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ABSTRACT Long-term load forecasting (LTLF) is an essential process for strategical planning of the future
needed extension in the power systems of any country. Besides, deep learning has become the heart of the
machine learning paradigm, which is wildly used nowadays inmany fields, and it also has become the current
revolution in Artificial Intelligence (AI). In this paper, an optimized deep learning model based on Stacked
Long Short-Term Memory Network (SLSTMN) is proposed. The architecture of the model is optimized to
get the best configuration using Genetic Algorithm (GA). In addition, the hyperparameters of the model
network are optimized using many deep learning techniques. During the optimization process, hundreds of
model configurations are tested. The accuracy of this model is compared with many deep learning models
and is compared against the related work in the field of LTLF. The dataset of the South Australia State (SA)
power system is used to test the compared models. This data includes maximum daily load, daily maximum
temperature, daily minimum temperature, weekday, the month, and holidays for 12 years from 2005 to 2016.
SLSTMN achieves excellent accuracy and the lowest error value (almost 1%) when compared with other
models on the same dataset and with related work models on different datasets.

INDEX TERMS Artificial intelligent, machine learning, deep learning, load forecasting, staked long
short-term memory network, recurrent neural network.

NOMENCLATURE
ht Output vector
U Matrix of the recurrent connections’ weights
W Matrix of the input connections’ weights
b Bias vector
xt input vector to the LSTM uni
ft forget gate component vector
it update gate component vector
ct Unit input activation vector
ot Unit output activation vecto
ht Output vector of the LSMT unit
Ai the outputs actual value
Pi The forecasted output value
N The test dataset siz
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X’ normalized value
X the value to be normalized
Āi the average of outputs actual value

I. INTRODUCTION
Building a successful electrical load forecasting model has
been one of the hottest research areas for many years. It is
crucial for any daily electrical network operator and for the
strategical planer of the national network of any country to
get a correct prediction about the behavior and the changes
of network loads in the short, mid, and long term [1].

Electrical load forecasting has a significant influence on
the operation of the electric power system, beginning from
generation planning, power flow studies, unit commitment,
and the economical operation of the electric power system.
The necessity of electrical power changes every day which
makes the forecasting of electrical load is very difficult. The
electrical load is complex and affected by various exogenous
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factors such as weather, social activities, seasonal factors and
previous patterns [R1].

Load forecasting can be divided into three categories
according to the targeted forecasting period: 1) short-term:
day range 2) mid-term: week to few months range
3) long-term: year to several years range [2], [3]. This
research focuses on long-term load forecasting (LTLF). The
proposed forecasting model is based on deep learning tech-
niques to get accurate load forecasting results.

The electrical load forecasting methods can be divided
into two main methods. They are traditional methods
(statistical techniques) and artificial intelligence (AI)-based
methods. The former methods such as time series methods,
linear regression, and autoregressive integrated moving aver-
age (ARIMA) have someweaknesses. If there are unexpected
variations in environmental parameters, and daily patterns,
a large forecast error will appear. Also, the nonlinear char-
acteristics of complex electrical load cannot be characterized
precisely using the traditional methods [4].

Artificial intelligence (AI) is one of the computer science
branches that deal with simulating natural (human) intelli-
gence by computers [5]. From the 1950s, AI starts to be
one of the hottest researching topics. Symbolic logic, expert
systems, and computer vision, natural language processing
are examples of AI types that are developed. Starting from
the 1980s, the concept of machine learning (ML) appears.
The key difference between ML and other AI types is that
ML enables computers to act without being explicitly pro-
grammed. Artificial neural networks (ANN)were an essential
approach to apply ML. The idea behind ANN is to sim-
ulate the neural system in humans. Limiting of data and
computational power stood in the way of the development
of neural networks until the great leap occurred in the last
ten years by appearing of cloud computing [6], big data [7],
and revolutionary development in GPUs and computing chips
manufacturing [8]. Deep learning (DL) techniques appear to
benefit from this leap by helps the researchers to propose
and to try deep and very deep ANN learning models [9].
In the past five years, many open source DL frameworks have
become available such as TensorFlow [10], Keras [9], [11],
and PyTorch [12].

