzadeh, ‘‘A framework for recognition and
confronting of obfuscated malwares based on memory dumping and filter
drivers,’’Wireless Pers. Commun., vol. 98, no. 1, pp. 119–137, Jan. 2018.

[29] M. Sewak, S. K. Sahay, and H. Rathore, ‘‘Comparison of deep learning
and the classical machine learning algorithm for the malware detection,’’
in Proc. 19th IEEE/ACIS Int. Conf. Softw. Eng., Artif. Intell., Netw. Paral-
lel/Distrib. Comput. (SNPD), Jun. 2018, pp. 293–296.

[30] S. Venkatraman, M. Alazab, and R. Vinayakumar, ‘‘A hybrid deep learning
image-based analysis for effective malware detection,’’ J. Inf. Secur. Appl.,
vol. 47, pp. 377–389, Aug. 2019.

[31] M. Kalash, M. Rochan, N. Mohammed, N. D. B. Bruce, Y. Wang, and
F. Iqbal, ‘‘Malware classification with deep convolutional neural net-
works,’’ inProc. 9th IFIP Int. Conf. New Technol., Mobility Secur. (NTMS),
Feb. 2018, pp. 1–5.

[32] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, and
S. Venkatraman, ‘‘Robust intelligent malware detection using deep learn-
ing,’’ IEEE Access, vol. 7, pp. 46717–46738, 2019.

[33] S. A. Roseline, S. Geetha, S. Kadry, and Y. Nam, ‘‘Intelligent vision-based
malware detection and classification using deep random forest paradigm,’’
IEEE Access, vol. 8, pp. 206303–206324, 2020.

[34] X. Wan, G. Sheng, Y. Li, L. Xiao, and X. Du, ‘‘Reinforcement learning
based mobile offloading for cloud-based malware detection,’’ in Proc.
GLOBECOM IEEE Global Commun. Conf., Dec. 2017, pp. 1–6.

[35] Y. Ding, R.Wu, andX. Zhang, ‘‘Ontology-based knowledge representation
for malware individuals and families,’’ Comput. Secur., vol. 87, Nov. 2019,
Art. no. 101574.

[36] A. Mohaisen, O. Alrawi, and M. Mohaisen, ‘‘AMAL: High-fidelity,
behavior-based automated malware analysis and classification,’’ Comput.
Secur., vol. 52, pp. 251–266, Jul. 2015.

[37] M. Imran, M. T. Afzal, and M. A. Qadir, ‘‘Malware classification using
dynamic features and hiddenMarkovmodel,’’ J. Intell. Fuzzy Syst., vol. 31,
no. 2, pp. 837–847, Jul. 2016.

[38] L. Liu, B.-S. Wang, B. Yu, and Q.-X. Zhong, ‘‘Automatic malware clas-
sification and new malware detection using machine learning,’’ Frontiers
Inf. Technol. Electron. Eng., vol. 18, no. 9, pp. 1336–1347, Sep. 2017.

[39] R. U. Khan, X. Zhang, and R. Kumar, ‘‘Analysis of ResNet and GoogleNet
models for malware detection,’’ J. Comput. Virol. Hacking Techn., vol. 15,
no. 1, pp. 29–37, Mar. 2019.

[40] W. Wang, J. Wei, S. Zhang, and X. Luo, ‘‘LSCDroid: Malware detection
based on local sensitive API invocation sequences,’’ IEEE Trans. Rel.,
vol. 69, no. 1, pp. 174–187, Mar. 2020.

[41] A. Makkar, S. Garg, N. Kumar, M. S. Hossain, A. Ghoneim, and
M. Alrashoud, ‘‘An efficient spam detection technique for IoT devices
using machine learning,’’ IEEE Trans. Ind. Informat., vol. 17, no. 2,
pp. 903–912, Feb. 2021.

[42] R. Kumar, Z. Xiaosong, R. U. Khan, I. Ahad, and J. Kumar, ‘‘Malicious
code detection based on image processing using deep learning,’’ in Proc.
Int. Conf. Comput. Artif. Intell. (ICCAI), 2018, pp. 81–85.

[43] Adminus Malware Dataset 2016-18. Accessed: 2018. [Online]. Available:
http://www.adminus.net

[44] VirusSignMalware Dataset 2013-20. Accessed: 2020. [Online]. Available:
http://www.virussign.com

[45] VirusShare Malware Dataset 2016-20. Accessed: 2020. [Online]. Avail-
able: http://www.virusshare.com

[46] R. D. Reeves, Windows 7 Device Driver. Boston, MA, USA: Addison-
Wesley Publisher, 2010, pp. 135–136.

[47] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, ‘‘A survey onmalware detection
using data mining techniques,’’ ACM Comput. Surveys, vol. 50, no. 3,
pp. 1–40, Oct. 2017.

[48] S. Mirjalili, ‘‘Genetic algorithm,’’ in Evolutionary Algorithms and Neural
Networks, Studies in Computational Intelligence, vol. 780. Cham, Switzer-
land: Switzerland, 2019, pp. 43–55.

VOLUME 9, 2021 69969



D. Javaheri et al.: Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware

[49] A. J. Kulkarni, and S. C. Satapathy,Optimization in Machine Learning and
Applications. Singapore: Springer, 2020.