DL is one of the main pillars of the current revolu-
tion of AI, many researchers using its techniques to build
models for load forecasting. Most of the researches in the
field of load forecasting target for short- and mid-term load
forecasting [13]–[24], this because the long-term long fore-
casting (LTLF) needs to take many factors into account and
to manipulate the massive amount of historical data which
were collected during many past years.

According to Andrew Ng, one of the DL leaders: ‘‘I believe
Deep Learning is our best shot at progress towards real AI.’’
Applying DL to any problem faces many challenges. In addi-
tion to the overfitting problem discussed in the previous
section, DL is a data-intensive method, so there is a need
to own a massive amount of data to apply DL. Training a
DL model also required high computational power which is

available nowadays by using GPUs and cloud computing.
DL models, like any NN model, are a black-box1 model
that usually is not understood how they get their output.
DL model is highly specialized to solve a specific problem,
and it cannot be used to solve another problem in a different
domain without retraining the model.

The AI methods for LTLF include ANN, Fuzzy and neuro-
fuzzy, SVM,..etc [25]–[27]. In [2], [3], the authors intro-
duce an excellent review of the different techniques that
were developed for long-term load forecasting. In this paper,
the proposed model is a deep neural network (DNN) model.
So, in this section, some of the researches in the field of LTLF
are highlighted, which is based on AI models (especially
ANN-based models).

In [28], the authors use 10 factors as inputs for their pro-
posed ANNs which are: (1) gross national product, (2) gross
domestic product, (3) population, (4) number of households,
(5) amount of CO2 pollution, (6) number of air-conditioners,
(7) index of industrial production, (8) oil price, (9) energy
consumption, and (10) electricity price. The target was find-
ing the peak daily load in 2010 and 2020 in Japan.

The authors tested ten various feed-forward ANN-based
models in [22] to forecast Greek long-term energy consump-
tion. The results showed that ANN model predictions are
much more accurate than the linear regression model and
similar to those obtained by the support vector machine
model. Also, the authors in [29] presented the hybrid model
of ANN and biogeography-based optimization technique for
long-term forecasting of India’s sector-wise electrical energy
demand. The using of this optimization technique to train
the ANN improves forecasting accuracy. Besides, a fuzzy
logic model was proposed in [24] for long-term forecasting.
A reliably forecasted result is obtained, and MAPE equal
to 6.9%. The model training period is not mentioned clearly
in the paper, and the fuzzy logic rules appear to be very trivial
and based only on the humidity and temperature.

A three stages model was proposed in [25]. The time
series decomposed to three components by X12- ARIMA
algorithm; then, the model used three NAR neural networks
for the forecasting process. The output of these networks was
combined using a feed-forward neural network (FFNN). The
proposed model had conclusive results compared to several
models. Neural network-based approach for LTLF of the
Jordanian power system from 2015 to 2029 was presented
in [26]. Two types of FFNN are examined, namely, the back-
propagation and the radial basis function neural networks.

In [30], two ANN-based models have been applied to fore-
cast the long-term electricity demands of Turkey. But there is
a doubt that these models achieve the same success if they are
used to forecast the daily electricity consumption for a long-
term period. The design of the models is very simple to solve
such a complicated problem. In [31], a collaborative fuzzy-
neural model is proposed. This model was used to predict
annual energy consumption in Taiwan. The disadvantage of

1 https://www.sciencedirect.com/topics/engineering/black-box-model
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this model is that it is not a fully automated model. The fore-
casting performance was improved through the site experts’
collaboration.

The generalized regression neural network (GRNN) is
employed in [32] to solve the problem of LTLF. The GRNN
has some advantages over conventional ANN where it has
the ability to estimate the absolute function between input
and output data sets directly from training data. A hybrid data
mining driven algorithm for long-term peak load forecasting
is proposed in [R4] where the particle swarm optimization
is employed to optimize the parameters of support vector
regression. The hybrid model is then applied to solve the
forecasting problem in a real-life grid. The author in [R5] pro-
posed a feature-fusion-kernel-based Gaussian process model
for probabilistic long-term load forecasting where the prob-
abilistic distribution of the forecasting is specifically revised
to overpass further the mismatch between the forecast and the
original data set.

Table 1 presents a comparison between LTLF related
works. The key problem with the mentioned related works
is that LTLF models are designed to forecast the annual elec-
tricity consumption or annual peak load as one total number.
On the contrary, our proposed model is designed to forecast
the daily peak load for years in the future, which is important
to study the changes in load during the year. Also, It can
be concluded that no standard data set was used in the field
of LTLF. The comparison between the different models in this
context is difficult, and the only standard evaluation metric is
the mean absolute percentage error (MAPE).

The majority of proposed forecasting methods in the litera-
ture are developed for short-term load forecasting. Although
few approaches have been proposed and utilized for LTLF
in literature, none of them consistently provides precise fore-
casts. In addition, proposing a precise and practical model
of LTLF is still a very significant research issue because
of the importance of LTFT for strategic planning of the
future needed extension in the power systems of any country,
the extreme complexity of electrical load data, the power
system requirements, the precise power quality conditions,
and deregulation. This motivates us to propose an accurate
and practical forecasting model to obtain a high forecasting
accuracy for LTLF. So, in this paper, a model based on the
Stacked Long Short-Term Memory network (SLSTMN) is
proposed to solve the LTLF problem. The proposed model is
tested and applied to forecast the electrical load of the South
Australia state (SA) for a long-term period.

The key contributions of this paper are:
• Proposing a hybrid model based on the Stacked Long
Short-Term Memory network (SLSTMN) to solve the
LTLF problem where its architecture is optimized to get
the best configuration using GA. Besides, the hyperpa-
rameters of themodel network are optimized usingmany
deep learning techniques.

• The LTLF models in the literature predict annual peak
load or annual energy consumption as one total num-
ber. One of this paper’s contributions is to overcome

TABLE 1. Overview of LTLF related work.

this research gap by employing the proposed model to
predict the daily peak load.

• Formulate the problem of finding the best network
architecture as a single-objective multi-parameters dis-
crete optimization problem and use the genetic algo-
rithm (GA) to solve it.

• Adam optimizer is used to optimize the process of model
parameters training. A Dropout and early stopping tech-
niques are applied to prevent overfitting training.

• Examine tens of deep learning models with many hyper-
parameters tuning and compare their results against the
proposed model to indicate the greater accuracy of the
proposed model.

• Compare the proposed model results with two classi-
cal forecasting approaches, ARIMA and SVR based on
real-life data to prove the ability of the proposed model
to give accurate results of LTLF in real life.

• Models’ configurations, hyperparameters hypotheses,
and results are recorded in a database for in-depth
analyses.

Next, in this paper, Section II presents an overview of the
main deep learning architectures and techniques used in the
proposed model. Section III discusses the proposed model.
Section IV discusses how to use the Genetic algorithm to get
the best network architecture configuration of the proposed
model. Section 0 shows the experiments used to evaluate the
performance of the proposed model. The paper is concluded
in section VI.

II. DEEP LEARNING ARCHITECTURES AND TECHNIQUES
As stated before, DL is a new type of ML methods which
can be considered as the heart of the AI big picture. DL is
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based on the classical idea of neural networks but with many
changes in methods, architectures, and scales. In recent years,
deep learning contributes to providing the best solutions to
many problems in image recognition, speech recognition, and
natural language processing (NLP). This section focuses on
the layers, and techniques that will be found in the proposed
model. Also, challenges in DL context are summarized at the
end of this section:

A. RECURRENT NEURAL NETWORKS (RNN) LAYERS
The recurrent neural network (RNN) achieved impressive
results in sequence generation problems such as NLP.
In RNN, there are feedbacks in some manner of neurons out-
puts to their inputs or the previous layers. This feedback aims
to add the memory concept to the neural network. In other
words, the training process not only depends on the current
inputs that are fed to the input layer but also depends on the
previous values of inputs. In the RNN context, a past state
on the RNN unit, called the hidden state (h), is calculated
according to its type, but overall, it depends on the historical
outputs and is used to get the next output. For example,
figure 1 shows the different state for the basic RNN unit,
which is called vanilla RNN unit, the following equations cal-
culate the final output, where U, W, V are equation weights:

ht = tanh (Wxt + Uht−1+ba) (1)

yt = softmax
(
Vat+by

)
(2)

Vanilla RNN suffers from many drawbacks such as
vanishing gradients, so researchers have developed more
sophisticated types of RNNs to deal with these draw-
backs. Examples of these types are Long short-term memory
(LSTM) [37], Gated recurrent units (GRUs) [38], and Bidi-
rectional recurrent unit [39]. Next, a short overview of LSTM
is presented because it is used in our proposed network and
is considered the most important type of RNNs.