[50] B. M. Varghese and R. J. S. Raj, ‘‘A survey on variants of genetic algorithm
for scheduling workflow of tasks,’’ in Proc. 2nd Int. Conf. Sci. Technol.
Eng. Manage. (ICONSTEM), Mar. 2016, pp. 489–492.

[51] C. H. Kumar, S. H. Prakash, T. K. Gupta, and D. P. Sahu, ‘‘Variant of
genetic algorithm and its applications,’’ Int. J. Artif. Intell. Neural Netw.,
vol. 4, no. 4, pp. 8–12, 2014.

[52] M. Jurczyk.Windows SystemCall Tables. Accessed: 2020. [Online]. Avail-
able: https://github.com/j00ru/windows-syscalls

[53] M. Russinovich, D. Solomon, and A. Ionescu, Windows Internals Part 1,
6th ed. Redmond, WA, USA: Microsoft Press, 2012, pp. 133–138.

[54] P. Cichosz, Data Mining Algorithms: Explained Using R 1st ed. Hoboken,
NJ, USA: Wiley, 2015.

[55] B. Schreiber, Undocumented Windows 2000 Secrets: A Programmer’s
Cookbook. Boston, MA, USA: Addison Wesley Longman Publishing Co.,
2001.

[56] (2014). Joe Sandbox. Accessed: 2020. [Online]. Available: https://www.
joesandbox.com

[57] (2014). Virus Total. Accessed: 2020. [Online]. Available: https://www.
virustotal.com

[58] AV-Test Ranking List. Accessed: 2020. [Online]. Available:
https://www.av-test.org/en/antivirus/home-windows/

[59] I. H. Sarker, Y. B. Abushark, F. Alsolami, and A. I. Khan, ‘‘IntruDTree:
A machine learning based cyber security intrusion detection,’’ Model.
Symmetry, vol. 12, no. 5, pp. 754–769, 2020.

[60] R. Kumars, M. Alazab, and W. Wang, ‘‘A survey of intelligent techniques
for Android malware detection,’’in Malware Analysis Using Artificial
Intelligence and Deep Learning. Cham, Switzerland: Springer, 2021.

[61] N. Yuvaraj, R. A. Raja, N.V. Kousik, P. Johri, and M. J. Diván, Analy-
sis on the Prediction of Central Line-Associated Bloodstream Infections
(CLABSI) Using Deep Neural Network Classification, Computational
Intelligence and its Applications in Healthcare. New York, NY, USA:
Academic, 2020, pp. 229–244.

[62] H2O AI Hybrid Cloud. Accessed: 2021. [Online]. Available: https://www.
h2o.ai/

[63] A. Honig, and M. Sikorski, Practical Malware Analysis: The Hands-On
Guide to Dissecting Malicious Software. San Francisco, CA, USA: No
Starch Press, 2012, pp. 221–224.

DANIAL JAVAHERI (Member, IEEE) received the
B.Sc., M.Sc. (Hons.), and Ph.D. (Hons.) degrees
in computer software engineering from Islamic
Azad University (IAU), in 2012, 2014, and 2018,
respectively. In 2015, he joined the Cyber Security
Research Center, IAU, and the APA Specialized
Center, as a Security Specialist and has maintained
his role as a university lecturer with a number
of top universities in Iran. Over the past decade,
he has conducted extensive research in the field

of software security, network forensics, and malware analysis, and has
published several articles and books in relevant areas. Due to his exemplary
performance in education, he has been awarded the Top Student and the Top
Graduated by the Iran’s National Elites Foundation (INEF), from 2017 to
2018, including being awarded several honors by the university.

POOIA LALBAKHSH received the Ph.D. degree
in computer science and computer engineering
from La Trobe University, Melbourne, Australia,
in 2017. He has more than 15 years of experience
in academia and industry, working in the areas
of decision support systems, simulation modeling,
machine learning, swarm intelligence, and univer-
sal AI. He has completed several research and
industrial projects in the areas of capacity analysis,
adaptive intelligent trading, virtual therapy, finan-

cial distress analysis, network monitoring, adaptive routing, and capital mar-
ket prediction. He has collaborated with several multidisciplinary teams from
La Trobe University, RMIT University, The Australian National University
(ANU), and the Defense Science and Technology Group (DSTG), Australia.
He is currently working as an Artificial Intelligence Scientist with Euler
Capital, Australia. He also focuses on intelligent trading, detecting market
regimes, and predicting anomalies and arbitrage.

MEHDI HOSSEINZADEH received the B.Sc.
degree in computer hardware engineering from the
Islamic Azad University of Dezful, Iran, in 2003,
and the M.Sc. and Ph.D. degrees in computer sys-
tem architecture from the Science and Research
Branch, Islamic Azad University, Tehran, Iran,
in 2005 and 2008, respectively. He is currently
an Associate Professor with the Iran University
of Medical Sciences, Tehran. He has made a
significant contribution to the advancement of

knowledge in his area of expertise, with more than 150 publications and
4000 citations. His research interests include information technology, data
mining, big data analytics, e-commerce, e-marketing, and social networks.
He is also an associate editor for internationally reputed journals.

69970 VOLUME 9, 2021