Long short-term memory: LSTM was designed to over-
come two main shortages in vanilla RNN. The first one is
long-term dependency in RNNs, which is not recommended
for many applications. In simple words, the current state of
the RNN cell is affected by the previous states even if the
timestamp of previous states is very far from the current
timestamp. This is not logical in many applications such
as auto-translations and speech recognition. The second one
is the vanishing gradient and exploding gradient. Learning
methods in RNN depend on changing the weights by receiv-
ing an update proportional to the partial derivative of the
loss (error) function with respect to the current weight in
each iteration of training. The problem is this gradient will
be vanishingly small, effectively preventing the weight from
changing its value and as a result, the learning process is
stopped. LSTMovercomes these problems by introducing the
gates concept. In LSTM, there are three types of gates: forget
gate, input gate, and output gate. The forget gate uses the
sigmoid function applied to the current input and the hidden
state to decide the contribution of each of them in the next

FIGURE 1. States of vanilla RNN unit in work.

state of the LSTM cell as shown in equation (3). So, it plays
a key role in solving the Long-term dependency problem.
The input gate uses a combination of used sigmoid and tach
functions applied to the input and hidden state to compute
the current state of the cell, as shown in equations (4,5).
The output of the previous two gates is used by the output
gate to calculate the cell’s next hidden state as shown in
equations (6,7).

Figure 2 shows the dataflow and relation between different
gates entire the LSTM cell. As noticed, LSTM cell has many
parameters and need much more calculations compared to
ordinary artificial neuron.

ft = σ (Wf xt + Uf ht−1 + bf ) (3)

it = σ (Wixt + Uiht−1 + bi) (4)

ct = ftct−1 + it tanh(Wcxt + Ucht−1+bc) (5)

ot = σ (Woxt + Uoht−1+b0) (6)

ht = ot tanh(ct ) (7)

FIGURE 2. The long short-term memory (LSTM) cell [40].

B. REGULARIZATION
One of the traditional problems in any neural network is the
overfitting problem. Overfitting is the problem of the dissimi-
larity of the performance of the model, where it performs very
well with the training data, and its performance decreases or
fails dramatically in case of using test data [41]. This problem
increases proportionally as the network increases, such as
in the case of deep learning. There are many techniques
and recommendations are used to overcome this problem;
regularization techniques are in the heart of them. L2 and L1,
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Dropout [42], Data augmentation [43], Early stopping [44]
are examples of regularization techniques. The proposed
model use Dropout and early stopping techniques to improve
its results.

The idea behind Dropout is that randomization is one of
the success secrets of neural networks, but after a large num-
ber of training iterations for deep and large neural network,
the network is settled which lead to the overfitting problem.
So, in dropout, a percentage of neurons are canceled ran-
domly in every iteration. This percentage is a hyperparameter
that should be tuned when using Dropout. This process of
randomly removing neurons produces a network randomly
structured and many studies prove the excellent results of this
technique in solving the overfitting problem.

Early stopping tries to solve the overfitting problem with
a differing point of view. The overfitting occurs when the
model is trained more than it should on the training data, so it
overfits on them. Early stopping monitors the performance of
the model and stops the training process when it detects that
the model starts to overfit and its performance enhancement
is almost stopped.

III. THE STACKED LONG SHORT-TERM MEMORY
NETWORK
Using RNN in many time series problems was not achieving
the best results [14], which disappoints many researchers of
using RNN in this type of problem. In this paper, multiple
layers of RNN are combined to make the network deeper.
The idea behind this architecture was inspired by [45] in
which the authors applied phoneme recognition on the TIMIT
database [46] and got excellent results compares to other
techniques for the same dataset. According to [47], as more
RNN networks being deeper by stacking multiple recurrent
hidden states on top of each other as it potentially allows the
hidden state at each layer to work at different timescales.

A model based on the Stacked Long Short-Term Memory
Network (SLSTMN) is proposed which is tested as will
be shown next and its performance compared with many
other models. As shown in figure 3, this model consists of
a number of stacked LSTM layers followed by a number
of dense layers. As a state-of-art issue, SLSTMN uses two
techniques for regularization: dropout and early stop. This
model is optimized using Adam optimizer [48] to update
network weights during the training process. This optimizer
has achieved outstanding results compared to other stochastic
optimizers, as will be shown later in this paper. In [49],
the author introduces a gentle overview of this optimizer, and
he presents the idea behind this optimizer and its mathemat-
ical background. SLSTMN has many hyperparameters that
need to be tuned. Next, in this paper, the way of tuning these
parameters to get the best configuration setting for SLSTMN
is discussed.

The data needs to be normalized before starting the training
process to improve the efficiency of the forecasting method
and to avoid the occurrence of overflow during the calcula-
tion process. Equation (8) shows how to perform min-max

FIGURE 3. Stacked long short-term memory network (SLSTMN).

normalization between [−1,1] for any data column X , where
X is the original value and X ′ is the normalized value.

X ′ = −1+
2 ∗ (X − mix (X))
max (X)− min (X)

(8)

Figure 4 presents an overview of the training and evalua-
tion process of the proposed model. This process consists of
three main stages:

1) Data Preprocessing: the dataset which is used for LTLF
is loaded. Then, it normalized, as mentioned before.
After that, the normalized data re-framed as supervised
learning problems. The final step is to split the available
data into two sets: the training set and the testing set.

2) Model fitting and training: the model is created and
trained for several epochs.

3) Model Evaluation: use the trained model to predict
the output using the test set as input and compare the
predicted values with the actual values to evaluate the
accuracy of the model.

IV. PROPOSED MODEL ARCHITECTURE OPTIMIZATION
In figure 3, the architecture of SLSTMN is shown. The num-
ber of staked LSTM layers and many other parameters should
be determined. The architecture parameters are formulated
as a single-objective multi-parameters discrete optimization
problem. Then, the genetic algorithm (GA) is used to solve
this problem. GA is a global search procedure that searches
from one population of points to another. It belongs to a class
of probabilistic methods called ‘‘evolutionary algorithms’’
based on the principle’s selection and mutation.

In this case, the GA optimizer aims to get the minimum
value of mean absolute percentage error (MAPE) for the
evaluated model. Table 2 shows the value space of the model
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FIGURE 4. SLSTMN model training and evaluation process.

TABLE 2. Model parameters.

parameters. All the parameters have discrete values. Each
parameter is considered as a gene in the GA chromosome as
presented in figure 5. Table 3 summarizes all the data that are
needed to initialize the GA optimizer to find the best solution.
To implement this optimizer, a modified version of PyGAD2

v2.5.0 is used. This package is designed to solve continuous
optimization problems using GA. This package is modified
to solve discrete optimization problems.

Algorithm 1 summarizes the main steps to the SLSTMN
model architecture optimization process which can be used
to optimize any other model architecture by some changes.

2https://github.com/ahmedfgad/GeneticAlgorithmPython

FIGURE 5. GA chromosome.

TABLE 3. GA data.

It’s worth saying that GA is not used to train the internal
hyperparameters such as weights and biases of the model.
This role is performed by one of modern gradient descent
optimization algorithms such as the Adam algorithm.

V. PERFORMANCE EVALUATION
A. DATASET DESCRIPTION AND FORECASTING SCENARIO
Load forecasting is a time series problem that was reformu-
lated to be a supervised learning problem.3 The problem is
starts with training the model by the training set and evaluate
the model performance using the test set. In DL, the dataset
size plays the main role. As much as training data is large,
the model performance is enhanced, and many learning prob-
lems are avoided. So, it is a must to train the model using the
big dataset to benefit from the DL paradigm. Australia is one
of the leading counties in the field of data availability [50].
Therefore, a dataset from The Australian Energy Market
Operator (AEMO) [51] is employed which is responsible
for operating Australia’s largest gas and electricity markets
and power systems. On their website, AEMO provides the
Net System Load profile (NSLP) for each of the distribution
network areas such as Victoria, NSW, ACT, SA, QLD.

In this paper, the load data of South Australia State (SA)
in 12 years from 2005 to 2016 is considered. The load data
provided on a half-hour scale. For LTLF, the daily maximum
load value is considered. In addition to load data, the weather
data in SA from 2005 to 2016 is collected.

Figure 6 shows the daily load in SA in 2016 which rep-
resents a portion of the dataset. All the required weather
data is available on the Bureau of Meteorology website [52].
The Bureau of Meteorology is Australia’s national weather,
climate, andwater agency. The dailymaximum andminimum
temperature and solar exposure from the North Adelaide
weather station are collected. Adelaide is the capital city

3https://machinelearningmastery.com/convert-time-series-supervised-
learning-problem-python/
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Algorithm 1: Model Architecture Optimization Using
GA
Initialization:
1) set parameters:
N = 100 //number of generations
NS = 50 // Number of solutions in the population
NG = 7 // number of gens according to Table 2
Pm = 10% // mutation probability
Pc = 10% // crossover probability

2) set genes values ranges according to Table 2
3) IP = Generate initial population randomly
4) fitness function: MAPE(solution)

Output: Solution sol
for i = 1 to N

PL=select(IP)
// get the new population after crossover and
mutation
Offspring = Crossover(PL)
new_P=mutation(Offspring)
foreach sol in new_P:

// create SLSTMN using values in sol
Model = createModel(sol)
Final_model=train_test(Model)
// get MAPE for the test set as sol evolution
z=fitness_evalutaion(Final_model)
add z to new_P evalution list (EL)

end
best_sols = best values of EL
// update initial population using best solution
founded

update (IP, best_sols)
end
// get the best solution from IP
sol = best_fitness_value (IP)
return sol

of the state of South Australia. Adelaide is home to more
than 75% of the South Australian population. Also, a list of
public holidays on SA in the study period is collected.

In this paper, the tested scenario is to forecast themaximum
daily load of 2016 in SA based on the data available for
the years from 2005 to 2015 (11 years). So, the training
set represents the data of around (11 × 365 = 4015) days,
the output of the models is the expected values of the daily
load of 2016, which compared with the real values recorded
in 2016 that represent the test set for our models.

B. EVALUATION METRICS
Two main evaluation metrics are considered to measure
the forecasting process success: mean absolute percentage
error (MAPE) and root-mean-square error (RMSE). The fol-
lowing equations define these values:

MAPE =
1
N

N∑
i=1

|Ai − Pi|
Ai

∗100(9) (9)

FIGURE 6. Daily load of SA in 2016.

RMSE =

√∑N
i=1 (Ai−Pi)2

N
(10)

where Ai,Pi and N is the actual value, the forecasted value,
and the testing dataset size respectively? The LTLF problem
is solved offline, so the execution time is not an evaluation
metric, unlike the case of short-term load forecasting. The
most important issue of the power system operator is to get
the most accurate forecasting results.

C. EVALUATED MODELS
In this research, tens of models are examined with many
hyperparameters hypotheses. Besides, six forecasting mod-
els are compared. The first two models are non-deep learn-
ing models. The other four models are DL models. Next,
the architecture of each model will be presented. The last
model is noted as (Model 4) based on the proposed SLSTMN
architecture. The architecture of each DL model is optimized
using GA to get the best configuration for each model. The
input features which are tested include maximum daily load,
daily maximum temperature, daily minimum temperature,
the weekday, the month, and holidays. The different input
feature collections are summarized in table 4.

TABLE 4. Input features collections.

1) ARIMA MODEL
One of the classical time series forecasting models is
the Autoregressive integrated moving average (ARIMA).
Two variations of ARIMA will be examined: seasonal
ARIMA (SARIMA) and non-seasonal ARIMA. The sea-
sonality value in SARIMA is assigned to 30 (one month).
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More details about ARIMA and SARIMA can be found
in [53]–[56].

2) SVR MODEL
This model is a support vector regression (SVR) model [57],
[58]. SVR is a widely used approach for power load forecast-
ing [17], [20], [59]. It is vital to choose the best SVR kernel
and the values of its parameters [60]. There are many choices
for SVR kernel such as (linear, poly, RBF,..). As stated in [60],
‘‘The RBF kernel is a reasonable first choice.’’ So, RBF is
chosen as the SVR kernel. There are two main parameters
in the RBF kernel (γ and C). By using the cross-validation
and grid-search methods, the best values for γ and C can be
obtained.

3) MODEL 1 (ANN)
As shown in figure 7, model 1 consists of a number of dense
layers after each layer except the last one a Dropout layer
is added. The number of neurons in the last (output) dense
layers is fixed as one. Similar to the optimization process
presented in section IV. GA is used to optimize the following
hyperparameters: the number of dense layers, the number
of neurons in each dense layer, the dropout value, batch
size, the number of lagged days. The number of trainable
parameters varies and reaches 20,501 in some trials.

4) MODEL 2 (CNN + ANN)
As shown in figure 8, model 3 consists of one convolutional
layer followed by two dense layers after each layer except
the last one, a Dropout layer is added. The convolutional
layer has 64 filters, and the kernel size equals 2. The number
of neurons in the last(output) dense layers is fixed as one.
The hyperparameters that are optimized using GA are filter
and kernel size in CNN layer, the number of dense layers,
the number of neurons in each dense layer, the dropout
value, batch size, the number of lagged days. The number
of trainable parameters varies and reaches 89,993 in some
trials.

5) MODEL 3 (GRU RNN +ANN)
As shown in figure 9, model 3 consists of a number of GRU
layers followed by a number of dense layers after each layer
except the last one a Dropout layer is added. The hyperpa-
rameters hypotheses that are tested in this model are: The
hyperparameters that are optimized using GA are: the number
of GRU layers, the number of dense layers, the number of
neurons in each dense layer, the dropout value, batch size,
the number of lagged days. The number of trainable parame-
ters varies and reaches 122,001 in some trials.

6) MODEL 4(SLSTMN)
This model based on the proposed SLSTMN architecture that
is shown in figure 3. The model architecture is optimized as
mentioned in section IV. The number of trainable parameters
varies and reaches 210,177 in some trials.

FIGURE 7. Model 1 architecture.

FIGURE 8. Model 2 architecture.

D. SIMULATION AND ANALYSIS OF MODELS
FORECASTING RESULTS
The ARIMA model4 and SVR Model5 are imple-
mented by using the Azure Machine Learning service
(Azure ML). Azure ML is a cloud-based predictive data
analysis provider [61]. Azure ML provides many predes-
tined data analysis models, data processing modules, and
many other modules that may be needed to create an
ML model. These models and modules are integrated into
Azure ML Studio [62].

The deep learning models in this research are imple-
mented using python Anaconda [63] and Keras API [11]
with Google’s TensorFlow [10] backend engine and are tested
on a machine that has the following specifications: CPU:
Core i5 Processor 2.5 GHz /16GB RAM /500GB SSD, GPU:
NVIDIA GeForce GTX1050 4GB, compute capability 6.1.

4The Azure ML implementation of the ARIMA model using R script
can be accessed by the link: https://gallery.cortanaintelligence.com/
Experiment/Classical-Time-Series-Forecasting-LTLF

5The Azure ML implementation of the SVR model using python script
can be accessed by the link: https://gallery.cortanaintelligence.com/
Experiment/LTLF-SA-Data-SVM. The best values of (γ and C) parameters
are (0.015625, 0.125).

68518 VOLUME 9, 2021



T. A. Farrag, E. E. Elattar: Optimized Deep SLSTMN for LTLF

TABLE 5. Top 15 experimental results (out of more than 1126 experiments).

FIGURE 9. Model 3 architecture.

Configuring TensorFlow to use the GPU processor decreases
the execution time dramatically, which helps us to perform
hundreds of trials to test many models and tuning their hyper-
parameters. Next, our trials will be summarized. For each
model, the input features collections and the hyperparameters
hypotheses are tested and the results for each trail (exper-
iment) are stored in a database for analysis purposes. The
following data is available for each experiment: the values
of hyperparameters, no. of training epochs, RMSE, MAPE,
optimizer type, the predicted values, the actual values, and
training loss history after each epoch. This data is used to
study the training process of each model and enhance it by
using many techniques for regulation, optimization to avoid
the overfitting problem.

Table 5 shows the best 15 results of the deep learning
models, the best model, and the best hyperparameters values.
The proposed model (SLSTMN) produces the best results in
general. Table 6 compares the best result of each tested model
with respect to RMSE and MAPE. The results show the
advance of SLSTMN where the RMSE equals 10.296 MW,
and MAPE equals 1.044 % which represents an excellent
result in the field of LTLF.

TABLE 6. Comparison of the best result for each of the tested models.

Table 7 shows the comparison between the tested models
and the other published models used for LTLF. The data
that was used in these models was different, so, the value of
MAPE is considered as the standard metric of success of any
forecasting model. This comparison shows the superiority of
the SLSTMN model over other models.

For more details about the best model, figure 10 presents
training set loss versus test set loss during the learning process
of model 4 (SLSTMN). This model needs only 16 epochs
to reach the best loss and as shown the proposed model
avoids the overfitting problem by achieving close results
when applying to the training set as well as the test set. The
small number of epochs needed for model learning is an
excellent remark especially with very complex architectures
such as SLSTMN to avoid an extremely slow learning pro-
cess. Figure 11 shows the close predictions of the maximum
daily load in 2016 against the actual recoded values when
using the proposed model.
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TABLE 7. Comparison between SLSTMN and other published models.

In the proposed model, the ‘‘Adam’’ optimizer is
used for network training. The outstanding performance
of this optimizer is verified, when it has been com-
pared to the other modern gradient descent optimiza-
tion algorithms such as (SGD, Adadelta, RMSprop,
Adagrad, and Nadam). Figure 12 presents the comparison
of the best MAPE value for each optimizer when applying
to SLSTMN.

E. DISCUSSION
As clear from the above results, the achieved forecasting
results of the proposed model which compared with different
models prove the superiority of the proposed model over
other models. Table 8 indicates the improvement of MAPE
and RMSE of the proposed model over other models.

TABLE 8. Improvements of the proposed model over other models.

Table 8 prove that the proposed model gives an accurate
and precise forecasting accuracy for the LTLF problem com-
pared to other models. Besides, the proposed model reduced
the MAPE significantly compared to other published models
as shown in Table 7.

Fig. 10 indicates that the proposed model needs a small
number of epochs for learning which avoids an extremely
slow learning process. Also, the results of Fig. 11 show that
the predicted maximum daily load obtained by the proposed
model is very close to the actual maximum daily load values
which prove the efficiency of the proposed model in predict-
ing the maximum daily load in contrast with other models
in the literature which predict annual peak load as one total
number.

The superiority of the proposed model comes from obtain-
ing the optimal configuration of the SLSTMN using GA
and employing the ‘‘Adam’’ optimizer for network training
which gives superior performance compared to other modern
gradient descent optimization algorithms as shown in Fig. 12.

FIGURE 10. Training set loss vs Test set loss during the learning process
(Exp. ID 20200819040116).

FIGURE 11. Actual vs. predicted values of maximum daily load in 2016
(Exp. ID 20200819040116).

The training time of the proposed model for different
experiments is shown in Table 5. As shown the training time
is in milliseconds which proves that the proposed model can
be trained in a very short time. These results indicate that
the proposed model is also efficient when computational time
is concerned. However, the LTLF problem is solved offline,
the proposed model can be trained and obtain the solution to
the LTLF problem in a very short time.

To confirm the validity of the proposed model, coefficient
of determination (R2) is employed which can be defined as
follows:

R2
= 1−

∑N
i=1 (Ai − Pi)

2∑N
i=1

(
Ai − Āi

)2 (11)

The best possible value of R2 is 1 and it can be neg-
ative. Table 9 shows the coefficient of determination (R2)
of the proposed model for different experiments. As shown
in Table 9, the values of R2 of the proposed model for differ-
ent experiments are very close to 1. This validation confirms
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FIGURE 12. Best achieved MAPE (%) for each optimizer.

that the proposed model gets precise prediction results, which
is clearly applicable to the LTLF problem.

TABLE 9. Coefficient of determination (R2) of the proposed model for
different experiments.

VI. CONCLUSION
A model based on the Stacked Long Short-Term Memory
network (SLSTMN) is proposed. Traditionally, LTLFmodels
are designed to predict the annual peak load or annual energy
consumption as one total number. In this paper, the proposed
model is designed to fill this gap by forecasting the daily load.

The proposed model is tested and applied to forecast the
electrical load of the South Australia state (SA). Its results are
compared against non-deep learning models and tens of deep
learning models with hundreds of hyperparameters tuning.
GA is used to optimize the architecture of the proposed
model network. SLSTMN records the lowest MAPE value
(almost 1%). Therefore, SLSTMN provides more accurate
predictions than the tested models. With this MAPE value,
the proposed model performs better than the models used in
the related work in the field of LTLF. All the trails and mod-
els’ configurations, hyperparameters hypotheses, and results
are recorded in a database for in-depth analyses.

The future work includes the applications of the proposed
model for a chaotic time period (in the energy market) such

as during the COVD-19 pandemic (2019-2020) then gives
projections for years after 2021.
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